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Abstract
This study examines the role of two influential
theories of language processing, Surprisal The-
ory and Dependency Locality Theory (DLT),
in predicting disfluencies (fillers and reparan-
dums) in the Switchboard corpus of English
conversational speech. Using Generalized Lin-
ear Mixed Models for this task, we incorpo-
rate syntactic factors (DLT-inspired costs and
syntactic surprisal) in addition to lexical sur-
prisal and duration, thus going beyond the lo-
cal lexical frequency and predictability used in
previous work on modelling word durations in
Switchboard speech (Bell et al., 2003, 2009).
Our results indicate that compared to fluent
words, words preceding disfluencies tend to
have lower lexical surprisal (hence higher ac-
tivation levels) and lower syntactic complexity
(low DLT costs and low syntactic surprisal ex-
cept for reparandums). Disfluencies tend to oc-
cur before upcoming difficulties, i.e., high lexi-
cal surprisal words (low activation levels) with
high syntactic complexity (high DLT costs
and high syntactic surprisal). Further, we see
that reparandums behave almost similarly to
disfluent fillers with differences possibly aris-
ing due to effects being present in the word
choice of the reparandum, i.e., in the disflu-
ency itself rather than surrounding it. More-
over, words preceding disfluencies tend to be
function words and have longer durations com-
pared to their fluent counterparts, and word du-
ration is a very effective predictor of disflu-
encies. Overall, speakers may be leveraging
the differences in access between content and
function words during planning as part of a
mechanism to adapt for disfluencies while co-
ordinating between planning and articulation
as suggested by Bell et al. (2009).

1 Introduction

One of the primary reasons for disfluencies in
speech is difficulties in language production (Tree
and Clark, 1997; Clark and Wasow, 1998). In this

study, we investigate the impact of predictability
and working memory measures of processing com-
plexity based on two influential linguistic theories,
viz., Surprisal Theory (Levy, 2008; Hale, 2001) and
Dependency Locality Theory (DLT Gibson, 2000),
in predicting the following two types of disfluen-
cies:

1. Disfluent fillers: Utterances like uh, um which
break fluency by interjecting and creating an
interruption between words (as in the spoken
utterance “thinking about the uh day when I”).

2. Reparandums: Cases where speakers make
corrections in their speech. For example,
when a speaker says “Go to the righ- to the
left”. Here, the speaker makes a correction to
to the righ- (reparandum) by restarting with
the intended (corrected) speech to the left (re-
pair).

We situate our work in the widely accepted
framework of speech production models proposed
by Levelt and collaborators (Levelt, 1992; Bock
and Levelt, 1994; Levelt et al., 1999) which con-
ceive speech production as comprising of the fol-
lowing stages: conceptual and syntactic planning,
lexical selection, morphological and phonological
encoding, and articulatory execution. Previous
work analyzing Switchboard speech (Bell et al.,
2009, 2003) showed evidence that lexical frequency
and predictability are significant predictors of word
durations in spontaneous speech. Further, a long
line of work notes that words occurring before dis-
fluencies (usually function words) are lengthened
by speakers (Bell et al., 2003; Tree and Clark, 1997;
Shriberg, 1995). To account for this effect, Bell
et al. (2009) put forth the proposal that elongation
is part of a mechanism to adapt for disfluencies,
while coordinating between planning and articu-
lation. Thus disfluencies are an outcome of coor-
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dination failure between planning and articulation
processes i.e., incomplete plans being fed into artic-
ulatory routines. We investigate the above proposal
by incorporating syntactic factors (DLT-inspired
costs and syntactic surprisal) into a disfluency pre-
diction classifier, in addition to the lexical factors
used in earlier corpus-based work cited above.

