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Preface 
 
 
 Over the past 50 years or so, if textbooks are any guide, intermediate microeconomics 
courses have expanded their purview by adding topics such as uncertainty, game theory and 
behavioral economics. They have also increasingly identified theoretical constructions as 
techniques for solving microeconomic problems and greatly expanded their focus on applications 
to real economic issues. What seems to have become somewhat lost in all of this is the imparting 
of (i) an understanding of the power and significance of theoretical argument and, perhaps more 
importantly, (ii) an appreciation of one of the central aims of microeconomic theory itself, 
namely, to provide an explanation of how a real, capitalist microeconomy might operate. That is, 
with respect to the latter and in the slightly modified words of K.J. Arrow and F.H. Hahn,1 how 
is it that a decentralized economy motivated by self-interest and guided by price signals could be 
compatible with a coherent distribution of resources and productive outputs? Why wouldn’t there 
be chaos? The standard answer to these questions and the sought-after coherence provided by 
economists is usually some version of the Walrasian model of the microeconomy, a structure that 
is often seen as part of the theoretical basis for capitalism as it currently appears in much of 
economic reality today. The belief that there is coherence of this form in the real microeconomic 
world is held not only by economists but by many non-economists as well. It seems, therefore, 
that this should be an important part of any intermediate microeconomics course. 
 

This de-emphasis of theoretical argument and the coherence issue has manifested itself in 
several ways. First, theoretical arguments do not stand out as much as they might. Second, there 
are a number of theoretical matters that are not given the attention they deserve. For example, the 
role of assumptions, what happens to the theoretical constructions those assumptions generate if 
the latter are weakened or discarded, and the relation of those assumptions or their implications 
or the structures they generate to the real microeconomy, tend to be largely ignored. Third, even 
in chapters devoted to discussions of general equilibrium found in many textbooks, the focus is 
on how the individual pieces of the microeconomy (consumers, firm, and markets) interact with 
each other. The fact that these pieces fit together to form a significant unified totality that can be 
thought to say something about functioning of the real microeconomy as a whole receives scant 
emphasis and is likely to be missed by students. Fourth, important methodological matters such 
as what it means to theoretically explain real economic phenomena like a consumer’s or firm’s 
behavior or the operation of a market or of a microeconomy, that is, how such explanation 
actually works to explain, how explanation in economics differs from explanation in the physical 
sciences, and the fact that certain theoretical explanations are actually accepted by economists 
and the general public as providing the reason for an observed economic phenomenon, are not 
given much attention. And lastly, the ways the general. real microeconomy can be evaluated in 
order to determine if action should be taken to make improvements in actual microeconomic 
outcomes often does not stand out as much as it could. 
 
 These points are the main focus of the following 25 chapters. I have tried to present and 
bring to the forefront a clear and uncluttered discussion centering attention narrowly on the basic 

 
1 General competitive Analysis (San Francisco: Holden Day, 1971), p. vii. 
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theoretical ideas, arguments, and interrelationships that constitute the traditional Walrasian 
explanation of the workings of the perfectly competitive microeconomy, along with a few 
examples of market failures to account for more realistic microeconomic circumstances. Many 
details and asides that appear in standard textbooks are omitted. Discussion is set in the context 
of a world with two final goods, two persons, two firms, and two inputs or resources,2 and is 
often phrased in reference to graphs. There is no game theory and no discussions of uncertainty 
and behavioral economics. Nor are there any applications. Only a few examples, usually abstract, 
illustrate theoretical ideas. In an Appendix, notes supplemental to the 25 chapters provide 
summaries of scattered material and several detailed explorations not contained in the chapters 
themselves so as to avoid interrupting the thread of argument. This volume is not intended as a 
replacement for a complete, standard intermediate economics textbook. Its only purpose is to 
allow an uninterrupted and distraction-free concentration on the fundamental theoretical pieces 
of intermediate microeconomic theory and on the coherence and other issues described above. 
 
 The prerequisites necessary for fully understanding these chapters are a university-level 
introductory course in microeconomics and a university-level first semester of calculus. For 
better or worse, in today’s environment it has become impossible to avoid the use of 
mathematics in presenting much of theoretical microeconomic argument. But in the present 
volume, mathematics is used more to represent concepts as a language for communication than 
for solving problems or as a substitute for verbal argument – although the derivative derivation 
of first- and second-order conditions for the maximization or minimization of functions of single 
variables is occasionally used to determine economic outcomes. And the second chapter below 
provides a summary of the main mathematical ideas that are employed. 
 
 Finally, I would like to thank Michael Ash for encouraging me to pursue this project. 
Thanks are also due to him and Iryna Bobukh for reading the entire manuscript and making 
helpful comments and suggestions, and to Erin and Todd Katzner for assistance with formatting. 
It should aso be noted that the present, second edition of this book differs from the first only in 
that it corrects errors, fills in gaps in reasoning, and adds clarity to arguments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2 In this context, the vision of the microeconomy presented in these notes is succinctly summarized in D.W. 
Katzner, The Walrasian Vision of the Microeconomy: An Elementary Exposition of the Structure of Modern General 
Equilibrium Theory (Ann Arbor: University of Michigan Press, 1989). 
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Chapter 1 

Introduction 
 

 

Why is it that when an individual wants to buy a rug, there are various rugs available in 

various stores for him/her to buy? Why is it that if a person wants to work, there are generally 

jobs available for which he/she can apply? The answers to these kinds of questions all have to do 

with the functioning of what is called the real microeconomy. 

 

The purpose of this volume is to present an explanation of how a real (capitalist) 

microeconomy might operate, examine a specialized evaluation of its outcomes, and consider 

some alternative possibilities. Formally, the real microeconomy of a country or society consists 

of the collection of all consumers, all firms, all markets, and all of their economic interactions. It 

is geared toward the production of commodities and services from a distribution of its factors or 

resources – land1, labor, capital,2 and enterprise3 – among firms. The distribution of its 

production output among consumers is, in part, the outcome of microeconomic activity. 

 

The first step is to describe what is being explained. However, the actual microeconomy 

is so large and complex that it is way beyond the capacity of human beings to fully describe. 

That is, there are many different consumers, each with different goals and preferences among 

commodities. There are many different firms, each with different aims and means of producing 

even the same commodities. There are many different varieties of the same commodity and of 

the same kinds of land, labor, and capital, each sold at possibly different prices. And lastly, there 

are many different markets for every commodity and every factor, each with its own 

characteristics. Due to this immense variety of elements and the intricate and entangled 

relationships among them, it is necessary to abstract from reality to obtain a simplified version of 

the microeconomy that is capable of being handled.  

 

 The method of abstraction employed here is to regard all consumer ways of determining 

what they will buy and sell as the same and all firm procedures for determining what outputs 

they will produce and sell along with the inputs they will buy for producing those outputs as 

identical.4 The method also condenses all varieties and prices of the same commodity or resource 

into one commodity or resource and one price, and all markets for the same good into a single 

market. Thus the consumers, firms, goods, and markets in this abstraction are mental constructs 

that do not exist in reality. In addition, consumers will be taken to own all of the economy’s 

resources, and the presence of governments, foreign economies, and banking systems in the real 

microeconomy will be ignored. The workings of this abstract microeconomy are pictured in the 

schematic, circular-flow diagram of Figure 1-1. In that diagram, consumers sell all resources to 

firms and receive the payments of rent for land, wages for labor, what will be referred to as 

 
1 The term ‘land’ includes such things as iron ore in the ground and fish in lakes and streams. 
2 ‘Capital’ refers to physical items like machines and factories used to repeatedly produce many units of output. 
3 ‘Enterprise’ will be taken to mean the willingness and ability to assume the risk of creating and running a business 
concern. 
4 That is, in the case of consumers, each individual can buy or sell different things. But all consumers make buying 
and selling decisions using the same method. Similarly, different firms can produce different products with 
different inputs. But they, too, all make their producing, selling, and buying decisions by in the same manner. 
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returns for capital, and profit for enterprise. They use all of the payments they receive to buy 

commodities produced by firms. Firms, on the other hand, produce capital and noncapital 

commodities for consumers and other firms in the microeconomy using all of the revenue 

obtained from the sale of their output to buy from consumers and other firms the inputs needed 

to produce that output. All goods (which move along the outer circular lines in the diagram) and 

payments (which move along the inner circular lines) flow through markets. The commodity or 

final goods markets are represented in the upper half of the diagram, the resource or factor 

markets in the lower half of the diagram. Intermediate commodity markets in which firms buy 

and sell to each other fall within the box labeled Firms.5 The buyers and sellers in each market 

are indicated in Table 1-1. When drawing attention to the seller’s side of a market for a produced 

good, the market is often referred to as an industry. 

 

 

Table 1-1 

Market Buyers Sellers 

Final Commodities Consumers Firms 

Intermediate commodities Firms Firms 

Factors Firms Consumers 

 
5 Then possibility of consumers buying and selling to each other (in the box labeled Consumers) is not considered 
although consumers trading among themselves is briefly discussed in Chapter 18. 

Consumers      Firms  

Goods  

Payments 

Rents Profits 

Wages 

s 

Returns 

Labor 

Land 

Capital 

Enterprise 

Figure 1-1 
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To understand how the real microeconomy operates, an explanation will first be 

developed of how the abstract or simplified microeconomy of Figure 1-1 and Table 1-1works to 

produce final goods for consumers. The explanation will consist of four parts: 

1. An explanation of consumer buying and selling behavior in each market. 

2. An explanation of firm buying and selling behavior in each market. 

3. How markets operate to distribute commodities to consumers and factors to firms. 

4. How all of these elements fit together to form the (simplified) microeconomy. 

This explanation will then be applied (as an approximation) in understanding the functioning of 

the real microeconomy. 

 

 The method used to explain and understand the way the simplified microeconomy 

operates is to construct a model. A model of something, call it A, is a construct having enough in 

common with A so that insight into A can be obtained by studying the construct.6 

 

Example:7 Suppose you were asked to explain how a particular clock with observable 

rotating hands works, but you are not permitted to remove its cover and look inside. One 

way to do this is to obtain the necessary parts and construct a physical model of the clock 

that duplicates its observable behavior: Your model would have the same numbers in the 

same relative places and hands that rotate in the same way and at the same speed as the 

clock you are trying to explain. You can then open up your model to display how it works 

and say that the clock works like my model. Because the workings of the clock cannot be 

seen, the workings of your model are unlikely to be identical to those of the clock. But 

you still have one possible explanation of how the clock works. Moreover, there are 

many models that will produce the same observable behavior of the clock. And so there 

are many possible explanations of how the clock works. 

 

Recognizing that much of what goes on behind purchases and sales in the real 

microeconomy cannot be seen, a model whose purpose is similar to that of the clock example 

will be constructed to explain the buying and selling behavior of consumers and firms in all types 

of markets, how markets operate, and how all of this fits together to form a unified and coherent 

whole, in other words, how the simplified microeconomy works. That model will then be used as 

an explanation of the workings of the real microeconomy.8 Unlike the model of the clock, which 

is a physical creation constructed with tangible parts, the present model is a mental formulation 

built from assumptions and structures derived from them. In this model: 

 

 1. Consumer tastes or preferences among commodities and the technology for producing  

 
6 What is considered to be “enough in common with A” depends on the circumstances relating to the model’s 
construction, such as the use to which the model is to be put and the purpose of the analysis of which the model is 
a part 
7 A. Einstein and L. Infeld, The Evolution of Physics (New York: Simon & Schuster, 1938), p. 33. 
8 Like the model of the clock, this provides only one possible explanation of how the real microeconomy operates. 
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     output available to firms are taken to be specified and fixed. 

 

2. Individuals and firms decide how much to buy and sell through a process of  

    maximization. 

 

3. Markets are taken to be perfectly competitive in that they have 

  a) a large number of small buyers and sellers, each sufficiently small and there are 

 a sufficiently large number of them so that no buyer or seller can have 

 any influence on market price. 

  b) a standardized (homogeneous) product, 

  c) free entry into and exit from them, and 

  d) perfect information in that all buyers and sellers have the same information 

 about products and prices in them. 

 

4. Market forces operate to equilibrate demand and supply. 

 

This model is often referred to as Walrasian after its creator Léon Walras. It is also called a 

general-equilibrium model because all of its variable elements are permitted to interact 

simultaneously. When one or more variable element is held fixed while those remaining are 

allowed to vary, the model is reduced to what is called a partial-equilibrium model. 

 

 While this method of analysis and explanation applied to the real microeconomy is 

similar in many ways to that employed in the physical sciences, there are at least two major 

differences. First, the real microeconomic world is much more fluid and subject to change than 

the real physical world. Physical laws such as the Law of Gravity generally apply to all time –  

past, present, and future – and across all space throughout the universe. But what might pass for 

a laws in economics often has no such constancy. For example, general characteristics of human 

preferences, what in subsequent chapters will be seen as the foundation for the general properties 

of consumer buying and selling behavior, can vary over time and be different in different places. 

A change in non-economic circumstances such as an illness, the birth of a child, or moving to a 

different climate can affect such preference characteristics. Thus, although an aspect of a specific 

individual’s economic behavior might appear as a law at one time and in a particular place, it 

need not apply at a different time or in a different place. 

 

 Second, economists do not have a laboratory with sufficient controls to be able to regard 

the results of a test of the validity of their theoretical conclusions about reality with the same 

confidence as physicists and chemists. To determine the speed of falling objects in a vacuum, the 

physicist can generally ensure that the (near-vacuum) environment in which objects are actually 

dropped does not change significantly from one drop to the next, and thereby conclude with 

reasonable confidence that all objects, such as a metal ball and a feather, fall at the same rate. 

But laboratory experiments in economics involve eliciting responses from human beings to 

stimuli in laboratory-created circumstances. And the latter are incapable of accurately 

duplicating actual real-life situations. Of course, participants can be threatened with the 
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deprivation of monetary gain that might accrue from their participation in the experiment. But 

they cannot be threatened with the loss of their real-life incomes or their real-life jobs. Unlike 

decision-making in real-life circumstances, decisions made in response to laboratory stimuli have 

no consequences or impact on the participant’s life outside of the laboratory apart from whatever 

small monetary gain is obtained. In this sense, taking action (e.g., buying or selling) in real-life 

situations is different from indicating what action one might take in a laboratory. For example, 

attitudes towards purchasing a commodity may be different in the two situations. The results of 

such experiments, then, cannot carry the same force as results of experiments in the physical 

sciences. 

 

 It will take the next 16 chapters to build the Walrasian model described above. Although 

more general aspects will often be provided, analytical parts will be set in a world of two 

persons, two consumer goods, two firms and two resources or inputs (labor and capital). Upon 

completion of this construction, what it suggests about the “welfare” derived from the 

consumption commodities produced and distributed to individuals by the real microeconomy 

will be explored. Finally, adjustments in parts of the model will be introduced to account for 

more realistic situations (outside of the realm of perfect competition) that involve what are called 

market failures. 

 



 
 

 

 



7 
 

Chapter 2 
Mathematics Used in this Book 

 
 

In this volume, mathematics is used mostly as a language for communication rather than 
as a means for solving problems. The main ideas to be employed are as follows: 
 
 
A. Functions of a single variable. 
 In general, a function is defined as consisting of two sets, a domain and a range, together 
with a rule. The rule, call it ݂, assigns to each element in the domain a unique element in the 
range. Formally, the function is written as 
 

ݕ =  ,(ݔ)݂
 
where ݔ, the independent variable, varies over the domain and ݕ, the dependent variable, varies 
over the range. 
  
 There are three ways of making functions specific. First is the equation form, for 
example, ݕ = ݔ2 + 1 with domain, say, {ݔ: ݔ ≥ 0}. Second is the tabular form, where specified 
values for ݔ are listed on the right and the corresponding unique values for ݕ generated by ݕ =
ݔ2 + 1 appear on the left as in Table 2-1: 
 

Table 2-1 
࢟ ࢞ 
1 0 
3 1 
5 2 

 
 
The third is the geometric form of Figure 2-1 secured by plotting the numbers of Table 2-1 on a 
graph with ݔ on the horizontal axis and ݕ on the vertical, and given the present specification of 
the function as ݕ = ݔ2 + 1,  connecting the points so obtained with a straight line: 
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For purposes of this book, it will be convenient to regard all three representations of ݕ = ݔ2 + 1 
as equivalent. 
 
 The first-order derivative of ݂ at ݔ଴ is defined as 
 

݂ᇱ(ݔ଴) = lim
∆௫→଴

ݕ∆
ݔ∆

= lim
∆௫→଴

଴ݔ)݂ + (ݔ∆ − (଴ݔ)݂
ݔ∆

, 
 
where ∆ݔ = ᇱݔ − ݕ∆ ଴ andݔ = ′ݕ −  ଴ isݔ ଴. The geometric depiction of the derivative of ݂ atݕ
the slope of the graph of ݂ at ݔ଴, that is, the slope of the red straight-line tangent to the curve at 
  ଴, as pictured at point A in Figure 2-2. In this diagram the graph of ݂ is drawn as the curvedݔ
 

 
 

1 

2 

3 

4 

5 

0 1 2 3 

 ݕ

 ݔ

Figure 2-1 

ݕ = ݔ2 + 1 

 ݔ ′ݔ ଴ݔ
 ݔ∆

݂ 

A 

B 

 ଴ݕ

 ′ݕ

ݕ∆

Figure 2-2 

ݕ
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line emanating from the origin. The expression 
 

ݕ∆
ݔ∆

=
଴ݔ)݂ + (ݔ∆ − (଴ݔ)݂

ݔ∆
                                                       (2.1) 

 
represents the slope of the blue straight line connecting points A and B. That slope is an 
approximation of the slope of the curved line at A. The approximation gets better and better as 
′ݔ → ݔ∆ ଴ or, equivalently, asݔ → 0. 
 
 In Economics, derivatives are often called marginals, such as marginal cost or marginal 
utility. It will often be convenient in subsequent chapters to make no distinction between the 
derivative of ݂ at ݔ଴ (or the slope of its graph at ݔ଴) and approximations of it. That is, for 
example, the marginal cost at ݔ଴ denoted by, say ܥܯ(ݔ଴), may be thought of either in derivative 
or in approximate terms. 
 
 In approximate form, derivatives or marginals can be calculated from tables like that of 
Table 2-1 even if the numbers of the table correspond to points on a curved line rather than the 
straight line of ݕ = ݔ2 + 1. In Table 2-1, if x represents, say, output and y the total cost of 
producing that output, then the approximate derivative at ݔ = 1 or the marginal cost of 
producing the second unit of output when already producing the first is calculated using equation 
(2.1) as ∆ݕ

ൗݔ∆ = 2, where ∆ݔ = 2 − 1 = 1 and ∆ݕ = 5 − 3 = 2. In this case, at any point on 
the graph the approximate derivative is always the same as the actual derivative. If the numbers 
of a table related to a function whose graph is the curved line in Figure 2-2 where, say, ݔ଴ = 1, 
ᇱݔ = ଴ݕ  ,2 = 1, and ݕᇱ = 6, then the calculation ∆ݕ

ൗݔ∆ = 5 yields the slope of the blue line in 
Figure 2-2 as an approximation of the derivative or slope of the curve at ݔ଴ (that is, the slope of 
the red line). 
 
 The second-order derivative of ݂ at ݔ଴, written ݂′′(ݔ଴), is the derivative of ݂′(ݔ) at ݔ଴. 
 
 If a function is known to have a unique maximum or minimum value at an ݔ଴ somewhere 
in its domain, and if it has continuous first- and second-order derivatives everywhere, then that 
 ଴ can be found by solving the first-order conditionݔ
 

݂ᇱ(ݔ଴) = 0. 
 
To determine whether ݂(ݔ଴) is a maximum or minimum, it is sufficient to look at the sign of the 
second-order derivative at ݔ଴. Thus 
 

(଴ݔ)′′݂ ൝
< 0      indicates a maximum,

> 0     indicates a minimum.
 

 
------------------------------------------------------------ 
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B. Functions of two variables. 
 The general definition of a function of two variables is the same as that of a single 
variable except that now the elements of the domain contain pairs of numbers as in (ݔ,  and the (ݕ
function is written as, say, ݖ = ,ݔ)݂   As an illustration, take ݂ to be .(ݕ
 

ݖ = ଵ(ݕݔ)
ସൗ                                                                          (2.2) 

 
on the domain {(ݔ, :(ݕ ݔ ≥ 0 and ݕ ≥ 0}. The equivalent tabular form would have three columns 
instead of two, and the 3-dimensional graph drawn in perspective in the two-dimensional plane 
of the paper would look like a portion of a bowl on its side with its bottom point located at the 
origin as in Figure 2-3: 

 
 Derivatives of these functions will be obtained by holding ݔ or ݕ fixed at, say ݔ଴ or ݕ଴ 
respectively, thereby reducing ݂ to a function of a single variable, and applying the above 
definition of derivative to the reduced function. The first-order derivative at ݔ଴ with respect to ݔ 
holding ݕ fixed at ݕ଴ is denoted by ௫݂(ݔ଴,  ଴ݔ fixed at ݔ holding ݕ ଴ with respect toݕ ଴); that atݕ
by ௬݂(ݔ଴,  ,଴). Thus, for exampleݕ
 

௫݂(ݔ଴, (଴ݕ = lim
∆௫→଴

଴ݔ)݂ + ,ݔ∆ (଴ݕ − ,଴ݔ)݂ (଴ݕ
ݔ∆

, 
 
where, as before, ∆ݔ = ᇱݔ −  .଴ݔ
 
 Geometrically, the 3-dimensional graph of a function of two variables can be reduced to a 
two-dimensional graph by slicing a plane through the former and focusing on the graph that 
appears in that plane. The resulting two-dimensional graph can be thought of as the geometric 
picture of a function of a single variable. Three methods of doing this, illustrated below with 
respect to the 3-dimensional graph of Figure 2-3 above, will be employed in subsequent chapters. 
In each case, the curve at issue in the left-hand 3-dimensional diagram appears in red and is 
reproduced in red in the relevant two-dimensional coordinate system in the right-hand diagram. 
 
 i. In Figure 2-4, a plane at ݖ଴ parallel to the ݕ-ݔ plane cuts through the 3-dimensional 
graph of Figure 2-3. The curve in the ݖ଴ plane is projected vertically onto the ݕ-ݔ plane. All 

 ݖ

 ݕ

 ݔ

Figure 2-3 
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points on the projected curve in the ݕ-ݔ plane have the same function value ݖ଴. That curve can 
be described mathematically as {(ݔ, ଴ݖ  :(ݕ = ,ݔ)݂   or as the graph of a function {(ݕ

 
written as, say, ݕ = ଴ݖ and obtained by solving the equation (ݔ)݃ = ,ݔ)݂  as a function ݕ for (ݕ
of ݔ. In terms of equation (2.2), ݖ଴ = ,ݔ)݂ (ݕ = ଵ(ݕݔ)

ସൗ  and solving for ݕ gives 
 

ݕ = (ݔ)݃ =
ସ(଴ݖ)

ݔ
. 

 
 ii. In Figure 2-5, a plane at ݕ଴ parallel to the ݖ-ݔ plane cuts through the 3-dimensional 
graph of Figure 2-3. The curve in the ݕ଴ plane is the graph of the function of the single variable 
ݖ = ,ݔ)݂ ݖ ଴). From equation (2.2), the latter becomesݕ = ,ݔ)݂ (଴ݕ = ଵ(଴ݕݔ)

ସൗ . 
 

 
 
 iii. In Figure 2-6, a plane at ݔ଴ parallel to the ݖ-ݕ plane cuts through the 3-dimensional 
graph of Figure 2-3. The curve in the ݔ଴ plane is the graph of the function of the single variable 
ݖ = ,଴ݔ)݂ ݖ ,or, with respect to equation (2.2) (ݕ = ,଴ݔ)݂ (ݕ = ଵ(ݕ଴ݔ)

ସൗ . 
 

 ݔ

 ݕ

ݖ

 ݔ

 ݕ

 ଴ݖ

Figure 2-4 

ݖ =  ଴ݖ

ݕ =  (ݔ)݃

 ݔ

 ݕ

 ݖ

 ݔ

z 

଴ݕ

Figure 2-5 

ݕ =  ଴ݕ

ݖ = ,ݔ)݂  (଴ݕ
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-------------------------------------------------------------- 

 
 
 
C. Convexity and Concavity. 

A set S is convex if the straight-line segment connecting any two points of S lies entirely 
in S as in the left-hand diagram of Figure 2-7. In the right-hand diagram, the straight line 
 

 
 
falls outside of the set for some pairs of points in S. That is why the set is not convex. 
 
 

A function ݂ is convex if the straight-line segments connecting any two points on its 
graph lies on or above the graph as in both diagrams of Figure 2-8. It is strictly convex if all such 
line segments lie entirely above the graph except for their end points. Only the function whose 
graph appears in the left-hand diagram of Figure 2-6 is strictly convex. The set of all points lying 
above the graph of a convex function is convex. 
 

 ݔ

 ݕ

 ݖ

 ݕ

 ݖ

 ଴ݔ

Figure 2-6 

ݔ =  ଴ݔ

ݖ = ,଴ݔ)݂  (ݕ

S 

S 

Convex Not 
Convex 

Figure 2-7 
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A function ݂ is concave if the straight-line segments connecting any two points on its 

graph lies on or below the graph as pictured in Figure 2-9 and the right-hand diagram of Figure 
2-8. It is strictly concave if all such line segments lie entirely below the graph except for their 
end points as in only the left-hand diagram of Figure 2-9. The set of all points lying below the 
graph of a concave function is convex. 

 
 

 
 

The graphs of convex or concave functions can be linear or contain straight-line 
segments. This is not possible for graphs of strictly concave or strictly convex functions. 
 

A function is linear if and only if it is both concave and convex. 
 

As can be seen in the left-hand diagrams of Figures 2-8 and 2-9, if the second-order 
derivative of a function is everywhere positive, that function is strictly convex. If the second-
order derivative is everywhere negative, the function is strictly concave. It is the second-order 
derivative that determines the strictly-convex or strictly-concave shape of the curve. 
 
 

   Convex and 
Strictly Convex 

Convex, Concave, 
     and Linear 

Figure 2-8 

  Concave and 
Strictly Concave 

Concave, Convex, 
     and Linear 

Figure 2-9 
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 The function whose graph appears in Figure 2-10 has strictly convex and strictly concave 
parts but is neither strictly concave nor strictly convex. 
 

 
 
 
 The reason for introducing the ideas of strictly concave and strictly convex functions is 
that, in this book, their use will sometimes avoid the second-order maximization and 
minimization conditions in derivative terms as described above. This simplifies matters 
considerably, especially when dealing with “constrained” maximization and minimization and 
functions of two variables. To illustrate how this works in the simplest context of a function of a 
single variable, consider the following schematic: To say that ݕ =  has a unique maximum (ݔ)݂
or minimum at ݔ଴: 
 
                                                             Maximum                                      Minimum              
(଴ݔ)݂                                                   > ݔ for (ݔ)݂ ≠ (଴ݔ)݂             ଴ݔ < ݔ for (ݔ)݂ ≠  ଴ݔ

                           
First-order condition:                         ݂ᇱ(ݔ଴) = 0                                        ݂ᇱ(ݔ଴) = 0  
Second-order condition:                    ݂ᇱᇱ(ݔ଴) < 0                                       ݂′ᇱ(ݔ଴) > 0 
 
Assumption to replace                   
the second-order derivative         ݂ is strictly concave                           ݂ is strictly convex 
condition: 
 

 

 ݕ

 ݔ

݂ 

Figure 2-10 

 ݕ

 ଴ݔ ଴ݔ ݔ

݂ 

݂ 
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Thus, combining the first-order condition with the statement that the functions is strictly concave 
or strictly convex is sufficient to determine if the function has, respectively, a maximum or 
minimum at ݔ଴. 
 
 The strictness of concave and convex functions is important here. If only concavity and 
convexity were assumed without strictness, the graph of a function for which a maximizing or 
minimizing value of x is sought could appear as the straight line in Figure 2-11 below. In this 
case all values of ݔ both maximize and minimize ݂. Suppose, then, that one wants to explain,  

 
say, the amount of output a firm produces at some moment or period of time as the outcome of 
maximizing a profit function. Since the firm produces only one amount of output, the appropriate 
function has to determine, upon maximization, a unique output value. Functions with graphs 
pictured in Figure 2-11 cannot do that. Therefore, when the maximization or minimization of a 
concave or convex function is intended to pick out a unique value in its domain, strictness has to 
be assumed. 
 

 ݕ

 ݔ

݂ 

Figure 2-11 
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Chapter 3 
The Operation of Markets:  

Demand and Supply 
 
 
 The first step taken here in the construction of a model to explain the functioning of the 
microeconomy is to focus on the operation of an isolated market in the context of the abstract 
world described in Chapter 1. Because it is a mental construct, neither the model as a whole nor 
any of its parts exist in the real microeconomic world. To be concrete, focus on the market for a 
commodity in which buyers are consumers and sellers are firms. The demand and supply sides of 
that market are expressed in terms of market demand and supply functions. To obtain those 
functions, present discussion begins with the general definition of demand functions for 
individual consumers. These will be explained and derived from consumer preferences in later 
chapters. To further simplify, consider a world with only two persons 1 and 2, and two consumer 
goods x and y. The same symbol is used to denote a good and quantities of it. The following 
notation is used: 
 

 .ଶݕ ଶ, andݔ ,ଵݕ ଵ –  quantities of good x demanded by person 1. Similarly forݔ
 .௬ – prices of good x and good y݌ ,௫݌
݉ଵ, ݉ଶ – incomes of persons 1 and 2 (the amount of money he/she has to spend). 

 
The demand functions ℎଵ and ݃ଵ for, respectively, goods x and y of person 1, and the 
corresponding functions  ℎଶ and ݃ଶfor person 2 are written as 
 

ଵݔ = ℎଵ൫݌௫, ,௬݌ ݉ଵ൯       ݔଶ = ℎଶ൫݌௫, ,௬݌ ݉ଶ൯ 
ଵݕ = ݃ଵ൫݌௫, ,௬݌ ݉ଵ൯       ݕଶ = ݃ଶ൫݌௫, ,௬݌ ݉ଶ൯ 

 
where ℎ௜ and ݃௜, for ݅ = 1,2, are the symbols (names) identifying the functions and ݔଵ, say, 
becomes the quantity of good x demanded by person 1. These functions, defined in the standard 
mathematical way for all positive prices and incomes, indicate the quantities the induvial 
demands of the two goods at the two price and income values. 
 
 The individual demand curve is obtained by fixing the “other price” and income in the 
demand function and graphing the function of the single variable that remains. For example, the 
demand curve for good x of person 1 is found by setting ݌௬ = ௬݌

଴ and ݉ଵ = ݉ଵ
଴ in ℎଵ and 

graphing ݔଵ = ℎଵ൫݌௫, ௬݌
଴, ݉ଵ

଴൯ to obtain the curve labeled ℎଵ and illustrated in Figure 3-1. Note 
the reversal of mathematical convention in the labeling of the axes: The independent variable ݌௫ 
appears on the vertical axis while the dependent variable ݔଵ appears on the horizontal. 
 

There are a number of ideas in relation to demand curves that should be noted: 
 

1. The “law of demand” is the statement that demand curves slope downward and  
    to the right. This is not a law is the sense that the term is used in the physical  
    sciences (recall Chapter 1). As will be seen in Chapter 7, theoretically the law  
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    does not appear to hold up as a law. Empirically it almost always seems to  
    hold, although there have been observations of upward sloping demand curves.  
    Goods with upward sloping demand curves are often called Giffen goods. 

 
2. The phrase, “changes in quantity demanded” indicates a movement along a  
    demand curve with the other price and income held constant. In terms of ℎଵ, a  
    change in the quantity demanded means that a variation in ݔଵ has occurred in 
    response to a modification in ݌௫ (with ݌௬ and ݉ଵ held fixed). The phrase  
    “changes in demand” refers to shifts or movements in the entire demand curve  
    caused by variations in the fixed values of ݌௬ or ݉ଵ. The ideas reflected in  
    these phrases are important in the distinction between substitute and  
    complementary goods, and normal and inferior goods described below. 

 
3. Two goods are called substitutes if a rise or fall in the price of one (a movement  
    along its demand curve) results in, respectively, an outward or inward shift in  
    the demand curve of other. As an example, suppose coffee, good  ݕ, and tea,  
    good ݔ, are substitutes for consumer 1. Let the current price of coffee be ݌௬

଴.  
    Then a rise in ݌௬

଴ means a reduction in the quantity of coffee demanded along  
    consumer 1’s coffee demand curve. Since the price of coffee was originally  
    fixed at ݌௬

଴ behind consumer 1’s demand curve for tea, that is, behind the graph  
    of ݔଵ =   ℎଵ൫݌௫, ௬݌

଴, ݉ଵ
଴൯, the increase in the price of coffee causes consumer 1 

     to substitute tea for coffee regardless of the price of tea, thereby pushing  
    his/her demand curve for tea farther out from the origin. 
 
4. Two goods are called complements if an increase (decrease) in the price of one  
    results in a decrease (increase) in demand, i.e. an inward (outward) shift, in the  
    other. A possible example: coffee and cream. Assuming the consumer uses  
    cream in his/her coffee, a rise in the price of coffee will reduce the quantity of  
   coffee demanded and the need for cream. Since the price of coffee is fixed  
   behind the demand curve for cream, the reduced demand for coffee will  
   decrease the demand for cream at all prices of cream. 

 
5. A good is called normal if a rise (or fall) in the income of the consumer results 
    in an increase (or decrease) in its demand. A possible example: steak. Since  
   income is fixed behind the demand curve for steak, an increase in the  
   consumer’s income may induce him/her to demand more steak at all prices. 

௫݌  

 ଵݔ

௬݌ = ௬݌
଴ 

݉ଵ = ݉ଵ
଴ 

Figure 3-1 

ℎଵ 
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6. A good is called inferior if a rise (or fall) in the income of the consumer results 
    in a decrease (or increase) in its demand. A possible example: potatoes. Since  
   income is fixed behind the demand curve for potatoes, an increase in the  
   consumer’s income may allow him/her to increase consumption of more  
   expensive foods and demand fewer potatoes no matter what their price. 

 
 Market demand functions are obtained as the sum of the individual demand functions of 
all buyers in the market. In the present case, with ݔଵ = ℎଵ൫݌௫, ,௬݌ ݉ଵ൯ and ݔଶ = ℎଶ൫݌௫, ,௬݌ ݉ଶ൯,  
 

ଵݔ + ଶݔ = ℎଵ൫݌௫, ,௬݌ ݉ଵ൯ + ℎଶ൫݌௫, ,௬݌ ݉ଶ൯.                                (3.1) 
 
Letting ݔ = ଵݔ + ,௫݌൫ܦ ଶ andݔ ,௬݌ ݉ଵ, ݉ଶ൯ = ℎଵ൫݌௫, ,௬݌ ݉ଵ൯ + ℎଶ൫݌௫, ,௬݌ ݉ଶ൯, the market 
demand function (3.1) may be written as 
 

ݔ = ,௫݌൫ܦ ,௬݌ ݉ଵ, ݉ଶ൯. 
 
The market demand curve (obtained from ܦ in the same way as the individual demand curve is 
derived from ℎଵ) is the graph of ݔ = ,௫݌)ܦ ௬݌

଴, ݉ଵ
଴, ݉ଶ

଴) and shifts with changes in ݌௬
଴, ݉ଵ

଴,  or 
(and) ݉ଶ

଴. Because of the reversal of axes in graphing individual demand curves, the geometric 
derivation of the market demand curve from individual demand curves involves a “horizontal” 
sum as pictured in Figure 3-2 with linear curves: 
 

 
 The formulation of market and individual supply functions and curves, say in relation to 
good x and its price ݌௫, is similar to that of market and individual demand functions and curves 
except that: 
 
 1. Since the sellers are firms in the market under consideration here, individual supply  
     functions and curves emerge from them (Chapter 14) and the dependent variable in  
     those functions and curves, ݔ, represents quantity supplied rather than quantity  

   demanded. 
 
 2. Prices other than ݌௫ – but not incomes and not ݌௬ – appear as arguments of supply  

௫݌  

௫݌
଴ 

ℎଵ ℎଶ 

 ܦ

ଵݔ
଴ ݔଶ

଴ ݔଵ
଴ + ଶݔ

଴ 

௬݌ = ௬݌
଴ 

     ݉ଵ = ݉ଵ
଴ 

     ݉ଶ = ݉ଶ
଴ 

 ݔ

Figure 3-2 
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    functions. Thus a seller’s supply function indicates the quantities supplied at each  
    collection of price values. The other prices will be specified in subsequent chapters. 

 
3. Supply curves, obtained by graphing the supply function with ݌௫ varying while  
    holding the other prices fixed, slope upward – the “law of supply.” 

 
 Consider now the market for good x with equations for market demand and supply 
functions ܦ and ܵ written more simply as: 
 

ݔ         =  market demand and  – (௫݌)ܦ
ݔ =  ,market supply – (௫݌)ܵ

 
where ݔ now represents both quantities demanded and supplied. Other price and income 
variables, although hidden from view, are still present and held fixed. Let the graphs of these 
functions be drawn in typical fashion as in Figure 3-3. The intersection point (ݔ଴, ௫݌

଴) is called an  

 
equilibrium, with ݌௫

଴ the equilibrium price and ݔ଴ the equilibrium quantity. This terminology is 
to be understood as follows: 
 

To say something is in equilibrium is to say that it is in a position of rest; all forces acting 
on it balance each other out and there is no tendency for it to move or change. To illustrate, place 
a book on a table. The force of gravity is pulling the book down towards the floor. The table is 
pushing back. These two pressures offset each other and the book on the table is at rest, at 
equilibrium. In the context of a market, the forces that operate are the competitive forces of 
demand and supply, that is, the competitive actions taken by buyers to secure their demands and 
sellers to sell their supplies. Employing these ideas in relation to Figure 3-3, then, it can be seen 
that (ݔ଴, ௫݌

଴) is the only equilibrium point in that diagram. The demonstration requires 3 steps: 
 
1. If the market price were below ݌௫

଴ at ݌௫
ᇱ  in Figure 3.3, then the quantity demanded ݔᇱௗ   

    would be greater than the quantity supplied ݔᇱ௦. Buyers would not be able to buy the  
    quantity they want and would have to compete with other buyers for the scarce good.  
    They compete by offering to pay a higher price. Since the market price is changing,  
    this cannot be an equilibrium. 

 
2. If the market price were above ݌௫

଴, then the quantity supplied would be greater than the  
    quantity demanded. Sellers would not be able to sell the quantity they want and would  

௫݌  

 ݔ
Figure 3-3 

 ܦ
ܵ 

௫݌
଴ 

 ଴ݔ

௫݌
ᇱ  

 ᇱௗݔ ᇱ௦ݔ
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    have to compete with other sellers for the scarce buyers. The sellers compete by  
    offering to sell at a lower price. Since the market price is changing, this also cannot be  
    an equilibrium. 

