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1 Introduction 

Models of phonological learning typically motivate 

the generalization of patterns using abstract repre-

sentations that can refer to an entire class of sounds. 

Here, I present a computational model of an alterna-

tive approach to generalization based on featural 

similarity that more accurately predicts the results 

of an experiment by Cristia et al. (2013).  

Halle (1978) showed assimilation of the posses-

sive suffix in English is generalized by speakers to 

non-English segments, such as [x] (this is often re-

ferred to as the Bach Test, since the [x]-final word 

Halle used was Bach). He suggested that an abstract, 

partial featural description, as exemplified in (1), 

could explain this.  

(1) All [-voice] segments trigger  

assimilation to [-voice]. 

The use of the feature bundle [-voice] to refer to all 

sounds that are voiceless gives this representation 

the ability to generalize to the segment [x], regard-

less of whether speakers have ever been exposed to 

it (since [x] is voiceless). Henceforth, I will call this 

abstraction-based generalization, since a novel seg-

ment is included in a pattern due to that pattern’s 

abstract representation. 

An alternative explanation for phonological 

generalization is that it’s the result of “cognitive bi-
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ases emergent from online calculations of similar-

ity”1 (Cristia et al. 2013:279). In the context of as-

similation from above, this might look like the fol-

lowing: 

(2) Likely to trigger    

    [p, f, θ, k, …] (attested triggers) 

   [ɸ, p, t̪, x, …] (unattested, similar) 

   [b, v, ð, g, …] (dissimilar segments) 

 Unlikely to trigger   

Henceforth, I will refer to the paradigm in (2) as 

similarity-based generalization. In similarity-based 

generalization, the representation of a pattern is not 

what causes generalization to novel sounds. Instead, 

the novel sounds’ similarity to attested sounds bi-

ases speakers toward treating them in a similar way, 

which causes patterns to generalize to novel, similar 

segments.  

To test which theory better predicts how hu-

mans generalize phonological patterns, I created a 

Maximum Entropy (MaxEnt) phonological learner 

that uses similarity in its learning update to encour-

age the generalization of patterns to featurally simi-

lar segments. My learner’s predictions match the re-

sults of Halle’s (1978) Bach Test, as well as more 

recent experimental results from Cristia et al. 

(2013). My similarity-based learner predicts the hu-

man behavior better than a minimally different, pre-

viously proposed learner that relies on abstraction-

based generalization. 

̪ 

1 While Cristia et al. (2013) suggested that articulatory 

similarity might be a better predictor for generalization 

than featural similarity, here I focus on the latter and 

leave exploring the former to future work. 
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2 Modeling generalization with GMECCS   

I used GMECCS2 (Moreton et al. 2017) to model 

abstraction-based generalization. GMECCS uses a 

gradient descent learning algorithm (with a single 

parameter η, representing the model’s learning rate) 

and a constraint set that includes all possible con-

junctions of the features of interest. For example, if 

[voice] and [continuant] are the only contrastive 

features necessary in a simulation (e.g. if the only 

relevant sounds are [z], [d], [s], and [t]), and the 

words have a maximum length of 1 segment, the 

constraint set for GMECCS would be:  

*[+voice], *[-voice], *[+cont.], *[-cont.], 

*[+voice,+cont.], *[+voice,-cont.], *[-voice,+cont.], 

and *[-voice,-cont.]. Moreton et al. (2017) used 

GMECCS to properly predict the relative learnabil-

ity of different phonotactic patterns.3 However, 

GMECCS is also useful for testing abstraction-

based generalization,  since a subset of its con-

straints use abstract featural descriptions to refer to 

multiple sounds (e.g. *[+voice] which applied to 

both [z] and [d] in the example above, and could 

generalize to any voiced segment). 

3 Modeling generalization with Sim-Gen 

In order to compare the two types of generalization 

discussed in §1, I created a MaxEnt learning model 

that uses similarity-based generalization (hence-

forth, this model will be called Sim-Gen). Sim-Gen 

differs from GMECCS in only two ways: its con-

straint set and its update algorithm. Sim-Gen’s con-

straints do not represent every possible combination 

of features. Instead, they only represent every pos-

sible feature bundle that refers to a single segment. 