We examined whether lexical and syntactic sur-
prisal measures, DLT integration and storage costs
(measures of syntactic complexity) as well as du-
ration were significant predictors of disfluencies
in transcribed data from the Switchboard corpus
of American English spontaneous speech (Godfrey
et al., 1992). We incorporated the aforementioned
predictors as fixed effects in Generalized Linear
Mixed Models (GLMMs Pinheiro and Bates, 2000)
with words as random effects to predict whether
disfluencies existed at all words in an utterance
(with disfluencies stripped off). Though these mea-
sures (and the underlying theories stated at the out-
set) were originally proposed to model language
comprehension, recent works have demonstrated
how they reflect language production difficulty
too. Demberg et al. (2012) showed that syntactic
surprisal, an information-theoretic measure of com-
prehension difficulty defined by Surprisal Theory,
is a significant predictor of word duration in sponta-
neous speech even amidst competing controls like
lexical frequency. More recently, Scontras et al.
(2015) showed that for English relative clause pro-
duction, locality considerations resulted in greater
speech disfluencies and starting time for object rel-
atives compared to subject relatives.

Our disfluency prediction results indicate that
preceding word duration, following word lexical
surprisal and DLT storage costs are the best predic-
tors of both fillers and reparandums. Further, the
regression coefficients revealed the preponderance
of high processing costs (surprisal and DLT) on
words following disfluencies and lower costs on
words preceding disfluencies. Thus words ahead of
disfluencies have low activation levels (high lexical
surprisal) and high syntactic difficulties (high DLT
costs and high syntactic surprisal) which makes
their construction difficult. Conversely, words be-
fore disfluencies tend to be words with high acti-
vation levels (low lexical surprisal values) and low
syntactic difficulty (low DLT costs and low syn-
tactic surprisal except for reparandums). We also
find that speakers take longer to articulate words
before disfluencies. Thus, our results suggest that

in incremental production, speakers choose highly
activated points of low processing load (low lex-
ical surprisal and low syntactic costs) to plan for
upcoming difficulties and this process takes a fair
amount of time and mental resources.

We propose that in order to maintain the tem-
poral coordination between the articulatory stream
and the planning of utterances, speakers lengthen
words as a means to buy time for planning. The
idea of such links between planning and articula-
tion have also been suggested by Pierrehumbert
(2002) in the form of “ease of retrieval” in phono-
logical encoding and by Munson (2007) in relation
to the longer and fuller articulation of disfluen-
cies. We also observe that the words in the reparan-
dum and the words surrounding disfluent fillers are
less likely to be content words which we explain
as speakers trying to pick easier words (function
words are low in information and simpler in con-
struction) around disfluencies in order to help the
planning process. Further, our results also lend cre-
dence to the insight from the production literature
that function words and content words have distinct
modes of access (Garrett, 1975, 1980; Lapointe
and Dell, 1989) and in the presence of disfluencies,
speakers may be making use of these special modes
of access function words have.

2 Background

In the context of disfluency detection, disfluent
fillers tend to be easier to identify as they mostly
consist of a closed set of fixed utterances (e.g. um,
uh). Reparandums on the other hand are more
difficult to identify because they tend to resemble
fluent words a lot more. One of the effective feature
types for detecting these reparandums are distance
and pattern matching based features that look into
the similarity of words and POS tags with their
neighbours (Honnibal and Johnson, 2014; Zayats
et al., 2014, 2016; Wang et al., 2017). The rea-
son for their effectiveness could stem from how
the repair that follows the reparandum is usually a
“rough copy” of the reparandum, i.e., it incorporates
how the repair has very similar words in roughly
the same word order as the reparandum. Apart
from this, disfluency detection has also been shown
to be effective with other features like language
models and lexical features (Zwarts and Johnson,
2011; Zayats et al., 2016); prosody (Shriberg et al.,
1997; Kahn et al., 2005; Tran et al., 2017) and de-
pendency based features (Honnibal and Johnson,
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2014). Seeing how disfluency detection in the past
has harnessed features based on lexical language
models, dependency grammar and prosody, we ex-
amined whether disfluencies can be explained by
two theories, viz., Surprisal Theory (Levy, 2008)
and DLT (Gibson, 2000), which define per-word
complexity measures related to the above features.
Further, to examine the effects of prosody we look
into duration as a feature to explain disfluencies.
We formulate duration as the time taken to utter
the whole word but also examine the effects of
two more prosody features - elongation (word du-
ration/average word duration) and duration nor-
malised by syllables. The following subsections
describe these theories and our predictors based on
them.