 
3. When the market price is at ݌௫

଴, the quantity demanded equals the quantity supplied,  
    buyers can buy the quantity they want, and sellers can sell the quantity they want. No  
    one has to compete and offer a better price. Nothing is changing so the market is at  
    rest, that is, in equilibrium. 

 
Thus, the competitive forces of demand and supply, that is, buyers offering to pay a higher price 
when unable to buy the full amount they want and sellers offering to sell at a lower price when 
unable to sell all that they want, push the market towards and are inoperable at equilibrium. 
 
 Note, however, that conceptually it is possible to have equilibrium in a market where 
demand and supply curves do not intersect. In the right-hand diagram of Figure 3-4, equilibrium 
 

 
occurs at A where ݌௫ = 0. As described above, at any positive price, competitive forces (in this 
case, suppliers lowering their price to attract scarce buyers) drive the market price down to zero. 
In the left-hand diagram of Figure 3-4, equilibrium occurs at B where ݔ = 0. At any positive 
quantity, the price that buyers are willing to pay is less than that at which sellers are willing to 
sell. The former price is not high enough to warrant production and sale of that quantity. Sellers 
lower the price gap by offering to sell at a lower price and reducing the quantity they are willing 
to sell. In this way, market quantity is pushed down to zero. Only if zero prices and quantities are 
ruled out of consideration do “equilibrium” and “intersection point” correspond to the same 
thing. 
 
 The diagrams of Figure 3-4 can be used to describe markets that, because of the special 
circumstances relating to them, do not actually relate to purchases and sales in the real 
microeconomy. In the right-hand diagram, point A may be thought of as an equilibrium in the 
market for, say, the air human beings breathe. Air is so plentiful that no one has to buy or pay for 
it and no one could sell it. “Buyers” obtain all they want free of charge. Point B in the left-hand 
diagram can be viewed as an equilibrium in the market for electric cars before the time when 
those cars were actually produced and sold in a real market. Before the real market appeared, the 
per-unit cost of producing electric cars was so high that at each supply quantity the price at 
which they could be sold was greater than the price potential buyers were willing to pay. These 

௫݌  

 ݔ
Figure 3-4 

 ܦ

ܵ 
௫݌  

 ݔ

 

 B ܵ ܦ

A 

௫݌
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kinds of markets are of no interest because there is nothing to explain about the production, 
buying, or selling associated with them. In the present volume, then, zero prices and quantities in 
markets will not be considered. 
 
 Even though it is abstract and cannot exist in reality, the demand-supply model is still 
employed to understand how goods are bought and sold in the real microeconomy. To be 
concrete, let x represent gasoline. For a particular week, say, add together all sales of all types of 
gasoline and the number of gallons sold, and then divide the latter into the former to obtain an 
average price.1 Such data is usually interpreted to mean that, in the real microeconomy, a certain 
quantity of gasoline, call it ݔ଴(the total number of gallons sold), was bought by buyers (and sold 
by sellers) at the (average) price ݌௫

଴ during the week. The explanation of how this observation 
came about is obtained by building a demand-supply model. The construction proceeds by first 
locating the observed point (ݔ଴, ௫݌

଴) in the diagram of Figure 3-5. The next step is to postulate 
three assumptions: 
 

1. There exists a demand curve ܦ in the market and it passes through the observed  
    point (ݔ଴, ௫݌

଴). 
 

2. There exists a supply curve ܵ in the market and it passes through the same  
    observed point (ݔ଴, ௫݌

଴). 
   
  3. The end result in the market of the operation of the competitive forces of  

    demand and supply is equality of the latter, that is, market equilibrium. 

 
The model is now built. Based on its assumptions it can be said that (ݔ଴, ௫݌

଴) came about through 
or is explained by the interaction of demand and supply forces, that is, through the competition 
between buyers and sellers described above, that made it possible to think of (ݔ଴, ௫݌

଴) as an 
equilibrium. If, in a second week, a new point (ݔᇱ, ௫݌

ᇱ ) were observed (Figure 3-5), and if two 
more assumptions were added: 
 

4. There exists another demand curve ܦ′ in the market and it passes through  
,ᇱݔ)     ௫݌

ᇱ ), 
 

 
1 Alternatively, calculate an average price by averaging, perhaps with weights, over all existing prices of all types of 
gasoline. 

௫݌  

 ݔ

Figure 3-5 
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,ᇱݔ) .5 ௫݌
ᇱ ) lies on the same supply curve ܵ as (ݔ଴, ௫݌

଴), 
 

then (ݔᇱ, ௫݌
ᇱ ) would also be explained as emerging from the competitive interaction of demand 

and supply. And the movement from (ݔ଴, ௫݌
଴) to (ݔᇱ, ௫݌

ᇱ ) or the rise in price would be explained 
as resulting from an increase in demand. 
 
 It should be emphasized that the above assumptions, along with the idea of the market 
itself, are abstract mental constructs that do not exist in the reality under consideration. They are 
figments of the imagination. But as with the parts of the constructed model of the clock in 
Chapter 1, it does not matter that the assumed demand and supply curves of the model of Figure 
3-5 cannot be shown to exist as an accurate representation of what is actually present in the real 
microeconomy. In spite of that, this demand-supply model still provides an explanation of how 
the price and quantity of gasoline sold in the real microeconomy came about during the weeks 
under consideration. And this explanation resonates in the public domain to the extent that it is 
embraced by most people as the explanation of how prices and quantities of goods sold are 
determined in reality. That is, when someone who is studying a market concludes that an 
increase in demand for gasoline is the reason for the observed increase in its price, that 
explanation is generally accepted by the public. 
 
 This is the way explanation works in economics. There is no laboratory in which the 
veracity of this demand-supply model can be tested.2 Moreover, there is no guarantee that the 
model provides a correct explanation of what is actually happening. As pointed out in Chapter 1, 
explanations are not unique. Other models can provide alternative explanations. For example, in 
periods of relatively rapid price increases, rather than using the model of Figure 3-5 with, say, 
frequent rightward shifts of the demand curve (due to changing values of ݌௬ and/or individual 
incomes) against a fixed supply curve, the model whose graph is pictured in Figure 3-6 and  

 
which violates the laws of supply and demand, may be thought to provide an alternative and 
perhaps better understanding of what is going on. In the model of Figure 3-6, buyers are never 
able to buy all they want to buy and continually offer to pay a higher price. The market price is 
therefore continually rising. This model, too, cannot be tested to determine its validity. 
 

 
2 Certain aspects of models of other economic phenomena can be tested. But, since the economist does not have 
the same kind of laboratory controls as, say, a physicist or chemist (recall Chapter 1), the results are not nearly as 
conclusive as in the physical sciences. 

 

 

௫݌  
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 In the model of Figure 3-5, the process of equilibrating demand and supply to reach an 
equilibrium determines which buyers obtain the commodity and which sellers sell it. The buyers 
willing to pay the equilibrium price obtain the good; the sellers willing to sell at that price sell 
their product. That is, the market allocates what is bought and sold among buyers and sellers. 
Anything that interrupts the process of equilibrating demand and supply prevents the market 
from allocating in this way. Using this model as an explanation of the buying and selling of 
goods in the real microeconomy, it follows that consequences arise if a government were, for 
reasons of, say “fairness,” to interfere in the in the buying and selling process. There are at least 
two possibilities: 
 

1. A price ceiling like ̅݌௫ in Figure 3-7 could be set to prevent the market price from 
rising to what could be the equilibrium price ݌௫

଴. In that case, some kind of non-price 
rationing scheme will either arise in the purchase-sales process (e.g., first come, first 
served) or be imposed from outside (e.g., a government sponsored rationing scheme) to 
allocate the short supply of goods among the too-many demands. 

 
2. A price floor, say ̂݌௫ in Figure 3-8, could be set to prevent the market price from falling 
to what could be the equilibrium price ݌௫

଴. Here, too, some kind of non-price rationing 
scheme will either arise in the purchase-sales process or be imposed from outside to 
determine which units of the too-large supply will be bought by buyers. 

 
An example of the first is rent-control laws; an illustration of the second is minimum wage laws. 
This is not to pass judgment on whether interference in the buying-selling process is good or bad. 
The only point is that such interference has consequences that should be recognized. 
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Chapter 4 
Elasticity of Demand 

 
 
 In the context of actual purchases and sales (illustrated in terms of gasoline in Chapter 3) 
it is often useful to know how one variable might respond to changes in another. For example, 
before raising the price of steak, a supermarket might want to know how the quantity of steak 
sales might be affected. The notion of elasticity contains that kind of information. This chapter 
analyzes the elasticity concept in the framework of the abstract demand-supply model developed 
earlier. The main focus here is on the elasticity of demand. 
 

Consider the graph of the market demand function ݔ =  There are two ways to .(௫݌)ܦ
draw that curve. On the one hand, the dependent variable ݔ can be placed on the horizontal axis 
and the independent variable ݌௫ on the vertical as described in Chapter 3. This is the usual 
approach in Economics. The curve drawn in that way is illustrated in Figure 4-1 and will be 
called the demand curve as it normally is. It.  On the other hand, the demand function can be  
 

 
 
 
graphed in the mathematically standard way by placing the ݌௫ on the horizontal axis and the ݔ on 
the vertical. This graph will be called the mathematically standard demand curve. Note that the slopes 
of these two curves are related. In particular, the slope of the demand curve at A in Figure 4-1 
(the slope of the red line) is approximated by the slope of the straight-line segment connecting A 

to B or  
ݔ݌∆

ൗݔ∆  . But with the mathematically standard demand curve the slope of the straight 
line between the same two points would appear as  ∆ݔ

ݔ݌∆
ൗ  . It follows that the slope of the 

mathematically standard demand curve is the reciprocal of the slope of the demand curve. This 
applies in the limit as B approaches A. In subsequent discussion, the slope of the mathematically 
standard demand curve will occasionally be referred to as the reciprocal slope of the demand 
curve. 

 ݔ

  

 ′ݔ

A 

௫݌
ᇱᇱ 

 ′′ݔ

B 

 ௫݌

௫݌
ᇱ  

Figure 4-1 
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The price elasticity of demand is a measure of the responsiveness of quantity to changes 

in price along that curve – roughly expressed as 
 

% change in quantity 
% change in price

.                                                           (4.1) 

 
The reciprocal slope of the demand curve  ∆ݔ

ݔ݌∆
ൗ  is also a measure of the responsiveness of 

quantity changes to price changes.  The reason why elasticity is used instead of reciprocal slope 
will be considered momentarily. There are two ways to make the notion of elasticity precise.  
 
 According to the formula of (4.1), the elasticity between points A and B on the demand 
curve in Figure 4-1, or the arc price elasticity of demand ߝ஺஻, is given as the ratio of two 
percentages: 
 

஺஻ߝ = −
ݔ∆
ݔ ∙ 100

ݔ݌∆
ݔ݌

∙ 100
= −

ݔ∆
ݔ݌∆

∙
ݔ݌

ݔ
 ,                                                 (4.2) 

 
where  ∆ݔ

ݔ݌∆
ൗ  is the slope of the straight-line segment connecting the same A to B in the 

mathematically standard context, that is, the reciprocal of the slope of the straight line between A 
and B in Figure 4-1. This may be regarded as an approximation to the point price elasticity 
defined below. 
 
Note that: 

1. Since observed demand curves generally slope downward (recall Chapter 3), the 
minus sign is typically added to make ߝ஺஻ positive. 

 
 2. There is ambiguity in the choice of ݔ and ݌௫ in equation (4.2). It will be convenient 

    here to use ݔ = ௫݌ and ′′ݔ = ௫݌
ᇱ  in calculating ߝ஺஻ so that (4.2) becomes 

 

஺஻ߝ = −
ݔ∆
௫݌∆

∙
௫݌

ᇱ  
ᇱᇱݔ  .                                                              (4.3) 

 
The point price elasticity of demand, ߝ஺, at A in Figure 4-1 is obtained by letting  ∆݌௫ 

approach 0 or ݌௫
ᇱᇱ approach ݌௫

ᇱ  in equation (4.2) so that 
 

஺ߝ = lim
௣ೣ

ᇲᇲ→௣ೣ
ᇲ

−
ݔ∆
௫݌∆

∙
௫݌

ᇱ

ᇱᇱݔ = ᇱ൫௣ೣܦ−
ᇲ ൯ ∙

௫݌
ᇱ

ᇱݔ  ,                                    (4.4) 

 
where ݌)′ܦ௫

ᇱ ), the first-order derivative at ݌௫
ᇱ  of ܦ(݌௫) with respect to ݌௫ ,  represents the 

reciprocal slope of the demand cure at A, or the slope of the red line drawn in Figure 4-1. Unlike 
arc elasticity, there is no ambiguity in the choice of ݔ and ݌௫. – the values are those at A in 
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Figure 4-1 Thus, for both point and arc concepts, elasticity is the reciprocal slope, that is the 
slope of the mathematically standard demand curve adjusted by price over quantity. 
 
 Note by way of illustration that the demand curve obtained from the linear demand 
function ݔ = ௫݌ߙ + ߙ where ,ߚ < 0 and ߚ > 0 are fixed parameters, is a straight line with 
constant (negative) reciprocal slope ߙ. But its elasticity varies with movement along the curve. 
In the point form of (4.4): 
 

஺ߝ = ߙ−
௫݌

ݔ
. 

 
  
 
 Why use elasticity instead of reciprocal slope as a measure of the responsiveness of 
quantity changes to price changes? Because slope depends on the units of measurement 
employed – in the case of the supermarket-steak example referred to above, the change in 
quantity per unit change in price is different for quantity measured as, say pounds, instead of as 
ounces. And elasticity, because it is a ratio of percentages, is independent of such units.  
In either case, the underlying purchasing behavior is identical; it is just being expressed in 
different ways. Regardless, focusing on elasticity provides a cleaner understanding of that 
underlying behavior that is unencumbered by the specification of units of measurement.  
 

To illustrate, suppose first that the demand curve for steak in units of pounds appears as 
drawn in Figure 4-2. Then let steak is measured in ounces, replacing Figure 4-2 by Figure 4-3.  

 
The calculation of the reciprocal slopes and arc elasticities between A and B using the equation 
(4.3) designations for ݔ and ݌௫ appears in the box to the right of each diagram.  In Figure 4-2, 
௫݌

ᇱ = 3 and ݔᇱᇱ = 10; in Figure 4-3, ݌௫
ᇱ = 3/16 and 160= ′′ݔ. These demand curves reflect the same 

buying behavior.  So to avoid possible confusion and enhance clarity, the measure of the  

pounds 
of steak 

 3 

5 

A 

2 

10 

B 

ݔ∆ = 5 − 10 = −5 

ݔ݌∆ = 3 − 2 = 1 

Reciprocal slope: 

ݔ∆
ݔ݌∆

=
−5
1

= −5 

Elasticity: 

஺஻ߝ = −
−5
1

∙
3

10
=

3
2

 

price 
per 
pound 

Figure 4-2 

 ܦ
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response of quantity changes to price changes ought to be the same. In this case, the change in 
units from pounds to ounces modifies the slope ∆݌௫

ൗݔ∆  of the line segment connecting A to B 
(not shown in the diagrams) from − 1

5ൗ  to − 1
1280ൗ  making the line (and the demand curve) 

flatter and modifying its reciprocal slope as indicated without changing its elasticity. The latter, 
then, is clear and informative as it stands and does not have to be qualified by specifying units of 
measurement. In that sense, it is a better measure of the response of quantity changes to price 
changes. 

 
 Along a demand curve there are two important relationships involving elasticity: The first 
is that between elasticity and total revenue. Total revenue is defined as 

 
(ݔ)ܴܶ =  ௫,                                                                   (4.5)݌ݔ

 
where the point (ݔ,  ௫) lies on the demand curve. To understand this relationship in terms of the݌
arc formulation of arc elasticity,1 use the definition in equation (4.3) (with price and quantity 
values as pictured in Figure 4-1) to obtain: 
 

஺஻ߝ = −
ᇱݔ − ᇱᇱݔ

௫݌
ᇱ − ௫݌

ᇱᇱ ∙
௫݌

ᇱ

ᇱᇱݔ =
௫݌

ᇱ ᇱᇱݔ − ௫݌
ᇱ ᇱݔ

௫݌
ᇱ ᇱᇱݔ − ௫݌

ᇱᇱݔᇱᇱ . 

 
Using equation (4.5), this may be rewritten as 
 

 
1 That this relationship also holds with respect to point elasticity is not considered here. See Footnote 2 below. 

ounces 
of steak 

80 

A 

160 

B 

ݔ∆ = 80 − 160 = −80 

ݔ݌∆ =
3

16
−

2
16

=
1

16
 

Reciprocal slope: 

ݔ∆
ݔ݌∆

=
−80
1

16ൗ
= −1280 

Elasticity: 

஺஻ߝ = −
−80
1

16ൗ
∙

3
16ൗ

160
=

1
2

∙
3
1

=
3
2

 

price 
per 
ounce 

Figure 4-3 

3 16⁄  
2 16⁄  

 ܦ
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஺஻ߝ =
௫݌

ᇱ ᇱᇱݔ − (′ݔ)ܴܶ
௫݌

ᇱ ᇱᇱݔ − (′′ݔ)ܴܶ
 ,                                                        (4.6) 

 
and employing (4.6), 
 

஺஻ߝ = 1                if and only if                ܴܶ(ݔᇱ) =  .(ᇱᇱݔ)ܴܶ
஺஻ߝ < 1                if and only if                ܴܶ(ݔᇱ) >  .(ᇱᇱݔ)ܴܶ
஺஻ߝ > 1                if and only if                ܴܶ(ݔᇱ) <  .(ᇱᇱݔ)ܴܶ

 
It follows that: 
 
 When ߝ஺஻ = 1, total revenue is constant when moving from A to B. 

 
When ߝ஺஻ < 1, price and total revenue move in the same direction along the demand  
curve as ݔ changes its value from A to B (in Figure 4-1, price falls and total revenue also  
falls).  
 
When ߝ஺஻ > 1, price and total revenue move in opposite directions along the demand  
curve as ݔ changes its value from A to B (in Figure 4-1, price falls and total revenue  
rises). 
 

In general, these rules apply to all pairs of points on, and moving in either direction along the 
demand curve. Illustrations are provided in terms of the linear demand curve in Figure 4-5. 
. 

The second relationship is between elasticity and marginal revenue and is also illustrated 
in Figure 4-5. Marginal revenue, the derivative of total revenue at ݔᇱ is defined (in approximate 
form) as 

 

(ᇱݔ)ܴܯ =
∆ܴܶ
ݔ∆

=
ᇱݔ)ܴܶ + (ݔ∆ − (ᇱݔ)ܴܶ

ݔ∆
,                               (4.7) 

 
where ∆ݔ = ᇱݔ − ,ᇱݔ) Its relationship to elasticity at .′′ݔ ௫݌

ᇱ ) is given by the formula 
 

(ᇱݔ)ܴܯ = ௫݌
ᇱ ቀ1 − ଵ

ఌಲಳ
 ቁ, 

 
which is derived (also in approximate form) from the definitions of marginal revenue and arc 
elasticity in Supplemental Note A. 2 
 
 

From these relationships and the definition of elasticity, five categories of elasticity can 
be distinguished. They and their properties are listed in Table 4-1. The table asserts, for example, 
that where the demand curve is elastic, the arc price elasticity is everywhere finite and greater 

 
2 Although not pursued here, this expression can also be derived in continuous or limiting form, in which case ߝ஺஻  
is replaced by ߝ஺. In that form it can be used to derive the above relationship between point elasticity and total 
revenue  
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than one, the marginal revenue is everywhere positive, and in moving from point to point along 
the curve, price and total revenue modify in opposite directions. In the perfectly elastic case 
where ∆݌௫ = 0, equations (4.3) and (4.4) imply that ߝ஺஻ = ∞ and ߝ஺ = ∞, respectively. 
Although the first two columns of the table explicitly refer to the approximate arc concept of 
elasticity, the entire table can be understood in terms of either arc or point concept. 

 
Table 4-1 

Category ࡮࡭ࢿ 

Slope of  the 
Demand  
Curve 

Marginal 
Revenue 

Along the 
Demand Curve 

perfectly 
inelastic 
ݔ∆) = 0.) 

0  --- 
px and TR(x) 
move in the 

same direction 

inelastic 0 < ߝ஺஻ < 1 negative negative 
px and TR(x) 
move in the 

same direction 

unitarily 
elastic 1 negative 0 TR(x) constant 

elastic 1 < ߝ஺஻ <  negative positive 
px and TR(x) 

move in oppo-
site directions 

perfectly 
elastic 
௫݌∆) = 0.) 

 0 px 
x and TR(x) 
move in the 

same direction 

 
 
 To say that the demand curve is, say elastic, means either that ߝ஺஻ or ߝ஺ are greater than 
one everywhere along the curve. Context determines which meaning applies. According to the 

expression for the slope of the demand curve in Figure 4-1 (in approximate form,  ∆݌௫
ൗݔ∆ ), that 

curve in the perfectly inelastic case is vertical since ∆ݔ = 0, while that in the perfectly elastic 
case is horizontal with ∆݌௫ = 0. The former is depicted by the left-hand diagram in Figure 4-4, 
the latter by the right-hand diagram.  
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The linear demand curve, the geometric properties of its associated total and marginal 

revenue curves, and the corresponding elasticity ranges exemplify part of Table 4-1 and are 
illustrated in Figure 4-5. The subscripts on the elasticity symbol ߝ are dropped for convenience. 
 

 
With respect to Figure 4-5: 

 ᇱݔ ݔ

A 

௫݌
ᇱᇱ 

 ᇱᇱݔ

B 

 ௫݌

௫݌
ᇱ  

Figure 4-4 

௫݌∆ = 0 

ݔ∆ = 0 

 ܦ
 ௫݌
 

A B 
D 

 ᇱݔ

௫݌
ᇱ  

 ݔ

D 

MR 

$ 

∞ ݔ > ߝ > 1 1 > ߝ > 0 

ߝ = 1 

TR 

 ′′ݔ ′ݔ

σ 

0 

Figure 4-5 
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 1. Given the demand curve ܦ, the marginal revenue curve MR is determined by drawing  

    a straight line from D’s vertical intercept at σ through the mid-point ݔᇱ between  
                the origin and D’s horizontal intercept ݔᇱᇱ on the ݔ-axis This geometric construction is  
                established in Supplemental Note B. 
  
 2. Total revenue along the demand curve is ݌ݔ௫. Hence the total revenue curve associated  

    with the demand curve, labeled TR, must start at the origin since that value of total  
    revenue corresponds to  ݔ = 0 and ݌௫ = s  on the demand curve. Where the demand  
    curve meets the ݔ-axis at ݔᇱᇱ, that is, where ݔ = ௫݌  ᇱᇱ andݔ = 0, total revenue ݌ݔ௫ is  
    also zero. In between, since the value of the marginal revenue at each ݔ is the slope of  
    the total revenue curve at that ݔ, where marginal revenue is positive (0 < ݔ <  ᇱ), TRݔ
    slopes upward; where marginal revenue is negative (ݔ′ < ݔ <   ᇱᇱ), TR slopesݔ
    downward; and where marginal revenue is zero (ݔ =  .ᇱ), TR has a maximumݔ
 

 3. From the equation ܴܯ = ௫൫1݌ − 1 ൗߝ ൯, the demand curve is elastic (∞ > ߝ > 1) where  
    marginal revenue is positive (on the interval 0 < ݔ < ᇱ); it is inelastic (1ݔ > ߝ > 0)  
    where marginal revenue is negative (on the interval ݔ′ < ݔ <   ᇱᇱ); and it is unitarilyݔ
    elastic (ߝ = 1) where marginal revenue is zero (at ݔ =  .(ᇱݔ
 

 4. Moving along the demand curve in the elastic range (0 < ݔ <   ,ݔ ᇱ), say by increasingݔ
    price and total revenue move in opposite directions (price falls and total revenue rises).  
    Moving along the demand curve in the inelastic range (ݔᇱ < ݔ <  ᇱᇱ ), also byݔ
    increasing ݔ, price and total revenue move in the same direction (price falls and total  
    revenue falls). 

----------------------------------------------------------------------------------------- 
 
 
 There are other notions of elasticity related to the demand function. First, letting ݌௬, 
which is held fixed behind the demand curve, now vary with ݉ and ݌௫ held fixed, the arc cross-
price elasticity of demand is characterized by 
 

ݔ∆
ݔ ∙ 100

ݕ݌∆
ݕ݌

∙ 100
. 

 
And second, with ݉ now varying and ݌௫ and ݌௬ held fixed, the arc income elasticity of demand 
is defined as 

ݔ∆
ݔ ∙ 100

∆݉
݉ ∙ 100

 . 
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These expressions can be rewritten as in equation (4.3) for the arc concept and taken to the limit 
as in (4.4) for the point concept. The minus sign is left out since the elasticities could normally 
be either positive or negative. 
 
 The arc and point price elasticities of supply are defined similarly to the arc and point 
price elasticities of demand except that, since supply curves tend to slope upward, no minus sign 
is included. 
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Chapter 5 
Preferences, Utility, and Indifference Curves 

 
 
 Attention now turns to an explanation of the buying behavior of a single consumer in the 
abstract world of the Walrasian model set out in Chapter 1. In the two consumer-good context of 
that world, the consumer’s buying behavior is completely described by his/her demand functions 
for good x and good y. Those functions, recall, constitute the consumer’s contribution to the 
market demand functions of Chapter 3. Using slightly different notation from that of the latter 
chapter, the consumer’s demand functions are denoted here by, respectively, ℎ௫ and ℎ௬, where 
 

ݔ = ℎ௫൫݌௫, ,௬݌ ݉൯, 
ݕ = ℎ௬൫݌௫, ,௬݌ ݉൯, 

 
the superscripts on h now identify commodities, and the earlier subscripts and superscripts 
representing individuals have been dropped.1 These functions indicate for each set of values, one 
for each of  ݌௫, ݌௬, and ݉, the quantities of goods x and y the consumer buys or demands. Even 
though abstract, ℎ௫ and ℎ௬ are observable in the following sense: Think of the consumer in a 
supermarket buying goods. For this purchase, ݌௫,  ௬, and ݉ are known since the former are݌
posted for each commodity and the latter has been earned in the factor markets, for example the 
labor market (observed as hours worked time the wage). It is only necessary to watch what the 
consumer buys to have an observation of one “point” on his/her demand function. The 
explanation of these functions will be based on a model employing the assumptions that 
 

1. the individual’s tastes or preferences for quantities of goods are fixed and given, and 
2. the demand decisions made by the individual are founded on maximization. 
 

The present chapter will discuss the nature of preferences. Chapter 6 will take up first the 
environment in which the consumer makes buying decisions and then the making of those 
decisions via maximization. 
 
 The consumer is assumed to have preferences among baskets of commodities. These 
preferences exist only in his/her mind and, unlike buying behavior, but like the inner workings of 
the clock example of Chapter 1, are not observable. When there are only the two goods x and y, 
baskets of commodities bought or demanded by the consumer are denoted by (ݔ,  ݔ where ,(ݕ
varies over quantities of good x and y quantities of good y. The collection of all possible baskets 
available, 

 
,ݔ)} :(ݕ ݔ ≥ 0, ݕ ≥ 0}, 

 
is called the commodity space. 

 
1 Identifying ݔ as an individual’s demand for good x is the third meaning attached to this symbol. In Chapter 3 it 
was employed to represent both market demand and market supply. And starting in Chapter 9 it will represent the 
firm’s output produced and supplied. Context determines its meaning in any particular usage. 
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Let (ݔᇱ, ,ᇱᇱݔ) ᇱ) andݕ  ᇱᇱ) be baskets in the commodity space. Suppose (the assumption isݕ

called completeness) that for all such pairs of baskets, the consumer either prefers one to the 
other or is indifferent between them. Thus it may be that 

 
,ᇱݔ) ,ᇱᇱݔ) ᇱ) is preferred toݕ  ᇱᇱ) orݕ
,ᇱݔ) ,ᇱᇱݔ) ᇱ) is indifferent toݕ  .(ᇱᇱݕ

 
These preferences and indifferences are taken to be transitive: If a basket, call it A, is preferred 
to another basket B, and basket B is preferred to a third basket C, then basket A is preferred to 
basket C. And similarly for indifference. 
 
 In addition, preferences and indifferences are assumed to be representable by numbers. 
These numbers, which can be positive, negative, or zero, are called utility numbers and the full 
representation of preferences and indifferences in terms of them is called the utility function. The 
utility function is written as 
 

µ = ,ݔ)ݑ  ,(ݕ
 
where ݑ assigns a utility number µ to each basket (ݔ,  in the commodity space. The utility (ݕ
function is related to preferences as follows: 
 

,ᇱݔ)ݑ (ᇱݕ > ,ᇱᇱݔ)ݑ ,ᇱݔ) ᇱᇱ) if and only ifݕ ,ᇱᇱݔ) ᇱ) is preferred toݕ   ,(ᇱᇱݕ
 

and 
 

,ᇱݔ)ݑ (ᇱݕ = ,ᇱᇱݔ)ݑ ,ᇱݔ) ᇱᇱ) if and only ifݕ ,ᇱᇱݔ) ᇱ) is indifferent toݕ  .(ᇱᇱݕ
 
Thus, if one basket is preferred to another, the preferred basket has a higher utility value; and if 
two baskets are indifferent, they have the same utility value. 
 

The only significance of utility numbers µ is that they reflect the ordering of baskets by 
preference (and indifference) and nothing more. Beyond this the numbers have no meaning. To 
illustrate, since the utility functions  
 

,ݔ)ݑ (ݕ = ,ݔ)ݑ     and     ݕݔ (ݕ =  ݕݔ2
 
order baskets (ݔ,  ,in the same way, they represent the same preference ordering. For example (ݕ
suppose basket A consists of (2,3) and basket B contains (4,2). Then with ݔ)ݑ, (ݕ =  the ,ݕݔ
utility of A is (2,3)ݑ = 2 ∙ 3 = 6 and that of basket B is (4,2)ݑ = 4 ∙ 2 = 8. Since (2,3)ݑ <
,ݔ)ݑ B is preferred to A. The same conclusion obtains using ,(4,2)ݑ (ݕ =  since, in that case ݕݔ2
(2,3)ݑ = 12 and (4,2)ݑ = 16. Utility functions are called ordinal because they only provide 
information about the ordering of baskets in the commodity space by preference. 
 
 Let (ݔ଴, (଴ݕ > 0 be a basket in the commodity space with µ଴ = u(ݔ଴,  ଴).  Theݕ
indifference curve through (ݔ଴,  ଴) isݕ
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,ݔ)} (ݕ ∶ ,ݔ) ,଴ݔ) is indifferent to (ݕ ,ݔ)  ଴) andݕ (ݕ > 0}, 

 
or equivalently, 
 

,ݔ)} (ݕ ∶ ,ݔ)ݑ (ݕ = u(ݔ଴, (଴ݕ = µ଴ and  (ݔ, (ݕ > 0}. 
 
An illustration appears in Figure 5-1. (The geometric derivation of an indifference curve 

 
from the graph of a utility function may be thought of in terms of Figure 2-4 of Chapter 2. In that 
case, ݂ repressents the utility function ݑ, and ݃ the indifference function ܹ introduced below.) 
Each point or basket along the indifference curve in Figure 5-1 has the same utility value µ଴. 
With µ fixed at µ଴, the relation between x and y as pictured in Figure 5-1 may be thought of as 
the graph of a function of a single variable ݕ = ,ݔ)ݑ For example, suppose .(ݔ)ܹ (ݕ =  and ݕݔ
,଴ݔ) (଴ݕ = (2,6). Then µ଴ = ଴ݕ଴ݔ = 12. and the indifference curve through (2,6) contains all 
baskets such as (6,2, (3,4), and (4,3) whose quantity-roadcut is 12. It is described by the equation 
12 = xy, or solving for y as a function of ݕ ,ݔ = 12 ൗݔ  . More generally, in terms of this utility 
function, µ଴ = xy and 
 

ݕ = (ݔ)ܹ =
µ଴

ݔ
. 

 
There is one indifference curve through each basket (ݔ, (ݕ > 0 in the commodity space and the 
collection of all indifference curves is called the indifference map. 
 
 Just as there is a relationship between the utility function and indifference curves, so is 
there a relationship between the marginals derived from each. The marginal utility with respect 
to x at (ݔ଴, (଴ݕ > 0 in finite incremental or approximate form is 
 

,଴ݔ)௫ܷܯ (଴ݕ =
u(ݔ଴ + ,ݔ∆ (଴ݕ − u(ݔ଴, (଴ݕ

ݔ∆
,                                      (5.1) 

 
where ∆ݔ can be positive or negative (and in numerical tables of textbooks is often taken to be 
1). That with respect to y at (ݔ଴, (଴ݕ > 0 is 
 

 ݕ

 ଴ݕ

 ݔ ଴ݔ

µ = µ଴ 

Figure 5-1 



38 
 

,଴ݔ)௬ܷܯ (଴ݕ =
u(ݔ଴, ଴ݕ + (ݕ∆ − u(ݔ଴, (଴ݕ

ݕ∆
. 

 
In derivative form (that is, taking the limit as ∆ݔ → 0), 
 

,଴ݔ)௫ܷܯ (଴ݕ = lim
∆௫→଴

u(ݔ଴ + ,ݔ∆ (଴ݕ − u(ݔ଴, (଴ݕ
ݔ∆

, 
 
and similarly for ܷܯ௬(ݔ଴,  .(଴ݕ
 
 With µ଴ = u(ݔ଴, ݕ ଴) and derived indifference functionݕ =  where the ,(ݔ)ܹ
indifference curve (that is, the graph of W) through (ݔ଴,  ,଴) appears as pictured in Figure 5-1ݕ
the derivative of W or slope of the curve at ݔ଴ in approximate form is 
 

ݕ∆
ݔ∆

=
W(ݔ଴ + (ݔ∆ − W(ݔ଴)

ݔ∆
, 

 
and in limiting derivative form it is 
 

ܹᇱ(ݔ଴) = lim
∆௫→଴

ݕ∆
ݔ∆

= lim
∆௫→଴

W(ݔ଴ + (ݔ∆ − W(ݔ଴)
ݔ∆

. 
 
 The relationship between marginal utility values and slopes of the indifference curve can 
be understood in terms of Figure 5-2: 

 
Start at (ݔ଴, ,଴ݔ) ଴) on the indifference curve and change basketݕ ଴ݔ) ଴) toݕ + ,ݔ∆ ଴ݕ +  ,(ݕ∆
where ∆ݔ > 0 and ∆ݕ < 0 . Then, according to one of the rules of calculus, the change in utility 
can be approximated by 
 

∆µ = ,଴ݔ)௫ܷܯݔ∆ (଴ݕ + ,଴ݔ)௬ܷܯݕ∆  ଴).                                   (5.2)ݕ
 
But since the two points are on the same indifference curve, ∆µ = 0. Substituting 0 for ∆µ in 
equation (5.2) and rewriting gives 
 

 ݕ

 ଴ݕ

 ݔ ଴ݔ

µ = µ଴ 

Figure 5-2 

଴ݕ +  ݕ∆

଴ݔ +  ݔ∆

Slope  ∆ݕ
ൗݔ∆  
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ݕ∆
ݔ∆

= −
,଴ݔ)௫ܷܯ (଴ݕ
,଴ݔ)௬ܷܯ  ଴),                                                     (5.3)ݕ

 
or, in the limit as ∆ݔ → 0, 
 

ܹᇱ(ݔ଴) = −
,଴ݔ)௫ܷܯ (଴ݕ
,଴ݔ)௬ܷܯ  ଴).                                                (5.4)ݕ

 
Thus the slope of the indifference curve at any basket (in approximate form as in equation (5.2) 
or in limiting form as in (5.3)) is the negative of the ratio of marginal utilities at that basket. The 
negative of that slope at (ݔ଴,  ଴), or the ratio of marginal utilities without the minus sign, isݕ
called the marginal rate of substitution and symbolically written as ݔ)ܴܵܯ଴,  ଴).  The marginalݕ
rate of substitution is understood as the rate at which the consumer can substitute units of good ݕ 
for units of good ݔ and remain on the indifference curve. 
 
 It is now appropriate to add several properties of the utility function to the list of 
assumptions made earlier. This is done to ensure that the utility function has characteristics that 
will permit its maximization. But before doing so, it is necessary to define one more concept. 
 
 A basket in the commodity space, call it B, is larger than another basket A, if B contains 
more of at least one good and no less of the other. For example, all baskets labeled B located in 
the upper right-hand quadrant above A in Figure 5-3 are larger than A. 

 
 The assumptions made thus far in constructing the model to explain consumer buying 
behavior are now summarized below along with a new assumption that sets out the properties of 
the utility function alluded to above:   
 

1. The consumer has preferences and indifferences among baskets of commodities 
such that, for any two baskets either one is preferred to the other or the two are 
indifferent. (Completeness.) 

 
2. Preferences and indifferences are transitive. (If basket A is preferred to basket 

B, and basket B is preferred to basket C, then basket A is preferred to basket C.  Similarly 
for indifferences.) 

 ݕ

 ݔ

A 

B 

B 

B 

Figure 5-3 
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3. Preferences and indifferences are represented by a utility function in the sense 

that (a) if one basket is preferred to another, then the preferred basket has a higher utility 
value than the other, and (b) if two baskets are indifferent, then they have the same utility 
value. 

 
4. The utility function has the following four properties: 

4a. It is continuous and all marginal utilities can be calculated. 
4b. A larger basket of commodities is always preferred to, and therefore 
            has a higher utility value than a smaller one. 
4c. Indifference curves are strictly convex. 
4d. Indifference curves do not touch the co-ordinate axes of the  
            commodity space. 
 

One more assumption will be added in the next chapter. The full set of assumptions appears in 
Supplemental Note C. 
 
 
 It remains to consider several implications and features of assumptions 4b and 4c. First, 
in reference to the indifference curves and points A, B, and C in Figure 5-4, since basket A is 
larger than basket B, assumption 4b implies that the utility of A is greater than that of B. Since B 

 
and C lie on the same indifference curve, the utility of the two baskets is the same. Therefore, the 
utility of A is larger than that of C. This is true for all points on the indifference curve containing 
point A. In other words, indifference curves farther out from the origin are always associated 
with higher utility. 
 