So for the example in §2, the constraint  

set would be: *[+voice,+cont.], *[+voice,-cont.], 

*[voice,+cont.], and *[-voice,-cont.]. Because these 

constraints don’t abstract away from individual seg-

ments (e.g. through the use of partial featural de-

scriptions), they won’t lead to abstraction-based 

generalization.  

Instead, similarity-based generalization results 

from the learner’s update algorithm. At each epoch, 

the constraint weights are updated to better reflect 

                                                                                                            
2 GMECCS is an acronym for “Gradual Maximum Entropy 

with a Conjunctive Constraint Schema.” 
3 My model (described in §3) also predicts these relative 

learnabilities.  

the training data (see Morteon et al. 2017 for more 

on this step). However, this learner differs from 

GMECCS in that each change to a constraint’s 

weight also “leaks” onto all of the other constraints. 

These leaks are larger for constraints that are more 

similar to the original constraint, which makes the 

learner biased toward assigning similar weights to 

constraints that are similar to one another. This is 

formalized in Equations (1-2): 

 δw𝑗 =  θ [
Δw𝑖

dist(𝑐𝑖,𝑐𝑗)
]  (1) 

 𝑑𝑖𝑠𝑡(𝑐𝑖 , 𝑐𝑗) =  |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑐𝑖  & 𝑐𝑗  𝑑𝑖𝑓𝑓𝑒𝑟 𝑖𝑛|  (2) 

Where:  

 ci is the primary constraint being updated, 

cj is the constraint being leaked on, 

Δwi is the primary update (to ci’s weight), 

δwj is the leaked update  (to cj’s weight), 

And θ is a parameter controlling leak size. 
 

In the equations above, every constraint cj that isn’t 

undergoing the primary update (i.e. the update Δwi 

that’s based on the learning data) undergoes a 

leaked update δwj that’s proportional to Δwi and in-

versely proportional to that constraint’s feature dis-

tance from the primary constraint ci (where distance 

is the number of features the constraints differ in). 

This results in constraints having high weights not 

only when they help to describe the learning data 

(due to Δwi), but also when they happen to be simi-

lar to the constraints that help describe the learning 

data (due to δwj). This, coupled with constraints rep-

resenting all relevant segments (including those that 

might be unattested in a language, such as [x] in 

English), results in similarity-based generalization.4 

4 Modeling the Bach Test 

To test whether both models predicted the kind of 

generalization observed by Halle (1978), I trained 

them on a toy language that was made to represent 

the parts of English relevant to the Bach Test. The 

toy language’s segment inventory consisted of the 

set: [d], [t], [g], [k], [z], and [s]. In addition to these 

six segments, both models had constraints referring 

to the velar fricatives [γ] and [x]. Since GMECCS 

4 See Rumelhart and McClelland’s (1987) “blurring” for an al-

ternative approach to generalization that isn’t abstraction-

based. 
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and Sim-Gen only model phonotactics, the simula-

tions described here modeled the learning of a pho-

notactic restriction against bigrams5 that disagreed 

in voicing (e.g. *[kz]), rather than voicing assimila-

tion in the context of a morpho-phonological alter-

nation. The probabilities that the models gave to 

segment types over the course of learning are shown 

in Figures 1 and 2. Both models acquired a prefer-

ence for clusters that agreed in voicing,6 even when 

a member of those clusters was unattested in the 

training data. That is, they both learned that  

p([xs]) > p([xz]), despite [x] being unattested. This 

demonstrates that both Sim-Gen and GMECCS can 

successfully simulate a kind of generalization that’s 

analogous to Halle’s (1978) Bach Test.  
 

                                                                                                            
5 This required the models to have unigram and bigram con-

straints. In order to find the value of dist(cunigram, cbigram),  

Sim-Gen compares the unigram constraint’s segment to the  

segment in the bigram constraint that it’s most similar to. The 

final result is the distance between these segments, plus 0.5 (to 

penalize the difference in constraint lengths).  