2.1 Surprisal Theory
Building on Shannon’s (1948) definition of infor-
mation, it has been shown in recent work formal-
ized as Surprisal Theory (Hale, 2001; Levy, 2008)
that the information content of a word is a measure
of human sentence comprehension difficulty. The
surprisal of a word is defined as the negative log of
its conditional probability in a given context (either
lexical or syntactic). We deploy lexical surprisal
as measure of predicting disfluencies. We use the
definition proposed by Hale (2001) which states
that the lexical surprisal of the kth word wk in a
sentence is

Sk = −logP (wk | wk−1, wk−2).

Where P (wk | wk−1, wk−2) refers to the condi-
tional probability of kth word in the sentence given
the previous two words. We calculate lexical sur-
prisal of each word in our corpus by training a sim-
ple trigram model over words on the Open Amer-
ican National Corpus (Ide and Suderman, 2004)
using the SRILM toolkit (Stolcke, 2002). Going
beyond simple lexical n-grams with direct counts
syntactic surprisal is calculated using PFCGs where
the probability of each word wk is calculated by
summing the probabilities of all trees T spanning
words wk to w1 i.e.,

P (wk, wk−1...w1) =
∑

T

P (T,wk, wk−1...w1)

. Using this definition of probability, we define
syntactic surprisal of the kth word wk as

Sk = −log
∑

T P (T,wk, wk−1...w1)∑
T P (T,wk−1, wk−2...w1)

We calculate syntactic surprisal in our corpus
by training a PCFG parser over sections 2 to 21 of
the Penn Treebank Corpus (Marcus et al., 1994)
using the ModelBlocks software (an incremental
implementation of the Berkeley parser).

2.2 Dependency Locality Theory:
Integration and Storage Costs

Our second theory is the Dependency Locality The-
ory (henceforth DLT) proposed by Gibson (2000).
The central notion of DLT revolves around two
costs: integration cost (IC) and storage cost
(SC), which have successfully accounted for the
comprehension difficulty associated with many
constructions (subject and object relative clauses
for example). We depart from Gibson’s definitions
of these costs and compute DLT costs as follows:
For a word to be integrated into the structure built
so far, its integration cost, a backward-looking
cost, would be the sum of the dependency lengths
of all dependencies that include the word to
be integrated and its previously encountered
head/dependent word (grammatical link provided
by dependency grammar). In contrast, the storage
cost is a forward-looking cost and corresponds to
the number of incomplete dependencies in our
integrated structure thus far. To calculate these
costs, the dependency relations for our corpus
were extracted by removing disfluencies from the
constituency-based parse trees and converting
these trees into dependency graphs using the
Stanford parser (De Marneffe et al., 2006). Though
Gibson’s original DLT formulation was based on
constituency structures (with empty categories),
we compute DLT costs from dependency parses
for ease computation and assuming no empty
categories. We illustrate the calculation of these
DLT inspired costs in detail with the following
example:

My dog also likes eating sausage
SC: 2 2 3 1 1 1
IC: 1 1 1 2 1 1

poss
nsubj

advmod xcomp dobj

To calculate storage cost of a particular word,
say, also we must calculate the number of incom-
plete dependencies that have a missing head in the
structure so far, i.e. My dog also. In our case we
see that there are 2 such incomplete dependencies,
one from likes to dog and another from likes to
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also. We add a minimum cost of 1 with the number
of incomplete dependencies (2) to get a storage
cost of 3 for also. For the case of likes the storage
cost would be 1 (the minimum cost) because the
incomplete dependency from likes to eating has
a head (likes) that is already part of the structure.
To calculate integration cost of a particular word,
say, likes we must calculate the sum of dependency
lengths from likes to the structure so far, i.e. My
dog also likes. We see that there are two depen-
dencies, the one from likes to dog having a length
1 and the other from likes to also having a length
0 (length is measured by number of intervening
words). We then add the minimum cost 1 to the
sum of dependency lengths to get a integration cost
of 2 for likes.