 Second, the marginal utility at (ݔ଴,  ଴) with respect to, say x, is, repeating equation (5.1)ݕ
above,   
 

,଴ݔ)௫ܷܯ (଴ݕ =
u(ݔ଴ + ,ݔ∆ (଴ݕ − u(ݔ଴, (଴ݕ

ݔ∆
.                                   (5.5) 

 
On the one hand, if ∆ݔ > 0, then basket (ݔ଴ + ,ݔ∆ ,଴ݔ) ଴) is larger than basketݕ  ଴) as picturedݕ
in Figure 5-5. By assumption 4b, u(ݔ଴ + ,ݔ∆ (଴ݕ > u(ݔ଴,  ,଴). So, using equation (5.5)ݕ
,଴ݔ)௫ܷܯ  ଴) is the ratio of two positive numbers and is therefore positive. On the other hand, ifݕ

 ݕ

B 

C 

 ݔ
Figure 5-4 
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ݔ∆ < 0, then basket (ݔ଴ + ,ݔ∆ ,଴ݔ) ଴) is smaller than basketݕ  ,଴). By assumption 4bݕ
u(ݔ଴ + ,ݔ∆ (଴ݕ < u(ݔ଴, ,଴ݔ)௫ܷܯ ,଴). So, again from (5.5)ݕ  ଴) is now the ratio of two negativeݕ
numbers and again is positive. A similar argument applies to ܷܯ௬(ݔ଴,  ଴). At least inݕ
approximate form, then, assumption 4b also guarantees that all marginal utilities are positive for 
all (ݔ, (ݕ > 0 in the commodity space. Although it does not follow by taking the limit of these 
positive numbers as ∆ݔ → 0 that  ܷܯ௬(ݔ଴,  ଴) will always be positive,2 it will be convenient toݕ
assume that that conclusion holds for the limiting derivative forms of marginal utilities as well. 

 
 Third, since all marginal utilities are positive from the previous implication and since the 
slope of the indifference curve at any basket is the negative of the ratio of marginal utilities at 
that basket (equations (5.3) or (5.4)), indifference curves must slope downward everywhere. 
 
 Fourth, as suggested in Chapter 2, assumption 4c (strict convexity) will turn out to be a 
part of the non-derivative second-order maximization condition ensuring that, at baskets where 
the first-order condition is satisfied, utility will be maximized and not minimized or associated 
with an inflection point. 
 
 Fifth, assumption 4c together with the downward slope of indifference curves means that 
along any such curve the marginal rate of substitution (− ݕ∆ ⁄ݔ∆  or −ܹ′(ݔ)) diminishes as x 
rises or increases as x falls. This implies, referring to Figure 5-6 for example, the less the  

 
2 It is possible for the limit of a sequence of positive numbers to be zero. This is the case, for example, for the limit 
of the sequence of positive fractions 1 2ൗ , 1 3ൗ , 1 4ൗ , 1 5ൗ , …. 

଴ݔ +  ݔ∆

Figure 5-5 
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individual has of good x when taking one unit away from him/her, that is in moving from B to A 
rather than from E to C, the more he/she has to be compensated with good y in order to remain 
on the same indifference curve. 

 ݕ
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µ = µ଴ 

Figure 5-6 
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Chapter 6 
Budget Constraints, Utility Maximization, 

and Demand Functions 
 
 
 This chapter continues the construction of a model to explain the consumer demand 
functions ݔ = ℎ௫൫݌௫, ,௬݌ ݉൯ and ݕ = ℎ௬൫݌௫, ,௬݌ ݉൯ begun in the previous chapter. The 
determination by the economy’s markets of one set of values for the prices and income1 in those 
functional equations defines the environment in which the consumer makes buying (and selling) 
decisions. Once ݌௫, ݌௬ and m are specified, the baskets of goods in the commodity space that the 
consumer is able to buy are limited to 
 

,ݔ)} :(ݕ ௫݌ݔ + ௬݌ݕ ≤ ݉}. 
 
This set is called the consumer’s budget set and its outer boundary, where equality prevails and 
the consumer spends all of his/her income, is given by the equation 
 

௫݌ݔ + ௬݌ݕ = ݉,                                                                 (6.1) 
or 

ݕ = −
௫݌

௬݌
ݔ +

݉
௬݌

. 

 
This outer boundary, that is, equation (6.1), is referred to as the budget line or budget constraint. 
The graph of the budget constraint is a straight line with slope − ௫݌ ௬ൗ݌  and ݔ- and ݕ- intercepts 
given by ݔ = ݉ ௫ൗ݌  and ݕ = ݉ ௬ൗ݌  respectively as shown in Figure 6-1. 

 
 Now add one last assumption to those made with respect to the consumer’s buying 
behavior in Chapter 5 (the full list of assumptions appears in supplemental Note C): 
 

 
1 As noted in the previous chapter, the consumer’s income is determined in the economy’s factor markets. 
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The consumer purchases or demands that basket from his/her budget set that is preferred 
over all other baskets in the budget set and therefore provides the most utility. In other 
words, the consumer demands that basket that maximizes his/her utility subject to the 
budget constraint. 2 

 
This assumption is sometimes referred to as the “postulate of rationality.” Geometrically it 
implies that the consumer selects that basket (ݔ଴,  ଴) from the budget set for prices and incomeݕ
൫݌௫, ,௬݌ ݉൯ that lies on the indifference curve that is as far out as possible from the origin. That 
basket will maximize utility because, as described in Chapter 5, baskets on indifference curves 
that are a greater distance from the origin have higher utility values. Observe that the basket 
,଴ݔ)  ଴) that maximizes utility subject to the budget constraint appears at a tangency between theݕ
budget line and an indifference curve as pictured in Figure 6-2. That basket is unique because the 
strictness of the assumption of strict convexity ensures that there can be only one point of 
tangency between an indifference curve and a budget line. 

 
 

Note that by assumption 4b from Chapter 5 (a larger basket of commodities is always 
preferred to, and therefore has a higher utility value than a smaller one), the utility-maximizing 
basket must lie on the budget line. If it were in the interior of the budget set, say at B in Figure 6-
2, then there would always be a larger basket C on the budget line. Since C is larger than B, 
assumption 4b implies that C would have a higher utility value and B could not be maximal.  
Also, by assumption 4d the utility-maximizing basket cannot lie on the ݔ- or ݕ-axes since 
indifference curves are not permitted to go there.  

 
Pictured geometrically in a three-dimensional graph with the utility function and budget 

line appearing as shown in Figure 6-3, utility maximization subject to the budget constraint 
occurs for that utility function and that budget line at basket A. The utility value at the 
maximizing basket A is µ଴. Of course, this maximization occurs above the budget line and all 
baskets different from A on the budget line have lower utility than µ଴. To emphasize this, the 

 
2 The maximization is stated as subject to the budget constraint rather than the budget set because, as will be seen 
momentarily, under the assumptions that have imposed on the utility function, the utility-maximizing basket will 
always lie on the budget line. 
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graph of the utility function only over the budget line and the utility-maximizing basket are 
redrawn in Figure 6-4 with the coordinates of A identified as (ݔ଴,  ଴) and the indifference curveݕ
tangent to the budget line at A added. Note that µ଴ = ,଴ݔ)ݑ  ଴). In Figure 6-4, all lines andݕ

 

 
 
curves in the ݕ-ݔ plane are in red; above that plane they are in black. Apart from the axes, the 
solid black curve in Figure 6-4 is the graph of the utility function of Figure 6-3 over the budget 
line. 

 
 A mathematical expression partially describing the basket (ݔ଴,  the tangency  in ݐܽ (଴ݕ
Figures 6-2 and 6-4 is based on the idea that at a tangency between two curves, the slopes of the 
two curves have to be equal. From the above geometry, the slope of the indifference curve at the 

utility-maximizing basket (ݔ଴, −  ଴), namelyݕ ,଴ݔ)௫ܷܯ (଴ݕ
,଴ݔ)௬ܷܯ ଴)൘ݕ  (from equations (5-3) 

µ 
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or (5.4) of Chapter 5), is the same as that of the budget line  − ௫݌ ௬ൗ݌  (the coefficient of ݔ in 
equation (6.1) above). Equating the two, 
 

−
௫݌

௬݌
= −

,଴ݔ)௫ܷܯ (଴ݕ
,଴ݔ)௬ܷܯ  ,(଴ݕ

 
or 
 

௫݌

௬݌
=

,଴ݔ)௫ܷܯ (଴ݕ
,଴ݔ)௬ܷܯ (଴ݕ = ,଴ݔ)௫,௬ܴܵܯ  ଴),                                            (6.2)ݕ

 
where, recalling from Chapter 5, the marginal rate of substitution between x and y at the basket 
,଴ݔ) ,଴ݔ)௫,௬ܴܵܯ ଴), orݕ ,଴ݔ) ଴), is the ratio of the two marginal utilities. Thus, atݕ  ଴), the rateݕ
at which the consumer substitutes ݕ for ݔ at market prices along the budget line equals rate at 
which the consumer substitutes ݕ for ݔ along the indifference curve based on his/her preferences.  
 

It should be pointed out that equation (6.2) by itself is not enough to fully describe the 
tangency at A in Figures 6-2 and 6-3. For example, since the red (dashed) and black straight lines 
in Figure 6-2 are parallel and therefore have the same slope − ௫݌ ௬ൗ݌  (of course, only the latter is 
the specified budget constraint), and since the red (dashed) and black are indifference curves 
therefore have the same slope − ,ݔ)௫ܷܯ (ݕ

,ݔ)௬ܷܯ ൘(ݕ  at A and R, baskets A and R both satisfy 

equation (6.2). Because the budget constraint is specified by the prices and income determined in 
markets and the indifference curve is determined by the maximization process, to fully 
characterize the basket (ݔ଴,  ଴) that maximizes utility subject to the budget constraint forݕ
൫݌௫, ,௬݌ ݉൯, it is necessary to combine equation (6.2) with the equation of the budget constraint 
evaluated  at (ݔ଴, ௫݌଴ݔ ଴), namelyݕ + ௬݌଴ݕ = ݉. 

 
Alternatively, rewriting the left-hand equality in equation (6.2), the utility-maximizing 

basket can also be (partly) described by the equation 
 

,଴ݔ)௫ܷܯ (଴ݕ
௫݌

=
,଴ݔ)௬ܷܯ (଴ݕ

௬݌
.                                                 (6.3) 

 
This last equality says that, at the utility-maximizing basket, the marginal utilities per dollar 
spent on each good must be the same. If that were not the case, say if 
 

,଴ݔ)௫ܷܯ (଴ݕ
௫݌

>
,଴ݔ)௬ܷܯ (଴ݕ

௬݌
, 

 
then transferring $1 of expenditure from good y to good x would keep total expenditure constant 

and the consumer on the same budget line, but would reduce utility by ܷܯ௬(ݔ଴, (଴ݕ
௬݌

൘  from the 
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reduction in y and, at the same time, increase utility by ܷܯ௫(ݔ଴, (଴ݕ
௫݌

ൗ  from the increase in x. 
The net effect would be to raise utility by  
 

൤ܷܯ௫(ݔ଴, (଴ݕ
௫݌

ൗ ൨ − ൤ܷܯ௬(ݔ଴, (଴ݕ
௬݌

൘ ൨. 
 
That is, utility would not be maximized at (ݔ଴,  .(଴ݕ
 

The above conditions that the marginal of rate substitution equal the price ratio (equation 
(6.2)) or that the marginal utilities per dollar spent on the two goods be equal (equation (6.3)) 
together with the budget constraint ݔ଴݌௫ + ௬݌଴ݕ = ݉ are first-order conditions that can be 
derived using calculus. These conditions identify a maximum rather than a minimum or 
inflection point because enough has been assumed to ensure that the indifference curve tangent 
to the budget line in Figure 6-2 is associated with the right utility value and has the right shape. 
That is, assumption 4b ensures that the consumer is on an indifference curve that is as far out 
from the origin as possible, and assumption 4c guarantees that the indifference curve is strictly 
convex. If, for example, the indifference curve were strictly concave as drawn in Figure 6-5,3 
then along the budget line, (ݔ଴,   ଴) would be associated with minimum rather than maximumݕ

 
utility. In this case, moving away from (ݔ଴,  ଴) to any other point on the budget line puts theݕ
consumer on an indifference curve farther from the origin and therefore provides higher utility. 
Thus, assumption 4b and that of strict convexity are playing the role of the second-order 
conditions guaranteeing that (ݔ଴,  ଴) in Figure 6-2 is associated with a maximum and not aݕ
minimum. 
 

Having identified and characterized the basket that maximizes utility subject to the 
budget constraint, utility maximization can now be used to explain consumer buying behavior, 
that is, consumer demand functions. Thus, for each set of prices and incomes presented by the 
markets, the consumer demands or buys the basket that maximizes utility subject to his/her 
budget constraint as determined by those prices and incomes. Mathematically, 
 

 
3 Note that in this example, assumption 4d is also violated. 
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௢ݔ = ℎ௫൫݌௫, ,௬݌ ݉൯
௢ݕ = ℎ௫൫݌௫, ,௬݌ ݉൯

ቋ ↔ ,଴ݔ)  ,ݔ)ݑ ଴) maximizesݕ ௫݌ݔ subject to (ݕ + ௬݌ݕ = ݉.  

 
Although the notation of Chapter 3 has been slightly altered, this defines the individual consumer 
demand functions of the demand-supply model of that chapter. In spite of the fact that ℎ௫ and ℎ௬ 
and the preferences and utility function behind them as presented here are abstract and do not 
exist in reality, they can still be used to explain real consumer buying behavior. To be accepted 
as an explanation of the latter, it is not required that when the consumer actually buys goods 
he/she determines the utility maximizing basket by calculation using equation (6.2) or (6.3). 
Rather, it is only necessary to note the model’s connections to certain relevant aspects of actual 
buying situations: First, real consumers do have preferences among the various options they have 
the opportunity to buy. This appears in the model as preferences and indifferences among 
baskets of goods that are complete, transitive, and represented by a utility function. Second, 
consumers’ purchases are, in reality, limited by the prices of goods and the income they have to 
spend. This is incorporated in the model as the budget set and budget constraint. And third, real 
consumers usually want to obtain the most they can from their income. They generally do not 
buy what they do not like or desire. This is represented in the model by the constrained 
maximization of a utility function that is based on preferences. The other elements and 
assumptions of the model are present only to be able to make individual preferences, the price-
income limitation, and the idea of maximization precise so that they can be better understood in 
analytical terms and their consequences explored. This explanation of real consumer buying 
behavior and that of actual market observations provided in Chapter 3 are two examples of how 
explanation works in Economics. 
 
 The emergence of demand functions from utility maximization is shown geometrically in 
terms of price-consumption and demand curves in Figure 6-6. Start with ݌௬ = ௬݌

଴ and ݉ = ݉଴  
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that are  fixed to obtained a demand curve. Choose a price, say ݌௫
ఈ in the right-hand diagram, and 

draw the budget constraint ݌ݔ௫
ఈ + ௬݌ݕ

଴ = ݉଴ labeled ݌௫
ఈ and identified with ݌௫

ఈ, ݌௬
଴ and ݉଴ in the 

left-hand diagram.  Then utility is maximized subject to this constraint at α. Now lower the price 
of good x in the right-hand diagram to ݌௫

ఉ keeping the price of good y and income at their 
original values ݌௬

଴ and ݉଴.  In the left-hand diagram, the budget constraint rotates out from the 
origin around its vertical intercept, becomes ݌ݔ௫

ఉ + ௬݌ݕ
଴ = ݉଴. and is labeled with ݌௫

ఉ.  (Since 
the price of ݕ and income do not change, if ݔ = 0 and the consumer spends all of ݉଴, the same 
amount of good ݕ, is purchased as before. But if ݕ = 0, more of good ݔ is now bought because 
its price is lower and ݉଴ has not changed.) With the lower price of ݔ , utility is maximized 
subject to the ݌௫

ఉ-budget constraint at β. The demand curve for good x (drawn in red with the 
price of good y and income fixed, respectively, at ݌௬

଴ and ݉଴) appears in the right-hand diagram. 
When the price of good x is ݌௫

ఈ in that diagram, the quantity of good x demanded is the utility-
maximizing quantity ݔఈ in the left-hand diagram; and when the price of good x is ݌௫

ఉ, the utility-
maximizing quantity of good x demanded is ݔఉ. These points on the demand curve are also 
identified in the right-hand diagram by, respectively, α and β. 
  

Repeating this procedure for all positive price values on the vertical axis in the right-hand 
diagram generates appropriate tangencies between budget lines and indifference curves in the 
left-hand diagram and completes the red demand curve in the right-hand diagram. The collection 
of all tangent points in the left-hand diagram (the red curved line) is called the price-
consumption curve. Moving along the demand curve in the right-hand diagram is equivalent to 
moving along the price-consumption curve in the left-hand diagram. 
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Chapter 7 
Demand Functions and Their Properties 

 
 
 It is useful to begin with a summary of the model explaining consumer demand functions 
(consumer buying behavior) to this point: 
 
 To explain ݔ = ℎ௫(݌௫, ,௬݌ ݉) and ݕ = ℎ௬(݌௫, ,௬݌ ݉), assume (from Chapters 5, 6, and 
Supplemental Note C) the consumer has preferences and indifferences among baskets of 
commodities that are complete, transitive, and represented by a utility function. Assume also that 
the utility function has the following properties: 

4a. It is continuous and all marginal utilities can be calculated. 
4b. A larger basket of commodities is always preferred to, and therefore has a higher 
      utility value than a smaller one. 
4c. Indifference curves are strictly convex. 
4d. Indifference curves do not touch the co-ordinate axes of the commodity space. 

Finally assume the consumer demands (or buys) those baskets that maximize his/her utility 
subject to the budget constraint defined by each (݌௫, ,௬݌ ݉), the latter being determined in the 
economy’s markets. 
 

Then for any ൫݌௫, ,௬݌ ݉൯ > 0 in the domain of definition of ℎ௫ and ℎ௬, maximization of 
utility subject to the budget constraint yields a unique basket (ݔ,   in the budget set such that (ݕ

 
௫݌ݔ + ௬݌ݕ = ݉ 

 
and 
 

,ݔ)௫ܷܯ (ݕ
௫݌

=
,ݔ)௬ܷܯ (ݕ

௬݌
              or               

,ݔ)௫ܷܯ (ݕ
,ݔ)௬ܷܯ (ݕ

=
௫݌

௬݌
. 

 
Once the utility maximizing basket (ݔ,  is obtained from either of these equations (and the (ݕ
budget constraint), the consumer is thought of as demanding or purchasing that (ݔ,  when (ݕ
confronted with the specified ൫݌௫, ,௬݌ ݉൯. That is, using those values for (ݔ, ,௫݌and ൫ (ݕ ,௬݌ ݉൯, 
the demand functions are given by 
 

ݔ = ℎ௫(݌௫, ,௬݌ ݉)    and    ݕ = ℎ௬(݌௫, ,௬݌ ݉),                              (7.1) 
 
and are explained as the outcome of maximizing utility subject to the budget constraint at the 
prices and incomes that consumer faces in the markets. 

------------------------------- 
 
 
 
 The properties imposed on ℎ௫ and ℎ௬ by the assumptions 4a – 4d above will shortly be 
considered. But there is a matter to deal with before doing so. At the end of the last chapter, it 
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was indicated that moving along the demand curve in (ݔ,  ௫)-space is equivalent to moving݌
along the price consumption curve in the commodity space. Another part of the demand function, 
different from that obtained by holding ݌௬ and ݉ fixed to obtain the demand curve, is related to 
tangencies in the commodity space that fall along a curve called the income-consumption curve. 
 

To see what is involved, fix ݌௫ = ௫݌
଴ and  ݌௬ = ௬݌

଴ and consider the function ݔ =
ℎ௫(݌௫

଴, ௬݌
଴, ݉) of the single variable ݉. The graph of the latter (like the graph of the demand 

curve, the axes are reversed) is referred to as the Engel curve with respect to ݔ and its geometric 
derivation parallels that of the demand curve described in the previous chapter. In the right-hand 
diagram of Figure 7-1, choose two values of ݉, say ݉ఈ and ݉ఉ, where ݉ఈ < ݉ఉ. The budget 
lines associated with these values of ݉ and the fixed prices are shown in the left-hand diagram of 
Figure 7-1. These two lines are parallel since their slopes 

− ௫݌
଴ ௬݌

଴ൗ  are the same, and the one identified with ݉ఉ lies farther from the origin since ݉ఈ < ݉ఉ. 
The utility-maximizing baskets occur at the tangencies ߙ and ߚ, and the ݔ-co-ordinates of these 
baskets, namely, ݔఈ(= ℎݔ ቀݔ݌

0, ݕ݌
0, =)ఉݔ ቁ) andߙ݉ ℎݔ ቀݔ݌

0, ݕ݌
0, ݉ఉቁ), are plotted against, 

respectively ݉ఈ and ݉ఉ in the right-hand diagram of Figure 7-1. Repeating this procedure for all 
values of ݉ generates the income-consumption curve (the red locus of tangencies) on the left and 
the red Engle curve on the right. As with the price-consumption and demand cures, moving 
along the Engel curve is equivalent to moving along the income-consumption curve. 

-------------------------------------------------------------- 
 
 
 
 Attention now turns to the characteristics of consumer buying behavior. In particular, the 
assumptions 4a - 4d impose a number of properties on all demand functions generated by 
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constrained utility maximization under their supposition. These properties are important because, 
to the extent that consumer demand functions can be observed as described at the beginning of 
Chapter 5, if an individual’s observed demand functions do not satisfy them, then the model 
based on 4a - 4d cannot be used to explain that person’s demand behavior. A model based on 
different assumptions would have to be employed. Like the clock example of Chapter 1, if the 
rotation of the hands of the model did not match the rotation of the hands of the clock whose 
workings were to be explained (for example, if the rotation were the wrong speed or its direction 
reversed), then the model would not provide an explanation. A different model would have to be 
constructed. Four implied characteristics of demand functions ℎ௫ and ℎ௬ will be considered. 
 

First, in Chapter 6 it was shown that assumption 4b implies that the utility maximizing 
basket (ݔ, ௫݌ݔ lies on the budget line, that is, satisfies the equation (ݕ + ௬݌ݕ = ݉, and that same 
basket is that which appears to the left of the equal sign corresponding to (݌௫, ,௬݌ ݉) in the 
demand functions (7.1). Thus, upon substituting those demand functions into the budget-line 
equation, 
 

ℎ௫൫݌௫, ,௬݌ ݉൯݌௫ + ℎ௬൫݌௫, ,௬݌ ݉൯݌௬ = ݉.                                            (7.2) 
 
This is the statement expressed in terms of demand functions that for all ൫݌௫, ,௬݌ ݉൯ > 0 in the 
domain of definition of ℎ௫ and ℎ௬, the consumer spends all of his/her income. 
 
 Second, since assumption 4d implies that no basket containing zero amount of one or 
both goods can lie on an indifference curve, and hence that utility maximizing baskets cannot be 
located on the co-ordinate axes, the consumer must demand or buy something of each good. 
Mathematically, 
 

ℎ௫൫݌௫, ,௬݌ ݉൯ > 0      and      ℎ௬൫݌௫, ,௬݌ ݉൯ > 0, 
 
for every ൫݌௫, ,௬݌ ݉൯ > 0 in the domain of definition of ℎ௫ and ℎ௬. 
 
 Third, from the way that the budget constraint and utility function have been defined, 
 

ℎ௫൫݌ߣ௫, ,௬݌ߣ ൯݉ߣ = ℎ௫൫݌௫, ,௬݌ ݉൯ 
 
for all numbers ߣ > 0 and all ൫݌௫, ,௬݌ ݉൯ > 0 in the domain of definition of ℎ௫. A similar 
equation holds for ℎ௬. This is because doubling (ߣ = 2), say, both prices and income does not 
change the budget equation (since the 2s placed in front of ݌௫, ݌௬, and ݉ in that equation cancel 
out), and cannot change the indifference curves (since the utility function and indifference curves 
do not depend on prices and income – only on commodity baskets). It follows that there can be 
no change in the tangency between the budget line and indifference curve, no change in the 
utility maximizing basket and, therefore, no change in the quantities demanded.  

 
To illustrate these ideas, it is easily verified that the demand functions  
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ℎ௫൫݌௫, ,௬݌ ݉൯ =
݉

௫݌2
       and       ℎ௬൫݌௫, ,௬݌ ݉൯ =

݉
௬݌2

 

 
defined for all ൫݌௫, ,௬݌ ݉൯ > 0 satisfy all three properties described above.1 For example, 
substituting these functions into the left-hand side of equation (7.2) gives 
 

݉
௫݌2

௫݌ +
݉

௬݌2
௬݌ =

݉
2

+
݉
2

= ݉, 

 
establishing the first of the above properties. On the other hand, the linear functions 
  
               ℎ௫൫݌௫, ,௬݌ ݉൯ = ௫݌2 + ௬݌ + ݉       and       ℎ௬൫݌௫, ,௬݌ ݉൯ = ௫݌ + ௬݌2 + ݉,              (7.3) 
 
also defined for all ൫݌௫, ,௬݌ ݉൯ > 0,  although adhering to the second of the above properties, 
violate the first and the third. These latter functions, therefore, cannot be derived from 
constrained utility maximization under the assumptions set out at the beginning of this chapter. 
Were the functions of (7.3) observed as a description of a consumer’s demand behavior, that 
behavior cannot be explained in terms of the model set out here. 
 
 
 There is one more property of all demand behavior based on constrained utility 
maximization to consider. But it is worth pausing for a moment to look at the kind of things that 
can happen when the assumptions that have been made to explain consumer buying behavior are 
weakened or discarded. Here are four examples, three of which may be thought to allow for more 
realistic possibilities than those permitted by the model and assumptions set out above.  In each 
example, only those assumptions explicitly indicated have been modified or eliminated. 
 

1. Discard assumption 4b that a larger basket of commodities is always preferred to, and 
therefore has a higher utility value than a smaller one and allow indifference curves to be partly 
concave in violation of assumption 4c. Then indifference curves could be closed curves as shown 
in the left-hand diagram of Figure 7-2. In that diagram, (ݔ଴,  ଴) is preferred to all other basketsݕ
in the commodity space and has a higher utility value than any other basket. With prices and 
income defining the red budget line, the consumer would demand or buy the basket (ݔᇱ,  ᇱ) atݕ
the tangency between that line and the lower indifference curve as in the case in which all 
assumptions 4a – 4d applied. But were the black budget line in force, the utility maximizing 
basket would fall in the interior of the budget set at (ݔ଴,  ଴) and would not lie on the budget lineݕ
or at a tangency between that line and an indifference curve. In that case the consumer would not 
spend all of his/her income and equation (7.2) and the property of demand behavior it reflects 
would not be satisfied. However, the second and third properties would still apply. 

 
2. Keeping assumption 4b, eliminating the assumption that indifference curves are strictly 

convex, and permitting those curves to touch the co-ordinate axes could result in minimum 
utility along the budget line at the tangency between an indifference curve and the budget line. 

 
1 These demand functions can be derived from constrained utility maximization under the above assumptions 
using calculus methods. 



55 
 

(This possibility was described in the previous chapter.) Here the utility maximizing basket 
would lie on one of the co-ordinate axes as at A in the right-hand diagram of Figure 7-2. This 
violates the second property that, at the prices and income generating the budget line of the 
diagram, ℎ௬൫݌௫, ,௬݌ ݉൯ > 0. But the first and third properties would still hold. 

 
3. Dropping just the assumption that indifference curves do not touch the co-ordinate 

axes of the commodity space would also lead to the possibility that the utility maximizing basket 
would appear on one of the co-ordinate axes, with or without a tangency. Like the previous 
example, the consumer does not always have to buy or demand a positive quantity of each good. 
The left-hand diagram of Figure 7-3 provides an illustration in which, at the constrained utility 
maximizing basket (ݔ଴, 0), the consumer is spending all income on good x and not buying good 
y. Again, the second property would not hold and the first and third would still apply. Also, 
multiple budget lines each associated with different prices and incomes lead to the same utility-
maximizing basket. But only one has the same slope at (ݔ଴, 0) as the indifference curve and at 
that basket is tangent to it. 

 
4. Deleting the strictness of the convexity of indifference curves in assumption 4c (but 

still requiring convexity) permits linear segments to be present in indifference curves (Chapter 
2). This could leave the consumer with multiple baskets that maximize utility subject to the same 
budget constraint, and no way to choose among them. (The possibility was described in a 
different mathematical context in Figure 2-11 of Chapter 2.) In the example of the right-hand 
diagram of Figure 7-3, the straight- line segment connecting A to B on the indifference curve 
coincides with the budget line drawn through those points. All baskets between A and B 
maximize utility subject to the budget constraint. Since, in reality, the consumer demands or 
buys only one basket of commodities, this does not provide a full explanation of the consumer’s  
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buying behavior because it does not indicate which basket the consumer would actually buy. 
 

In all of these cases except the last, demand functions can still be defined in terms of 
utility maximization subject to the budget constraint. That is, demand or buying behavior can 
still be explained in terms of constrained utility maximization. But with assumptions different 
from those of 4a – 4d, the model obtained and the demand functions generated by it will have 
different characteristics from those of the model developed here. In particular, one or more of the 
properties of demand functions described earlier need not apply. 
 
 Returning to the development of the fourth and final property of demand behavior 
derived from the assumptions of the model presented here, it should first be pointed out that, 
although demand curves have almost always been drawn up to now as downward sloping, 
upward sloping demand curves are still consistent with assumptions 4a – 4d. It all depends on the 
location of the tangencies between budget lines and indifference curves as prices vary. These 
locations depend on the characteristics of the utility function not eliminated by assumptions 4a – 
4d. To illustrate, fix ݌௬ = ௬݌

଴ and ݉ = ݉଴. Using the price value ݌௫
ఈ in the right-hand diagram of 

Figure 7-4 along with the fixed ݌௬
଴ and ݉଴ to draw the budget line labeled ݌௫

ఈ in the left-hand  

 ݕ

 ݔ

Figure 7-3 
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 ݔ

A 
B 
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diagram (recall the geometric construction of the demand curve at the end of Chapter 6), the 
tangency with that budget line at C identifies a utility-maximizing quantity demanded of ݔఈ. The 
latter appears in the right-hand diagram as the ݔ-co-ordinate of C. Lowering the price to ݌௫

ఉ in 
the right-hand diagram and keeping ݌௬

଴ and ݉଴ the same, gives the budget line labeled ݌௫
ఉ in the 

left-hand diagram. If the new utility-maximizing tangency along that budget line lies to the right 
of the vertically dashed line through C, say at E, more will be demanded at the lower price and 
the demand curve in the right-hand diagram will slope downward from C to E. If the tangency in 
the left-hand diagram is located to the left of the dashed line at G, less will be demanded and the 
demand curve will slope upward between G and C in the right-hand diagram. Whether the new 
tangency lies to the right or left of the dashed vertical line depends on the nature of the 
consumer’s preferences and hence his/her utility function. Thus, a downward sloping demand 
curve cannot be a property of all demand functions obtained from constrained utility 
maximization under the assumptions made here. 
 
 The fourth property of demand behavior that applies to all demand functions derived 
from constrained utility maximization in the present model is developed in relation to what are 
called income and substitution effects. (The notion of substitution effect is entirely different from 
the concept of substitute goods defined in Chapter 3.) Start as in Figure 7-4 at the utility 
maximizing basket α in Figure 7-5 where ݌௫ is set at ݌௫

ఈ and ݌௬
଴ and ݉଴ are held fixed. Also, as  
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in Figure 7-4, let ݌௫

ఈ be lowered to ݌௫
ఉ without changing ݌௬

଴ and ݉଴. The constrained utility 
maximizing basket moves to ߚ (recall Figure 6-6 in Chapter 6). Now, with ݌௬

଴ fixed, leave ݌௫ at 
the lower level ݌௫

ఉ and, in a thought experiment only, take income away from the consumer so 
that the outer budget line (labeled ݌௫

ఉ in Figure 7-5) moves toward the origin in parallel fashion 
until it (the red line) is tangent to the indifference curve through α at ߛ. Thus the passage from ߙ to 
 in Figure 7-5 is split into two parts: The movement ݔ caused by the change in the price of good ߚ
from ߙ to ߛ is called the substitution effect; that from ߛ to ߚ is referred to as the income effect. 
In other words: 

The substitution effect is the reallocation of the consumer’s demands if the change in the 
price ݌௫ is “compensated” by a simultaneous adjustment in income (negative in the case 
of the diagram), forcing him/her after re-maximizing to remain on the original 
indifference curve at ߛ, that is, moving the consumer from ߙ to at ߛ. 

 
The income effect is the change in demands upon restoring the consumer’s income, that 
is, from allowing the consumer to move from ߛ back to ߚ. 

Note that the income effect reflects movement along an income-consumption curve; the 
substitution effect does not coincide with movement along a price-consumption curve. The 
property of demand in question will be seen to emerge from the substitution effect in the next 
chapter. 
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Chapter 8 
One More Property of Demand Functions  

and Consumer Surplus  
 
 
 As noted in the previous chapter, there is one more property that all consumer demand 
functions derived from constrained utility maximization under the assumptions set out in 
Chapters 5 and 6 must exhibit. To describe that property requires the use of income and 
substitution effects. Only the property expressed with respect to the demand curve for good x, 
that is the graph of ݔ = ℎ௫(݌௫, ௬݌

௢, ݉௢), will be examined. The demand curve for good y has a 
similar characteristic. 
 
 Reminder from Chapter 7: 
 Income and substitution effects are defined as follows: Start at the utility maximizing 
basket at α in Figure 8-1 where ݌௫ is set at ݌௫

ఈ and ݌௬
଴ and ݉଴ are held fixed. Let ݌௫

ఈ be lowered 

 
 

to ݌௫
ఉ without changing ݌௬

଴ and ݉଴ so that the constrained utility maximizing basket moves to ߚ. 

With ݌௫ at the lower level ݌௫
ఉ, take income away from the consumer so that the outer budget line 

(labeled ݌௫
ఉ) moves in parallel fashion toward the origin until it (the red line) is tangent to the 

indifference curve through α at ߛ. The movement from ߙ to ߚ is broken up into two parts: That 
from ߙ to ߛ is the substitution effect; the movement from ߛ to ߚ is the income effect. 

-------------------------------- 
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 It was also pointed out in Chapter 7 that demand curves could slope upward or downward 
depending on how the location of the tangencies between indifference curves and budget lines 
change as ݌௫ varies with ݌௬

଴ and ݉଴ held fixed. This implied that the slope of the demand curve 
could not be taken as a property of all demand curves derived from constrained utility 
maximization under the assumptions that have been made. Recalling the geometric derivation of 
the demand curve described in Chapter 6 in relation to Figure 6-6, the slope of the demand curve 
is given by ∆݌௫

ൗݔ∆  . This ratio and its reciprocal ∆ݔ
௫݌∆

ൗ  have identical signs. It will be 
convenient in the following discussion, which is concerned with finding a replacement for the 
sign of the slope of the demand curve that applies universally under the assumptions made, to 
begin with the reciprocal slope ∆ݔ

௫݌∆
ൗ . It should be kept in mind that the former is obtained 

only by reversing the axes when graphing the demand function ݔ = ℎ௫(݌௫, ௬݌
௢, ݉௢) and has the 

same sign as the latter. 
 
 The break-up of the movement from α to ߚ into income and substitution effects caused 
by the price decline from  ݌௫

ఈ to ݌௫
ఉ (with ݌௬

଴ and ݉଴ remaining fixed) in Figure 8-1 can be 
applied to the reciprocal slope of the demand curve. Relating to the geometry of Figure 8-2 
(which is Figure 6-6 redrawn without the price consumption curve and using a different color  
 
                                                                                 

 
 
scheme), the movement along the demand curve in the right-hand diagram from α to ߚ is 
coincident with the movement from α to ߚ in the left-hand diagram. The reciprocal of the slope 
of the demand curve at α in the right-hand diagram is approximated by the reciprocal of the slope 
of the straight-line segment connecting α to β.  Letting ݔఈ, ݔఉ, ݌௫

ఈ and ݌௫
ఉ be the values specified 
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in the diagrams of Figure 8-2 and setting ∆ݔ = ఈݔ − ௫݌∆ ఉ andݔ = ௫݌
ఈ − ௫݌

ఉ, the expression for 
this approximate slope is: 
 

ݔ∆
௫݌∆

=
ఈݔ − ఉݔ

௫݌∆
=

ఈݔ − ఊݔ + ఊݔ − ఉݔ

௫݌∆
 

 
or 
 

ݔ∆
௫݌∆

=
ఈݔ − ఊݔ

௫݌∆
−

ఉݔ − ఊݔ

௫݌∆
,                                                   (8.1) 

 
where ݔఊ is the x-co-ordinate of ߛ in the left-hand diagram of Figure 8-2. The term 
ఈݔ) − (ఊݔ ⁄௫݌∆  is called the substitution ratio and (ݔఉ − (ఊݔ ⁄௫݌∆  is the income ratio. The 
former is a measure of the substitution effect ߙ →  the latter a measure of the income effect ;ߛ
ߛ →  .ߚ
 
 The left-hand diagram in Figure 8-2 suggests possibilities other than β for tangencies 
after the price of good x falls to ݌௫

ఉ. There could be a tangency at, for example, ߚᇱ that gives an ݔ 
value ݔఉᇲ between ݔఈ and ݔఊ. Alternatively, the tangency could be at ߚᇱᇱ producing an ݔ value 
 ,ఈ. Each of these possibilities is associated with a different set of preferencesݔ ఉᇲᇲ to the left ofݔ
still satisfying all assumptions previously imposed and that, as β moves to ߚᇱᇱ, result in 
indifference curves (not shown in the diagram) that become closer together at small ݔ-values and 
farther apart at large ݔ-values. Note that ߛ and ݔఊ do not modify as the tangencies change. This 
is because the substitution effect is determined by the outer budget line and the inner indifference 
curve which remain fixed as the tangencies in the left-hand diagram of Figure 8-2 vary. Of the 
three tangencies in that diagram, it is only with the tangency at ߚᇱᇱ that, as indicated in the 
previous chapter, the demand curve will slope upward. 
 