5 Modeling Cristia et al.’s (2013) data 

In a study by Cristia et al. (2013), participants 

generalized an onset restriction from an artificial 

language to novel words with attested onsets (their 

EXPOSURE condition). To a lesser degree, subjects 

also generalized this restriction to segments that 

weren’t in training but that were within the EXPO-

SURE segments’ feature bundle (their WITHIN con-

dition), and to  segments that were phonetically sim-

ilar to EXPOSURE items (their NEAR condition). 

However, subjects didn’t generalize to segments 

that were phonetically dissimilar to EXPOSURE seg-

ments (their FAR condition). I ran simulations of 

their experiment using both GMECCS and Sim-

Gen. Figures 3 and 4 illustrate the probability that 

6 Sim-Gen took longer to acquire this preference. However, 

since the crucial comparison for these simulations is whether 

Sim-Gen treats p([xs]) and p([xz]) differently at any point in 

its learning curve, speed of acquisition isn’t relevant. 

 
Figure 1: Bach Test simulation with the abstraction-based 

GMECCS learner: 100 epochs with η=.01 
 

 
Figure 2: Bach Test simulation with the similarity-based 

Sim-Gen learner: 1000 epochs with η=0.01, θ=0.5 

 
Figure 3: Experiment simulation, with the abstraction-

based GMECCS learner: 1000 epochs, η=.01 

 

 
Figure 4: Experiment simulation, with the similarity-based 

Sim-Gen learner: 1000 epochs, η=0.01, θ=0.5 
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the learners assigned to each segment type appear-

ing in onset position over the course of learning. 

GMECCS consistently treated the WITHIN and 

NEAR categories differently, while the similarity-

based learner treated them almost identically for a 

significant portion of learning. This shows that Sim-

Gen models the human behavior more accurately 

than GMECCS. 

Since Cristia et al.’s results represent a single 

point in their subjects’ learning, another way of ex-

amining these simulations is to find which point in 

each model’s learning curve best fits the human be-

havior and comparing those points across models. 

For GMECCS, the model’s assigned probabilities 

had the highest correlation with subjects’ responses 

on the 115th epoch (Pearson’s r=.986). For Sim-Gen, 

the most correlated epoch was the 305th (Pearson’s 

r=.999). Figures 5 and 6 show the segment proba-

bilities for each learner at its most correlated point. 

Even when it best matches the human data, 

GMECCS assigns different probabilities to NEAR 

and WITHIN segments, while Sim-Gen assigns them 

almost equal probabilities. In addition, the probabil-

ity that Sim-Gen gives FAR segments is visibly 

lower at this point than the other two categories, 

which matches the Cristia et al. (2013) data well. 

GMECCS, on the other hand, only assigns similar 

probabilities to WITHIN and NEAR segments at the 

beginning of learning (not shown in the figures), 

when all segments (including FAR) are assigned a 

similar probability.  

6 Conclusions 

Halle (1978) and Cristia et al. (2013) both observed 

generalization of phonological patterns. In Halle’s 

(1978) Bach Test, a phonological alternation was 

triggered both by attested voiceless segments and 

the unattested, voiceless sound [x]. In Cristia et al.’s 

(2013) experimental results, subjects generalized an 

onset restriction both to unattested segments sharing 

a feature with the attested onsets and to unattested 

segments that were similar to the attested onsets. 

The simulations ran in this study showed that both  

abstraction-based and a similarity-based models 

predict the generalization described by Halle 

(1978). However, only Sim-Gen (the similarity-

based learner) predicts the kind of generalization 

that was observed by Cristia et al. (2013). This sup-

ports the idea that human generalization is grounded 

in similarity, rather than abstract, partial feature rep-

resentations.  
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Figure 5: Point in learning where the abstraction-based 

GMECCS learner correlates the most with Cristia et al.’s 

(2013) experimental data.  Full simulation in Figure 3. 

 

 
Figure 6:  Point in learning where the similarity-based 

Sim-Gen learner correlates the most with Cristia et al.’s 

(2013) experimental data. Full simulation in Figure 4. 
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