3 Experiments and Results

In our study we use the version of the Switch-
board corpus provided by the Switchboard in NXT
project (Calhoun et al., 2010), which combines the
annotations from the Penn Treebank3 corpus (Mar-
cus et al., 1994) and MS-State transcripts (Desh-
mukh et al., 1998) along with adding new informa-
tion like discourse and prosody. It consists of over
720,000 words and has a range of different sorts
of linguistic information annotated on it including
syntax, duration, discourse, and prosody. We focus
on 3 classes of words taken from the Switchboard
NXT corpus: reparandum, disfluent filler, and flu-
ent word. For each of these classes we base our
features for training a GLMM on the fluent words
that immediately follow or precede the target (for
reparandum-based disfluencies, these are taken as
the words that immediately follow the repair and
precede the reparandum). This was done for uni-
formity as disfluencies such as the disfluent filler
uh do not posses the same linguistic features as
fluent words. All the cases where the surrounding
words have unclear POS tags or non-aligned du-
ration have been excluded from this dataset. This
results in a total of 14520 cases of reparandums,
12050 cases of disfluent fillers and 558361 cases
of a fluent word. Further, to have balanced classes
we randomly sample an equal number of fluent
words for both types of disfluency, resulting in the
following datasets for the two binary classification
tasks: 29040 instances for reparandum vs fluent
and 24100 instances for filler vs fluent.

In order to test whether our predictors are
significant predictors of disfluencies (i.e., fillers

or reparandums), for the main results reported
in this paper, we used the following GLMM
implemented using the ‘lme4’ package in R:1

disfluency ∼ lexsurp+ synsurp+ IC + SC
+ duration+ (1|word)
Both the dependent variables above are binary
choice (1-disfluency; 0-fluent). GLMMs can be
thought of as a generalization of logistic regression
models which allow for random factors as well as
fixed factors. A random factor would mean that
our model contains a separate intercept term for
each category of that factor hence representing the
features at a more individual level for these ran-
dom factors. We set up our main GLMM with raw
words as a random factor to control for the lexical
variation in our model. The fixed factors are lexi-
cal surprisal, syntactic surprisal, DLT storage and
integration costs, and word duration for all words
(refer to Section 2 for actual computations). In the
remaining subsections of this section, we describe
our experiments with models encoding different
random factors before finalizing the GLMM with
raw words as the random effect term.

3.1 Random effects
In addition to a model with words as the ran-
dom effect term, we examined the performance
of GLMMs containing the fixed effects described
in the previous section and the following random
factors: fine-grained POS tags and coarse POS
(collapsing nouns, adjectives, adverbs, and verbs
to content words and the rest to function words).
These choices are also supported by prior work in
the disfluency detection where pattern matching
and similarity measures of POS tags and words
are shown to be effective feature types in detecting
reparandums (Honnibal and Johnson, 2014; Zayats
et al., 2016; Wang et al., 2017). Using a 5-fold
cross-validation split in data we then trained our
GLMMs and examined their disfluency classifica-
tion accuracy on the entire dataset (Table 2). While
the GLMM with raw words as random effects re-
sulted in the best accuracy, models with coarse and
fine POS random effects showed a considerable in-
crease from the baseline setup of no random effects.
A plausible explanation for their performance is
that function words tend to occur disproportion-
ately in disfluent contexts (Bell et al., 2003; Tree
and Clark, 1997; Shriberg, 1995, refer Section 3.5

1We adopted the R GLM format for presenting the model:
the dependent variable occurs to the left of ‘∼’ and indepen-
dent variables occur to the right; 1| random factor
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Features Model with all features Incremental models
Fillers Reparandum Filler Reparandum

Coef Std Error Coef Std Error Accuracy Accuracy
Intercept -1.34* 0.538 -0.73 0.376 66.80% 66.29%
1. Preceding Lexical Surprisal -0.55*** 0.022 -0.26*** 0.017 66.81%*** 66.22%
2. Following Lexical Surprisal 0.74*** 0.023 0.32*** 0.017 71.84%*** 66.96%***
3. Preceding Syntactic Surprisal -0.2*** 0.025 0.09*** 0.018 71.87% 67.02%**
4. Following Syntactic Surprisal 0.26*** 0.023 -0.03 0.018 71.91%*** 67.00%
5. Preceding Integration Cost -0.09*** 0.018 -0.06*** 0.013 71.88% 67.01%**
6. Following Integration Cost 0.11*** 0.022 0.23*** 0.017 71.88% 66.96%***
7. Preceding Storage Cost -0.32*** 0.024 -0.47*** 0.018 72.26%*** 67.53%***
8. Following Storage Cost 0.26*** 0.023 0.38*** 0.015 72.63%*** 69.08%***
9. Preceding Duration 1.38*** 0.023 0.45*** 0.017 81.23%*** 71.12%***
10. Following Duration 0.07*** 0.022 0.03 0.017 81.21%*** 71.11%***