 The sign of the reciprocal slope of the demand curve can now be interpreted in relation to 
the signs of the income and substitution ratios in each of the three cases of Figure 8-2. Recall that 
the sign of the reciprocal slope is the same as the sign of the slope of the demand curve.  That is, 
if, ∆ݔ ௫݌∆ > 0⁄ , then ∆݌௫ ݔ∆ > 0⁄ . Using the formulas of equation (8.1) and determining the 
signs of ∆݌∆ ,ݔ௫,  ݔఈ − ఉݔ ఊ, andݔ −  ఊ from the left-hand diagram of Figure 8-2, the followingݔ
table of signs for the three cases pictured in Figure 8-2 is obtained: 
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Table 8-1 
 

Tangency 
After the 
Price 
Change 

Substitution Ratio: Income Ratio: 
Reciprocal of the 
Demand Curve: 

ఈݔ − ఊݔ

௫݌∆
 

ఉݔ − ఊݔ

௫݌∆
 

ݔ∆
௫݌∆

 

 Negative Positive Negative ߚ

 ᇱ Negative Negative Negativeߚ

 ᇱᇱ positive Negative Negativeߚ

 
 
For example, when the tangency is at ߚ, the numerator in the substitution ratio is ݔఈ − ఊݔ < 0 
since, according to the left-hand diagram of Figure 8-2, ݔఈ < ௫݌∆ ఊ. Combining this withݔ =
௫݌

ఈ − ௫݌
ఉ > 0 because ݌௫

ఈ and ݌௫
ఉ have been selected so that  ݌௫

ఈ > ௫݌
ఉ, yields the result that the 

substitution ration  ݔ
ఈ − ఊݔ

௫݌∆
ൗ  is negative. The conclusion that the substitution ratio is 

negative applies to all three cases in Table 8-1 since, as pointed out above, ߛ and ݔఊ do not 
change from case to case. Thus, according to case ߚᇱᇱ, when the income ratio is sufficiently 
negative so that upon multiplication by minus one it offsets the negative substitution ratio, 
according to equation (8.1) the demand curve will slope upward. 
 
 In Chapter 7, three properties of demand functions were identified that are implied by 
constrained utility maximization under the assumptions 4a - 4d of Chapters 5 and 7. Such 
properties. recall, are essential in determining if that model is a possible explanation of an 
observed consumer’s demand functions. Table 8-1 illustrates a fourth property: Although 
demand curves may slope downward or upward, the substitution ratio, or what may be thought of 
as a “part” of the slope of the demand curve drawn without the reversal of axes, is always 
negative. This is a consequence of the downward slope and strictly convex shape of the 
indifference curves that emerges from assumptions 4a - 4d. It should be pointed out that, as 
derived from Figure 8-2, in order to be able to tell if an observed consumer’s behavior exhibits 
negative substitution ratios, it is necessary to know that consumer’s indifference curves. These 
curves are derived from a utility function based on the consumer’s preferences. And, as indicated 
in Chapter 5, these exist only in the consumer’s mind and are not observable. As it stands, then, 
the negativeness of substitution ratios is not really an observable property of demand behavior. 
However, with more advanced mathematics than that available for use here, this property can be 
expressed entirely in terms of observable demand functions.1 
 

Table 8-1 also provides illustrations of two concepts originally defined in Chapter 3: 
Goods with positive income ratios (as in case ߚ) are normal goods. Goods with negative income 

 
1 See, for example, Section 2.4 of D.W. Katzner, An Introduction to the Economic Theory of Market Behavior: 
Microeconomics from a Walrasian Perspective (Cheltenham: Elgar, 2006). 
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ratios (as in cases ߚᇱ and ߚᇱᇱ) are inferior goods. In addition, goods with positively sloped 
demand curves (as in case ߚᇱᇱ) are Giffen goods. 

-------------------------------- 
 
 
 

Before leaving consumer buying behavior, it is appropriate to introduce the concept of 
consumer surplus which will be employed in later chapters. 

 
 Individual or market demand curves are normally interpreted as indicating how much of a 
good, call it x. buyers will demand at each price. But things could be turned around to think of 
those curves as describing the price buyers are willing to pay per unit of the good at each 
quantity. In this interpretation, the demand curve becomes a “willingness-to-pay” curve, ݌௫ 
becomes the dependent variable which is determined as a function of the independent variable ݔ, 
and the geometric picture of the demand curve with ݔ on the horizontal axis and ݌௫ on the 
vertical axis no longer reverses mathematical convention. Consider the same “willingness-to-
pay” curve drawn as straight lines in each of the two diagrams of Figure 8-3. Take these lines, 
each labeled D, as market demand curves. In the left-hand diagram, think of the intervals 
delineated on the ݔ-axis as associated with two units of the good. Then the area of box ܬ is the 
amount buyers are willing to pay (price times quantity) for the first two units of good x. 
Similarly, the area of box ܭ is the amount buyers are willing to pay for the second two units. 
Combining the area of the two boxes gives the amount buyers are willing to pay for the first four 
units. Now associate the intervals on the ݔ-axis with single units of the good as in the right-hand  

 
diagram of Figure 8-3. Here the boxes ܭ ,′′ܬ ,′ܬ′, and ܭ′′ indicate the amounts buyers are willing 
to pay for units 1, 2, 3, and 4, respectively. By cutting the number of units associated with an 
interval in half in the right-hand diagram, parts of the triangular areas ܼ and ܶ in the left-hand 
diagram are added to the combined area of boxes ܬ and ܭ, that is, added to the amount buyers are 
willing to pay for the first 4 units of good x. Thus, the combination of boxes ܭ ,′′ܬ ,′ܬ′, and ܭ′ in 
the right-hand diagram is a more accurate description of what buyers are willing to pay for those 
units than the combination of boxes ܬ and ܭ. Making the intervals smaller and smaller, for 
example, restricting the intervals to be associated with half units, quarter units, and so on, 
eventually they shrink to single points. When that happens, the entire area under the demand 
curve up to ݔ = 4 becomes the amount buyers are willing to pay for all units up to four units of 
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good x. A similar argument applies to non-linear demand curves. It will be convenient to use the 
area obtained by restricting intervals to single points as a measure of the amount buyers are 
willing to pay for all units of the good up to a specified quantity on the ݔ-axis.  
 
 Consumer surplus at ݔ଴ is the difference between the amount buyers are willing to pay 
for all units of the good up to ݔ଴ and the amount they actually have to pay for ݔ଴. To illustrate, 
consider the market demand curve D in Figure 8-4. Suppose the market price is set at ݌௫

଴ with 
associated quantity ݔ଴. For the increment ∆ݔ, buyers are willing to pay approximately the area 
identified by LMNQRS. But since the market price is ݌௫

଴, they only have to pay area SNQR. Area 
 

 
 
LMNS is the consumer surplus for that increment. Shrinking the increments (intervals) to single 
points, consumer surplus at ݔ଴ is the triangular area ABC. And the greater the consumer surplus, 
the greater the benefit to consumers. For example, if the price were to fall below  ݌௫

଴ in Figure 8-4, 
area ABC would become larger, the consumer could buy more with the seme income and would 
therefore be better off. 
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Chapter 9 
Factor Supplies and Production 

 
 

 The next piece to be put in place in constructing the Walrasian model of the operation of 
the microeconomic economy is an explanation of consumer selling behavior, that is, how 
consumers decide how much to supply in the factor markets. Remember that in supplying 
factors, consumers obtain the income with which to buy consumption goods produced by firms. 
Only the supply of the factor labor and the associated labor market will be considered here. At 
the individual level, the variables that will be taken to be observable in relation to labor supply 
are the time worked, the wage, and hence the income secured from work (for example, wage 
times hours worked). Through the process of abstraction, this leads to an observable labor supply 
function summarizing all of the consumer’s labor-supply behavior and expressing labor-time 
supplied as dependent on the wage. To explain how this function comes about, the model of 
consumer buying behavior of the last four chapters will be adapted to the present context. 
 
 Let time be represented in terms of hours and consider consumer selling behavior in the 
labor market during a single day. Divide the use of time into two categories: work and non-work. 
Call the latter leisure. Then if ߣ represents hours at leisure and ℓ denotes hours at work or labor 
hours, ℓ + ߣ = 24, and, according to this equation, choosing a value for one of ߣ and ℓ 
determines the value of the other. In particular, 
 

ℓ = 24 −  (9.1)                                                                 .ߣ
 
The less leisure time the consumer takes, the more labor time the consumer provides, and the 
greater his/her income. Thus, each quantity of labor time supplied yields a “basket” containing 
specific amounts of leisure time and income. 
 
 In parallel with the model of consumer buying behavior, the individual may be thought of 
as choosing among baskets containing quantities of leisure time  ߣ and income ݉. Once the latter 
choice is determined, the amount of labor time supplied is obtained from equation (9.1). Assume 
the individual has complete and transitive preferences and indifferences among baskets (ߣ, ݉) in 
a “commodity” space limited by the number of hours in the day. This commodity space is 
defined by {(ߣ, ݉): 0 ≤ ߣ ≤ 24 and  0 ≤ ݉} and pictured in Figure 9-1. 

 

݉

 ߣ
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 Each hour the individual works he/she is paid a wage of ݌ℓ per hour as determined in the 
labor market. Assuming the individual has no source of income other than labor hours sold, 
 

݉ = ℓ݌ℓ 
 
or, substituting for ℓ using equation (9.1), 
 

݉ = (24 −  ℓ.                                                             (9.2)݌(ߣ
 
The last equation may be rewritten as 
 

ℓ݌ߣ + ݉ ∙ 1 =  ℓ.                                                          (9.3)݌24
 
This is the “budget line or constraint” in the present context and it looks very much like the 
budget constraint ݌ݔ௫ + ௬݌ݕ = ݉ employed in the model explaining consumer buying behavior, 
that is, equation (6.1) in Chapter 6. In the present case: 
 

  i) ݉ and ߣ function as quantities (ݔ and ݕ).  
 ii) 24݌ℓ functions as income (the ݉ in ݌ݔ௫ + ௬݌ݕ = ݉). 
iii) In addition to representing the wage, ݌ℓ is also the price of a leisure hour, or what the 
      consumer has to give up in wages in order to have an hour of leisure. Also, the price  
      of a dollar’s worth of income is 1. These prices correspond to ݌௫ and ݌௬ respectively.  
      The latter price will be dropped in subsequent budget equations. 

 
Geometrically, the graph of this budget constraint, equation (9.3), is the solid line in 

Figure 9-2  
 

 
having vertical intercept 24݌ℓ, which identifies the income received when the consumer takes no 
leisure and spends all time working. The horizontal intercept is 24 indicating that the consumer 
receives no income when spending 24 hours at leisure and no time working) The slope of the line 
is − ℓ݌24

24ൗ =  ℓ. Were the consumer to have non-wage income, the budget line would shift݌−

݉

 ߣ

 ℓ݌24

24 

Slope  −݌ℓ 

Figure 9-2 

Consumer has non-
wage income Consumer saves 

or pays off debt 

 ᇱߣ

݉ᇱ A 
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vertically up by the amount of that income; were he/she to pay off debt or save, the budget line 
would shift vertically down by the amount paid or saved (recall that income ݉ is intended to 
reflect the amount of money the consumer has to spend). These shifts are parallel to the original 
budget line since, in either case, the wage does not change. However, the possibilities of savings, 
debt, and nonwage income are not considered further in this chapter. 
 

Once ݌ℓ is specified, the consumer’s income is determined from equation (9.2) by the 
amount leisure time taken.  He/she cannot choose values of ݉ and ߣ independently of each other. 
Hence, baskets (ߣ, ݉) for which ݌ߣℓ

଴ + ݉ <  ℓ are not really choice- options for the݌24
consumer. However, to keep argument parallel to that of the consumer-buying-behavior model of 
Chapter 6, baskets below the budget line like A in Figure 9-2 are included in the budget set. But 
as is indicated momentarily, the outcome of constrained utility maximization places the 
consumer on the budget line anyway and is therefore the same regardless of whether such 
baskets are included in the budget set or not. 
 

Thus, given the price of leisure coming out of the labor market, say ݌ℓ
଴, the consumer is 

thought of as selecting a basket (ߣ, ݉) from the budget set of “possible choices” available or  

,ߣ)} ݉): ℓ݌ߣ
଴ + ݉ ≤  .{ℓ݌24

In addition to completeness and transitivity, assume, as in the buying-behavior model, that the 
consumer’s preferences are represented by a utility function µ = ,ߣ)ݑ ݉) with the same 
properties employed earlier. The latter properties are repeated here using the same numbering as 
in Chapters 5 and 7: 

 
4a. It is continuous and all marginal utilities can be calculated. 
4b. A larger basket of commodities is always preferred to, and therefore 
            has a higher utility value than a smaller one. 
4c. Indifference curves are strictly convex. 
4d. Indifference curves do not touch the co-ordinate axes of the  
            commodity space. 
 

Finally assume the consumer chooses the basket (ߣ, ݉) that maximizes his/her utility subject to 
the budget constraint. (These assumptions, recall, are listed in Supplemental Note C). 
 
 In parallel with the earlier explanation of consumer buying behavior, utility is maximized 
at the tangency α between an indifference curve and the budget line as shown in Figure 9-3. Thus 
the consumer selects leisure time ߣ଴, labor supply 24 −  ଴, and income ݉଴. The first-orderߣ
equations that describe the tangency at the constrained utility maximizing basket (ߣ଴, ݉଴) are the 
budget constraint (9.3) along with the statement that two slopes are equal. The latter says that the 
marginal rate of substitution or the ratio of marginal utilities with respect to leisure and income 
equals the price ratio (remember that the price of income is 1): 
 

ܯ ఒܷ(ߣ଴, ݉଴)
,଴ߣ)௠ܷܯ ݉଴)

= ℓ݌
଴. 
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Note in Figure 9.3 that while the length along the ߣ-axis from zero to ߣ଴ represents the utility-
maximizing quantity of leisure time demanded, that from ߣ଴ to 24 is the utility-maximizing 
quantity of labor time supplied. 

 

 
 

Demand functions for leisure and income, ℎఒ and ℎ௠ respectively, are obtained from this 
maximization in the same way as in the model of consumer buying behavior. That is, to each 
value of ݌ℓ, the functions ℎఒ and ℎ௠ assign the utility maximizing basket quantities ߣ and ݉: 
 

ߣ = ℎఒ(݌ℓ, 24)    and    ݉ = ℎ௠(݌ℓ, 24). 
 
The price of income, namely 1, is implicit in these equations. Note that the number 24 represents 
the total amount of time the consumer has to allocate between work and leisure. If that time were 
represented by the symbol T, then nothing would change in the above argument except that the 
24 would be replaced by T, and ݌ℓ and ߣ would be measured in different units. The demand 
functions would look like 
 

ߣ = ℎఒ(݌ℓ, ܶ)    and    ݉ = ℎ௠(݌ℓ, ܶ). 
 
 Since the supply of labor is found by subtracting the demand for leisure from 24 or T, the 
same subtraction applies to obtain the supply function of labor ℎℓ. That is, using T instead of 24 
so that equation (9.1) becomes ℓ = ܶ −  ,ߣ
 

ℓ = ℎℓ(݌ℓ, ܶ) = ܶ − ℎఒ(݌ℓ, ܶ).                                                (9.4) 
 

 ߣ

݉
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 This is the consumer’s supply function for labor alluded to at the outset. Of course, T is 
set by the time period under consideration, ݌ℓ is determined by the labor market, and ℓ is the 
outcome of constrained utility maximization. Real supply behavior is obtained by observing the 
actual price and corresponding amount of labor time supplied by the consumer in different 
market situations. Note that the properties of ℎఒ and ℎ௠ are similar and derived in the same way 
as the properties of the consumer demand function ℎ௫ and ℎ௬ (Chapters 7 and 8). The properties 
of ℎℓ (needed to check whether an observed consumer’s supply behavior can be explained by 
this model) are derived from those of ℎఒ through the use of equation (9.4) and are not pursued 
here. 
 

The consumer’s supply curve of labor is found by fixing ܶ = ܶ଴ and graphing ℓ =
ℎℓ(݌ℓ, ܶ଴). This curve is derived geometrically in Figure 9-4 in the same way that the demand 
curve for good x was geometrically constructed in Chapter 6. When the wage rises from ݌ℓ

ఈ to 
ℓ݌

ఉ in the right-hand diagram, the budget line in the left-hand diagram rotates clockwise around 
ܶ଴ on the horizontal axis: At the higher wage, if the consumer spends all time at leisure and no 
time at work, his /her income remains at  zero; if he/she spends all time at work with no leisure, 
his/er income is higher than before. Whether the supply curve slopes upward or downward 
depends on the location of the tangencies before and after the change in ݌ℓ. In the figure, the  

 
supply curve (right-hand diagram) slopes upward because the tangency at β (left-hand diagram) 
generated by the higher price ݌ℓ

ఉ lies to the left of the one at α corresponding to the lower price 
ℓ݌

ఈ. Thus, recalling that ℓ = ܶ0 − ℓ݌ the consumer demands less leisure at the higher wage ,ߣ
ఉ 

and supplies more labor. 
 
 It is possible for the supply curve to slope upward at low wages and then bend backwards 
and slope downward at high wages as in Figure 9-5. All possibilities can be explained in terms of 
income and substitution effects as was done in the model of consumer buying behavior. 
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To obtain the economy-wide labor supply curve, sum all individual supply curves 
horizontally, that is, at each price, add the labor time supplied by all consumers to determine the 
market quantity at that price. This parallels the determination of the market demand curve from 
the demand curves of all individuals in the market. However, the labor supply curve for any 
particular industry is not the horizontal sum of the supply cures of all individuals working in that 
industry. That is because as wages rise along such a horizontally summed curve, persons may 
move from other industries where the wage is lower to the one under consideration with the now 
higher wage. Without knowing which individuals will move along with their supply curves, it is 
not possible to determine new industry quantities supplied. The labor supply curve of an industry 
depends not only on how its laborers react to wage changes but also on how outsiders react as 
well. 

------------------------------- 
 
 
 
 Attention now turns to an explanation of firm buying and selling behavior in the abstract 
Walrasian model constructed in this volume. That behavior is summarized in firm input demand 
and output supply functions. These functions, which, as will be seen, relate input and output 
prices to input quantities demanded and output quantities supplied, are observable in much the 
same sense as consumer commodity-demand and labor-supply functions. It turns out that in the 
model subsequently constructed, other functions can also be considered to be observable. But 
that observability will not be explored here. 
 
 The model explaining the firm’s input demand and output supply functions is more 
complex than that built earlier to explain consumer demand and supply functions. Indeed, it will 
take seven more chapters to complete. That model includes a description of how the firm decides 
how much output to produce and how many units of inputs to hire in producing that output. It is 
assumed that all output produced by the firm will be supplied on the market. At the beginning 
there will be a very close analogy to the models of consumer buying and selling behavior. Only a 
firm with two inputs and one output will be considered.  
 

ℓ݌

ℓ 
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 Firm production is based on technology which is defined as the collection of all available 
information concerning the ways in which inputs can be combined to produce output. Designate 
quantities of the firm’s output by ݔ. Quantities of its inputs are represented by ℓ, labor time, and 
݇. capital units, that is, as indicated in footnote 2 of Chapter 1, units of physical items such as 
machines and factories. To keep matters simple, all other inputs are ignored. Each input basket 
(ℓ, ݇) contains specified amounts of labor and capital. The collection of all possible input 
baskets, {(ℓ, ݇): ℓ ≥ 0, ݇ ≥ 0}, is called the input space, the analogue of the commodity space in 
the consumer buying-selling models. The starting point of the present explanation of firm buying 
and selling behavior is the firm production function as described by  
 

ݔ = ݂(ℓ, ݇). 
 
Here the function ݂ indicates the maximum output ݔ that can be obtained for every basket in the 
input space, given technology.1 The production function parallels the utility function except that 
it is derived from technology rather than preferences and is not ordinal. (Output values ݔ are 
meaningful in the usual way while utility values, recall, have no meaning other than to indicate 
an individual’s ordering of commodity baskets by his/her preferences.) It should be emphasized 
that the production function is defined for a specific technology. Were that technology to change, 
the production function would likely modify. 
 
 Two time periods in which firm buying and selling behavior can take place will be 
considered. The long run is a period of time of sufficient duration that the firm can change both 
inputs. Since in the long run the firm can rid itself of all of its inputs, it is able to go out of 
business, that is, reduce its output and both labor and capital inputs to zero, if it chooses. 
 

The short run is a period of time of insufficient duration for the firm to change its capital 
input. It takes time to order a new machine, to receive it, to install it, and integrate it into the 
production process. And this cannot be done except in a long enough period of time. By contrast, 
the quantity of labor input can be changed quickly. Apart from whatever training is required, it is 
only necessary to change an employee’s labor hours, hire new employees, or let existing 
employees go. The short run, then, is defined as a period of time during which only the quantity 
labor can be varied. Capital necessarily remains fixed. When the firm is not able to change its 
quantity of capital, it cannot reduce that quantity to zero and cannot, therefore, go out of 
business. Thus, although the firm can shut down by eliminating all of its labor input and 
producing no output in the short run, it still cannot go out of business. 
 
 Since both inputs can be varied, the production function described above is a long-run 
production function. The short-run production function is secured from the long-run production 
function by fixing capital at, say, ത݇: 
 

ݔ = ݂൫ℓ, ത݇൯. 
 

 
1 The word ‘maximum’ is important in this definition. Since it will be assumed later on that the firm will make input 
and output decisions on the basis of profit maximization, if the firm is not obtaining maximum output from the 
inputs it hires, it cannot be maximizing its profit. 
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Sometimes the short-run production function is abbreviated to ݔ = ݂(ℓ). Here ത݇ is implicit in the 
functional symbol ݂. In either case, ത݇ can be taken to refer to the size of the firm. A geometric 
example appears in Figure 9-6 (recall Figure 2-5 in Chapter 2). The graph of the long-run 

 

 
production function is drawn with solid curved lines in three dimensions in the left-hand 
diagram. Also in that diagram, the graph of the short-run production function is that portion of 
the long-run production function appearing as a red dashed curve in the two-dimensional dashed 
plane parallel to the ℓ −  plane and drawn for capital fixed at ത݇. The latter plane is reproduced ݔ
in the right-hand diagram. The graph of the short-run production function with ݇ = ത݇ is 
reproduced as the solid red curve in that diagram. With respect to the left-hand diagram, one can 
think of the horizontally dashed line as the ℓ-axis and the vertically dashed line as the ݔ-axis for 
the graph of the short-run production function. The axes are labeled this way in the right-hand 
diagram. 
 
 It will be convenient in subsequent chapters to occasionally employ the term ‘production 
function’ without its long- or short-run designation. Context will determine the time period that 
applies. 
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Chapter 10 
Production Functions, Isoquants,  

and Ridge Lines 
 
 
 Consider the long-run production function ݔ = ݂(ℓ, ݇). The analogue of the indifference 
curve through (ݔ଴,  ଴) from the model of consumer buying behavior is the isoquant throughݕ
(ℓ଴, ݇଴). It is defined as the collection of all baskets (ℓ, ݇) yielding the same output as (ℓ଴, ݇଴): 
 

{(ℓ, ݇): ݂(ℓ, ݇) = ݂(ℓ଴, ݇଴) and ℓ ≥ 0, ݇ ≥ 0}, 
 
or, with ݂(ℓ଴, ݇଴) =  ,଴ݔ
 

{(ℓ, ݇): ݂(ℓ, ݇) = ଴ and ℓݔ ≥ 0, ݇ ≥ 0}. 
 
Assumptions to be made later will allow for the possibility of graphing isoquants as downward 
sloping and strictly convex curves like indifference curves.1 For now, the graphs of isoquants 
may be thought of in these terms. As with the utility function and indifference curves, the 
isoquant corresponding to output ݔ଴ can be described as a function of a single variable 
 

݇ = ܸ(ℓ) 
 
obtained by solving ݂(ℓ, ݇) = ,଴ for ݇ as a function of ℓ. For example, if ݂(ℓݔ ݇) = ℓ݇, then the 
଴ݔ ଴-isoquant isݔ = ℓ݇ or 
 

݇ =
଴ݔ

ℓ
. 

 
The collection of all isoquants is called the isoquant map. 
 
 Having only two inputs, the long-run production function with one input held fixed is 
referred to as a total product function. There are two of them, one with, say, ݇ = ݇଴ and the other 
with  ℓ = ℓ଴: 
 

ܶܲℓ(ℓ) = ݂(ℓ, ݇଴)     and     ܶܲ௞(݇) = ݂(ℓ଴, ݇),                                  (10.1) 
 

defined for all ℓ ≥ 0 and ݇ ≥ 0 respectively. The one on the left has been referred to as the 
short-run production function (Chapter 9). Each function generates an average product (per unit 
of input) function 
 

ℓ(ℓ)ܲܣ =
ܶܲℓ(ℓ)

ℓ
      and      ܲܣ௞(݇) =

 ܶܲ௞(݇)
݇

,                               (10.2) 
 

 
1 The assumptions will allow for more complex possibilities as well. 
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also defined, respectively, for all ℓ > 0 and ݇ > 0, and a marginal product function on the same 
domain. Marginal product functions correspond to marginal utility functions as can be seen by 
writing out their definitions and substituting from (10.1). That is, at (ℓ଴, ݇଴), the marginal 
product with respect to labor ℓ in approximate form is2 
 

ℓ(ℓ଴)ܲܯ =
ܶܲℓ(ℓ଴ + ∆ℓ) − ܶܲℓ(ℓ଴)

∆ℓ
=

݂(ℓ଴ + ∆ℓ, ݇଴) − ݂(ℓ଴, ݇଴)
∆ℓ

, 
 
where ݇଴ is implicit in the symbolism ܲܯℓ(ℓ଴). That with respect to capital ݇ is 
 

௞(݇଴)ܲܯ =
ܶܲ௞(݇଴ + ∆݇) − ܶܲ௞(݇଴)

∆݇
=

݂(ℓ଴, ݇଴ + ∆݇) − ݂(ℓ଴, ݇଴)
∆݇

. 
 
Continuing analogously with the model of consumer buying behavior, the slope of the isoquant 
through (ℓ଴, ݇଴) at ℓ଴ (the analogue of the slope of the indifference curve through (ݔ଴,  (଴ݔ ଴) atݕ
is 
 

∆݇
∆ℓ

=
ܸ(ℓ଴ + ∆ℓ) − ܸℓ଴)

∆ℓ
, 

 
and a demonstration parallel to that in the case of the consumer (Chapter 5) shows that  
 

∆݇
∆ℓ

= −
ℓ(ℓ଴)ܲܯ
 ௞(݇଴).                                                            (10.3)ܲܯ

 
Thus, where both marginal products are positive, isoquants slope downward. The ratio of 
marginal products (without the minus sign) or the negative of the slope of the isoquant is called 
the marginal rate of technical substitution. 
 
 For now, only three assumptions, two of which relate to the properties of the long-run 
production function, are imposed. The remaining assumptions will be introduced later. (The full 
list of assumptions for the model of firm behavior appears in Supplemental Note D). Assume 
 

1. the firm has a long-run production function ݔ = ݂(ℓ, ݇) based on a given technology, 
 
and 

 
2. the long-run production function has the following properties: 
 2a. Zero input produces zero output (f (0,0) = 0), and non-negative input produces 

      non-negative output (݂(ℓ, ݇) ≥ 0 for all (ℓ, ݇) ≥ 0). 
2b. It is continuous and all marginal products can be calculated. 

 

 
2 From here on, the derivative form for marginals obtained, for example, by letting ∆ℓ and ∆݇ in the equations 
below go to zero will largely be ignored. 
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 Consider now the geometry of the graphs of total, average, and marginal product 
functions. The shape of the total product curve, which emerges from the graph of the long-run 
production function as described in Figures 2-5 and 2-6 of Chapter 2, determines the shape of the 
average and marginal product curves. A common shape for the former3 appears in Figure 10-1 in 
which a total product curve passing through points A, C, and B appears in the top diagram.  

 

Observe that the slope of the straight (dashed) line connecting A and B is the same whether 
calculated at either point. For example, at A it is the vertical distance from that point to the ℓ-
axis at ℓᇱ or ܶܲℓ(ℓᇱ)  divided by the length from the origin to ℓᇱ. But according to equation 
(10.2), this is the same as the average product ܲܣℓ(ℓᇱ). Similarly at point B. Since the 
calculations of the slope of the straight line at A and B yield the same result, 
 

ℓ(ℓᇱ)ܲܣ =  .ℓ(ℓᇱᇱ)ܲܣ
 
This is indicated along the horizontal dashed line through A and B in the graph of the average 
product curve in the lower diagram of Figure 10-1. As the straight line through A and B in the 

 
3 The shape of the total product curve in Figure 10-1 is derived from a production function whose graph has a 
different shape from that of Figure 2-5 of Chapter 2. The latter, recall, is obtained from the strictly concave 
production function pictured in Figure 2-3. 
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top diagram becomes steeper and its slope increases, the two values of ܲܣℓ(ℓ) rise. When that 
slope rises to the point at which the line is tangent to the total product curve at C, the average 
product is at its largest value. This maximum appears at point C for ℓ = ℓ଴ in the lower diagram. 
Therefore, to determine the value of ℓ at which ܲܣℓ(ℓ) has a maximum, locate the point of 
tangency between the total product curve and a straight line from the origin. 
 
 In Figure 10-2, graphs of the total product and average product curves are drawn in the 
same diagram along with the marginal product curve. The vertical axis, then, although labeled 
only with ݔ for convenience, has three separate scales – one for each graph – imposed upon it. 
Remember that the marginal product curve reflects the slopes of the total product curve  

 
as ℓ varies. Thus, in the diagram, as ℓ increases from the origin, the marginal product (slope of 
the total product curve) increases up to a maximum at ℓ = ℓᇱ and declines thereafter. At ℓ = ℓᇱ′′ 
the marginal product is zero (reflecting the maximum at that point on the total product curve) and 
crosses the ℓ-axis into negative territory. 
 
 Also in Figure 10-2, ܲܣℓ(ℓ) has a maximum at ℓ = ℓᇱᇱ where the straight line from the 
origin is tangent to the total product curve. Since equation (10.2) implies that the average product 
and total product are equal at ℓ = 1, their curves are drawn to intersect at that value. 
Furthermore, the marginal product curve intersects the average product curve where the latter has 
its maximum. This happens for the following reason: Imagine that an average value has been 
computed from a set of values by totaling the values and dividing by their number. If a new 
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value is added to the set that is larger than the average, the average rises. If it is smaller, the 
average falls. In the present case, at any ℓ the marginal product ܲܯℓ(ℓ) is the extra amount that 
is being added into the total product ܶܲℓ(ℓ) at ℓ. According to Figure 10-2, for an ℓ to the left of 
ℓᇱᇱ, the amount ܲܯℓ(ℓ) added to the total ܶܲℓ(ℓ)  is greater than the average ܲܣℓ(ℓ). So, since 
the total product is increased by more than the average, the average must be rising. At an ℓ to the 
right of ℓᇱᇱ, the marginal product is less than the average. In that case, when calculating the 
average from the total, the average must be falling. At ℓ = ℓᇱᇱ, the marginal and average 
products are equal. This means there is no change in the average from including the marginal in 
the total, and the average has a maximum there. 
 
 When all total product curves have the shapes as drawn in Figures 10-1 and 10-2, the 
geometric relationship between these curves and isoquants appears in the three-dimensional 
diagram of Figure 10-3. In that diagram, everything in the ℓ- ݇ plane (i.e., the input space) is in 
red; everything Above that plane is in black.  The total-product-with-respect-to-labor ܶܲℓ(ℓ) 

 

curve for the fixed amount of capital ത݇ (identified on the ݇ axis) is drawn in the plane at ത݇ that is 
parallel to the ℓ-ݔ plane. Output ݔᇱᇱ, which appears at points B and C on the ܶܲℓ(ℓ ) curve, can 
be produced with either input basket B′ or C′ located in the input space on the solid red line 
coming out from ത݇ and parallel to the ℓ -axis. Since baskets B′ and C′ yield the same output, they 
lie on the same ݔᇱᇱ isoquant. Output ݔᇱ, which is greater than output ݔᇱᇱ and appears at point A on 
the ܶܲℓ(ℓ ) curve, is produced at only one input basket A′ on the solid red line from ത݇. Since 
output is larger with basket Aᇱ than with B′ or C′, it follows that the ݔᇱ isoquant on which A′ lies is 
farther out from the origin than the ݔᇱᇱ isoquant. The ݔᇱ isoquant is tangent at A′ to the solid red 
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line parallel to the ℓ-axis from ത݇ because there is only one basket on that line yielding output ݔᇱ 
and all other baskets on that line lie on isoquants associated with smaller outputs.  
 

As ℓ increases from the k-axis along the  ത݇-line in Figure 10-3, output increases up to its 
maximum over basket A′ (point A on the ܶܲℓ(ℓ ) curve) and declines thereafter. At basket A′, 
then, the marginal product ܲܯℓ(ℓ ) =  0. Were these curves redrawn for, say ݇଴ < ത݇, then there 
would be a basket E at which the ݔᇱᇱ isoquant is tangent to the dashed red line emanating from 
݇଴ and parallel to the ℓ-axis. The ܶܲℓ(ℓ ) curve for ݇ = ݇଴ would have a maximum over basket 
E and its corresponding ܲܯℓ(ℓ ) would be zero there. Putting all such tangency points together 
yields the lower ridge line which is the collection of all baskets like A′ and E in the red ℓ- ݇ plane 
that correspond to outputs for which a ܶܲℓ(ℓ ) is maximal and for which the associated 
ℓ(ℓ )ܲܯ =  0. 
 

Continuing in Figure 10-3, but with ℓ now fixed at ℓ଴ on the ℓ-axis and with ݇ increasing 
from that ℓ଴ along the dotted red line parallel to the ݇-axis, a ܶܲ௞(݇) curve above the ℓ- ݇ plane 
plane could be traced out from the graph of the long-run production function. Since that total 
product curve (not drawn in the diagram) has been assumed to have a shape similar to that of 
ܶܲℓ(ℓ ), it  achieves maximum output and ܲܯ௞(݇) =  0 at a basket, call it G, that, as drawn in 
the diagram, lies on the ݔᇱᇱ isoquant where that isoquant is tangent to the line parallel to the ݇-
axis through ℓ଴. The upper ridge line (also not drawn in the diagram) consists of all such baskets 
in the input space, that is, all baskets with a ܶܲ௞(݇) maximal and corresponding ܲܯ௞(݇) =  0. 

 
 Taking the red ℓ- ݇ plane and its contents out of Figure 10-3 and reproducing it in two 
dimensions by itself, yields a picture like that of Figure 10-4. The latter contains the upper  

 
 
ridge line not drawn in Figure 10-3. Also, the straight lines parallel to the axes and tangent to the 
isoquants at A′, E. and G in Figure 10-3 are not shown in Figure 10-4. Ridge lines may or may 
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not bend enough to intersect. The geometry of Figure 10-3 indicates that throughout the area 
between the ridge lines in Figure 10-4, both ܲܯℓ(ℓ) > 0 and ܲܯ௞(݇) > 0. This is the only 
region in the input space where both marginal products are positive. It follows from equation 
(10.3) that, in that region, isoquants slope downward. The geometry of the diagram also suggests 
that they are strictly convex there.  

 
Notice that in Figure 10-4, were the firm to consider producing output ݔᇱᇱ with input 

basket Q lying outside the area between the ridge lines (but still on the ݔᇱᇱ isoquant), it would see 
that it could produce the same output using basket R between the ridge lines with less labor and 
less capital. Since later on (Chapter 13) it will be assumed that the firm operates so as to 
maximize its profit, it will avoid such wasteful and costly input baskets. For that reason, the area 
between the ridge lines up to an intersection point if there is one is sometimes referred to as the 
relevant region of the input space. Thus, to produce any output, the firm will always employ a 
basket of inputs that lies within the relevant region. 
 
 It should also be pointed out that there are long-run production functions that do not have 
ridge lines. Their total product curves do not exhibit the shapes drawn in previous diagrams and 
are such that there are no values of ℓ and ݇ for which ܲܯℓ(ℓ) = 0 and ܲܯ௞

௞(݇) = 0. For 
example, the production function with graph depicted in Figure 10-5 has positive marginal  

 

 
 
products everywhere. Its total product curves for fixed values of ݇ (recall Figure 2-5 from 
Chapter 2 and Figure 9-5 from Chapter 9) and isoquants (recall Figure 2-4 from Chapter 2) 
appear, respectively, for ݇ = ݇଴ and ݔ =  ଴ in Figure 10-6. Here the relevant region of the inputݔ
space(appearing in the right-hand diagram) is the entire positive or north-east quadrant 
(excluding the coordinate axes) of the ℓ- ݇ plane. The total product curves for fixed values of ℓ 
are similar to those for fixed values of ݇ (Figure 2-6 in Chapter 2). 
 

 ݔ

݇ 

ℓ 

Figure 10-5 
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 In subsequent chapters, isoquants will sometimes be drawn as in the right-hand diagram 
of Figure 10-6 rather than as in Figures 10-3 and 10-4, thereby ignoring the possibility of ridge 
lines. This is done to make the drawings simpler and easier to understand. But it should be 
remembered that the presence of ridge lines could easily be indicated in such diagrams by 
bending the ends of the isoquants so as to conform to the shapes of those appearing in previous 
diagrams. 
 
 With these ideas in mind, the following assumptions regarding the properties of the long-
run production function are added to those stated above: 
 

2c. If ridge lines exist, all marginal products are positive and all isoquants are 
       strictly convex between the ridge lines up to an intersection point if there is 
       one. 
2d. If ridge lines do not exist, all marginal products are positive and all isoquants 
      are strictly convex everywhere throughout the input space, and no isoquant  
      touches the co-ordinate axes. 

 
These two assumptions specify properties of the production function for input baskets in the 
relevant region of the input space. As previously noted, they imply that in that region, isoquants 
slope downward. Recall that the full list of assumptions for the model of firm behavior may be 
found in Supplemental Note D. 

ℓ ℓ 
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Chapter 11 
Returns to Fixed Factors and Scale, Cost  

Minimization, Expansion Paths, and  
Long-Run Cost Functions 

 
 
 Recall that for capital fixed at ݇଴, the total product function with respect to labor is given 

by ܶܲℓ(ℓ) = ݂(ℓ, ݇଴). Now ܶܲℓ(ℓ) is said to have ൝
increasing
constant

decreasing
ൡ (marginal) returns at ℓ଴ to the 

fixed factor ݇଴ according as ܲܯℓ(ℓ) is ൝
increasing
constant

decreasing
ൡ at ℓ଴. Two possibilities are illustrated in 

Figure 11-1. In that diagram, increasing returns are present for ℓ଴ < ℓത and decreasing returns 
prevail for ℓ଴ > ℓത. 

 
The law of diminishing returns is the statement that all total product functions derived 

from any real-world production function eventually exhibits decreasing returns to the fixed 
factors as a variable input increases. That this law would seems to hold more universally across 
space and time than other laws in economics and therefore be more like laws in the physical 
sciences, is is a consequence of what is called the “crowding effect:” As more and more labor is 
added to a fixed amount of capital, cooperation may initially increase output at an increasing 
rate. But eventually, the increased labor will become sufficiently crowded in working with the 
still fixed amount of capital as to interfere with the efficiency of production, and the increases in 
output from adding the additional units of labor will start to decline. 

