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Introduction. A number of metrics have been proposed for determining the complexity of a lan-
guage’s inflectional morphology. However, many of the metrics put forth are subject to sources of bias
that can significantly skew the results. We argue that modern machine learning methods can greatly
reduce at least one major source of bias: the analytical bias introduced by linguists when formally
describing the transformations relating different inflected forms that comprise a paradigm. In short, we
propose a black-box approach to morphological complexity: a language is less complex if it is easier
to learn with a domain-general string-to-string transduction method.

Neural networks have shown state-of-the-art performance in learning and generalizing string-to-
string morphological transformations (Cotterell et al., 2017). We argue that how well these networks
predict held-out data is a good measure for the complexity of an inflection. We provide results on 31
typologically diverse languages as evidence for a more general version of the low-entropy complexity
hypothesis first proposed in Ackerman and Malouf (2013). We show that morphological systems
evince a type of Pareto complexity: a language’s inflectional paradigms may be either large in size or
highly irregular, but never both.

Defining Morphological Complexity. Ackerman and Malouf (2013) introduce a distinction be-
tween two types of morphological complexity.1 The first type, enumerative complexity (e-complexity),
is the number of morpho-syntactic distinctions a word overtly marks (the number of morpho-syntactic
functions times the number of unique exponents for each function). E-complexity varies dramatically
across languages. While the regular English verb paradigm contains four forms, the Archi verb will
have thousands. Despite the plethora of forms, however, the Archi system is highly regular. Integrative
complexity (i-complexity) is based on the idea of quantifying this predictability. Building on Ackerman
and Malouf (2013), we repose our measure of i-complexity on information theory. We estimate the
entropy of the distribution from which an entire paradigm is generated, by assuming it takes the form
of a tree-structured graphical model with neural network factors (Fig. 2).
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Figure 1: The y-axis is cross-entropy, an approximation to the
paradigm entropy and i-complexity. The x-axis is the size of
the paradigm, a measure of e-complexity. The purple points are
languages with models trained with a fixed number of observed
paradigms. The green points are languages with models trained
with a fixed number of observed individual morphological transfor-
mations.
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Figure 2: A partial directed graph-
ical model for a paradigm comple-
tion task with Spanish verbs. The
individual predictions are made
by a neural network trained to pre-
dict inflected forms from other in-
flected forms.

1For a more general overview of morphological complexity, we refer the reader to Baerman et al. (2015).
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Avoiding Bias in Complexity Calculations. Previous attempts to calculate morphological com-
plexity have relied on linguists to analyze the morphological distinctions in a language, but this
can lead to theory-dependent calculations. For example, in regular English plural formation, the
speaker has three choices: [z], [s] and [1z]. One the one hand, we may treat this as a case of three
unrelated suffixes. Under such an analysis, the entropy will reflect their empirical distribution: roughly,
1/4 log 1/4 + 3/8 log 3/8 + 3/8 log 3/8 ≈ 1.56127. On the other hand, if we assume a unique underlying
affix /z/, which is attached and then converted to either [z], [s] or [1z] by an application of perfectly
regular phonology, this part of the morphological system of English has an entropy of 0. We attempt
to mitigate this problem by leaving all analyses (beyond initial data selection) to be discovered by the
neural model. The networks themselves operate on full unanalyzed strings. While it is true that neural
nets, like all models that can generalize to new data, must have learning biases, we argue that by using
the same model for all languages, we can at least ensure that any bias is cross-linguistically consistent.

Model and Results. Starting with raw paradigm tables, we apply the model of Kann and Schütze
(2016), to learn morphological transformations in 31 languages. The model is a recurrent sequence-to-
sequence neural architecture with attention (Bahdanau et al., 2015).2 For each language, a model was
trained on input-output pairings like the following:

IN NUM=SG OUT NUM=PL c a t → c a t s

The input features indicate the morpho-syntactic inflection of the input form, while the output features
indicate the desired morpho-syntax of the output form to be produced by the network. In Fig. 1, we
plot the paradigm size for each language (its e-complexity) against our entropy-based estimate of
i-complexity. A clear trade-off is visible: most languages exhibit low entropy with moderate paradigm
sizes. A few languages have small but more irregular paradigms, or large but highly regular paradigms.
Languages with large and unpredictable paradigms do not seem to exist (a non-parametric test confirms
that the upper-right quadrant is not likely to be empty by chance, with p < 0.05).

Conclusions. New methods that emerge from statistical pattern recognition and deep learning tend
to find their way into natural language processing (NLP) relatively quickly (Goldberg, 2017). On the
other hand, it takes longer for such methods to trickle their way into linguistics, the scientific study of
language. In this work, we take a small step to encourage a tighter integration of NLP and linguistics:
we apply modern machine learning to theoretical issues in morphology with a cross-lingual study using
recurrent neural graphical modeling to empirically determine the complexity of inflectional systems.
To the best of our knowledge, this is the largest analysis on morphological complexity in the literature.
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2All networks had 100 hidden units in both encoder and decoder, 300-unit embeddings for input symbols. They were
trained using Adadelta (learning rate 1 and dropout 0.3). Decoding was performed using beam search with beam size 12.
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