Table 1: GLMM regression (containing all features) and prediction results (when features are added incrementally
with McNemar’s significance over model in previous row); * p-value < 0.05, ** p-value < 0.01 and *** p-value

< 0.001.

Random effect Fillers Reparandums
None 75.41% 65.09%
Coarse POS 76.99% 65.23%
Fine POS 79.01% 67.70%
Raw word 81.21% 71.11%

Table 2: Accuracies for binary classification (fluency
vs. disfluency) models with different random effects.

for more details). So a model with coarse POS
tags as random effects captures this association and
predicts disfluencies to be more likely in contexts
involving function words. Further, in a model with
fine POS tags as a random effect, an analysis of
cases where the magnitude of the random intercept
is high revealed the following trends: pronouns
follow fillers, and coordinating conjunctions pre-
cede disfluencies over fluent words (refer figure 1
in appendix A for details). Fine POS tags therefore
seem to be capturing some extra information which
helps with the classification task.

Finally, we note that the model with raw words
as random effect displays the best accuracy and im-
proves the accuracy over the baseline model of no
random effects (5.8% increase for fillers and 6.02%
for reparandums). To deal with unknown words,
165 words with frequencies less than 30 were coded
as a separate category. Further, we observe no over-
fitting in our model with raw words as the random
effect, as the training accuracies are 71.77% for
reparandums and 81.91% for fillers which are very
close to the test accuracies mentioned in Table 2.
While looking at the distribution of the random in-
tercept terms, we observed a high magnitude for
intercepts for the words know or mean. Since dis-
fluencies are known to signal discourse cues for
listeners (Arnold et al., 2000, 2003), we explain
these effects as a consequence of discourse markers
like you know and I mean. In fact, we also find that

the raw word intercepts focus on information about
other discourse markers such as so, because, then,
and but. We also observe that less frequent words
(frequency < 30) have on average longer durations
(412ms, compared to the overall mean duration at
274 ms) and longer word lengths (5.89 characters,
with the overall mean value at 4.03 characters). Fur-
ther, the random intercept values suggest that less
frequent words are unlikely to precede disfluencies.
In the remaining subsections of this section, we
describe the impact of the various fixed effects in
the same model on the two disfluency classification
tasks.

3.2 Lexical Surprisal

In this section, we examine the results from the
GLMM by interpreting its regression coefficients
as well as its performance as a classifier in terms of
prediction accuracy using 5-fold cross validation.
To set up a baseline performance for the two binary
classification tasks, we trained a classifier without
any features but with raw words as random effects.
This baseline accuracy comes out to be 66.80%
for fillers and 66.29% for reparandums. To this
baseline, we then start adding predictors based on
surprisal, DLT, and duration incrementally until we
get our final GLMM having all the features (81.21%
accuracy for fillers and 71.11% for reparandums).
Table 1 reports the regression coefficients (and their
significance) of the final GLMM on the full fea-
ture set along with the incremental accuracies and
the McNemar’s significance (McNemar, 1947) of
adding individual features one at a time. As evinced
from the table, all lexical surprisal features turn
out to be significant (regression coefficients with
p < 0.001). Further, the lexical surprisal of words
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following disfluencies ranks among the four best
predictors in our set of features, inducing a sig-
nificant accuracy increase (McNemar’s two-tailed
significance p < 0.001) of 5.03% for fillers and
0.74% for reparandums. The coefficients from Ta-
ble 1 indicate that the words that follow both kinds
of disfluencies (this would be the word following
the repair in the case of reparandums) show a high
lexical surprisal, suggesting that disfluencies oc-
cur in the presence of retrieval-based production
difficulties. Previous studies have similarly shown
that disfluencies occur in the presence of produc-
tion difficulties due to new information (Arnold
et al., 2000; Barr, 2001; Arnold et al., 2003; Heller
et al., 2015). Examples from the corpus illustrated
such behaviour in disfluent sentences such as “for
the uh scud missiles” or “imagine that’s a - that’s
a pillsbury plant?” having high surprisal words
like scud or pillsbury following the disfluency. We
also note that adding the lexical surprisal of the
word preceding the disfluency leads to a signifi-
cant increase in accuracy for fillers (McNemar’s
two-tailed significance p < 0.001). Further, the
negative coefficient with lexical surprisal is sugges-
tive of lesser retrieval difficulties for words before
disfluencies, a theme we take up in the discussion
in Section 4.