 
While returns to fixed factors involve variations in a single input, returns to scale requires 

variations in all inputs. With both inputs variable, then, the long-run production function ݂(ℓ, ݇) 

exhibits ൝
increasing
constant

decreasing
ൡ returns to scale according as 

 

ܶܲℓ 

ℓ ℓത 

 ݔ
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Figure 11-1 
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,ℓߙ)݂ (݇ߙ ൝
>
=
<

ൡ ,ℓ)݂ߙ ݇), 

 
for all (ℓ, ݇) > 0 and ߙ > 1. Note that ݂(ߙℓ,  is the output that results when all inputs are (݇ߙ
multiplied by ߙ, while ݂ߙ(ℓ, ݇) is the output that results upon multiplying the original output at 
(ℓ, ݇) by ߙ. Thus, under increasing returns to scale, doubling all inputs more than doubles 
output, and with constant returns to scale, doubling all inputs exactly doubles output. When 
decreasing returns to scale are present, doubling all inputs less than doubles output. An 
illustration of a constant returns to scale production function is ݂(ℓ, ݇) = √ℓ݇. The constant 
returns to scale property is satisfied since, for example with ߙ = 2, 
 

݂(2ℓ, 2݇) = √2ℓ2݇ = √4ℓ݇ = 2√ℓ݇ = 2݂(ℓ, ݇). 
 
 
 Having dealt with the production function and its properties, the next step in explaining 
firm buying and selling behavior in the context of the Walrasian model is to use that function 
along with input prices to examine firm long-run costs. For the time being, the analogy between 
the explanation of consumer buying behavior and that of firm behavior will continue. 

------------------------- ------------------------------------ 
 
 
 
 
 Let ݌ℓ and ݌௞ represent the prices per unit of inputs ℓ and k respectively and let ܿ denote 
input cost. Then the cost of the input basket (ℓ, ݇) is 
 

ܿ = ℓ݌ℓ +  ௞.                                                            (11.1)݌݇
 
Use the symbol ߨ for profit and recall that the price per unit of output ݔ is ݌௫. Since profit is the 
difference between sales revenue and input costs, ߨ = ௫݌ݔ − ܿ or 
 

ߨ = ௫݌ݔ − (ℓ݌ℓ +  ௞),                                                  (11.2)݌݇
 
where (ℓ, ݇) is the basket of inputs used to produce output ݔ. The assumption that the firm will 
hire inputs and produce output so as to maximize profit will be introduced later on Chapter 13. 
But for now, observe that from equation (11.2), if the firm knows the prices of its inputs and 
output along with the quantity of output it will produce, then profit maximization requires that 
the firm hire inputs so as to minimize their cost. That is, given its fixed output quantity ݔ, the 
firm should choose ℓ and ݇ to minimize ℓ݌ℓ +  ௞. This minimization problem needs to be݌݇
considered first. 
 
 The equation ܿ = ℓ݌ℓ + ݉ ௞ is very similar to the consumer budget constraint݌݇ =
௫݌ݔ + -௬ in the model of consumer buying behavior. The graph of the former is called an iso݌ݕ
cost line and its geometry in Figure 11-2 is identical, except for the names of the symbols, to that 
of ݉ = ௫݌ݔ +  ௬ (Figure 6-1 of Chapter 6). Thus, the slope of the iso-cost line is the negative݌ݕ
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of the input-price ratio  ݌ℓ ௞ൗ݌  while its  ℓ- and ݇- intercepts are given by ℓ = ܿ ℓൗ݌  and ݇ = ܿ ௞ൗ݌  
respectively. And just as variations in income with commodity prices fixed shift the consumer’s 
budget constraint in a parallel manner (that is, without changing its slope), so do variations in ܿ  

 
with input prices fixed shift the iso-cost line in the same way. For example, as ܿ becomes 
smaller, the iso-cost line shifts back towards the origin in parallel fashion. 
 
 

Turning to cost minimization as described above, let output be fixed at ݔ଴. This 
determines the collection of all input baskets that can be employed produce output ݔ଴ or the ݔ଴ 
isoquant. Geometrically arguing in an analogous fashion to utility maximization subject to the 
budget constraint (Chapter 6), the input basket on the ݔ଴ isoquant that minimizes cost of 
producing ݔ଴ is the one on the lowest possible iso-cost line that intersects or meets the ݔ଴ 
isoquant. This basket, (ℓ଴, ݇଴) as shown in Figure 11-3, appears at the tangency between the ݔ଴  
 

 
isoquant and an iso-cost line. It is called the cost-minimizing basket, the least-cost combination 
of inputs, or the optimal input combination for output ݔ଴ given ݌ℓ and ݌௞. 
 
 Apart from the shape of the isoquant (which, here, has upward sloping parts), the 
tangency in Figure 11-3 looks exactly like that depicting utility maximization subject to the 
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budget constraint (Figure 6-2 in Chapter 6) except that the names of the variables are different, 
and the curve and the straight line has different meanings. In the present case, the tangency is 
said to be the outcome of (input) expenditure or cost minimization subject to an isoquant 
constraint or a fixed level of output. Thus it is not surprising that, at least between the ridge lines, 
many of the same assumptions are made here (they were set out in Chapter 10 and are listed in 
Supplemental Note D) as in the model of consumer buying behavior. 
 
 Analogously to the explanation of consumer buying behavior (equations (6.2) and (6.3) in 
Chapter 6), the statement derived from Figure 11-3 that, at the tangency (ℓ଴, ݇଴), the slope of the 
iso-cost line (the negative of the price ratio) equals the slope of the isoquant (the negative of the 
marginal rate of technical substitution) is part of the first-order condition for minimizing input 
cost subject to a fixed level of output. Mathematically and cancelling the minus signs, that 
condition is 
 

ℓ(ℓ଴)ܲܯ
௞(݇଴)ܲܯ =

ℓ݌

௞݌
,                                                                  (11.3) 

 
or equivalently, 
 

ℓ(ℓ଴)ܲܯ
ℓ݌

=
௞(݇଴)ܲܯ

௞݌
. 

 
If the latter equality did not hold, say the marginal product per dollar spent on labor were larger 
than the marginal product per dollar spent on capital, then transferring a dollar spent on capital to 
labor would keep costs the same but expand output. But if output can be increased without 
expanding costs, then the original output could be produced at lower cost. In other words, the 
cost of producing the original output is not minimized. 
 

As with utility maximization subject to the budget constraint, equation (11.3), although 
stating that two slopes are equal, is insufficient by itself to fully describe the tangency. To obtain 
a complete description it is necessary to add the equation of the isoquant constraint evaluated at 
S(ℓ଴, ݇଴), that is, ݔ଴ = ݂(ℓ଴, ݇଴). The latter, together with equation (11.3) form the full set of 
first-order conditions for cost minimization subject to the fixed level of output ݔ଴. 
 

It has been assumed (Chapter 10) that if ridge lines exist, all marginal products are 
positive (implying that isoquants are everywhere downward sloping) and all isoquants are strictly 
convex between the ridge lines up to an intersection point if there is one. When intersecting ridge 
lines are present, it turns out that isoquants are closed curves and there are two tangencies, and 
hence two input baskets, such as A and B in Figure 11-4 where the first-order condition (11.3) is 
satisfied. In that case, the tangency beyond the intersection of the ridge lines at B (that is, outside 
the relevant region of the input space) occurs where the cost of producing output ݔ଴ is 
maximized, both marginal products are negative, and the isoquant is strictly concave – not 
strictly convex. Since, as indicated in Chapter 10, attention is confined to the relevant region of 
the input space, this possibility is eliminated. In parallel with the explanation of consumer buying 
behavior given earlier, the assumptions of positivity of marginal products and strict convexity of 
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isoquants play the role of second-order conditions ensuring that first-order conditions arising at 
baskets like A lie in the relevant region of the input space are associated with minimum cost. 
 
 The firm’s expansion path is the curve in the input space that identifies the input baskets 
the firm employs as it increases its output with constant input prices. Thus, in the long-run, the 
expansion path, pictured in red in Figure 11-4, is the collection of all cost-minimizing input 
baskets in the relevant region as output expands with input prices remaining fixed. It is the 
analogue of the income consumption curve in the model of the consumer’s buying behavior. The 
long-run expansion path necessarily starts at the origin where the firm produces no output and 
employs no inputs. In the short run, the firm has a fixed amount of capital, say ത݇, that it is unable 
to change. So as output expands, say from ݔᇱᇱ to ݔᇱ, and the firm moves to a higher isoquant, it 
must follow the red straight line parallel to the ℓ-axis at ത݇ as pictured in Figure 11-5. That is the  
 

 
 

B 

A 

Upper ridge line 

Lower ridge line 

Long-run 
expansion path 

ℓ 

݇ 

Figure 11-4 

 ଴ isoquantݔ

Figure 11-5 

݇ 

ത݇ 

 ᇱᇱݔ ᇱݔ

ℓ 

Short-run 
expansion path 



86 
 

firm’s short-run expansion path. As input prices vary so as to change the input price ratio, the 
slope of the iso-cost lines alter as do the locations of the tangencies between them and the 
isoquants. This causes the long-run expansion path to shift. But changes in the input price ratio 
have no effect on the short-run expansion path which is determined solely by the fixed amount of 
capital held by the firm. 

------------------------- ------------------------------------ 
 
 
 
 

 Whereas constrained utility maximization subject to the budget constraint in the model of 
consumer buying behavior is the basis for defining consumer demand functions, here constrained 
cost minimization (minimizing cost for a fixed level of output) is used to characterize long-run 
total cost as a function of output. (Previously cost without the qualifying adjective ‘total’ has 
been presented in equation (11.1) as a function of the input basket.) This is accomplished by 
invoking that part of the assumption of profit maximization that requires the firm to produce 
each output quantity with the optimal input combination. And it is here that the close analogy 
between the explanation of consumer buying behavior and the explanation of firm buying and 
selling behavior ends. 
 
 Let ݌ℓ and ݌௞ be given. The long-run total cost for producing an output is the cost of the 
cost-minimizing input basket for producing that output. Using this idea, the long-run total cost 
function (ݔ)ܥܴܶܮ for producing output quantity ݔ is characterized by 
 

(ݔ)ܥܴܶܮ = ܿ   ݅f and only if   ܿ = ℓ଴݌ℓ + ݇଴݌௞, where (ℓ଴, ݇଴) is the 
                                                      least cost combination of inputs for  

                                                 producing ݔ given ݌ℓ, ,௞݌ and  the  
                            production function ݂.  

 
Thus, the long-run total cost function (ݔ)ܥܴܶܮ = ℓ଴݌ℓ + ݇଴݌௞, where ℓ଴ and ݇଴ are determined 
by a tangency like that of Figure 11-3, is generated by repeated specification of ݔ with ݌ℓ and ݌௞ 
held constant. It is implicit in this definition that, according to the assumptions that have been 
made, the area outside the relevant region of the input space has been eliminated from 
consideration. Geometrically, to construct the graph of the long-run total cost function, first 
choose an output, say ݔ଴. That specification determines the ݔ଴isoquant in the input space 
pictured in the right-hand diagram of Figure 11-6, where the isoquant is drawn without 
suggesting the possibility of ridge lines. Since ݌ℓ and ݌௞ are fixed, the slopes of all iso-cost lines 
ܿ = ℓ݌ℓ +  ௞, which are the same as ܿ varies, are also determined. The tangency between the݌݇
,଴ isoquant and an iso-cost line occurs at (ℓ଴ݔ ݇଴). Plotting ℓ଴݌ℓ + ݇଴݌௞ against ݔ଴ in the left- 
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hand diagram gives one point on the long run total cost curve. Continuing in this manner for 
different values of ݔ with ݌ℓ and ݌௞ unchanged generates the ܥܴܶܮ curve. That curve starts at 
the origin because the expansion path in the input space starts at the origin. When the firm uses 
no inputs, it has no costs. 
 
 Note that long-run total costs are defined in terms of input baskets along the expansion 
path. A movement along one curve implies a corresponding movement along the other. Each 
change in input prices that alters the input price ratio not only modifies the expansion path (as 
indicated above), but also changes the long-run total cost function. 
 
 Two additional functions are based on the long-run total cost function. The long-run 
average cost function is given by 
 

(ݔ)ܥܣܴܮ =
(ݔ)ܥܴܶܮ

ݔ
,                                                   (11.4) 

 
and the long-run marginal cost function in approximate form appears as 
 

(ݔ)ܥܯܴܮ =
ݔ)ܥܴܶܮ + (ݔ∆ − (ݔ)ܥܴܶܮ

ݔ∆
.                              (11.5) 

 
These functions are illustrated geometrically in Figure 11-7 where the shape of the long-run total 
cost curve in the upper diagram is taken to be that depicted in the left-hand diagram of Figure 11-
6. As with total, average, and marginal product curves, the shape of the long-run total cost curve 
determines the shapes of the long-run average and long-run marginal cost curves. In the lower 
diagram of Figure 11-7 the long-run average cost curve and the long run marginal cost curve 
appear together with the separate scales for each recorded on the same vertical axis. Observe that 
if the curves pictured in Figure 11-7 were turned upside down, they would look quite similar to  
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the curves drawn in Figure 10-2 of Chapter 10 for total, average, and marginal product curves. 
As such, the properties of the former parallel those of the latter with appropriate adjustments 
made to accommodate the “upside-downness” present. Subject to that adjustment, the 
justifications of the following characteristics of the graphs in Figure 11-7 are the same as those 
for the total, average, and marginal product case: 
 

1. The graph of (ݔ)ܥܯܴܮ has a minimum at ݔ′ where the slope of the graph of (ݔ)ܥܴܶܮ 
    changes from decreasing to increasing. 
2. The graph of (ݔ)ܥܣܴܮ has a minimum at ݔ଴ where a straight line from the origin is  
     tangent to the graph of (ݔ)ܥܴܶܮ. 
3. The graph of (ݔ)ܥܯܴܮ intersects that of (ݔ)ܥܣܴܮ at ݔ଴ where (ݔ)ܥܣܴܮ has its 
    minimum. 
(ݔ)ܥܣܴܮ .4 = ݔ where (ݔ)ܥܴܶܮ = 1 (not shown in the diagram). 

 ᇱݔ

 ᇱݔ

 ଴ݔ

 ଴ݔ

 ܥܴܶܮ

 ܥܯܴܮ

 ܥܣܴܮ

$ 

$ 

 ݔ

 ݔ

Figure 11-7 



89 
 

Chapter 12 
Long- and Short-Run Cost Functions and the  

Relationship between Them 
 
 

The long-run average cost curve exhibits ൝
economies

constant econnomies
diseconomies

ൡ of scale where it is 

൝
declining
constant

risng
ൡ. For example, to the left of ̅ݔ in Figure 12-1, economies are present; to the right  

 
diseconomies prevail. Economies and diseconomies of scale in long-run average costs sometimes 

emerge from returns to scale in the production function. 

If the production function has ൝
increasing
constant

decreasing
ൡ returns to scale, and if the expansion path is 

a straight line from the origin, then the long-run average cost curve necessarily exhibits 

൝
economies

constant econnomies
diseconomies

ൡ of scale. Although the reasoning behind this statement will not be 

pursued here, it may be roughly illustrated by observing that the long-run average cost associated 
with output ݔ is, from Chapter 11, 

(ݔ)ܥܣܴܮ =
ℓ݌ℓ + ௞݌݇

ݔ
,                                                       (12.1) 

 
where (ℓ, ݇) is the least-cost combination of inputs (on the expansion path) for producing ݔ 
given ݌ℓ and ݌௞. If input quantities were to double, say, the values of ℓ and ݇, and hence the 
numerator in equation (12.1), would be multiplied by 2 and the new value of long-run average 
cost would depend on what happens to output quantity. If the output quantity were to double 
(constant returns to scale), then 2ݔ would appear in the denominator, the 2s would cancel, and 
there would be no change in the long-run average cost (constant economics of scale): 
 

 ݔ̅
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(ݔ2)ܥܣܴܮ =
2ℓ݌ℓ + ௞݌2݇

ݔ2
=

ℓ݌ℓ + ௞݌݇

ݔ
=  .(ݔ)ܥܣܴܮ

 
 If the output quantity were to more than double (increasing returns to scale), then a number 
greater than 2ݔ would appear in the denominator and the long-run average cost would fall 
(economies of scale). And if the output quantity were to less than double (decreasing returns to 
scale), then a number less than 2ݔ would appear in the denominator and the long-run average 
cost would rise (diseconomies of scale). 

---------------------------------------------------- 
 
 
 
 Attention now turns to the short run where, recall, capital is fixed at, say, ݇ = ത݇ 
regardless of the output produced by the firm. Labor remains variable. This distinction between 
fixed and variable inputs leads to a separation of production costs into fixed and variable parts. 
The total fixed cost of producing output quantity ݔ is the cost of the fixed input ത݇ used to 
produce that output. The total fixed cost function, 
 

(ݔ)ܥܨܶ = ത݇݌௞, 
 
is therefore constant since the price of capital ݌௞ is fixed by the capital market and ത݇ does not 
change with ݔ. As described in Chapter 9, ത݇ is taken to indicate the size of the firm. 
 

The total variable cost of producing ݔ is the cost of the variable input (labor) used to 
produce it. The total variable cost function is defined by 
 

(ݔ)ܥܸܶ = ℓ଴݌ℓ, 
 
where, as indicated in Figure 12-2, ℓ଴ is the only way of producing ݔ along the ݔ isoquant since  
 

 
 

ത݇ 

ℓ 

݇ 

Figure 12-2 

Short-run 
expansion path 

 isoquant ݔ

ത݇ ᇱ 

ℓᇱ 
Upper ridge line 

ℓ଴ 



91 
 

݇ is fixed at ത݇. Note that (ℓ଴, ത݇) necessarily lies on the firm’s short-run expansion path (defined 
in Chapter 11).1 
 

The short-run total cost function for a firm of size ത݇, symbolized by  ܴܵܶܥ௞ത  is the ,(ݔ)
sum of the total variable and total fixed cost functions: 
 

௞തܥܴܶܵ (ݔ) = (ݔ)ܥܸܶ +  (12.2)                                                 .(ݔ)ܥܨܶ
 
Although both  ܸܶܥ and ܶܥܨ are also for the firm of size ത݇, it will be convenient to omit the 
superscript  ത݇ from their symbolisms. In parallel with the long-run, the short-run total costs are 
derived from input baskets on the short-run expansion path. A movement along the graph of the 
short-run total cost curve is therefore associated with a movement along the short-run expansion 
path. However, in this case a change in input prices by itself does not, as noted in Chapter 11, 
change the short-run expansion path but does alter the short-run total cost curve. 
 
 An illustration of the graphs of these functions appears in Figure 12-3. The shape of the  
 

 
 
TVC curve, which necessarily starts at the origin (since, if the firm produces no output, it does 
not need labor input and its labor or variable cost is zero), is taken to be that of the long-run total 
cost curve appearing in upper diagram of Figure 11-7 of Chapter 11. Since total fixed cost does 
not change with variations in output, the graph of ܶܥܨ is a straight line parallel to the ݔ-axis. In 
particular, the firm being unable to change the quantity of capital it employs in the short run, the 
total fixed cost, and hence total short run cost, remain at ത݇݌௞ even when the firm produces no 

 
1 If the short-run expansion path intersected the ݔ isoquant outside of the area between the ridge lines 
as pictured with capital ത݇ ᇱ in Figure 12-2, then by using only, say, ത݇ of ത݇ ᇱ, the firm could produce the 
same output ݔ with lower labor input (that is, moving from ℓᇱ to ℓ଴). The firm’s fixed cost ܶ(ݔ)ܥܨ would 
remain at ത݇ ᇱ݌௞ (capital cannot be changed in the short run), but its variable cost ܸܶ(ݔ)ܥ would be 
lowered from ℓᇱ݌ℓ to ℓ଴݌ℓ. However, this possibility is not considered further here. 

௞തܥܴܶܵ  

 ܥܸܶ

 ௞݌ത݇ ܥܨܶ

$ 

 ݔ

Figure 12-3 
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output. Because ܴܵܶܥ௞ത  is the sum of ܸܶܥ and ܶܥܨ (equation (12.2), and because ܶܥܨ is 
constant and not changing with ݔ, the graphs of ܴܵܵܶܥ௞ത  and ܸܶܥ are parallel, having the same 
slope at each value of ݔ. These latter curves shift with each change in, ݌ℓ, ݌௞, and the production 
function ݂. Only ܴܵܶܥ௞ത  and ܶܥܨ shift with changes in ത݇. 
 
 Short-run average ܴܵܥܣ௞ത  (ݔ)ܥܨܣ and average fixed cost ,(ݔ)ܥܸܣ average variable ,(ݔ)
functions are defined in the usual manner with the superscript ത݇ on the latter two dropped: 
 

௞തܥܣܴܵ (ݔ) =
௞തܥܴܶܵ (ݔ)

ݔ
, 

 

(ݔ)ܥܸܣ =
(ݔ)ܥܸܶ

ݔ
 

 

(ݔ)ܥܨܣ =
(ݔ)ܥܨܶ

ݔ
=

ത݇݌௞

ݔ
.                                                  (12.3) 

 
Dividing equation (12.2) by ݔ gives 
 

௞തܥܴܶܵ (ݔ)
ݔ

=
(ݔ)ܥܸܶ

ݔ
+

(ݔ)ܥܨܶ
ݔ

 
or 
 

௞തܥܣܴܵ (ݔ) = (ݔ)ܥܸܣ +  .(ݔ)ܥܨܣ
 

In approximate form, short-run marginal cost is 
 

௞തܥܯܴܵ (ݔ) =
௞തܥܴܶܵ ݔ) + (ݔ∆ − ௞തܥܴܶܵ (ݔ)

ݔ∆
. 

 
In the context of the limiting derivative form for derivatives, differentiating equation (12.2) with 
respect to ݔ in the normal way, 
 

௞തܥܯܴܵ (ݔ) =
௞തܥܴܶܵ݀ (ݔ)

ݔ݀
=  

(ݔ)ܥܸܶ݀
ݔ݀

+
(ݔ)ܥܨܶ݀

ݔ݀
. 

 
And since ܶ(ݔ)ܥܨ is a constant function, its derivative ݀ܶ(ݔ)ܥܨ

ൗݔ݀ = 0. Thus, as suggested by 
the fact that the graphs ܴܵܶܥ௞ത  and ܸܶܥ in Figure 12-3 are parallel and have the same slope at 
each value of ܥܯܴܵ ,ݔ௞ത ௞തܥܴܶܵ could be calculated by differentiating either (ݔ)  .(ݔ)ܥܸܶ or (ݔ)
 
 From equation (12.3), the graph of (ݔ)ܥܨܣ has the shape of a rectangular hyperbola as 
shown in Figure 12-4. When ݔ = 1, applying (12.3) gives (1)ܥܨܣ = ത݇݌௞. In addition, since 
௞തܥܣܴܵ (ݔ) = (ݔ)ܥܸܣ +  becomes large the downward slope of the graph in Figure ݔ as ,(ݔ)ܥܨܣ



93 
 

 
12-4 implies that the difference  ܴܵܥܣ௞ത (ݔ) − (ݔ)ܥܸܣ =  becomes small. This is (ݔ)ܥܨܣ
sometimes referred to as the “spreading of overhead effect.” 
 
 A geometric example of short-run total, average and marginal cost curves based on the 
curves in Figure 12-3 appears in Figure 12-5. (The ܶܥܨ and ܥܨܣ curves are not drawn.) The 
presence of two scales on the vertical axis in the lower diagram and the relationships among  
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these curves are the same as in the long run case (Figure 11-7 of Chapter 11) with the following 
additions: 
 

1. The fact that the ܴܵܶܥ௞ത  and ܸܶܥ curves are parallel has two geometric implications: 
    First, there is only one ܴܵܥܯ௞ത  curve which has a minimum at ݔ଴. And second, 
    because the ܴܵܶܥ௞ത  curve is farther from the ݔ-axis than the TVC curve, the tangency  
    on the former with a straight line from the origin necessarily lies above and to the right  
    of that on the latter.  
 
2. From the second implication of (1), the minimum point on the ܴܵܥܣ௞ത  curve (over ݔᇱᇱ) 
    occurs above and to the right of that on the  ܥܸܣ curve (over ݔᇱ). 
 
3. The ܴܵܥܯ௞ത  curve goes through the minimum points of both ܴܵܥܣ௞ത  and ܥܸܣ curves. 
 
4. The ܴܵܥܣ௞ത  and ܥܸܣ curves become closer together as ݔ increases due to the  
    spreading of overhead effect. 
---------------------------------------------------------------------------------------------------- 

 
 

 
 The difference between the short-run and long-run total cost curves derives from the 
difference between the expansion paths on which each is based. As output increases in the short 
run, ݇, recall, is fixed at ത݇ and the firm moves along its short-run expansion path ݇ = ത݇. 
Increasing output in the long run causes both inputs to rise as the firm moves from one cost-
minimizing tangency to another along its long-run expansion path. Since the long-run expansion 
reflects cost minimization and the short-run expansion path does not (because it is based on a 
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fixed quantity of capital), short-run total costs are never smaller than long-run total costs and, in 
most cases, larger. The following geometry (Figure 12-6) and its accompanying argument 
illustrate these ideas. 
 
 In the input space of the left-hand diagram three isoquants are drawn ignoring the 
possibility of ridge lines. Each is denoted by the outputs produced along them, namely, ݔᇱ, ,ᇱᇱݔ
and ݔ′′′.  Each isoquant is tangent to an iso-cost line, whose slope is the negative of the fixed 
input price ratio ݌ℓ ⁄௞݌ . The tangencies occur at capital and labor input combinations A, B, and C 
respectively.  The red curve on which A, B, and C lie is the long-run expansion path.  In the short 
run, with capital or firm size fixed at ത݇, outputs ݔᇱ, ,ᇱᇱݔ and ݔ′′′ are produced with respective 
capital and labor input combinations Q, B, and R.  The blue straight line on which Q, B, and R 
appear is the short-run expansion path. 
 
 The long-run cost of producing the three outputs is, in each case, the cost of the least-cost 
basket of capital and labor inputs for producing those outputs, that is, the cost of baskets A, B, 
and C in the left-hand diagram, respectively.  These costs are associated with their outputs and 
identified in the right-hand diagram at points A, B, and C on the red long-run total cost curve in 
the same way as shown in Figure 11-6 of Chapter 11.  Consider now the long-run and short-run 
costs of producing output ݔᇱ. Since, in the left-hand diagram, basket A is cost-minimizing and 
basket Q is not, the short-run total cost of producing output ݔᇱ with basket Q has to be larger than 
the long-run total cost of producing that output with basket A.  Hence, in the right-hand diagram, 
the short-run total cost of producing output ݔᇱ lies at point Q on the blue short-run total cost 
curve which is necessarily above the red long-run total cost of producing that output at point A.  
The same argument (that C in the left-hand diagram is cost-minimizing while R is not) implies 
that the total cost of producing output ݔ′′′ on the short-run total cost curve at point R has to be 
above the long-run total cost of producing that output at point C on the long-run curve.  The 
basket of inputs B in the left-hand diagram is used to produce output ݔᇱᇱ in both long and short 
runs.  It follows that the long-run and short-run total costs of producing that output are identical, 
and that the long-run and short-run total cost curves are tangent at point B in the right-hand 
diagram.  Therefore, except where the two curves are tangent at B, the short-run total cost curve 
always lies above the long-run total cost curve.  (Note that, in the right-hand diagram, when 
output falls to zero, so does long-run total cost since the firm is able to reduce both ℓ and ݇ to 
zero.  But in the short run with capital fixed at ത݇, the firm still has to cover its fixed cost even if it 
is not producing anything. So its short-run cost remains at ത݇݌௞ when output falls to zero.) 

According to the above geometry and argument, with input prices fixed, each value of  ത݇ 
determines a different short-run total cost curve tangent to the long-run total cost curve. The 

short-run total cost curve tangent to the long-run total cost curve at B in the right-hand diagram  
of Figure 12-6 is reproduced in the top diagram of Figure 12-7 and labeled ܴܵܶܥ௞ത . The short-run 
total cost curve tangent to the long-run total cost curve at A does not appear in the right-hand 
diagram of Figure 12-6. But it is drawn as a second blue curve tangent to the red log-run total 
cost curve at A in the top part of Figure 12-7 and is identified by the symbol ܴܵܶܥ௞ത ᇲ. The red 
long-run total cost curve is labeled  ܥܴܶܮ. The translation of curves in the top diagram of Figure 
12-7 into blue short-run average cost curves, ܴܵܥܣ௞ത  and ܴܵܥܣഥ݇′, and red long-run average cost  
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curve ܥܣܴܮ appears in the bottom diagram of the figure. For output ݔ′′, for example, the short-
run and long-run averages are equal (the two curves are tangent) because the short- and long-run 
totals are equal and, to obtain the averages, both totals are divided by the same output ݔ′′. A little 
to the left or right of ݔ′′, the short-run averages are greater than the long-run averages because 
the short-run totals are larger than the long-run totals. Note that the minimum points of the short-
run curves are not tangent to the long-run curve which has its own minimum at ݔ∗. Also, 
although not explicitly identified in Figure 12-7, the minimum points of the short-run average 
cost curves in the lower diagram occur at the same outputs at which there are tangencies not 
appearing in the diagram between the corresponding short-run total cost curves and straight lines 
from the origin in the upper diagram. 

 In addition to its earlier characterization as the cost of the cost-minimizing basket for 
producing output ݔ, the long-run total cost (ݔ)ܥܴܶܮ at ݔ can also be seen, in reference to the 
upper diagram of Figure 12-7, as the minimum short-run total cost of producing ݔ over all firm 
sizes ത݇. In that diagram, the short-run total cost of producing ݔ′′ with firm size ത݇′ occurs at point 
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T. Other firm sizes will give different total costs at points above and below T. But the long-run 
total cost of producing output ݔ′′, namely (′′ݔ)ܥܴܶܮ, occurs at point B, which also appears on 
the short-run total cost curve associated with firm size ത݇, and corresponds to the lowest total cost 
of producing ݔ′′ over all of these possibilities. (Recall that the short-run cost of producing any 
output cannot be lower than the long-run cost of producing that output since the latter is cost-
minimizing over all relevant input baskets.) The same statement characterizing the long-run total 
cost of an output as the minimum of all short-run costs for producing that output can be made 
with respect to long-run average costs in reference to the lower diagram of Figure 12-7. 
 

To add marginal cost curves into the picture, the short-run total and average cost curves 
tangent to the long-run total and average cost curves at A in both diagrams of Figure 12-7 are 
redrawn in Figure 12-8 below. Recall that the marginal costs at values of ݔ represent the slopes  
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of the total cost curves at those values. Thus, referring to the top diagram of Figure 12-8, at ݔᇱ it 
is necessary that Lܴܥܯ(ݔᇱ) =  because the short- and long-run total cost curves are (ᇱݔ)ܥܯܴܵ
tangent at A and therefore have the same slopes. This implies that the blue short-run and red 
long-run marginal cost curves in the lower diagram of Figure 12-8 intersect when ݔ =  ᇱ. Forݔ
ݔ <  ᇱ, the slope of the short-run total cost curve in the upper diagram is flatter than that of theݔ
long-run curve. This means that Lܴ(ݔ)ܥܯ >  and, in the lower ݔ for those values of (ݔ)ܥܯܴܵ
diagram, the long-run marginal cost curve lies above the short-run marginal cost curve. 
Similarly, when ݔ > -ᇱ, the slope of the short-run total cost curve is steeper than that of the longݔ
run curve. Hence Lܴ(ݔ)ܥܯ <  and the long-run marginal cost curve lies below the (ݔ)ܥܯܴܵ
short-run marginal cost curve. Observe that, in the lower diagram, the blue short-run average 
cost curve is tangent to the red long-run average cost curve at the same value ݔᇱ at which the two 
marginal cost curves intersect. This is because ܴܵܶܥഥ݇′ ൫ݔ′൯ =  in the upper diagram (′ݔ)ܥܴܶܮ
forcing ܴܵܥܣഥ݇′ ൫ݔ′൯ =  as described above, and the two total cost curves are tangent at (′ݔ)ܥܣܴܮ
൯′ݔഥ݇′ ൫ܥܯܴܵ ᇱ ensuringݔ =  Also in the lower diagram, the two marginal cost curves .(′ݔ)ܥܯܴܮ
pass through the minimum points of their respective average cost curves as defined by the 
tangencies in the upper diagram between the total cost curves and straight (dashed) lines 
emanating from the origin. And, although not explicitly identified in Figure 12-8, the minimum 
points of the short- and long-run marginal cost curves in the lower diagram occur at the same 
levels of output at which the slopes of the respective total cost curves change from decreasing to 
increasing in the upper diagram as described for Figure 11-7 in Chapter 11. 
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Chapter 13 
Profit Maximization 

 
 
 Having dealt with the perfectly competitive firm’s costs in the last two chapters, attention 
now turns to its revenue and profit. Begin by adding the following assumptions to the model 
developed thus far to explain its buying and selling behavior: 
 

3. Long-run and short-run total cost curves appear as previously drawn so that average  
    and marginal cost curves can be determined and have the shapes attributed to them.1 
 
4. The firm hires (demands) inputs and produces and sells (supplies) output so as to  
    maximize its profit. 

 
All assumptions required for the present explanation of firm behavior have now been provided. 
The earlier assumptions were introduced in Chapter 10. The complete list appears in 
Supplemental Note D. 
 

Consider the firm’s revenue receipts first. Those receipts depend on the demand curve it 
faces. Now in general, the demand curve facing the firm is conceptually different from the 
market and individual consumer demand curves defined in earlier chapters. The latter, recall, 
indicates the amount that all buyers or a single buyer demand at each price. But except in the 
case of monopoly to be discussed in Chapter 22, the firm does not face the market demand curve 
or that of a single buyer. Rather it faces a demand curve that shows the quantity of output that it 
can sell at each price. (Thus, summing the demand curves facing each firm in a market does not 
generally yield the market demand curve.) Under perfectly competitive conditions, the firm is so 
small and there are so many of them that it has no impact on price regardless of how it might 
change the quantity of output it brings to the market. Thus, the firm is able to sell any amount it 
can produce and the demand curve it faces is a flat line parallel to the ݔ-axis at the level of the  

 

 

 
1 This assumption will occasionally be relaxed in later chapters to allow for argumentative and diagrammatic 
simplicity. Note that the long-run cost curves of constant returns to scale production functions do not satisfy this 
assumption since, as indicated at the beginning of Chapter 12, such production functions generate constant 
economies of scale. 
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market price. This demand curve is always known to the perfectly competitive firm. An 
illustration appears in Figure 13-1 where ݌௫

଴ is the market price. 
 

Along the demand curve facing the firm, the firm’s total revenue is given by the function 
 

(ݔ)ܴܶ =  ௫                                                                     (13.1)݌ݔ
 
where ݌௫ is determined in the output market. Because the firm is unable to influence or change 
the market price, it takes the price of its output as fixed. It follows that the graph of its total 
revenue function (13.1) is a straight line emanating from the origin with slope ݌௫ as pictured in 
Figure 13-2  

 
The firm’s average revenue function is 

 

(ݔ)ܴܣ =
(ݔ)ܴܶ

ݔ
 

 
or, using equation (13.1),  
 

(ݔ)ܴܣ =  ௫.                                                                    (13.2)݌
 
In this expression ݔ is the independent variable and ݌௫ the dependent variable. Since average 
revenue, like total revenue, is defined along the demand curve facing the firm, each value of ݔ 
satisfying equation (13.2) has to be the quantity of the firm’s output it can sell at the price value 
(ݔ)ܴܣ ௫. Therefore, solving݌ =  ௫ yields the demand curve facing the݌ as a function of ݔ ௫ for݌
firm. And, as it appears in Figure 13-1, the graph of the demand curve facing the firm is the same 
as the average revenue curve of equation (13.2) except that, as with the geometry of the market 
and individual consumer demand curves, the axes have been reversed and ݔ has become the 
dependent variable although located on the horizontal axis and ݌௫ the independent variable on 
the vertical. 
 

Since ݌௫ is constant, the marginal revenue function, (ݔ)ܴܯ, thought of in approximate 
form as the additional revenue obtained per unit of additional output, can also be obtained 
equivalently in derivative form as 
 

$ 

 ݔ

ܴܶ 

Figure 13-2 
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(ݔ)ܴܯ =
(ݔ)ܴܶ݀

ݔ݀
                                                             (13.3) 

 
or, upon differentiating (13.1) with respect to ݔ, 
 

(ݔ)ܴܯ =  ௫.                                                                    (13.4)݌
 
Combining equations (13.2) and (13.4), it is clear that in this case (ݔ)ܴܯ =  ݔ at each (ݔ)ܴܣ
and, with ݌௫ = ௫݌

଴ say, the graphs of each are the same straight line parallel to the ݔ-axis at the 
level of ݌௫

଴. This is illustrated in Figure 13-1.  
 
 Turning to the firm’s profit, recall that ߨ was defined as a function of ݔ, ℓ, and ݇ in 
equation (11.2) of Chapter 11 as ߨ = ௫݌ݔ − (ℓ݌ℓ + ,௞), where (ℓ݌݇ ݇) is the basket of inputs 
used to produce output ݔ. Since the firm operates to maximize its profit, in the long run it will 
always produce ݔ with the cost-minimizing combination of inputs. Thus ݌ℓ +  ௞ can be݌݇
replaced by the expression for the cost of that basket, (ݔ)ܥܴܶܮ, developed in Chapter 11. Using 
equation (13.1) to substitute ܴܶ(ݔ) for ݌ݔ௫, profit ߨ can now be written as a function of ݔ alone 
or 
 

(ݔ)ߨ = (ݔ)ܴܶ −  (13.5)                                                    .(ݔ)ܥܴܶܮ
 
In this expression the cost of producing each output has already been minimized. To maximize 
profit, then, it only remains to find the value of ݔ that does the maximizing. The first step is to 
identify the first-order condition that characterizes the critical value ݔ଴. That is secured by  
equating the derivative of (13.5) to zero: 
 

(଴ݔ)ߨ݀
ݔ݀

=
(଴ݔ)ܴܶ݀

ݔ݀
−

(଴ݔ)ܥܴܶܮ݀
ݔ݀

= 0.                                         (13.6) 
 
Using equation (11.5) of Chapter 11 and (13.3) above, the equation obtained from the right-hand 
equality in (13.6) may be rewritten as ܴܯ(ݔ଴) =  ,or, from equation (13.4) (଴ݔ)ܥܯܴܮ
 

(଴ݔ)ܥܯܴܮ =  ௫.                                                               (13.7)݌
 
When ݔ଴ is associated with maximum profit, equation (13.7) can be derived in words: If 
(ݔ)ܴܯ >  then producing an extra unit of output would expand revenue by ,ݔ at some (ݔ)ܥܯܴܮ
more than its cost. Hence profit would increase and could not have been maximized at ݔ. If 
(ݔ)ܴܯ <  then the last unit produced costs more than the revenue obtained from its ,(ݔ)ܥܯܴܮ
sale. Profit could then be increased by not producing it. Once again, profit could not have been 
maximized at ݔ. A parallel argument applies when ݔ଴ identifies a minimum. 
 
 For the short run, set ݇ = ത݇ and replace ܥܴܶܮ and ܥܯܴܮ in the above symbolism and 
equations by ܴܵܶܥ௞ത  and ܴܵܥܯ௞ത  from Chapter 12. The fact that that ܴܵܶܥ௞ത (ݔ) = (ݔ)ܥܸܶ +
 from equation (12.1) in Chapter 12 does not introduce further modification of equations (ݔ)ܥܨܶ
(13.5) – (13.7). 
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 Second-order conditions relating to maximum or minimum profit can be equivalently 
expressed either in terms of strict concavity and convexity of the profit function, or in terms of 
the second order derivative of that function. With respect to the former the maximum occurs in 
the region where the profit function is strictly concave; the minimum appears where it is strictly 
convex. With respect to derivatives and in the long run (similar statements apply to the short run 
by replacing long-run functions with short-run functions as described above), the second-order 
condition ensuring a maximum obtained from the second-order derivative of equation (13.5) is 
 

݀ଶߨ(ݔ଴)
ଶݔ݀ =

݀ଶܴܶ(ݔ଴)
ଶݔ݀ −

݀ଶܥܴܶܮ(ݔ଴)
ଶݔ݀ < 0.                                     (13.8) 

 
Equation (13.8) is an alternative way of stating that the profit function is strictly concave around 
the point of maximum profit ݔ଴. Since, using equation (13.4), 
 

݀ଶܴܶ(ݔ଴)
ଶݔ݀ =

(଴ݔ)ܴܯ݀
ݔ݀

=
௫݌݀

ݔ݀
= 0 

 
because ݌௫ is determined by the market and constant from the point of view of the firm, and 
since, from equation (11.5) of Chapter 11, 
 

݀ଶܥܴܶܮ(ݔ଴)
ଶݔ݀ =

(଴ݔ)ܥܯܴܮ݀
ݔ݀

, 
 
the second-order condition (13.8) implies that 
 

(଴ݔ)ܥܯܴܮ݀
ݔ݀

 > 0.                                                           (13.9) 
 
To ensure that ݔ଴ represents a minimum, the inequality of (13.9) should be reversed. 
 
 The geometry of long- and short-run profit maximization appears in Figures 13-3 and 13-
4 respectively. Cost curves are drawn in red. Observe that in each case, there are two values of ݔ 
at which marginal cost equals price, that is, at which first-order derivative conditions are 
satisfied. One corresponds to maximum profit, the other to minimum profit. The signs of  
(଴ݔ)ܥܯܴܮ݀

ൗݔ݀  in the above discussion of second-order conditions mean that, around the 
maximizing value ݔ଴, the long-run marginal cost curve must slope upward and hence that, in this 
region, the long-run total cost function is strictly convex. At the minimizing value, the sign in 
(13.9) is reversed and, around that value, the long-run marginal cost curve slopes downward and 
the long-run total cost function is strictly concave. 
 

There are several things to notice in Figure 13-3. First, the vertical difference between the 
TR and LRTC curves is the same as the vertical height (positive or negative) of the ߨ curve at 
each ݔ in accordance with equation (13.5). Second, at ݔ෤ᇱ and ݔ෤ profit is zero so that for both ݔ 
values (ݔ)ܥܴܶܮ = (ݔ)ܴܶ Using .(ݔ)ܴܶ = (ݔ)ܥܴܶܮ from (ݔ)ܴܶ ௫ to eliminate̅݌ݔ =  (ݔ)ܴܶ
and dividing the result by ݔ gives, from equation (11.4) of Chapter 11 and equation (13.2) above, 
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(ݔ)ܥܣܴܮ =  ௫. This is represented in the lower part of the diagram by the intersections of the̅݌
=) ܴܯ curve and the ܥܣܴܮ (ݔ)ܥܯܴܮ is maximized and ߨ ,෤ᇱ. Thirdݔ ෤ andݔ line a botht (ܴܣ =
(ݔ)ܥܯܴܮ is minimized and ߨ ଴; andݔ ௫ at̅݌ = ଴ᇲݔ ௫ at̅݌ . At these two values of ݔ the ܥܯܴܮ 
curve and the ܴܯ line intersect. Fourth, for reasons discussed in Chapter 12, the LRAC curve has 
a minimum at ݔො and the LRMC has a minimum at ݔ∗. (When drawing Figure 13-3 to account for 
these characteristics, consider using the following procedure: After lining up the two pairs of 
coordinate axes, draw, in the upper part of the diagram LRTC first, followed by TR and then ߨ. 
Next, in the lower part of the diagram draw in the following order the horizontal line at ̅݌௫, 
LRMC, and LRAC.) 

 
 

Focusing now on the short run with ݇ = ത݇, where ܴܵܶܥ௞ത  and ܴܵܥܯ௞ത replaces ܥܴܶܮ and 
௞തܥܴܶܵ in equations (13.5) – (13.7), and ܥܯܴܮ (ݔ) = (ݔ)ܥܸܶ +  The geometric parallel .(ݔ)ܥܨܶ
to Figure 13-3 is shown in Figure 13-4. With respect to Figure 13-4, the properties of the cost 
curves carry over from those described in Chapter 12 as follows: Observe first that SRTܥ௞ത  (in 
blue) and TVC (in gold) are parallel curves. They differ by the amount of the fixed cost ത݇݌௞ at 
each ݔ (Figure 12-3 of Chapter 12). Second, the tangency between the line from the origin and 
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SRTܥ௞ത  at ݔො lies to the right of that between the line from the origin and TVC at ݔො′ (Figure 12-5 of 
Chapter 12).  Hence the minimum of SRAܥ௞ത  (also at ݔො) lies to the right of the minimum of AVC 
(at ݔො′). Third, the SRAܥ௞ത  (in blue) and AVC (in gold) curves become closer together as x 
increases because their difference is the average fixed cost (ܥܨܣ = ത݇݌௞ ⁄ݔ ), and that becomes 
smaller as x increases (Figures 12-4 and 12-5 of Chapter 12). Fourth, the minimum of the 
SRMܥ௞ത  curve occurs at ݔ∗where the slope of the SRTܥ௞ത  curve changes from decreasing to 
increasing.  

 
There are also parallels with Figure 13-3. First, the vertical difference between the TR 

and SRTܥ௞ത  curves is the same as the vertical height (positive or negative) of  ߨ at each x. 
Second, as in the long-run case described above (Figure 13-3), SRTܥ௞ത  = TR, ߨ = 0, and 
௞തܥܣܴܵ = ௞തܥܯܴܵ is maximized and ߨ ,෤′. And thirdݔ ෤ andݔ ௫ at̅݌ =   is ߨ  ଴; andݔ ௫ at̅݌

 

 
minimized and ܴܵܥܯ௞ത =  ଴ᇲ. (One way to draw Figure 13-4 and account for theseݔ ௫ at̅݌
characteristics is, after lining up the two pairs of coordinate axes, to draw the parallel SRTܥ௞ത  and 
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TVC curves first.  Then, in the following order, draw TR, ߨ, the horizontal line at ̅݌௫, SRMܥ௞ത , 
SRAܥ௞ത , and AVC.) 
 

In both the long and short runs, once the profit-maximizing value of ݔ is determined, the 
basket of inputs that corresponds to that output (and, as will be seen in subsequent chapters, also 
maximizes firm profit when expressed as a function of inputs) is found from the intersection of 
the isoquant corresponding to the profit-maximizing output ݔ଴ and the appropriate expansion 
path –  (ℓ଴, ݇଴) in the long run and ℓ଴ in the short run – as shown in Figure 13-5. 
 

 
 

The entire argument may be summarized as follows: Under the assumptions of the model 
set out from Chapters 9 up to this point (and listed in Supplemental Note D), the explanation of 
firm buying and selling behavior developed here views the firm as faced with a fixed technology 
and fixed input and output prices. In that context, it also sees the firm as pursuing the procedure 
set out below to arrive at the profit-maximizing output quantity to produce and the profit-
maximizing input quantities to employ (the steps of this procedure are reproduced in 
Supplemental Note E): 

1. If ridge lines exist in the input space, eliminate the regions outside of the area between 
    them and beyond any intersection point if there is one. This reduces the input space to 
    its relevant region. (Recall from Chapter 10 that if ridge lies do not exist, the relevant 
    region is the entire input space excluding the co-ordinate axes.) 
 
2. Using input price information and cost minimization (long run) or fixed capital  
    information ത݇ (short run), calculate the appropriate expansion path in the relevant  
    region and confine attention to it. 
 
3. Using the production function, expansion path, and input price information, calculate  
    all cost functions and curves expressing cost as a function of output. 
 
4. Using output price information, calculate all revenue functions and curves. 
 

Expansion path 

Ridge lines 

 ௢ݔ

ℓ଴ ℓ 

݇ 

݇଴ 

Long run 

݇ 

ℓ 

Short run 

ത݇ 

ℓ଴ 

 ௢ݔ

Expansion path 

Ridge lines 

Figure 13-5 



106 
 

5. Using cost and revenue information, calculate the profit function and the profit- 
    maximizing output ݔ଴. 
 
6. From the intersection of the isoquant relating to the profit-maximizing output and the 
     long- or short-run expansion path, calculate the profit-maximizing input quantities.  

 
The output and input quantities obtained from this procedure are those that will be, respectively, 
sold and bought by the firm in response to output and input prices dictated by the markets. This 
is the basis for the specification of the firm’s output supply and input demand functions 
discussed in the nest chapter.  
 

As was the case with the model of consumer buying and selling behavior in Chapters 5 
and 6, to be accepted as an explanation of real firm behavior, it is not necessary that firms 
actually follow this exact procedure with function satisfying all of the assumptions made above. 
It is only required that enough of the model’s ideas, such as fixed and variable cost, profit 
maximization, and cost minimization resonate, as they often do, in a reasonable way with what is 
present in reality. The rest of the structure (including the assumptions) only provides a 
framework within which firm behavior can be analyzed in precise terms and pursued in 
appropriate directions. 
 
 Changes in the profit-maximizing quantities of this model come about through variations 
in the elements that are fixed in the procedure described above. For example, were technology to 
modify, the firm’s production function could change. The latter modification works its way 
through the six steps described above, thereby altering the output and input quantities obtained 
from the maximization of profit.  The manner in which price variations affect these quantities are 
examined in greater detail below. 
 
 First, any change in a single input price, say ݌ℓ (with technology, ݌௞, and ݌௫ held fixed), 
works its way throughout this model in the following steps: 
 
Long run: 
 

1. Since ݌ℓ changes with ݌௞held fixed, the input price ratio ݌ℓ ௞ൗ݌ changes and hence so  
       does the slope of the iso-cost lines. 

 2. This changes the locations of the tangencies between iso-cost lines and isoquants. 
 3. This changes the long-run expansion path. 
 4. This changes the long-run cost curves – in particular, the long-run marginal cost curve. 
 5. This changes the intersection of the long-run marginal cost curve and the marginal 

 revenue line, and hence the profit-maximizing output. 
 6. This changes the isoquant relating to the profit-maximizing output.  

7. Since there is a new long-run expansion path (Step 3) and a new isoquant relating to 
the profit-maximizing output (Step 6), there is a new intersection between them,  
and hence a change in the profit-maximizing quantities of labor and capital inputs. 
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Short run with ݇ = ത݇: 
 
 1. There is no change in the short-run expansion path because the quantity of capital input 

 is fixed. 
2. The short-run total cost curve still changes because ݌ℓ changes. That curve pivots  

 around the fixed-cost point on the vertical ($) axis (both ത݇ and ݌௞ remain fixed –  
 only ݌ℓ varies) changing its slope at each value of  ݔ as shown in Figure 13-6. In  
that diagram the SRTܥ௞ത  curve farther from the ݔ-axis is associated with  
a higher price of labor. 

 

 
 

 3. This change in the slopes of the short-run total cost curve changes the short-run 
 marginal cost curve. 

 4. This changes the intersection of the short-run marginal cost curve and the marginal 
 revenue line, and hence the profit-maximizing output. 

 5. This changes the isoquant relating to the profit-maximizing output.  
6. This changes the intersection of the isoquant relating to the profit-maximizing output  

 and the short-run expansion path, and hence changes the profit-maximizing  
 quantity of labor input. 

 
 In the long run, a change in the price of capital (with no alteration in technology or the 
other prices) works its way through the profit-maximizing process in a manner similar to that of 
variations in the price of labor. In the short run, however, since capital is fixed, such a change 
only modifies the firm’s fixed costs. It does not affect its marginal cost. The firm’s profit-
maximizing output and input quantities therefore remain the same, although profit itself is 
necessarily altered. 
 

In addition, any change in the output price ݌௫ (with technology, ݌ℓ, and ݌௞ held fixed) 
also has an impact on the profit-maximizing quantities of the model. But that impact is less 
extensive than that for labor and long-run capital input price changes. 
 
Long run: 
 

1. Since there are no changes in technology and input prices, there are no changes in 

$ 

 ݔ

ത݇݌௞ 

Figure 13-6 

SRTܥ௞ത  
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isoquant-iso-cost tangencies, the long-run expansion path, or the long-run cost  
curves. 

2. But the change in ݌௫ still changes the revenue curves – in particular, the marginal  
revenue curve. 

  3. This changes the intersection of the long-run marginal cost curve and the marginal 
 revenue line, and hence the profit-maximizing output. 

 4. This changes the isoquant relating to the profit-maximizing output.  
5. This changes the intersection of the long-run expansion path and the isoquant 

 relating to the profit- maximizing output, and hence changes the profit- 
 maximizing quantities of labor and capital inputs. 

 
Short run with ݇ = ത݇: 
 
 1. There is no change in the short-run expansion path because the quantity of capital input 

 is fixed. 
      2. Since there are no changes in technology and input prices, there are no changes in the  

short-run cost curves. 
3. But the change in ݌௫ still changes the revenue curves – in particular, the marginal  

revenue curve. 
 4. This changes the intersection of the short-run marginal cost curve and the marginal 

 revenue line, and hence the profit-maximizing output. 
 5. This changes the isoquant relating to the profit-maximizing output.  

6. This changes the intersection of the isoquant relating to the profit-maximizing output  
 and the short-run expansion path, and hence changes the profit-maximizing 
 quantity of labor input.  
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Chapter 14 
Output Supply and Input Demand Functions,  

Short-Run Output Supply Curves, Short- 
Run Equilibrium, Taxation, 

and Producer Surplus 
 
 
 According to the model of firm buying (demanding) and selling (supplying) behavior 
developed in the last five chapters, as output and input prices change, new output and input 
quantities are determined through profit maximization. This process of variation generates output 
supply and input demand functions. In the long run the input demand functions are 
 

 ቐ
ݔ = ݃௫(݌௫, ,ℓ݌ (௞݌
ℓ = ݃ℓ(݌௫, ,ℓ݌ (௞݌
݇ = ݃௞(݌௫, ,ℓ݌ (௞݌

ቑ   if and only if   ൜ ݔ, ℓ, ݇ are long run profi ݉ܽ݅ݔ −
,௫݌ values given ݃݊݅ݖ݅݉ ,ℓ݌ .௞݌  ൠ,          (14.1) 

 
for all ݌௫, ,ℓ݌  and ݌௞. As will be seen in Chapter 15, the long-run output supply function ݔ =
݃௫(݌௫, ,ℓ݌  ௞) requires some modification if all long-run specifications are to be fully met. For݌
the short run there is an output supply function but only one input demand function, namely that 
for labor, for which the same symbols ݃௫ and ݃ℓ are used: 
 

  ൜
ݔ = ݃௫(݌௫, ,ℓ݌ (௞݌
ℓ = ݃ℓ(݌௫, ,ℓ݌ ,ݔ௞)ൠ   if and only if   ൜݌ ℓ are short run profi ݉ܽ݅ݔ −   

,௫݌ values given ݃݊݅ݖ݅݉    ,ℓ݌ .௞݌ ൠ,          (14.2) 

                               
also for all ݌௫, ,ℓ݌  and ݌௞. There is no short-run demand function for capital since that input is 
fixed over the short-run time period. The models that generate these long- and short-run 
functions provide explanations of long- and short-run firm buying and selling behavior. 
 
 The output supply and input demand functions of the firm are observable in the same 
sense as the demand and supply functions of the consumer: At any moment, watching what the 
firm buys and sells at the prices dictated by the economy’s markets provides one observed 
“point” on these functions. The properties of these functions as derived from the assumptions 
made are important for the same reason that the properties of the consumer functions are 
important: If a firm’s observable behavior expressed in terms of such functions does not have the 
same properties as those of functions (14.1) or (14.2), then the model does not explain that firm’s 
behavior. However, an extensive discussion of these properties will not be undertaken here. Only 
three examples will be provided. That for the short-run functions ݃௫ is taken up next. A property 
of the long-run output supply function (that accounts for the modification referred to above) and 
one for the short-run labor demand function ݃ℓ are deferred to the next chapter. 
 

Consider, then, the short run with ݇ = ത݇. To obtain the supply curve for the firm’s output 
from ݃௫ in equation (14.2), fix the two input prices ݌ℓ = ℓ݌

଴ and ݌௞ = ௞݌
଴, and plot the graph of 

ݔ = ݃௫൫݌௫, ℓ݌
଴, ௞݌

଴൯ with axes reversed. It will now be shown that this short-run supply curve is 
the upward sloping portion of the firm’s short-run marginal cost curve above minimum average 
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variable cost. Since the argument will be presented geometrically in reference to short-run cost 
curves, it will be useful first to describe how total costs, total revenue, and profit for a profit-
maximizing output ݔ଴ can be read off of the diagram containing average and marginal costs as 
pictured in Figure 14-1.  

 
In Figure 14-1, profit is maximized at output ݔ଴ where ܴܵܥܯ(ݔ଴) = ௫݌

଴. Total revenue at 
௫݌ ଴ isݔ

଴ݔ଴, as represented by the area of the combined rectangles 1 + 2 + 3. Short-run total cost 
is short-run average cost at ݔ଴ times ݔ଴ or the area of rectangles 2 + 3. Profit at ݔ଴ is the 
difference between total revenue at ݔ଴ (rectangles 1 + 2 + 3) and short- run total cost at ݔ଴ 
(rectangles 2 + 3) or the area of rectangle 1. Total variable cost at ݔ଴ is average variable cost at 
 ଴ is the difference between short-runݔ ଴ or the area of rectangle 3. Total fixed cost atݔ ଴ timesݔ
total cost at ݔ଴ (rectangles 2 + 3) and total variable cost at ݔ଴ (rectangle 3) or the area of 
rectangle 2. 
 
 The first thing to establish in showing that the short-run output supply curve is the firm’s 
short-run marginal cost curve above minimum average variable cost is the relationship between 
the firm’s output supply and short-run marginal cost in each profit-maximizing position. Still 
referring to Figure 14-1, for an output price such as ݌௫

଴ whose associated horizontal line 
intersects the upward sloping portion of the SRMܥ௞ത  at ߜ, the firm maximizes its profit at ݔ଴, 
where ݔ଴ is the value that satisfies the equation ܴܵܥܯ௞ത (ݔ) = ௫݌

଴. According to the assumption 
that the firm produces and supplies the profit-maximizing output (listed as number 4 at the 
beginning of Chapter 13 and in Supplemental Note D), the firm will supply output ݔ଴. More 
generally, for any such price the firm’s output supply will be that for which  
 

௞തܥܯܴܵ (ݔ) =  .௫݌
 
Output ݔᇱ for which the intersection of the horizontal line associated with ݌௫

଴ occurs in the 
negatively sloped portion of the short-run marginal cost curve at ߛ in Figure 14-1 is not, as 
shown in Chapter 13, profit maximizing. Hence, only points on the upward sloping portion of the 
SRMܥ௞ത  curve, that is, ignoring a cut-off described below, have the same coordinates as points 
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on the graph of the supply function ݔ = ݃௫൫݌௫, ℓ݌
଴, ௞݌

଴൯. Therefore, the two curves are identical 
for profit-maximizing outputs. It follows that the short-run supply curve is upward sloping, and 
this is the observable property of the firm’s output supply function referred to above. 
 
 However, it turns out that, as previously indicated, the supply curve is the upward sloping 
portion of the SRMܥ௞ത  curve only down to the latter’s intersection with the average variable cost 
curve at the point of minimum average variable cost ߙ in Figure 14-1. Outputs associated with 
intersections below ߙ will not be supplied by the firm. To see why, observe that as ݌௫ falls from 
௫݌

଴ in Figure 14-1, all of the rectangles become smaller. When the horizontal line associated with 
௫݌

଴ reaches the level of ߚ, the total revenue and short-run total cost rectangles become equal as in 
Figure 14-2, and ߨ(ݔ଴) = 0. At this point, referred to as the break-even point, the firm is said to 

 
be earning a normal profit.  
 
 It is worth pausing for a moment to consider the notion of normal profit in some detail. 
Normal profit may be thought of as the minimum return necessary for the owners of the firm to 
keep their money invested in the firm. This may be understood as follows: The owners of the 
firm have invested their funds by buying the capital ത݇ that the firm uses in production and 
supplying it to the firm for an expected return of ݌௞

଴ ത݇, where ݌௞
଴ is the given market price of 

capital. Assume the owners also provide the entrepreneurial input to the firm which results in the 
firm’s profit ߨ. That profit is the reward to the owners for their entrepreneurial contribution. 
Thus, the total expected return on the owners’ investment in the firm is 
 

௞݌
଴ ത݇ +  .(ݔ)ߨ 

 
Were the owners to remove their money from the firm for investment elsewhere (of course, they 
could only do this in the long run), they would have to sell ത݇ on the market and would receive 
௞݌

଴ ത݇ for it. As long as (ݔ)ߨ > 0, their return is greater than ݌௞
଴ ത݇, and assuming positive profits do 

not exist as investment opportunities in other industries, the owners are doing better by keeping 
their money where it is than by selling ത݇ on the market and putting their funds elsewhere. Thus 
when (ݔ)ߨ > 0, there is there is no incentive for long-run considerations of investment removal. 
When (ݔ)ߨ < 0, since the variable cost (that is, the cost of the labor input) has to be paid before 

௞തܥܯܴܵ  

௞തܥܣܴܵ  

 ܥܸܣ

 ߙ

 ߚ

ܴܶ൫0ݔ൯ = ௞തܥܴܶܵ  (0ݔ)

  ݔ  ଴ݔ
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the fixed cost, the firm is unable to pay for is capital at the market rate. In that case, the owners 
can do better by selling ത݇ on the market and long run considerations of removal come into play. 
Assume the owners keep their investment in the firm when (ݔ)ߨ = 0. Then ݌௞

଴ ത݇ is the minimum 
return necessary for the owners to keep their investment in the firm, that is, the normal profit. In 
the circumstance in which (ݔ)ߨ > 0, the firm is said to be earning abnormal, excess, or 
economic profit. When (ݔ)ߨ < 0, the firm is said to be incurring a loss.  
 

Returning to the short-run output supply curve, when ݌௫
଴ falls to the level of ߚ in Figure 

14-2 the owners will want to keep the firm operating and not let it shut down. As described 
above, when operating at zero profit, the owners still receive a payment of ݌௞

଴ ത݇. Were the firm to 
shut down, all revenue would vanish, and the owners of the firm would not obtain any return on 
their investment. 
 
 But even when ݌௫

଴ falls below the break-even point ߚ as in Figure 14-3 and the firm is 
suffering losses, it will still not shut down. (The firm cannot go out of business because this is 
the short run and the owners of the firm do not have enough time to sell ത݇ on the market.) Now 
in the short run the firm still has to pay its variable cost first and then cover as much of the fixed 
cost of its capital as it can. At ݌௫

଴ in Figure 14-3, the profit-maximizing output is ݔ଴.The sum of 
௞തܥܴܶܵ rectangles 1 + 2, or ,(଴ݔ)ܥܨܶ rectangle 3, plus ,(଴ݔ)ܥܸܶ   ,(଴ݔ)ܴܶ is larger than ,(଴ݔ)
 

 
rectangles 2 + 3. The firm’s loss is given by rectangle 1. This loss is absorbed by the owners of 
the firm because the firm can pay them only rectangle 2 of its total fixed cost. Were the firm to 
get rid of its labor and shut down so that ݔ = 0, then at that output ܴܶ(0) = (0)ܥܸܶ = 0, the 
firm’s loss would be all of its fixed cost, (0)ߨ = ௞݌−

଴ ത݇ (rectangles 1 + 2), and the owners of the 
firm would receive no return on their investment. Thus, as long as ܴܶ(ݔ଴) >  the ,(଴ݔ)ܥܸܶ
owners will recover at least part of the fixed cost and, for that reason, insist that the firm continue 
production. Point α in the diagram is known as the shut-down point. Were ݌௫

଴ to fall below that 
level, the firm could not even recover in revenue all of its variable cost. It would therefore lose 
more than just its fixed cost. It could reduce its loss to the amount of the fixed cost by shutting 
down and ceasing production, thereby eliminating all variable cost. It follows, then, that the firm 
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would not supply any output on the market when the horizontal line associated with ݌௫
଴ intersects 

the SRMܥ௞ത  curve below α. This completes the argument establishing that the firm’s short-run 
supply curve is its short-run marginal cost curve above minimum average variable cost (ߙ in 
Figure 14-3). 

--------------------------------------------------------------------------- 
 
 
 

Recall that equilibrium is a position of rest. All forces present balance each other out and 
there is no tendency for anything to change. As was seen in Chapter 3, a market is in equilibrium 
when supply equals demand. Likewise, given input and output prices, if a firm is hiring inputs 
and selling output so as to maximize its profit, there is no incentive for any change. The firm is 
“at rest” and may be said to be in equilibrium. Interpret the perfect information assumption of 
perfect competition to imply that all firms have access to the same technology and therefore have 
the same production functions, cost functions, and cost curves. Then, with all firms having 
identical cost curves, the relationship between the typical or representative firm and the market 
or industry at short-run simultaneous equilibrium, where every firm in the market is maximizing 
its profit and supply equals demand in the market as a whole, appears in Figure 14-4. Here, ݔ௙ 
denotes firm output and ݔ௠ represents market quantities. The symbol ܥܯܴܵ ߑ௞ത  indicates that  
   

 
the supply curve ܵ is the (horizontal) sum of the supply curves of all individual firms in the 
market, each starting at the minimum-average-variable-cost point ߙ. Profit maximization for the 
representative firm occurs at ݔ௙

଴, market equilibrium is at price ݌௫
଴ and quantity ݔ௠

଴  where supply 
equals demand, and 

௠ݔ
଴ = ෍ ௙ݔ

଴, 

where the sum is taken over all firms in the industry. Abnormal firm profit  ߨ൫ݔ௙
଴൯ > 0. 

------------------------------------------------------------ 
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 Consider a market and its firms in short-run equilibrium. Suppose the government were 
to impose a tax of ݐ cents per unit of output sold. This is called a specific tax. Firms would 
collect the tax and send the revenue it generates to the government. The tax would raise the 
short-run marginal costs of the firm, that is, to the additional cost of producing and selling each 
unit of output, the firm adds the tax that has to be sent to the government. In terms of Figure 14-
4, the ܴܵܥܯ௞ത  curve would shift up by ݐ. The market supply curve ܵ would also shift up by the 
amount of the tax.1 The new equilibrium is shown in Figure 14-5 which uses only the short-run  
 

 
marginal cost and market supply and demand curves from Figure 14-4. The minimum-average-
variable-cost points are not shown. In both diagrams of Figure 14-5, ݌௫

଴ is the market equilibrium 
price before the tax is imposed; the after-tax equilibrium price is ݌௫

ᇱ . The before- and after-tax 
market equilibrium quantities are, respectively, ݔ௠

଴  and ݔ௠
ᇱ ; the before- and after-tax 

profit=maximizing firm quantities are ݔ௙
଴ and ݔ௙

ᇱ .  And the vertical distance between points A and 
B, and between the before- and after-tax curves everywhere, is ݐ. Thus 
 

ݐ = ௫݌
ᇱ −  .ݎ

 
where ݎ is the revenue per unit of output that the firm obtains after sending the tax to the 
government. 
 
 What is called the “incidence” of the tax refers to who pays it. That is understood as 
follows: The increase in the market equilibrium price ݌௫

ᇱ − ௫݌
଴, or the vertical distance between A 

 
1 This is because the market supply curve is obtained by summing the quantities supplied at each price by all firms 
in the market. Since, for every firm quantity supplied, the price that calls forth that quantity is increased by the 
amount of the tax, the same must be true for the sum of those quantities. 

௞തܥܯܴܵ  

௫݌
ᇱ  

$ 

௙ݔ
଴ ݔ௙ 

Representative firm Market (industry) 

 ܦ

ܵ 

௠ݔ
଴  ௠ݔ 

Figure 14-5 

௫݌  

௫݌
ᇱ  

௞തܥܯܴܵ +  ݐ

௙ݔ
ᇱ ௠ݔ 

ᇱ  

ܵ +  ݐ

௫݌
଴ ݌௫

଴ 
 ݎ ݎ

A 

B 

A 

B 

C C 



115 
 

and C in Figure 14-5, is considered to be what the consumers or buyers pay. But that, of course, 
is less than the amount of the tax ݐ. The remainder ݐ − ௫݌)

ᇱ − ௫݌
଴) or the distance between C and 

B in Figure 14-5 is said to be paid by the firms. The sum of these distances yields the amount of 
the tax: 
 

௫݌
ᇱ − ௫݌

଴ + ݐ  − ௫݌)
ᇱ − ௫݌

଴) =  .ݐ
------------------------------------------------------------ 

 
 
 
 Producer surplus is the difference between the market price of a good and a unit’s 
marginal cost summed over all units produced. In Figure 14-6, producer surplus for the firm in 
the short run is illustrated in terms of the firm producing output ݔ଴ with, to keep things simple, 
the short-run marginal cost curve extended to the vertical axis. Producer surplus for the unit of 
output labeled 1 is the length of the straight line connecting A and B. As with consumer surplus, 
taking each point on the ݔ-axis as a unit and summing over all units yields the area between the 
horizontal line at ݌௫

଴  and the short-run marginal cost curve SRMܥ௞ത . 

 
It can be shown with more advanced mathematics that, in the short run, ܸܶܥ(ݔ଴) equals 

the area in Figure 14-6 under the short-run marginal cost curve up to ݔ଴. The area representing 
producer surplus combined with that representing ܸܶܥ(ݔ଴) is the same as the area representing 
total revenue ݌௫

଴0ݔ. Using that and the fact that ߨ(ݔ଴) = (଴ݔ)ܴܶ − (଴ݔ)ܥܸܶ −  ,(଴ݔ)ܥܨܶ
producer surplus is the sum of fixed cost plus profit, that is, 
 

(଴ݔ)ܴܶ − (଴ݔ)ܥܸܶ = (଴ݔ)ܥܨܶ +  (14.3)                                       .(଴ݔ)ߨ
 

Producer surplus in the long run is even simpler. Start with the short-run marginal cost 
curve in Figure 14-6 which depends on the capital the firm is using in the long run. Change that to 
the long-run marginal cost curve. Since there is no fixed cost in the long run, ܸܶܥ(ݔ଴) becomes 
 and equation (14.3) reduces producer surplus to (଴ݔ)ܥܴܶܮ
 

(଴ݔ)ܴܶ − (଴ݔ)ܥܴܶܮ =  .(଴ݔ)ߨ
 

Figure 14-6 

$ 

௫݌
଴

௞തܥܯܴܵ  

 (଴ݔ)ܥܸܶ

Producer 
surplus 

A 

B 

 ݔ ଴ݔ 1



116 
 

 Since the market supply curve is the horizontal sum of all short-run firm marginal cost 
curves, the vertical length from any quantity on the ݔ-axis to the market supply curve is the short 
run marginal cost of producing that quantity. Hence producer surplus at market equilibrium is the 
area between the market supply curve and the horizontal line connecting the demand-supply curve 
intersection with the vertical axis. The diagram corresponding to Figure 14-6 for short-run 
producer surplus at the market level appears in Figure 14-7 with the market supply curve, extended 
to the vertical axis as with the short-run marginal cost curve in Figure 14-6. 

 
Producer surplus benefits consumers in the same way that consumer surplus does because 

producer surplus accrues to the owners of the firm who are, themselves, consumers. Consider a 
short-run equilibrium (ݔ଴, ௫݌

଴) in a market with, for simplicity, a linear demand curve ܦ and a 
linear supply curve ܵ both of which extend to the vertical axis. The combination of consumer 
surplus (Chapter 8) and producer surplus (Figure 14-7), which represents the total benefit to 
consumers at that equilibrium, is the area between the demand and the supply curve to the left of 
the equilibrium point A as shown in Figure 14.8. (Recall that consumer surplus is the difference 
between what consumers are willing to pay and what they actually have to pay for all units of the 
good up to ݔ଴.) 
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Chapter 15 
Short-Run Input Demand Functions  

and Curves, and Long-Run  
Equilibrium 

 
 
 Fix ݌௫ = ௫݌

଴ and ݌௞ = ௞݌
଴ and consider the short-run input demand function for labor 

 
ℓ = ݃ℓ(݌௫

଴, ,ℓ݌ ௞݌
଴), 

 
with ݇ = ത݇. The graph of this function (with axes reversed) is the firm’s short-run labor input 
demand curve. In discussing this function and describing its graph, it will be convenient to drop 
the naughts on ݌௫

଴ and ݌௞
଴.  

 
Recall that input demand along with output supply is determined by profit maximization. 

With prices ݌௫, ݌ℓ, and ݌௞ specified, the profit function was originally written as  
 

ߨ = ௫݌ݔ − ℓ݌ℓ −  ,௞݌݇
 
where (ℓ, ݇) is the basket of inputs used to produce output ݔ. In previous chapters, using the 
intersection of isoquants with the short-run expansion path permitted ℓ݌ℓ +  ௞ to be expressed݌݇
as a function of ݔ in the form of ܴܵܶܥ௞ത  ݔ to be written as a function of ߨ This also allowed .(ݔ)
and profit could then be maximized with respect to that variable. The intersection of the isoquant 
for the profit-maximizing output and the short-run expansion path determined the quantity of 
labor input that went along with maximum profit. And this quantity of labor was demanded by 
the firm. But there is another way to obtain the profit-maximizing quantity of labor input. 
Substituting the total product function ݔ = ܶܲℓ(ℓ)  = ݂൫ℓ, ത݇൯ for ݔ in the above equation, profit 
can also be written as a function of ℓ: 
 

(ℓ)ߨ = ܶܲℓ(ℓ)݌௫ − ℓ݌ℓ − ത݇݌௞, 
 
where ݇ has been fixed at ത݇ as required in the short run. Now setting the derivative of ߨ(ℓ) with 
respect to ℓ at zero to obtain a critical value of ℓ gives 
 

(ℓ)ߨ݀
݀ℓ

=
݀ܶܲℓ(ℓ)

݀ℓ
௫݌ − ℓ݌ = 0,                                                  (15.1) 

 

or, since  ݀ܶܲℓ(ℓ)
݀ℓൗ =  ,ℓ(ℓ)ܲܯ

 
ℓ(ℓ)ܲܯ௫݌ =  ℓ.                                                                (15.2)݌

 
Of course, equation (15.2) is a first-order condition that could identify, at different values of ℓ 
associated with minimum as well as maximum profit. As in the case of expressing profit as a 
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function of output, the sign of the second-order derivative of ߨ(ℓ) at a value of ℓ satisfying 
(15.2) determines whether that ℓ corresponds to a maximum or minimum. Using (15.1), if for 
some ℓ = ℓ଴ 
 

݀ଶߨ(ℓ଴)
݀ℓଶ =

ℓ(ℓ଴)ܲܯ݀
݀ℓ

௫݌ < 0,                                                  (15.3) 
 
then at ℓ଴ profit is maximized. If the sign is reversed, then ℓ଴ is associated with minimum profit. 
 

The expression ݌௫ܲܯℓ(ℓ) has two names. One is the value of the marginal product 
function written ܸܲܯℓ(ℓ); the other is the marginal revenue product function written ܴܲܯℓ(ℓ).1 
In either case, ݌௫ܲܯℓ(ℓ) reflects the additional revenue accruing to the firm upon selling the 
output produced by hiring an additional unit of labor input, or from hiring the last unit of that 
input. Focusing on the case in which inequality (15.3) holds, equation (15.2) asserts that if the 
firm is to maximize its profit, it should hire labor up to the point at which the firm pays the last 
unit hired what that unit is worth in terms of revenue receipts to the firm. Using the former 
nomenclature so that ܸܲܯℓ(ℓ) =  ℓ(ℓ), equation (15.2) becomesܲܯ௫݌
 

ℓ(ℓ)ܲܯܸ =  ℓ.                                                            (15.4)݌
 
If, for example, ܸܲܯℓ(ℓ) >  is (ℓ݌) ℓ, then the additional cost of hiring one more unit of labor݌
less than the additional revenue obtained by hiring it. Profit would be increased upon hiring that 
unit. If ܸܲܯℓ(ℓ) <  ,ℓ, then the last unit of labor hired costs more than the revenue it produces݌
and profit would be increased by letting it go. In either case, profit is not maximized. 
 
 Profit maximization with respect to ℓ and that with respect to ݔ are two different ways of 
obtaining the same result. It can be shown (see Supplemental Note F) that: 

1. If the firm hires labor up to the point at which ܸܲܯℓ(ℓ) =  ,ℓ, then the firm is also݌
     at the same time, producing an output for which SRMܥ௞ത (ݔ) =  .௫݌
2. If the firm produces output up to the point at which SRMܥ௞ത (ݔ) =  ௫, then the firm is݌
     also, at the same time, hiring labor such that ܸܲܯℓ(ℓ) =  .ℓ݌

Thus, having one form of profit maximization automatically guarantees having the other. 
 
 Turning to the geometry, since ݌௫ is a fixed number and ܸܲܯℓ(ℓ) =  ℓ(ℓ), theܲܯ௫݌
general shape of the graph of ܸܲܯℓ(ℓ) is similar to that of ܲܯℓ(ℓ). The shape of the latter is 
taken here to be the same as that portion of the ܲܯℓ curve pictured in Figure 10-2 of Chapter 10 
above the ℓ-axis. Thus, the graph of ܸܲܯℓ(ℓ) is that of ܲܯℓ(ℓ) stretched upward if ݌௫ > 1 as 
in Figure 15-1, or compressed downward if ݌௫ < 1. The negative slope to the right of ℓ∗ reflects 

 
In general, there is a conceptual difference between the value of the marginal product and the marginal revenue 
product. Definitionally, ܸܲܯℓ(ℓ) = ℓ(ℓ)ܴܲܯ  ℓ(ℓ) on the one hand andܲܯ௫݌ =  ℓ(ℓ) on the other. Inܲܯ(ݔ)ܴܯ
a perfectly competitive environment, (ݔ)ܴܯ = ௫݌  from equation (13.4) of Chapter 13 so that the two concepts 
amount to the same thing. As will be seen in Chapter 22, under imperfectly competitive conditions such as 
monopoly (ݔ)ܴܯ <  ℓ(ℓ) no longer representsܲܯܸ ℓ(ℓ) andܴܲܯ ௫. In that context, the appropriate concept is݌
the additional revenue accruing to the firm upon selling the output produced by hiring an additional unit of labor 
input. 
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diminishing returns to the fixed factor ത݇, and is consistent with the law of diminishing returns 
(Chapter 11).  