3.3 Syntactic Surprisal

In terms of classification accuracy, we note that
syntactic surprisal does not give much improve-
ment over lexical surprisal, except for the syntactic
surprisal of words following reparandums. A pe-
rusal of the regression coefficients indicates that
as with lexical surprisal, the words that follow dis-
fluent fillers show high surprisal, suggesting that
disfluencies occur in the presence of syntactic dif-
ficulties. We also see low syntactic surprisal for
words preceding disfluent fillers, suggesting that
syntactic difficulty is not heightened and is even
lowered before fillers. Interestingly, we observed
that reparandums act differently from fillers and re-
port high syntactic surprisal for words that precede
reparandums. This may be due to the fact that un-
like fillers, reparandums consist of words in them-
selves and these words may be the ones that have
low surprisal rather than the word preceding the
reparandum. Similar effects have been observed in
previous work on disfluencies by Dammalapati et
al. (2019; 2020).

3.4 DLT: Integration and Storage Costs

We note that all the DLT costs have significant ef-
fects in the final GLMM (regression coefficients
with p-value < 0.001 in Table 1). Further, we
observed high integration and storage costs for
words following disfluencies, indicative of upcom-
ing difficulties in the case of disfluencies. On the
other hand, words preceding disfluencies report
lower DLT costs, indicating a lowering of difficulty
(marked by low preceding DLT costs) before dis-
fluencies to possibly help process the upcoming
difficulty better. In terms of prediction accuracy,
however, integration costs do not induce significant
increases over the baseline model containing lex-
ical and syntactic surprisal predictors. Prior work
in sentence comprehension by Demberg and Keller
(2008) has also shown integration cost to behave
anomalously while predicting reading times and to
act in the expected direction only for high values
of dependency length.

We note that storage cost is one of the stronger
predictors among our features and boosts the
accuracy significantly (McNemar’s two-tailed
p < 0.001) over the baseline, by 0.75% for fillers
and 1.55% for reparandums. Storage costs proba-
bly perform well because being forward-looking
costs, they model upcoming difficulties effectively.
A finer grained analysis of storage costs (refer
figure 2 in appendix B for details) reveals that
nouns and verbs have storage costs in all ranges
(high, medium, and low), while conjunctions and
prepositions have low storage costs. Pronouns tend
to occupy medium storage costs, while adverbs and
adjectives predominate high storage costs. Based
on the idea of modeling difficulties some of these
observed patterns have a bearing on the results
as conjunctions often occur before disfluencies
and pronouns often appear after disfluent fillers
though noun, verb, and adverb distributions are not
distinctive for disfluent contexts in particular.

3.5 Duration

Table 1 shows that the best predictor of disfluen-
cies is the duration of words preceding disfluencies
(substantial prediction accuracy increase of 8.66%
for fillers and 2.16% for reparandums). Apart from
the duration of words following reparandums, all
the other duration features turn out to be significant
(p < 0.01). We also note that speakers take a
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Condition Elongation Word Function
length words

P F P F P F
Fluent 0.87 0.91 3.79 3.98 63% 60%
Filler 1.43 1.00 3.91 3.97 66% 66%
Reparandum 0.98 0.93 4.32 4.45 51% 47%

Table 3: Mean elongation (ratio), word length (chars)
and proportion of function words for preceding (P)

and following (F) words in different conditions.

longer time on words following and preceding dis-
fluencies, in concert with previous findings by Bell
et al. (2003). Duration increases on words prior to
disfluencies can be explained as a way to help in
planning for future difficulties.