 
Recall that the marginal product curve in Figure 10-2 of Chapter 10 crosses the horizontal 

axis and becomes negative. At the point of crossing ܲܯℓ(ℓ) = 0 and the basket (ℓ, ത݇) lies on the 
lower ridge line (Figure 10-3).  Negative values of ܲܯℓ occur outside the relevant region of the 
input space and can be ignored. Observe in Figure 15-1 that ܲܯℓ(ℓ෨ ) = 0. Since ܸܲܯℓ(ℓ) =
ℓ൫ℓ෨൯ܲܯܸ ℓ(ℓ), this impliesܲܯ௫݌ = 0. Thus the ܸܲܯℓ(ℓ) function values are nonnegative and 
the ܸܲܯℓ and ܲܯℓ curves meet on the ℓ-axis at ℓ෨. 

 
As with the relationship between the firm’s SRMܥ௞ത  curve and its output supply curve in 

the lower part of Figure 13-4 of Chapter 13, at a price of ݌ℓ
଴ in Figure 15-1, the firm will 

maximize its profit with a labor input at which the horizontal line at ݌ℓ
଴ intersects the ܸܯ ℓܲ 

curve, thereby satisfying equation (15.4). But also, in parallel with Figure 13-4, there are two 
values of ℓ in Figure 15-1 that satisfy (15.4), namely ℓᇱ and ℓ଴. The latter is associated with 
maximum profit because the ܸܲܯℓ curve is downward sloping at ℓ଴ and, as in inequality (15.3), 
 

ℓ(ℓ଴)ܲܯ݀
݀ℓ

௫݌ =
ℓ(ℓ଴)ܲܯܸ݀

݀ℓ
< 0;                                            (15.5) 

 
the former corresponds to minimum profit because the ܸܲܯℓ curve is upward sloping at ℓᇱ and 
the sign in (15.5) is reversed. Since ℓ଴ is profit-maximizing, and since it has been assumed in 
Chapter 13 that the firm will only demand labor input that maximizes its profit, ℓ଴ will be 
demanded by the firm at ݌ℓ

଴. Thus the coordinates of points on the downward sloping portion of 
the VMܲℓ curve are the same as those on the firm’s input demand curve, that is, on the graph of 
ℓ = ݃ℓ(݌௫

଴, ,ℓ݌ ௞݌
଴) with the naughts on ݌௫ and ݌௞ emphasizing fixed price values restored. With 

one caveat, the firm’s input demand curve is therefore the downward sloping portion of the 
firm’s VMܲℓ curve above the ℓ-axis as shown as the red curve in the right-hand diagram of 
Figure 15-2. The caveat is an appropriate cutoff that can arise from the cutoff of the firm’s output 
supply curve at the minimum of its average variable cost curve. 
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 To see how that cutoff comes into play, consider Figure 15-2. Suppose the firm, with 
capital fixed at ത݇, is at point A on its VMܲℓ curve employing ℓ଴ units of labor at price ݌ℓ

଴ (right-
hand diagram) and producing and selling the profit-maximizing output ݔ଴ at price ݌௫

଴ where 
଴௞തܥܯܴܵ (଴ݔ) = ௫݌

଴ (left-hand diagram). In the left-hand diagram, the firm’s short-run output 
supply curve (in red) is its ܴܵܥܯ଴௞ത  curve (in red and black dashed) cut off at ܣ∗ where it 
intersects the minimum point on the firm’s average variable cost curve (in blue). As the price of 
labor rises along the VMܲℓ curve, the firm’s costs at each level of output increase, and its 
marginal and average variable cost curves shift upward, forcing the minimum point on the latter 
to rise. But its output price ݌௫

଴, which is determined in the output market, and ത݇ do not change. 
At ݌ℓ

ᇱ  the short-run marginal-cost-output-supply curve has risen to ܴܵܥܯᇱ௞ത and the cutoff point 
on the latter at ܤ∗ lies on the line parallel to the ݔ-axis at ݌௫

଴. The cutoff point ܤ∗ is the shut-
down point for ܴܵܥܯᇱ௞ത  although, as described in Chapter14, the firm continues to operate and 
produce output ݔᇱ with labor input ℓᇱ. Any further increase in ݌ℓ, say to ݌ℓ

ᇱᇱ as shown at ܥ in the 
right-hand diagram, will raise the marginal-cost-output-supply curve still higher to ܴܵܥܯᇱᇱ௞ത , 
pushing the cutoff point to ܥ∗ above the horizontal line at ݌௫

଴.  When this happens, the short-run 
marginal cost curve will intersect the ݌௫

଴-line below the minimum point of the also higher 
average variable costs curve. Total revenue has become less than total variable cost at the profit-
maximizing output ݔᇱᇱ and input ℓᇱᇱ, and the firm will shut down (Chapter 14). Thus, quantities 
of labor associated with points on the curve to the left of B in the right-hand diagram, although 
falling along its VMܲℓ curve, are not demanded by the firm. Only the portion of the curve that is 
red in that diagram constitutes the firm’s labor demand curve. 
 
 The fact that the input demand curve slopes downward is the property, referred to early in 
Chapter14, of the short-run input demand function ℓ = ݃ℓ(݌௫, ,ℓ݌  ௞) that is implied by the݌
assumptions of the model of firm buying and selling behavior. If the observed input demand 
function of a firm does not satisfy this property, then the present model does not provide an 
explanation of that firm’s buying behavior. 

---------------------------------------------------------------------------- 
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 Return to expressing profit as a function of ݔ and consider the long run. Recall from 
Chapter 13 that, given output and input prices ݌௫

଴, ݌ℓ
଴, and ݌௞

଴, long-run profit maximization 
determines long-run output ݔ௢ where the horizontal line at ݌௫

଴ intersects the ܥܯܴܮ curve, and 
determines long-run inputs ℓ଴ and ݇଴ where the ݔ௢ isoquant intersects the long run expansion 
path. This geometry is pictured in Figure 15-3. Now the firm does not base its actual production  

 
on its long-run cost curves. Rather, the ݇଴ in the right-hand diagram of Figure 15-3 indicates the 
quantity of capital or the firm size needed for long run profit maximization. The firm first has to 
create a production facility of size ݇଴ and then hire labor to produce its output with that facility. 
But once it does so, it is now operating in the short run with fixed capital ݇଴, the ݇଴ becomes the 
fixed capital ത݇ of the short-run analysis developed in Chapter 12, and the firm’s supply curve is 
its short-run marginal cost curve for the built facility above minimum average variable cost 
(Chapter 14).  
 
 The cost curves for this aspect of the firm’s operation were described in Chapter 12 
where the blue short-run average cost curve for the firm of size ത݇ in the lower part of Figure 12-8 
is tangent there at A to the red long-run average cost curve at an output ݔᇱ smaller than that at 
minimum long-run average cost. In that diagram, the two average cost curves (blue and red) 
slope downward at ݔᇱ and the short- and long-run marginal cost curves intersect directly below 
the tangency. A slightly different version is presented in Figure 15-4 where firm output is larger 
that that associated with minimum long-run average cost (and ത݇ is the same as ݇଴ in Figure 14-
3). The tangency at A between (blue) short- and (red) long-run average cost curves occurs in the 
upward sloping portion of those curves at output ݔ଴, and the short- and long-run marginal cost 
curves intersect above the tangency at the same output. The justification for the relationship 
between the short- and long-run cost curves in Figure 15-4 is identical to that for the 
relationshoip between the short- and long-run cost curves in Figure 12-8. 
 
 Think of Figure 15-4 as depicting the representative firm in a market or industry. 
Continuing the interpretation of the perfect information assumption of Chapter 14 that all firms 
are identical in a perfectly competitive market, every firm in that industry is earning, in addition 
to normal profit ݌௞ ത݇, an abnormal profit of (0ݔ)ߨ > 0 at ݔ଴. Assume all firms outside of this 
industry have only normal profit. That is, with ݌௞ fixed by the capital market and therefore the 
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same for all investors, providing capital ݇ for an outside firm will yield only ݌௞݇ in return. 
Because all markets are perfectly competitive and because there is perfect information in  
 

 
perfectly competitive markets, outside investors will be aware of the abnormal profit in the firms 
of Figure 15-4 and consider the industry an investment opportunity. Were they to enter the 
market by providing the capital for a new firm, they would earn more than the normal profit ݌௞݇ 
they would receive by investing in outside firms. And, in the long run, the free-entry-into-and-
exit-from-the-market property of perfect competition allows them to do just that.  
 

Of course, the entry of one firm, because it is such a small part of the market, will have 
no impact. But as more new firms enter, there will be more short-run output supply curves to add 
into the market supply curve, eventually causing the market output supply curve to shift out. 
With the downward-sloping market demand curve remaining fixed, the market price will fall and 
firm abnormal profit will shrink. This will continue until abnormal profit no longer exists 
anywhere in the industry, that is, until (ݔ)ߨ = 0 for all firms. (The perfect information 
assumption ensures that all firms, including new entries, have access to the same technology and 
resources, and therefore have the same fixed capital values, production functions, cost functions 
and curves, and hence the same supply curves and values for minimum average variable cost.) It 
is clear from Figure 15-4 that all profit will disappear when the price of output ݌௫ falls to the 
level of minimum long-run average cost ݌௫

଴, that is, where 
 

௫݌
଴ = min

௫
 .(ݔ)ܥܣܴܮ

 
Similarly, if the market price fell below ݌௫

଴ (perhaps outside investors made mistakes and too 
many firms entered the market to stop the price from falling below ݌௫

଴), all firms would be 
suffering losses. In that case, some investors will remove their investment from the industry, that 
is, sell the capital they had provided in the capital market, thereby causing enough firms to go 
out of business to force the market price to rise back to ݌௫

଴ and profit to return to normal. 
                                
 This has an important implication for the firm long-run output supply function ݔ =
݃௫(݌௫, ,ℓ݌  ௞). If the entry and exit of firms driving the market price of output to the minimum݌
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point on the long-run average cost curve is to be taken into account, then the firm’s output supply 
can no longer be thought of as the response to a price that is the outcome of the interaction of 
demand and supply in the market. Rather, the supply of the firm’s output along with the output 
price ݌௫ itself is determined by that which sets the minimum point of the long-run average cost 
curve, namely input prices and the production function. The firm is still maximizing long- and 
short-run profit because the long- and short-run marginal cost curve still passes through the 
minimum points on the tangent long- and short-run average cost curves so that long-run and 
short-run marginal costs still equal output price. Since, in this case, the output price has lost its 
independent variable status and does not figure into the determination of the long-run output 
supply, that price should not appear as an argument in the long-run output supply function. That 
function should more properly be written as ݔ = ݃௫(݌ℓ,  ௞). And this, in turn, implies that when݌
account is taken of free entry and exit, there is no long-run firm, and hence no long-run market 
output supply curve showing quantities supplied at each price. 2 As described earlier, firm and 
market supply curves are based on short-run marginal cost curves. This revision of ݃௫is the 
modification of the long-run output supply function referred to earlier in Chapter 14. 
 
 Long-run equilibrium in relation to the market and its firms, then, which requires all 
activity to be at rest with no tendency to change, has three parts: First, firms must be producing 
where short- and long-run marginal cost equals market price so that short- and long-run profits 
are maximized. Second, market demand has to equal short-run market supply so that competitive 
market forces are inactive. And third, market price must be at the level of minimum long-run 
average cost so that profits are exactly normal and no entry or exit of firms occurs. An 
illustration of this long-run equilibrium in terms of the representative firm and industry is shown 
in Figure 15-5. As in Figure 14-4, which depicts a short-run equilibrium situation, ݔ௙ denotes 
firm output quantities and ݔ௠ represents market quantities. Figure 15-5 continues the color 
coding of short- and long-run cost and supply curves of Figure 15-4. Remember that the short-  

 

 
2 There is still, however a conceptually different long-run industry (market) output supply curve that will be 
considered in the next chapter.  
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run marginal cost curve in the left-hand diagram of Figure 15-5 is the output supply curve of the 
representative firm. Of course, the market supply curve in the right-hand diagram is the 
horizontal sum of the short-run marginal cost curves of all firms in the industry. It is denoted by 
ܵ = ௞തܥܯܴܵ ߑ  in Figure 15-5 and is cut off at the representative firm’s minimum average 
variable cost, although the latter curve is not shown in the left-hand diagram. 
 
 It should also be noted that long-run equilibrium involves two implicit minimizations. 
First, firms must be somewhere on their long-run average cost curves. And to do so, the input 
costs of producing each level of output has to be minimized (Chapter 11). Second, since free 
entry into and exit from the industry forces abnormal profit to vanish, the output produced at 
equilibrium has to minimize long-run average cost. 
 
 Based on this discussion, it is clear that the determination of the (equilibrium) price in an 
output market depends on the time frame under consideration: 
 

1. In the short run, market price is determined by the interaction of the competitive forces  
    of supply and demand as described in Chapter 3. 
 
2. In the long run, the competitive forces of demand and supply still operate with respect  
    to demand and short-run supply curves. But in the end, due to the entry and  
    exit possibilities of firms, market price is determined by the costs of production, that is,  
    by input prices in conjunction with technology or the production function, as they  
    determine minimum long-run average cost. 
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Chapter 16 
Long-Run Output Supply and Input  

Demand, and Economic Rent 
 
 
 At the end of Chapter 15 it was indicated that there is no long-run supply curve for the 
individual firm and no long-run market supply curve in a perfectly competitive industry. But 
there is a sense in which a long-run industry supply curve, that is, a supply curve for the market 
as a whole or all firms in the industry combined, can be characterized. Toward that end, recall 
that under the interpretation of perfect competition employed in this volume, all firms have the 
same cost curves (Chapter 14). Recall also that the long-run equilibrium market price of output is 
located at the level of minimum firm long-run average cost (Chapter 15).  
 
 Now consider an industry and its firms in an initial long-run equilibrium at price ݌௫

଴ and 
quantities ݔ௠

଴  and ݔ௙
଴as pictured in Figure 15-5 and reproduced as part of Figure 16-1. In the left-  

 
hand diagram of Figure 16-1, the profit of the representative firm at this equilibrium is 
normal, that is, ߨ൫݂ݔ

0 ൯ = 0.  Suppose market demand increases from ܦ to ܦ′ as indicated 
in the right-hand diagram. Then in the short run, the market price rises to ݌௫

ᇱᇱ, and since 
there can be no change in firm capital input, there is no change in existing firms’ cost 
curves. In particular, ܩܣܴܮ, ,ܥܯܴܮ ௞തܥܣܴܵ , and ܴܵܥܣ௞ത  in the left-hand diagram remain 
fixed. But firm output rises to ݔ௙

ᇱᇱ, market quantity rises to ݔ௠
ᇱᇱ  in the right-hand diagram, 

profit increases, and abnormal profit ߨ൫ݔ௙
ᇱᇱ൯ > 0 is now present. As discussed in Chapter 

15, in the long run new firms enter, the short-run market supply curve eventually shifts to 
the right, and the market equilibrium price begins to fall, lowering abnormal profit. The 
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assumption that all firms are identical means that entering firms have the same cost 
functions and curves as the existing firms. The new long-run equilibrium after all changes 
work themselves out and normal profit is restored in all firms depends on what happens 
in the input markets. There are three possibilities: 

 
1. The constant cost industry. In this case, the industry is such a small part of the input 
markets that the increase in input demands stemming from the entry of new firms has no 
effect on input prices. In parallel with the short-run, ܩܣܴܮ, ,ܥܯܴܮ ௞തܥܣܴܵ , and ܴܵܥܣ௞ത  
remain fixed throughout the entire long-run period, and the minimum points on firms’ 
long-run average cost curves do not change. New firms identical to existing firms enter 
and the market price falls until the long run equilibrium price ݌௫

଴ is re-established. Of 
course there are now more firms producing the industry’s output. So although the short-
run supply curves of the individual firms have remained the same, the short-run market 
supply curve has moved from ܵ to ܵ଴଴, and the long-run equilibrium output ݔ௠

଴  has 
increased to ݔ௠

଴଴.  
 
2. The increasing cost industry. Here input prices rise due to the increase in demand for 
inputs from both existing and entering firms. Costs rise, and long-run and short-run 
average and marginal cost curves shift upward for all firms. 1 This squeezes abnormal 
profit between the falling output price as new firms enter and the rising costs as input 
prices increase. Long-run equilibrium reestablished where existing and new firms employ 
a quantity of capital ത݇ ᇱ different from ത݇ that maximizes long-run profits and for which 
normal profit is restored at a price ݌௫

ᇱ  equal to the minimum on the new long-run average 
cost curve. That minimum, indeed the entire curve, ܴܵܥܣ௞ത ᇲ in the left-hand diagram of 
Figure 16-12,has shifted upwards (the long-run average cost curve does not appear in 
Figure 16-1 –  only the ܴܵܥܣ௞ത ᇲ curve which would be tangent to the new long-run 
average cost curve at its minimum point is shown). Abnormal profits have been wiped 
out, the market price ݌௫

ᇱ  is higher than ݌௫
଴, and the market quantity ݔ௠

ᇱ  is lower than ݔ௠
଴଴. 

Note that even though the output of the representative firm has fallen at the new long-run 
equilibrium in the example of Figure 16-1, the long-run market equilibrium quantity has 
become larger (it has increased from ݔ௠

଴  to ݔ௠
ᇱ ) due to the increase in market demand and 

the entry of new firms. 
 
3. The decreasing cost industry (not shown in Figure 16-1). In this case, input prices fall 
perhaps because the increased demand for, say capital, from the entry of new firms 
allows for the introduction of cost-saving technology in the capital-producing industry. 
With the lower input prices, the long- and corresponding short-run cost curves and their 
minimum points fall, the long- run market equilibrium price is lower than the  ݌௫

଴, and the 
long-run market equilibrium quantity is greater than the ݔ௠

଴଴ of the right-hand diagram of 
Figure 16-1. 

 
 

1 It is implicit here that when the price of capital changes, both new and existing firms are assumed to be subject to 
the new price. For existing firms, then, even though they are using the same capital as before, their capital costs 
have modified accordingly.  
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With these ideas in mind, were all possible increases in market demand between ܦ and 
 ,ᇱ for the constant- and increasing-cost industries allowed in the right-hand part of Figure 16-1ܦ
and were the decreasing-cost industry case added, curves formed by the long-run market 
equilibrium points in each case would be generated. The curves for each of the three cases are 
illustrated in green in Figure 16-2. They end at ܦᇱ where the short-run market supply curves ܵ′, 
ܵ′′, and ܵ′′′ in, respectively, the increasing-, constant-, and decreasing-cost industry cases 
intersect ܦᇱ. For example, in the constant cost case the collection of all long-run equilibrium 
points would lie along a straight line parallel to the ݔ௠-axis at the level of the long-run 
equilibrium price ݌௫

଴ between ܦ and ܦᇱ because the minimum point of firm long-run average 
costs curves do not change as new firms  enter. The green lines are often referred to as long-run 
industry supply curves. But they are not supply curves in the usual sense of the term. Typically  
 

 
 
market supply curves show the market quantities supplied at various prices as dictated by the 
market. But in the present long-run circumstance, the output market cannot specify a collection 
of output prices to which quantities supplied can be associated. Rather, it is for each pair of input 
prices that a long-run output price and firm-profit-maximizing quantity supplied are determined, 
namely, those relating to minimum firm long-run average cost. Summing the latter gives the 
market quantity supplied at long-run equilibrium. Thus the long-run-supply-quantity response at 
the market level is to both input prices – not to the output price. The long-run industry supply 
curves described here do indicate long-run industry supply, but only in terms of long-run 
equilibrium values.  

------------------------------------------------------------------- 
 
 
 
 Even though there is no firm long-run output supply curve, the firm does have long-run 
demand curves for its inputs. Only that for labor will be considered here. In the short-run, recall, 
the input demand curve for labor is the firm’s value-of-marginal-product-with-respect-to-labor 
curve (identified by the symbol ܸܲܯℓ) for a fixed production facility represented by a specific 
value for capital ݇ (Chapter 15). Recall also that, in the long run once that value of  ݇ is 
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determined by profit maximization, the firm builds the production facility associated with that ݇-
value and operates with respect to the short-run curves identified with it. Thus the profit-
maximizing long-run quantity of labor demanded emerges using the ܸܲܯℓ curve associated with 
that ݇-value. Were the profit-maximizing value of ݇ to change diring the long-run period, the 
firm would build a new facility and its ܸܲܯℓ curve would adjust accordingly. The long-run 
quantity of labor demanded, then, is always identified with a short-run ܸܲܯℓ or short-run labor 
demand curve. But the derivation of the long-run labor demand curve is complicated by the fact 
that, in the long-run context, both labor and capital are variable.  
 
 Before explaining why, it is worth pointing out that there is a partial parallel here 
between consumer demands for goods and long-run firm demands for inputs. Although there is 
no long-run-short-run distinction in the context of the consumer, both consumers and firms are 
making decisions to demand baskets containing two variable elements. For the consumer, as the 
price of one good, say good x, falls with the price of the other good, y, and the consumer’s 
income fixed, the movement from the initial basket demanded to that after the decline in price 
was broken up into income and substitution effects (Chapters 7 and 8). Not only is there a change 
in the quantity of x demanded, but there is also, according to Figures 7-5 or 8-2, a change in the 
quantity of y demanded. Since the price of y has remained fixed, this means there has been a 
shift in the demand curve for that good due to the change in the price of x, leading to a different 
quantity demanded for y at the same price. With respect to the firm, the decomposition of the 
change in the quantity of labor demanded due to a reduction in its price is split into three parts 
and, although the price of capital remains fixed, the quantity of capital demanded alters as did 
that of y for the consumer. 
 
 Suppose, then, that a firm is producing at long-run maximum profit and the price of labor 
 ௫ remaining fixed. The first two effects are analogous to the substitution݌ ௞ and݌ ℓ falls with݌
and income effects of the model of consumer buying behavior of Chapter 7. In Figure 16-3, let  
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the isoquant through ߙ be that for a profit-maximizing output and the coordinates of ߙ, that is 
(ℓᇱ, ݇′), represent the cost-minimizing input basket for that output given prices ݌௫,  .௞݌ ℓ, and݌
Then (ℓᇱ, ݇′) lies on the iso-cost line through point A on the ݇-axis. Suppose ݌ℓ falls with the 
other prices held fixed and suppose the full cost of input baskets, like income in the case of the 
consumer, remains constant. (In the present context, this supposition is unrealistic and will be  
with the analogy to the consumer model, a red straight line is drawn parallel to the rotated iso-
cost line and tangent to the original isoquant at γ. In this context the movement from ߙ to γ is 
called the factor substitution effect, and that from γ to ߚ the output effect.  
 

Now remove the supposition that costs have remained constant and remember that the 
price of labor has fallen while the prices of capital and output have not changed. Then in the new 
profit-maximizing position, costs will be minimized at a tangency between an iso-cost line 
(whose slope is the same as that for the iso-cost line through ߚ) and the isoquant corresponding 
to the new profit-maximizing output. Without further assumptions, it is not possible to tell 
whether that tangency will lie farther out from the origin than the iso-cost line through ߚ or 
closer to it. For convenience, it is drawn in the diagram at ߜ. The movement from ߚ to ߜ is 
referred to as the profit effect. 
 
 The combination of these effects, factor substitution, output, and profit, show, as pictured 
in Figure 16-3, that a fall in the price of labor will usually be accompanied by a change in the 
quantities of both labor and capital. In the example of the diagram, capital increases from ݇′ to 
݇′′. This means that the firm changes the size of its production facility in order to maintain long-
run profit maximization. And since the short run labor demand curve (its  ܸܲܯℓ curve cut off as 
pictured in Figure 15-2 of  Chapter 15) depends on that production facility as represented in the 
value of ݇, if the firm is on one short-run demand curve in its initial long-run profit-maximizing 
position, after the change in ݌ℓ, even with no change in ݌௞, it will, in its new long-run profit-
maximizing position, be on a different short-run demand curve. Thus, in the long run, the short-
run demand curve for labor shifts with changes in the price of labor. Using this fact, the long-run 
labor demand curve can be described as follows: Let input prices, including the price of labor ݌ℓ

ᇱ , 
be specified. Suppose, as shown in Figure 16-4, the initial profit-maximizing position is at ߙ 
where the firm is hiring ℓᇱ units of labor. Its capital is ݇ᇱ and the associated short-run labor  
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demand curve is that labeled ܸܲܯℓ௞ᇲ . Then (ℓᇱ, ℓ݌
ᇱ ) is one point on its long run labor demand 

curve drawn in red in Figure 16-4. Now suppose labor’s price falls to ݌ℓ
ᇱᇱ. Capital changes to ݇ᇱᇱ 

and the new short-run labor demand curve, labeled ܸܲܯℓ௞ᇲᇲ, could either shift back towards the 
origin or farther away from it. The above picture assumes the latter. The long-run labor demand 
quantity is now ℓᇱᇱ where ܸܲܯℓ௞ᇲᇲ(ℓ) = ℓ݌

ᇱᇱ at ߜ along the new short-run demand curve for 
labor. Thus (ℓᇱᇱ, ℓ݌

ᇱᇱ) is a second point on the long run demand curve for labor. In this way, 
continually changing the price of labor will generate the full long-run demand curve for labor 
(the red curve in Figure 16-4). In general, each point of the latter also lies on a different  ܸܲܯℓ 
curve associated with a different value of capital. 

---------------------------------------------------------------------- 
 

 

 

 In a factor market, economic rent, or, for short, just rent, is the amount firms have to pay 
for a unit of the input less the minimum amount necessary to bring it onto the market to sell 
(supply) summed over all units up to the market equilibrium quantity. In the labor market 
depicted in Figure 16-5, rent for the unit at ℓ′ is the vertical length between ߙ and ߚ.  

 
Aggregating over all units up to ℓ଴, rent, which is a payment to the sellers of the input, is the 
triangular area between the supply curve and the horizontal line connecting ݌ℓ

଴ to the equilibrium 
point A (for convenience, the supply curve has been drawn as a straight line extended to the 
vertical axis). Note that if labor were replaced by a produced good like paper in a diagram like 
Figure 16-5, then what would have been called rent in the context of the labor market, becomes 
producer surplus received by the selling firms (recall the last part of Chapter 14). Thus, in the 
labor market, say, rent can be thought of as a kind of surplus for the individuals supplying labor 
in that ߙ −  is the difference between what the individuals obtain by selling the ℓ′ unit of labor ߚ
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and the price (at the level of ߚ ) they require to supply that unit on the market. In Figure 16-5, 
rent is only a portion of the full cost of the input ݌ℓ

଴ℓ0 to buyers. 

 If the supply of the input were fixed and did not vary with is price as, for example, land is 
sometimes thought to be, then the market supply curve would be a vertical straight line at the 
fixed quantity of land available and the entire amount paid by buyers ݌ℓ

଴ℓ0 would be  rent. This is 
pictured in Figure 16-6 where ℓ is now taken to represent quantities of land instead of labor and  

 
ℓ଴ is the fixed supply of land. 
 
 

Rent 

ܵ 

ℓ݌
଴ 

ℓ଴ ℓ 

 ℓ݌

Figure 16-6 

A 

 ܦ



 
 

 

 



133 
 

Chapter 17 
The Perfectly Competitive Microeconomy   

and General Equilibrium 
 
 

A. It is now appropriate to take stock of what has been accomplished thus far. The 
starting point is the problem of explaining how the real microeconomy operates. That world is so 
complex that it is impossible to describe it without simplification or abstraction. The abstraction 
employed here appears in the circular flow diagram of Figure 17.1 (reproduced from Figure 1-1)   

 

in which goods flow from firms to consumers and back to firms, and payments flow from 
consumers to firms and back to consumers. All goods and payments flow through markets of 
which there are the 3 kinds listed in Table 17-1 (reproduced from Table 1-1). This abstraction  
 

         Table 17-1 
Market Buyers Sellers 

Final Commodities Consumers Firms 

Intermediate commodities Firms Firms 

Factors Firms Consumers 
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is understood in terms of a model built to elucidate its inner workings. The model is then used to 
explain that which can be observed in the real microeconomy. What is considered to be 
observable and what serves as the focus of explanation is 
 

1. the occurrence of market prices and individual, firm, and market quantities of goods  
    throughout the microeconomy, 
2. individual and firm buying and selling behavior as summarized in demand and supply  
    functions. 
 

The model that has been built assumes perfect competition everywhere and consists of several 
sub-models which are constructed as follows: 
 
 B. To explain how a market operates to determine an observed market pair (݌௫,  a ,(ݔ
model is built by assuming that in that market there exists both a demand and a supply curve 
passing through (݌௫,  It is also assumed that the market functions by working through the .((ݔ
competitive forces that equilibrate demand and supply. (For example, if buyers cannot buy all 
they want to buy of a good at its current price, they offer to pay a higher price.) Then the 
occurrence of observation (݌௫,  is explained as an “equilibrium” resulting from the resolution (ݔ
of the demand-supply competitive forces. 
 
 C. To explain consumer buying behavior as summarized in observable consumer demand 
functions, a model of that behavior is constructed from the following assumptions: 
  

1. The consumer has preferences and indifferences among baskets of commodities such 
 that, for any two baskets, he/she can say if one is preferred to the other or if the 
 two are indifferent. (Completeness.) 
 

2. Preferences and indifferences are transitive. (If basket A is preferred to basket B, and 
 basket B is preferred to basket C, then basket A is preferred to basket C. 
  Similarly for indifferences.) 

 
3. Preferences and indifferences are represented by a utility function in the sense that (a) 

 if one basket is preferred to another, then the preferred basket has a higher utility 
 value than the other, and (b) if two baskets are thought to be indifferent, then they  
 have the same utility value. 
 

4. The utility function has the following 4 properties: 
4a. It is continuous and all marginal utilities can be calculated. 
4b. A larger basket of commodities is always preferred to, and therefore 

 has a higher utility value than a smaller one. 
4c. All indifference curves are strictly convex. 
4d. Indifference curve do not touch the co-ordinate axes of the commodity 

 space. 
 

5. The consumer purchases or demands that basket from his/her budget set that provides 
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 the most utility, that is, that maximizes consumer’s utility subject to the budget  
constraint. 

 
Under these assumptions, for each ൫݌௫, ,௬݌ ݉൯ > 0 the utility-maximizing basket (ݔ,  (ݕ

can be characterized as occurring at a tangency between a budget line and indifference curve. 
That basket is then identified as that which is demanded by the consumer at the specified 
,௫݌) ,௬݌ ݉). This explains the consumer’s demand functions (buying behavior) as ݔ =
ℎ௫(݌௫, ,௬݌ ݉) and ݕ = ℎ௬(݌௫, ,௬݌ ݉).  The functions ℎ௫ and ℎ௬ have certain properties that are 
implied by the assumptions listed above. 
 

D. To explain observable consumer selling behavior – only the supply of labor is 
considered – a model is built employing the same assumptions as in C above except that the 
basket (ߣ, ݉) is used in place of (ݔ,  where m is income from time worked and λ represents ,(ݕ
non-work or leisure time. With the total time available for all activities symbolized by ܶ,  time 
worked ℓ = ܶ −  ℓ is the wage and the price of a unit of݌ The price of a unit of leisure time .ߣ
income (one dollar) is $1. Utility maximization subject to the budget constraint now gives the 
demand function for leisure time. Subtracting that function from the total time available yields 
the supply function for labor time, ℓ = ℎℓ(݌ℓ, ܶ), thereby explaining the consumer’s supply-of-
labor behavior. This function too has specific properties implied by the assumptions made. 
 

E. Given output and input prices (݌௫, ,ℓ݌  ௞). to explain the firm’s observable selling and݌
buying behavior as summarized in, respectively, its output supply and input demand functions, a 
long- or short-run model of the firm is constructed from the following assumptions: 

 
1. The firm has a long-run production function ݔ = ݂(ℓ, ݇) based on a given technology. 
 
2. The long-run production function has the following properties: 
 2a. Zero input produces zero output (݂(0,0) = 0), and nonnegative input 

      produces nonnegative output (݂(ℓ, ݇) ≥ 0 for all (ℓ, ݇) ≥ 0). 
2b. ݂ is continuous and all marginal products can be calculated. 
2c. If ridge lines exist, all marginal products are positive and all isoquants are 

strictly convex between the ridge lines up to an intersection point if there 
 is one. 

2d. If ridge lines do not exist, all marginal products are positive, all isoquants are 
 strictly convex everywhere, and no isoquant touches the co-ordinate axes. 

 
3. Long-run and short-run total cost curves appear as drawn in previous chapters so that 

 average and marginal cost curves can be determined and have the shapes  
 attributed to them. 

 
4. The firm hires or demands inputs and produces and sells or supplies output so as to 

 maximize its profit. 
 
Using the following procedure, the long- or short-run profit maximizing output ݔ and 

basket of inputs (ℓ, ݇) are identified: 
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1. If ridge lines exist in the input space, eliminate the regions outside of the area between  
   them and beyond the intersection point if there is one. 
 
2. Using input price information (long run) or fixed capital information (short-run), 

  calculate the appropriate expansion path and confine attention to it. 
 
3. Using the production function, input price, and expansion path information, calculate  
   all cost functions and curves (long- or short-run) expressing cost as a function of  

 output. 
 
4. Using output price information, calculate all revenue functions and curves. 
 
5. Using cost and revenue information, calculate the profit function and the profit- 

 maximizing output ݔ. 
 
6. From the intersection of the isoquant relating to the profit-maximizing output and the 

 appropriate expansion path, calculate the profit-maximizing input quantities –   
(ℓ, ݇)  in the  long run and ℓ in the short run  

 
The profit-maximizing output ݔ and input basket (ℓ, ݇) define the output and input 

quantities that the firm will, respectively, sell and buy at the given prices (݌௫, ,ℓ݌  ௞). This݌
explains the firm’s long- and short-run output supply input demand functions (behavior). The 
former are: 
  

ݔ = ݃௫(݌௫, ,ℓ݌ ௞),   ℓ݌ = ݃ℓ(݌௫, ,ℓ݌ ݇   ௞)   and݌ = ݃௞(݌௫, ,ℓ݌  .(௞݌
 

The short-run output supply and labor demand functions (behavior) are, respectively, 
 

ݔ = ݃௫(݌௫, ,ℓ݌ ௞)   and   ℓ݌ = ݃ℓ(݌௫, ,ℓ݌  ,(௞݌
 

where the symbols ݃௫ and ݃ℓ are used in both long- and short-run contexts and ݇ is fixed only in 
the short run. The functions ݃௫, ݃௫, and ݃ℓ have certain properties that are implied by the 
assumptions made. In particular, the long-run output supply function has to account for the long-
run, zero-profit requirement implied by the perfect-competition assumption of free entry into and 
exit from the market. 
 
 F. Each of these sub-models by itself describes a part of the abstract microeconomy in 
partial equilibrium. (The notion of partial equilibrium was introduced in Chapter 1.) That is, an 
isolated market is in partial equilibrium (or at rest with no tendency to change) when market 
supply equals market demand (and all other variables throughout the remaining microeconomy 
are held fixed). Similarly, an isolated consumer is in partial equilibrium when purchasing 
quantities of goods or selling quantities of factors that maximize his/her utility subject to the 
budget constraint. And an isolated firm is in partial equilibrium when hiring inputs and 
producing and selling output so as to maximize its profit. 
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But partial equilibrium concepts are not enough to explain the operation of the entire 
microeconomy. The model to be used to explain that economy, or what has in Chapter 1 been 
called the general-equilibrium or Walrasian model, consists of the combination of all of these 
sub-models operating in conjunction with each other. That is, in the short run, all markets are 
operating so as to equate supply with demand, all consumers make buying and selling decisions 
based on constrained utility maximization, all firms make hiring, production, and selling 
decisions based on profit maximization, and all of this is happening simultaneously. When this 
occurs, the model is said to be in general equilibrium. To be more precise (the following 
definition is reproduced in Supplemental Note G), 
 

the entire model of the micro-economy is at (short-run) general equilibrium at 
(i) quantities of final goods bought and factors sold by each consumer, 
(ii) quantities of inputs bought and outputs produced and sold by each firm, and 
(iii) market quantities and prices of each good,1  

 provided that 
  (a) each consumer is buying final goods and selling factors so as to maximize 
   utility subject to his/her budget constraint, 
  (b) each firm is hiring inputs and producing and selling outputs so as to 
   maximize its profit,  
  (c) supply equals demand in every market, and in the long run only, 
  . 
As in the case of an isolated market, observations of prices and individual and market quantities 
across the entire real microeconomy at each moment of time are explained as the outcome of the 
workings of this model, that is, as a general equilibrium. In other words, the prices and quantities 
that are observed when looking at the real microeconomy are understood as the result of 
constrained utility maximization by all consumers, profit maximization by all firms, and the 
interaction of the competitive forces that make supply equal to demand in all of the economy’s 
markets.  
 

For the long-run general equilibrium, a fourth proviso has to be added to eliminate 
possible movements of capital across markets: 

 
(d) all profits in all firms are zero. 

 
This is necessary because with free entry and exit into markets, the presence of abnormal profits 
or losses lead to the expansion or contraction of market supplies that result in changes in market 
prices and quantities. 

------------------------------------------------------------------ 
 
 

The next four chapters will consider what are sometimes referred to as the Walrasian 
model’s “welfare properties” of general equilibrium. This will permit an evaluation, from the 
perspective of society as a whole, of the general equilibrium outcome achieved in the Walrasian 
model. Since that model is taken as an explanation of each complete set of observations of the 

 
1 The incomes for each individual appearing in consumer demand functions are obtained from summing the 
appropriate price-times-quantity values arising in the factor markets. 
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real microeconomy, that is, since those observations are interpreted as a general equilibrium, 
these welfare properties and that evaluation may be thought of as applying to them. Thus, 
accepting the Walrasian model as the explanation of the prices and quantities that are observed in 
the real microeconomy, what is achieved in that economy can be evaluated in terms of the 
Walrasian model. The criterion of evaluation to be employed here will be referred to as Pareto 
optimality (after the economist who is erroneously thought to have developed the idea2) or 
efficiency and its three manifestations will be introduced in the next two chapters. 
 