Similar to duration, we observe from Table 3 that
words surrounding disfluencies also have higher
word lengths. Further, the words of the reparan-
dum/repair have the shortest word length (average
of 2.94 characters), which is probably because they
consist of the highest proportion of function words.
To better understand the association of duration
with disfluencies, we also looked at a predictor
we call elongation (defined as word duration di-
vided by average duration of the same word) which
measures how much longer a particular word takes
to pronounce than usual, i.e., whether it is being
stretched out by the speaker. We see that there
is indeed an effect of words being stretched out
in the context of disfluencies, which can be ex-
plained as taking time to plan for difficulties. We
also note that this elongation effect is especially
high in the case of words before fillers as they take
1.43 times longer than average, possibly explaining
why preceding duration is such a strong indicator
of disfluent fillers. The absence of such a promi-
nent elongation effect for the surrounding words
of reparandums is perhaps explained by the fact
that the words in the reparandum/repair, i.e., the
disfluency itself, have an elongation of 1.2. Further,
though our study primarily measures duration as
the time taken to utter the full word, we have also
looked at normalised (per syllable) duration and
elongation and observe very similar results to those
with raw duration.

Table 3 also depicts that compared to fluent
words, the proportion of function words relative
to content words is higher before and after fillers.
This supports previous findings that function words
occur disproportionately often in disfluent contexts
(Bell et al., 2003; Tree and Clark, 1997; Shriberg,
1995). Contrary to fillers, we observe that reparan-
dums have a higher proportion of surrounding con-

tent words (i.e., fewer function words) compared
to fluent words. We hypothesize that this is be-
cause the reparandum and repair themselves have
a low proportion of content words: 74% of the
words therein are function words. Previous work
has also shown that content and function words
make use of distinct modes of access in speech pro-
duction (Garrett, 1975, 1980; Lapointe and Dell,
1989; Bell et al., 2009), making it important to
look at their effects in the case of disfluencies. We
discuss the implications of this proposal for under-
standing speech disfluencies in the next section.

4 Discussion

Our results indicate that in comparison to fluent
words, words preceding disfluencies tend to have
lower lexical surprisal and lower syntactic com-
plexity (low syntactic surprisal and DLT costs).
These disfluencies also tend to occur before up-
coming difficulties i.e., high lexical surprisal words
with high syntactic complexity (high DLT costs
and high syntactic surprisal except in the case of
reparandums). Though words preceding reparan-
dums do not show a lowering in syntactic surprisal,
this could be attributed to the fact that reparan-
dums themselves consist of words, which may be
the ones that hold low syntactic surprisal costs,
rather than the word preceding the reparandum.
Thus reparandums behave almost similarly to dis-
fluent fillers with differences possibly arising due
to effects being present in the word choice of the
reparandum, i.e., in the disfluency itself rather than
surrounding it. Among all our features, preceding
word duration is the strongest predictor for disflu-
encies with an increase in accuracy of 8.66% for
fillers and 2.16% for reparandums. We observe that
the duration of words is longer when surrounding
disfluencies and furthermore, the words near disflu-
encies (especially fillers) tend to get elongated, i.e.
spoken longer than their mean duration.

Within the Levelt framework of speech produc-
tion outlined at the outset, it follows that the rate
of construction of phonologically encoded strings
is limited by factors like syntactic complexity and
lexical activations of the word while the rate of
articulation would be limited by the complexity
and number of syllables. Hence, when construc-
tion of these words are slow, speakers would try
to coordinate these mechanisms of planning and
articulation by modifying the duration of the words
in order to maintain the flow of speech (Bell et al.,
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2009). In the context of our results, we then pro-
pose that the duration of words preceding disfluen-
cies is lengthened as a means to aid the planning
of the following word which due to low activation
levels (high surprisal values) and syntactic difficul-
ties (high DLT costs) are slower to construct. We
further make note that despite the lengthening of
words before disfluencies to coordinate with the dif-
ficulties present ahead there is still a break down in
the flow of speech with the interjection of reparan-
dums and disfluent filler words resulting possibly
because this short-term coordination of lengthen-
ing words is insufficient to accommodate for the
construction difficulties ahead.

Production ease is often attributed to ease of
retrieval of words from memory (Bock and War-
ren, 1985). Since more accessible words (more
salience, more predictability) are known to be eas-
ier to retrieve and surprisal quantifies contextual
predictability, higher surprisal values are indicative
of difficulties in the retrievability due to the poor
accessibility of words. These high surprisal diffi-
culties work as a strong predictor especially for dis-
fluent fillers as lexical surprisal alone boosts classi-
fier accuracy by 5.04%. Since duration is a good
predictor of disfluencies, this performance could
also be explained by the correlation of 0.49 lexical
surprisal maintains with word duration (maximum
among all features). Further, we explain the low-
ering in surprisal before disfluencies as speakers
choosing words which are easier to produce (lower
surprisal implies a higher ease of retrieval) in or-
der to plan for the upcoming production difficulties
(marked by high surprisal) better.

In the context of our DLT-based measures, while
we do not observe significant improvements in ac-
curacy with integration cost we note that storage
costs competes as one of the stronger predictors es-
pecially in the case of reparandums where it boosts
classifier accuracy by 2.12% (stronger than lex-
ical surprisal). We explain this performance by
how storage costs is a forward looking cost and
models the upcoming difficulties better because of
this. Though we see similar behaviours with DLT
costs and surprisal in modeling difficulty, there are
differences between the two features both theoret-
ically by how DLT unlike surprisal is not prob-
abilistic and empirically by the poor correlation
between surprisal and DLT-based features (maxi-
mum correlation of 0.151). Work by Demberg and
Keller (2008) has also shown that DLT integration

cost and surprisal are uncorrelated and complemen-
tary in nature. They attribute this effect to the fact
that integration cost is a backward looing measure
(prior material in memory is integrated to current),
while surprisal is a forward looking cost as men-
tioned before. Hence, it is well suited to incorpo-
rate both these aspects of processing complexity in
order to form a more complete theory.

Finally, we see that function words tend to be
predominant in the words surrounding disfluent
fillers and in the words of the reparandum/repair.
We account for this in the light of evidence from
the speech production literature (Garrett, 1975,
1980; Lapointe and Dell, 1989; Bell et al., 2009)
which suggests that function words have a privi-
leged mode of access and is distinct from content
words (which tend to be more sensitive to acti-
vation levels). The early and influential Garrett
model (Garrett, 1975, 1980) proposed that syntac-
tic templates are selected with forms of function
words filled in, and content words are accessed at
a later stage, filling lexical slots in the templates.
In the Extended Garrett Model of Lapointe and
Dell (Lapointe and Dell, 1989), function words
belong to syntactic fragments and are accessed
via a feature-lookup procedure. Content words
are accessed via network activation, filling slots
in syntactic phrase structures. Recent results by
(Bell et al., 2009) also show support for the Ex-
tended Garrett Model of Lapointe and Dell where
function words have a special mode or modes of
access, and the access of content words is sensi-
tive to their activation levels. Thus speakers might
be choosing these simpler words which are eas-
ier to construct around disfluent fillers and in the
reparandum/repair to better plan for the upcoming
difficulties ahead of disfluencies. Speakers might
be making use of this privileged mode of access
in the case of disfluencies to aid the coordination
between planning and articulation. Hence, we con-
clude that in the context of disfluencies speakers are
trying to handle upcoming difficulties by choosing
words of higher activation (often function words)
that are easier to produce to precede disfluencies
and lengthening the duration of these preceding
words to coordinate and maintain the flow between
planning and articulation. Speakers regardless are
unable to maintain this consistent flow resulting
in disfluent fillers and reparandums to appear as
interjections in the speech.
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A POS tags (random intercepts)

Figure 1: Scatter plot of random intercepts for different POS tags

B Storage Costs

Figure 2: Percentage count of different POS tags split by Storage Costs
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