Generally, by the phrase “welfare properties” is meant how well off society as a whole is. 
The latter is determined by how well off the individuals of that society are. And that, in turn, 
depends on the baskets of commodities those individuals have to consume. Such baskets come 
into being from the economic activity of the Walrasaian model in which the output produced by 
firms is distributed among consumers through the economy’s markets. An individual’s well-off-
ness in a particular distribution will be measured by utility that person receives from the basket 
of commodities he/she obtains in the distribution. However, this kind of evaluation has to allow 
for the possibility that  some consumers may be better off with one distribution while others are 
better off with another and, in such cases, which of the two distributions is better for society as a 
whole still has to be determined. 
 
 Care also has to be taken when using utility as a measure of how well off individuals are. 
Recall that utility is an ordinal measure in that utility numbers have limited meaning. 
Nevertheless, each of the many possible utility functions (e.g., ݔ)ݑ, ,ݔ)ݑor  2 (ݕ  that ((ݕ
represent a particular consumer’s preferences and indifferences can serve as a measure of that 
person’s well-off-ness. And it will not matter which utility function is employed as long as the 
function, once selected, is not changed throughout the discussion. In addition, the possibility of 
interpersonal comparisons of utility raises another issue. For example, if consumer 1 gets 10 
units of utility from an apple and consumer 2 gets 20 units, since utility is a highly personal 
thing, this does not necessarily mean that consumer 2 is better off with the apple than consumer 
1. This limitation has to be respected when evaluating the well-off-ness obtained from society’s 
perspective of different distributions.  
 

In subsequent discussion, it will be convenient to employ a version of the long-run model 
summarized above in which the zero-profit requirement for long-run equilibrium is ignored and 
all long-run cost functions and curves, although still derived from constrained cost minimization, 
are re-interpreted as short-run cost functions and curves. That is, both capital and labor can be 
bought and sold but new firms cannot enter and old firms cannot leave industries. The number of 
firms in each market (industry) remains fixed. In addition, it will also be assumed that all 
marginal cost curves slope upward everywhere and decline to zero as output decreases.3 With 
these modifications in force, equilibrium in the full Walrasian model remains a position in which 
all consumers, firms, and markets are at rest, and the definition of general equilibrium given 
above applies without condition (d).  
 

 
2 Jaffè, W., “Pareto Translated: A Review Article,” Journal of Economic Literature 10 (1972), pp. 1190-1201. 
3 This last assumption is consistent with the requirement that productions functions be strictly concave and 
therefore do not have ridge lines – a possibility that has been noted in Chapter 10 but is not explored in this book. 
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 To keep matters simple, the only case to be considered is that in which the quantities of 
both labor and capital supplied by each individual are fixed and do not vary with changes in 
market prices. This means that the choice between income and leisure described in Chapter 9 no 
longer determines labor supply and can be ignored. Since market supplies are the sums of 
individual supplies, it follows that the market supplies in the labor and capital markets are also 
fixed. These fixed quantities will be denoted by ℓ* and ݇* respectively. For example, everyone 
might work eight hours per day regardless of the wage paid. Then the market quantity of labor-
hours supplied during a day is eight hours times the number of people working and remains fixed 
at that level regardless of the market price (wage) of labor. The market input supply curves, then, 
are straight vertical lines at the levels of the quantities of the factors supplied, for example, ℓ* in 
Figure 17-2. Of course, the market prices of factors still vary as market demand curves shift. 
Thus, only output quantity variations among consumers, among firms, and between consumers 
and firms in the upper part of the circular flow diagram of Figure 17-1 including the consumer 
and firm boxes are considered. In addition, quantity variations of the fixed input supplies hired 
by firms are also considered, but not market level variations in those supplies between 
consumers and firms that are pictured in the lower part of Figure 17-1. 
 

 

 
 Moreover, the simplifying assumptions earlier chapters are continued here with certain 
amplifications. In particular, the following are worth noting: There are only two persons, two 
consumer goods, two firms, and two factors. Each consumer buys both goods and supplies (in 
fixed amounts) both factors. There is only one firm in each industry producing and suppling its 
unique product using both factors. Thus, there are two output markets each with two buyers and 
one seller, and there are two factor markets each with two buyers and two sellers.   Finally, the 
assumption that all markets are perfectly competitive is also continued. This last assumption is 
understood in this context to mean that each consumer and firm, in spite of their small numbers 
and relatively large size, takes prices as fixed as determined by the markets. Buying and selling 
behavior is therefore exactly what it would be if the original perfectly competitive requirements 
of a “large” number of “small” buyers and sellers in each market were present. 

 ℓ݌

S 

D 

ℓ ℓ* 

Figure 17-2 
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Chapter 18 
Consumption Edgeworth Box and  
Consumption Pareto Optimality  

 
 
 To begin a discussion of the welfare properties of general equilibrium in the simplified 
model described at the end of the previous chapter, imagine the economy’s firms produce a 
specified amount ݔ଴ and ݕ଴ of, respectively, the two goods x and y. These are distributed 
through the economy’s markets to the two consumers labeled person 1 and person 2. Let 
 

 ଵ represent the quantities of the two goods going to person 1, andݕ ଵ andݔ
 .ଶ represent the quantities of the two goods going to person 2ݕ ଶ andݔ

 
Then since, as described in the circular flow diagrams of Chapters 1 and 17, everything produced 
by firms is bought by consumers, ݔଵ + ଶݔ = ଵݕ ଴ andݔ + ଶݕ = ,ଵݔ) ଴, andݕ ,ଵݕ ,ଶݔ  ଶ) representsݕ
a distribution of ݔ଴ and ݕ଴ among persons 1 and 2. Denote the utility functions of the two 
individuals by 
 

µଵ = ,ଵݔ)ଵݑ ଵ)    and    µଶݕ = ,ଶݔ)ଶݑ  ,(ଶݕ
 
and assume they have all of the properties attributed to utility functions earlier (Chapter 5, or 
Supplemental Note C). Even though µଵ and µଶ are ordinal in nature, as long as their values 
remain the same for each basket (ݔଵ, ,ଶݔ) ଵ) orݕ  ଶ) throughout the present discussion and areݕ
not, say, doubled in the middle of it, they may still serve as indicators of individual well-off-ness. 
For example, the more a person has of goods x and y, the better off that person is. 
 

There are many ways to allocate or distribute ݔ଴ and ݕ଴ between persons 1 and 2. Several 
possibilities are illustrated in Figure 18-1 which contains the commodity space for person 1 on  
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the left and that for person 2 on the right (indicated by encircled numbers at their respective 
origins). Remembering that ݔଵ + ଶݔ = ଵݕ ଴ andݔ + ଶݕ =  ଴, the distributionݕ
 

,ଵݔ) ,ଵݕ ,ଶݔ (ଶݕ = (0, ,଴ݕ ,଴ݔ 0) is identified by the letter “A” in both commodity spaces.  
In this distribution person 1 has all of good y that has been produced and no x,  
and person 2 has all x that has been produced and no y,  

,ଵݔ) ,ଵݕ ,ଶݔ (ଶݕ = ,଴ݔ) 0, 0,   .଴) is identified by the letter “B” in both commodity spacesݕ
In this distribution person 1 has all of good x that has been produced and no y,  
and person 2 has all y that has been produced and no x,  

,ଵݔ) ,ଵݕ ,ଶݔ (ଶݕ = ,଴ݔ) ,଴ݕ 0, 0) is identified by the letter “C” in both commodity spaces.  
In this distribution person 1 has all that has been produced of both goods while  
person 2 has nothing,  

,ଵݔ) ,ଵݕ ,ଶݔ (ଶݕ = (0, 0, ,଴ݔ   .଴) is identified by the letter “E” in both commodity spacesݕ
In this distribution person 2 has all that has been produced of both goods while  
person 1 has nothing,  

,ଵݔ)  ,ଵݕ ,ଶݔ (ଶݕ = ଵݔ)
଴, ଵݕ

଴, ଶݔ
଴, ଶݕ

଴) is identified by the letter “G” in both commodity  
spaces. In this distribution person 1 has (ݔଵ

଴, ଵݕ
଴) and person 2 has (ݔଶ

଴, ଶݕ
଴), where  

ଵݔ
଴ + ଶݔ

଴ = ଵݕ ଴ andݔ
଴ + ଶݕ

଴ =  .଴ݕ
 
In each distribution the paired baskets of commodities of that distribution are connected by a 
line. Similar identification of distributions can be made for all other pairs of baskets in the boxes 
outlined by the solid and dashed lines in the two commodity spaces. 
 
 However, this is a rather awkward way of identifying distributions. When there are only 
two goods and two persons, the geometry can be simplified considerably. First rotate the right-
hand commodity space of person 2 180° as in Figure 18-2 maintaining the lines connecting  
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paired baskets. Then place it on top of the left-hand commodity space of person 1 as in Figure 
18-3 (drawn to a slightly larger scale) so that the baskets identified with the letters A, B, C, E,  

  
and G in one commodity space coincide with their counterparts in the other. The resulting picture 
is called the consumption Edgeworth box.1 Observe that each point in the box has four 
coordinates – two read off the coordinate system of person 1 and two coming from that of person 
2. These coordinate values specify a unique allocation or distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) of ݔ଴ and 

ଵݔ ଴ among the two persons such thatݕ
଴ + ଶݔ

଴ = ଵݕ ଴ andݔ
଴ + ଶݕ

଴ =  ଴. The length of the box isݕ
determined by quantity ݔ଴, its height by quantity ݕ଴. This is illustrated in Figure 18-4 for a box 
with different values of the economy’s outputs ݔ and ݕ from those of Figure 18-3. 

 
 Individuals evaluate distributions only with respect to the baskets of commodities they 
receive in them. The evaluations are expressed in terms of the values assigned to those baskets 
by their utility functions. Indifference curves in the consumption Edgeworth box reflecting the 

 
1 According to Jaffè cited in footnote 2 of Chapter 17, Edgeworth is the economist who initially introduced the idea 
of what is called Pareto optimality (mentioned in Chapter 17 and to be defined shortly). Pareto was the first to 
draw what is referred to as the Edgeworth box. 

Figure 18-3 
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evaluations are determined by the individuals’ utility functions. Those for person 1 are pictured 
in Figure 18-5 as usual as downward-sloping, strictly convex curves. However, the indifference  
 

 
 
curves for person 2 have to be drawn upside down to conform to that person’s upside-down 
commodity space. With respect to that space, person 2’s indifference curves are still downward 
sloping and strictly convex. But in the context of the consumption Edgeworth box diagram, they 
appear as downward sloping and strictly concave.  
 

Suppose the distribution of goods x and y between persons 1 and 2 occurs at point R in 
the consumption Edgeworth box of Figure 18-5. The indifference curves of the two individuals 
through that distribution, (ݔଵ

଴, ଵݕ
଴) for person 1 and (ݔଶ

଴, ଶݕ
଴) for person 2, are labeled µଵ

଴ and  µଶ
଴ 

respectively. In this situation, if person 1 were to trade ݕଵ
଴ − ଵݔ̅ തଵ to person 2 forݕ − ଵݔ

଴ or, 
equivalently, if person 2 were to trade ݔଶ

଴ − തଶݕ ଶ to person I forݔ̅ − ଶݕ
଴ where  

 
ଵݕ

଴ − തଵݕ = തଶݕ − ଶݕ
଴     and     ̅ݔଵ − ଵݔ

଴ = ଶݔ
଴ −  ,ଶݔ̅

 
that is, if the distribution moved from point R to point S, then both individuals would be on a 
higher indifference curve and therefore better off. In fact, any trade that moves the distribution 
into the area (including its boundary) between the two indifference curves that contains the point 
S will make at least one person better off without making the other worse off. This illustrates the 
gains from trade. 
 
 But if the indifference curves are tangent at a distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴), labeled Z in 

Figure 18-6, there is no trade from Z that can make one person better off (higher utility) without 
making the other worse off (lower utility). Compared to distribution Z, distributions ߙ and ߛ 
make both persons worse off, while distributions ߚ and ߜ make one person better off and the 
other worse off. Distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) in Figure 18-6 is referred to as efficient or Pareto 

optimal in consumption. In general, a distribution is Pareto optimal in consumption if it is 
impossible through redistribution of its quantities of goods among consumers to make one 

Figure 18-5 
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person better off without making the other worse off. As shown in Figure 18-6, consumption 
Pareto optimal distributions are identified in the interior of the consumption Edgeworth box by a 
tangency between two indifference curves, one for each person. Thus, at such a distribution, the 
slopes of the two curves, that is, the negatives of their marginal rates of substitution or ratios of 
marginal utilities (equation (5.3) of Chapter 5), must be equal. That is, eliminating the minus 
signs, 
 

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

=
௫ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
௬ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
.                                             (18.1) 

 
 Consumption Pareto optimal distributions can also be characterized as the outcome of 
maximizing one person’s utility with the other person’s utility no lower than a particular value. 
For example, in Figure 18-6, let the minimum utility for person 2 be that along the indifference 
curve labeled µଶ

଴. Think of that indifference curve as a constraint analogous to the consumer’s 
budget constraint in the explanation of consumer buying behavior of Chapter 6 with every 
distribution to its left as a possibility providing higher utility to person 2. Maximizing person 1’s 
utility over these possibilities leads to the tangency at Z which, of course, is a consumption 
Pareto optimal distribution. (Alternatively, maximizing person 2’s utility subject to person 1’s 
utility constraint would lead to the same result.) The second-order condition ensuring a 
maximum is derived from the assumptions made on the utility function in the same way that the 
second-order condition for utility maximization subject to the budget constraint is obtained in 
Chapter 6. The specific argument leading to the second-order condition is not pursued here. 
 

Regardless of whether consumption Pareto optimality is formulated in terms of 
maximization or not, the utility value of one person, in the previous maximization example µଶ

଴, 
has to be specified to identify the indifference curve needed to locate the tangency. Like equation 
(6.2) of Chapter 6 with regard to utility maximization subject to the budget constraint, equation 
(18.1) by itself does not fully characterize the distribution at the tangency in Figure 18-6. A full 
description, that is the complete set of first-order conditions, has to include the equation of the 
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indifference curve constraint evaluated at the tangency point, say, to be consistent with the 
previous discussion, 
 

µଶ
଴ = ଶݔ)ଶݑ

଴, ଶݕ
଴).                                                                  (18.2) 

 
To complete the description, it is also necessary to add in the equations that confine the 
distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴)  to the consumption Edgeworth box, namely, 

 
ଵݔ 

଴ + ଶݔ
଴ = ଵݕ     ଴    andݔ

଴ + ଶݕ
଴ =   ଴,                                          (18.3)ݕ

 
where ݔ଴ and ݕ଴ are the outputs produced by the economy’s firms. These equations also assert 
that all produced output of goods x and y is distributed in distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴), 

 
 The collection of all Pareto optimal in consumption distributions (tangencies between 
two indifference curves) in the consumption Edgeworth box is called the consumption contract 
curve. An illustration with three pairs of tangent indifference curves is pictured in Figure 18-7.  

 
To keep the diagram simple, the individual indifference curves are not labeled. The consumption 
contract curve (in red) necessarily connects and includes the two origins of the box. For example, 
if the distribution is at the origin of person 2’s commodity space, then person 1 receives all of the 
economy’s produced output. And it is not possible to make person 2 better off (higher utility) by 
taking a small amount of x and/or y away from person 1 and giving it to person 2 without 
making person 1 worse off (lower utility). Thus, that distribution is Preto optimal and lies on the 
contract curve. There is no tangency between two indifference curves here because person 2 has 
no indifference curve through the origin of his/her commodity space.2 But the idea of Pareto 
optimality in consumption still applies. It also follows from previous discussion that whenever 
the two persons are placed at a distribution of ݔ଴ and ݕ଴ that lies off of the consumption contract 
curve, it is in both their interests to trade until the distribution of goods among them arrives on 
the contract curve. 

 
2 Recall that it has been assumed that indifference curves do not touch the co-ordinate axes of the commodity 
space. In particular, the co-ordinate axes cannot appear as indifference curves. 

Figure 18-7 
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Chapter 19 
Production Edgeworth Box, Production Pareto 

Optimality, Production Possibilities, and 
General Pareto Optimality  

 
 
 Now redraw the consumption Edgeworth box of Chapter 18 by replacing 
 

1. total outputs produced ݔ଴ and ݕ଴ by total fixed factors supplied ℓ* and ݇*. 
2. consumers 1 and 2 by firms producing goods x and y, 
3. commodity spaces by input spaces with labor and capital inputs (ℓ௫, ݇௫) for the firm  
         producing x and (ℓ௬, ݇௬) for the firm producing y, and 
4. utility functions µଵ = ,ଵݔ)ଵݑ ଵ) and µଶݕ = ,ଶݔ)ଶݑ   ଶ) and their indifference curves byݕ
         production functions, now written ݂௫(ℓ௫, ݇௫) for the firm producing x and  
         ݂௬(ℓ௬, ݇௬) for the firm producing y, and their isoquants, 

 
as shown in Figure 19-1. This diagram is known as the production Edgeworth box. Its  

 
characteristics are analogous to those of the consumption Edgeworth box described in Chapter 
18: 
 

1. The dimensions of the box are determined by the fixed supplies of factors ℓ* and ݇*  
    coming from consumers. 
 
2. Each point in the box represents a distribution (ℓ௫, ݇௫, ℓ௬, ݇௬) of the fixed factor  
    supplies among the two firms, where ℓ௫ + ℓ௬ =  ℓ* and ݇௫ + ݇௬ =  ݇*. 
 
3. Point A in the box, where two isoquants are tangent, is efficient or Pareto optimal in  
    production, that is, by redistributing the fixed factor supplies, it is not possible to 
    increase the output of one firm without lowering that of the other. That distribution can  

Figure 19-1 
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    also be described in terms of maximizing the output of one firm subject to the fixed  
    output or isoquant constraint of the other. 
 
4. The curve in red connecting the two origins and made up of the tangencies of isoquants  
    is the collection of all production Pareto optimal distributions in the box. It is called the  
    production contract curve. 
 
5. The equation describing the equality of slopes at the tangency distribution 
    (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) is, eliminating the minus signs (from equation (10.3) of Chapter 10), 

 
ܯ ℓܲ

௫(ℓ௫
଴)

ܯ ௞ܲ
௫(݇௫

଴)
=

ܯ ℓܲ
௬(ℓ௬

଴ )
ܯ ௞ܲ

௬(݇௬
଴)

,                                                      (19.1) 

 
    where, as with the production functions, the superscripts ݔ and ݕ have been added to  
    distinguish between the marginal products of the two firms. 
 
6.The equations that fully describe the distribution (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) at the tangency are 

   (19.1) along with the equation, say for the firm producing x, of the isoquant constraint  
    passing through that distribution and those that confine (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) to the  

    production Edgeworth box: 
 

଴ݔ = ݂௫(ℓ௫
଴, ݇௫

଴),                                                      (19.2) 
 

ℓ௫
଴ + ℓ௬

଴ =  ℓ*    and     ݇௫
଴ + ݇௬

଴ =  ݇*.                                    (19.3) 
 
Thus, in parallel to the case of consumers where marginal rates of substitution are equal at 
consumption Pareto optimal distributions (equation (18.1) of Chapter 18), with respect to firms, 
marginal rates of technical substitution are equal at distributions of inputs that are Pareto optimal 
in production. 
 
 In Figure 19-1, traveling the production contract curve from the origin of the firm 
producing ݔ to that of the firm producing y, output ݔ rises while output ݕ falls. Plotting those 
outputs against each other yields what is called the production possibility or transformation 
curve. An illustration is provided in Figure 19-2. Starting at point ߙ on the production contract 
curve in the production Edgeworth box on the left and proceeding through points ߜ ,ߛ ,ߚ, and ߝ, 
parallels moving along the transformation curve from ߙ to ߝ on the right.  The outputs along the 
isoquants at points ߛ ,ߚ, and ߜ in the production Edgeworth box on the left are the coordinates 
of, respectively, points ߛ ,ߚ, and ߜ on the transformation curve on the right. The isoquant at ߙ for 
the firm producing ݕ and that at ߝ for the firm producing ݔ are not drawn in the left-hand 
diagram. That is because, as described for the consumption contract curve at the end of Chapter 
18, there can be no tangency at those distributions since there is no isoquant for the firm 
producing ݔ at ߙ and for the firm producing ݕ at 1.ߝ  The numerical outputs at ߙ and ߝ are also 

 
1 In parallel with the case of the consumer (footnote 2 of Chapter 18), this follows from the assumption that 
isoquants do not touch the co-ordinate axes of the input space. 
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not indicated in either diagram, although, at ߙ, the output of the firm producing ݔ is zero as is 
that for the firm producing ݕ at ߝ. And at ߙ, the output of the firm producing ݕ is that obtained if 
all of the economy’s resources were devoted only to the production of ݕ. A similar property 
holds at ߝ for the output of the firm producing ݔ. Note that if either ℓ଴ or ݇଴ were to change, the 
dimensions of the production Edgeworth box would alter, and the production contract and 

 

transformation curves would alter. The transformation curve is often drawn as a strictly concave 
curve like that in Figure 19-2.2 The function whose graph is the transformation curve is written  
 

ݕ =  (19.4)                                                             (ݔ)ܶ
 

for all outputs ݔ that can be produced by firm x given the quantities of labor and capital 
available. 
 
 It has been implicitly suggested above that there is a parallel between the consumption 
Edgeworth box (Chapter 18) where each tangency can be expressed in terms of the maximization 
of one person’s utility subject to the condition that the other person’s utility is no lower than a 
specified value, and the production Edgeworth box where tangencies can be viewed as the 
outcome of maximizing one firm’s output where the other firm’s output is no lower than a 
specified amount. The parallel first-order conditions here are equations (19.1)-(19.3). Since 
tangencies along the production contact curve are translated into points along the transformation 

 
2 Although not demonstrated here, this is entirely consistent with production functions that are themselves strictly 
concave. Indeed, strict concavity of the latter implies strict concavity of the transformation function. The 
assumption of strictly concave production functions yielding a strictly concave transformation function is 
maintained here and in Chapter 20. 
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curve, this maximization may be restated in terms of the latter as follows: Each point (ݔ,  on (ݕ
the transformation curve ݕ =  ݕ  may be thought of as indicating the maximum amount of (ݔ)ܶ
that can be obtained from the remaining quantities of  the fixed supplies of labor and capital after 
output ݔ is produced. 
 
 All points beneath the transformation curve such as ߰ in Figure 19-2 are attainable but 
inefficient. They correspond to distributions in the production Edgeworth box that are off the 
production contract curve and for which the isoquants passing through them intersect but are not 
tangent. This is illustrated in Figure 19-2 where the output coordinates at ߰ in the right-hand 
diagram (ݔ = 50 and ݕ = 125) are associated with the isoquants corresponding to those outputs 
that intersect at ߰ in the left-hand diagram. Thus, it is always possible at ߰ through redistribution 
of inputs to increase the output of one firm without lowering that of the other. In addition, the 
factor supplies are insufficient to allow the economy to achieve points beyond the transformation 
curve. 
 
 The transformation curve also shows how the economy converts units of good x into 
units of good y (or vice versa) when all production takes place as efficiently as possible. This 
conversion is characterized by the slope (which is negative) of the transformation curve. That 
slope indicates the rate at which the economy gives up good x in exchange for good y at each 
output combination (ݔ,  The negative of this slope is called the marginal rate of .(ݕ
transformation and can be shown to be (the demonstration is not provided) 
 

(ݔ)௫ܥܯ
(ݕ)௬ܥܯ

 , 

 
where ܥܯ௫(ݔ) is the marginal cost at output ݔ for the firm producing x with the short run (ܴܵ) 
and long run (ܴܮ) symbolisms dropped.3 The same letters are discarded in ܥܯ௬(ݕ) for the firm 
producing good y. 

-------------------------------------------------------------------------------- 
 
 There is a more general form of Pareto optimality that encompasses both Pareto 
optimality in consumption and Pareto optimality production. Its name is just Pareto optimality 
without the phrase ‘in consumption’ or ‘in production’ attached to it and its definition is as 
follows (it also appears in Supplemental Note G): 
 

A its distribution (ݔଵ
଴, ଵݕ

଴, ଶݔ
଴, ଶݕ

଴) of (ݔ଴,   ଴) among consumers is Pareto optimal orݕ
efficient (in general) provided that: 

  A.  (ݔ଴,  ,଴) lies on the transformation curve, that is, satisfies equation (19.4)ݕ
  B.  there is no other distribution of (ݔ଴,  ଴) and no distribution of any otherݕ
   pair of outputs on the transformation curve at which one person is  

better off (higher utility) without the other person being worse off (lower 
 utility). 

 

 
3 Recall that, as described in Chapter 17, the model of Chapters 18-21 combines features of both the long- and 
short-run models of earlier chapters. 
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According to previous argument, to say that (ݔ଴,  ଴) lies on the transformation curve means thatݕ
,଴ݔ)  ଴) is associated with a distribution of the economy’s fixed factor supplies at which theݕ
isoquants of the two firms are tangent. That is, Part A of the definition of Pareto optimality 
implies Pareto optimality in production. And ignoring the words in bold typescript, Part B of that 
definition asserts that the distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) of (ݔ଴,   ଴) is also Pareto optimal inݕ

consumption relative to the consumption Edgeworth box determined by (ݔ଴,  ଴). The words inݕ
bold characterize the additional content of Pareto optimality that does not appear in Pareto 
optimality in consumption and production combined. That additional content states that it is not 
possible to move from (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) to any distribution of any other pair of outputs on the 

transformation curve without lowering the utility of at least one person. Alternatively put, the 
difference between Pareto optimality in consumption and Pareto optimality is that to determine a 
Pareto optimal distribution, the former compares the distribution in question to distributions from 
the single consumption Edgeworth box generated by (ݔ଴,  ଴) while the latter compares thatݕ
distribution to distributions from all Edgeworth boxes generated by all points on the 
transformation curve. Thus, although the general form of Pareto optimality includes both Pareto 
optimality in consumption and production, the combination of the latter two by themselves do 
not fully constitute the former. 
 

It can be shown (this is also not demonstrated here) that at a Pareto optimal distribution 
ଵݔ)

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴), the slope of the transformation curve at (ݔ଴,  ଴) must be the same as that ofݕ

each person’s indifference curve at (ݔଵ
଴, ଵݕ

଴) for person 1 and (ݔଶ
଴, ଶݕ

଴) for person 2. 
Mathematically (and dropping the minus signs), 
 

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ

=
௫ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
௬ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
       and       

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ

=
௫ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
௬ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
,                 (19.5) 

 
where ݔଵ

଴ + ଶݔ
଴ = ଵݕ ଴ andݔ

଴ + ଶݕ
଴ =  ଴. Thus, at a Pareto optimal distribution, the marginal rateݕ

of transformation equals both marginal rates of substitution. In other words, the rate at which the 
microeconomy can transform the production of good x into the production of good y is the same 
as the rate at which consumers can substitute x for y without changing their level of utility. But 
as long as outputs ݔ଴ and ݕ଴ are split up between the two persons, this cannot mean a tangency 
between their indifference curves and the transformation curve. 4  For example, according to 
equation (19.5) with minus signs restored, the slope of the transformation curve 
 

− 
(଴ݔ)௫ܥܯ
 (19.6)                                                                 (଴ݕ)௬ܥܯ

 
  occurs at (ݔ଴,   ଴), while that of person 1’s indifference curveݕ
 

−
௫ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
௬ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
                                                              (19.7) 

 
4 Since the general form of Pareto optimality includes Pareto optimality in consumption, there is still a tangency 
between the two person’s indifference curves at distribution (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) in the (ݔ଴,  ଴) consumptionݕ

Edgeworth box as described in Chapter 18.  
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 occurs at (ݔଵ

଴, ଵݕ
଴). Even though the ratio of (19.6) equals that of (19.7), only if person 1 receives  

all of both outputs so that 
 

,଴ݔ) (଴ݕ = ଵݔ)
଴, ଵݕ

଴) 
 
will a tangency between that person’s indifference curve and the transformation curve exist.5 
 
 It is instructive to see geometrically how each Pareto optimal distribution of (ݔ଴,  ଴) isݕ
associated with a production Pareto optimal distribution (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) in the (ℓ଴, ݇଴) 

production Edgeworth box and a consumption Pareto optimal distribution (ݔଵ
଴, ଵݕ

଴, ଶݔ
଴, ଶݕ

଴) in the 
,଴ݔ)  ଴) consumption Edgeworth box. Thus, in Figure 19-3, the requirement of Part A of theݕ
definition of Pareto optimality that (ݔ଴,  ଴) be on the transformation curve (shown in the middleݕ
third of the diagram on the left) means that the isoquants associated with the outputs ݔ଴ and ݕ଴ 
are tangent at some distribution (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) in the production Edgeworth box whose length 

and height are determined, respectively, by the fixed supplies of factors ℓ଴ and ݇଴, and where 
ℓ௫

଴ + ℓ௫
଴ = ℓ଴ and ݇௫

଴ + ݇௬
଴ = ݇଴. This appears in the lower two-thirds of Figure 19-3. As 

previously suggested, even though the distribution (ℓ௫
଴, ݇௫

଴, ℓ௬
଴ , ݇௬

଴) does not explicitly appear in 
the above definition of Pareto optimality, it is implicit in Part A of that definition.  
 

Part B of the (general) definition of Pareto optimality states (in part) that there is a 
consumption Edgeworth box whose length is output ݔ଴ and height is output ݕ଴ and a distribution 
ଵݔ)

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) of (ݔ଴, ଵݔ ଴) (whereݕ

଴ ଶݔ +
଴ = ଵݕ ଴ andݔ

଴ + ଶݕ
଴ =  ଴) in that box at which personݕ

1’s indifference curve through (ݔଵ
଴, ଵݕ

଴) is tangent to person 2’s indifference curve through 
ଶݔ)

଴, ଶݕ
଴). This relationship appears in the upper two-thirds of Figure 19-3 where the indifference 

curves are labeled with associated utility values µଵ
଴ for person 1 and µଶ

଴ for person 2. 
 

 The following is a complete statement of the equations that characterize Pareto 
Optimality at output basket (ݔ଴, ଵݔ) ଴) with distributionݕ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴). The statement combines 

the equality-of-slope equations (18.1) from Chapter 18 and the equality-of-slope equations (19.1) 
and (19.5) above, equation (19.2) of the isoquant constraint passing through and evaluated at the 
distribution at the tangency in the production Edgeworth box, the two equations (18.3) of 
Chapter 18 and the two of (19.3) that ensure that the distributions (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) and 

(ℓ௫
଴, ݇௫

଴, ℓ௬
଴ , ݇௬

଴) exhaust the outputs produced and factor supplied and therefore lie in the 
respective consumption and production Edgeworth boxes, and the equation of the transformation 
curve (19.4). It is also necessary to include an equation of one of the indifference curves passing 
through the distribution at the tangency in the consumption Edgeworth box. In this regard, rather 
than thinking of maximizing person 1’s utility with person 2’s utility no lower than µଶ

଴ as in 
Chapter 18, let person 2’s utility be maximized subject to person 1’s utility being no lower than 
µଵ

଴. The relevant indifference-curve-constraint equation becomes  µଵ
଴ = ଵݔ)ଵݑ

଴, ଵݕ
଴) and is 

substituted for Chapter 18’s equation (18.2) for person 2. (Here  µଵ
଴ instead of µଶ

଴ has to be 
independently specified in order to fully describe the tangency between two indifference curves  

 
5 Of course, a full description of that tangency still requires, in addition to the equation representing the equality of 
two slopes, the equation of one of the two tangent curves. 
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in the consumption Edgeworth box.6) Also, capital will now be reintroduced explicitly as an 
argument in all marginal product functions, a practice that is consistent with the definition of 
total and marginal product functions at the beginning of Chapter 10. Note that the second 
equation of (19.5) is included implicitly below since it is implied by the combining the first and 
last equation of the list.7 
 

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

=
௫ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
௬ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
, 

ଵݔ)ଵݑ
଴, ଵݕ

଴) =  µଵ
଴ (the fixed utility value for person 1), 

ଵݔ
଴ + ଶݔ

଴ =  ,(ݔ the output produced by firm) ଴ݔ

ଵݕ
଴ + ଶݕ

଴ =  ,(ݕ the output produced by firm) ଴ݕ

ܯ ℓܲ
௫(ℓ௫

଴, ݇௫
଴)

ܯ ௞ܲ
௫(ℓ௫

଴, ݇௫
଴)

=
ܯ ℓܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
ܯ ௞ܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
, 

଴ݔ = ݂௫(ℓ௫
଴, ݇௫

଴), 

ℓ௫
଴ + ℓ௬

଴ =   ℓ* (the fixed supply of ℓ), 

݇௫
଴ + ݇௬

଴ =  ݇* (the fixed supply of ݇), 

଴ݕ =  ,(଴ݔ)ܶ

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ =

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

. 

 
These equations suggest the earlier comment that the general form of Pareto optimality 

includes both Pareto optimality in consumption (fully described by the first four equations in the 
above list) and Pareto optimality in production (fully described by the second four equations). 
But Pareto optimality in consumption and production together do not, by themselves, imply 
Pareto optimality in general because the equation on the last line in the above list is still missing. 
It is also worth pointing out that the first nine equations in the list provide a complete 
mathematical representation of Figure 19-3: The first four equations relate to the consumption 
Edgeworth box; the second four relate to the production Edgeworth box and the ninth to the 
transformation curve.  

 
6 The parallel value of ݔ଴ which identifies the isoquant on the production Edgeworth box does not have to be 
independently specified. It is determined in conjunction with the other equations of the system. See footnote 7 
below and footnote 3 in Chapter 21. 
7 Given the fixed values of µଵ

଴, ℓ*, and ݇*, this is a system of 10 simultaneous equations in the 10 variables 
,଴ݔ ,଴ݕ ଵݔ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴, ℓ௫

଴, ݇௫
଴, ℓ௬

଴ ,  and ݇௬
଴. If specific forms of the marginal utility, marginal product, and marginal 

cost functions are introduced, it may be possible to solve the system to determine the values of the 10 variables. 
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Chapter 20 
Nonwastefulness, Unbiasedness,  

and Utility Possibilities 
 
 
 The notion of Pareto optimality provides a criterion that may be used to evaluate general 
equilibrium outcomes. That evaluation is based on what are called the first and second 
fundamental theorems of welfare economics. These are considered here in the two-person, two-
final good, two-input context of the last three chapters having fixed factor supplies ℓ* and ݇*.  
The first theorem is the statement that 
 
 General equilibrium under perfect competition is Pareto optimal. 
 
 Recall from the end of Chapter 19 that the equations that characterize Pareto Optimality 
at output basket (ݔ଴, ଵݔ) ଴) with distributionsݕ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) and (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴) are: 

 
௫ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
௬ܷܯ

ଵ(ݔଵ
଴, ଵݕ

଴)
=

௫ܷܯ
ଶ(ݔଶ

଴, ଶݕ
଴)

௬ܷܯ
ଶ(ݔଶ

଴, ଶݕ
଴)

,                                               (20.1) 

µଵ
଴ = ଵݔ)ଵݑ

଴, ଵݕ
଴),                                                          (20.2) 

ଵݔ
଴ + ଶݔ

଴ =  ଴,                                                             (20.3)ݔ

ଵݕ
଴ + ଶݕ

଴ =  ଴,                                                            (20.4)ݕ

ܯ ℓܲ
௫(ℓ௫

଴, ݇௫
଴)

ܯ ௞ܲ
௫(ℓ௫

଴, ݇௫
଴)

=
ܯ ℓܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
ܯ ௞ܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
,                                               (20.5) 

଴ݔ = ݂௫(ℓ௫
଴, ݇௫

଴),                                                           (29.6) 

ℓ௫
଴ + ℓ௬

଴ =  ℓ*,                                                      (20.7)      

݇௫
଴ + ݇௬

଴ =  ݇*,                                                      (20.8) 

଴ݕ =  (20.9)                                                              ,(଴ݔ)ܶ

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ =

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

,                                            (20.10) 

 
where µଵ

଴. ℓ*, and ݇* are specified independently of these equations. One way to establish the 
first fundamental theorem is to show that each of these equations holds at every general 
equilibrium. 
 

Towards that end, let 
 
       (1) quantities of outputs consumed by individuals (ݔଵ

଴, ଵݕ
଴, ଶݔ

଴, ଶݕ
଴) and market  
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 quantities of outputs produced by firms (ݔ଴, ௫݌ ଴) at pricesݕ
଴ and ݌௬

଴, and 
 
       (2) quantities inputs employed by firms (ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴)  and market quantities of  

 those inputs supplied by consumers (ℓ*, ݇*) at prices ݌ℓ
଴ and ݌௞

଴ 
 

be a general equilibrium as described in parts (i) - (iii) of the definition of that concept in Chapter 
17.  Using the characteristics (a) – (c) required of all general equilibria according to the Chapter 
17 definition, it will now be demonstrated that at these quantity and price values, all equations 
(20.1) – (20.10) are satisfied. 
 

Observe first that characteristic (a) of the definition of general equilibrium requires that at 
ଵݔ)

଴, ଵݕ
଴) and (ݔଶ

଴, ଶݕ
଴), consumers 1 and 2 are, respectively, buying final goods that maximize 

their utility subject to their budget constraint. Applying the equality-of-slopes equation that 
partly describes that maximization (equation (6.2) of Chapter 6) to both consumers results in 
 

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

=  
௫݌

଴

௬݌
଴   and  

௫ܷܯ
ଶ(ݔଶ

଴, ଶݕ
଴)

௬ܷܯ
ଶ(ݔଶ

଴, ଶݕ
଴)

=
௫݌

଴

௬݌
଴ .                                (20.11) 

 
Because both consumers face the same market prices, it follows that 
 

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

=
௫ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
௬ܷܯ

ଶ(ݔଶ
଴, ଶݕ

଴)
, 

 
thereby establishing equation (20.1). Since consumer 1 obtains the basket (ݔଵ

଴, ଵݕ
଴) in the 

specified general equilibrium, he/she also attains the utility value along the indifference curve on 
which that basket lies. Denote that value by µଵ

଴. Thus 
 

µଵ
଴ = ଵݔ)ଵݑ

଴, ଵݕ
଴), 

 
securing equation (20.2).  
 

Next, according to characteristic (b) of the definition of general equilibrium, ݔ଴ and ݕ଴ 
have to be profit-maximizing outputs. Since profit maximization implies that ݔ଴ and ݕ଴ are 
produced with their respective cost-minimizing input baskets (ℓ௫

଴, ݇௫
଴) and (ℓ௬

଴ , ݇௬
଴), the equality-

of-slopes equations which partly describe this minimization (from equation (11.3) in Chapter 11) 
are  
 

ܯ ℓܲ
௫(ℓ௫

଴, ݇௫
଴)

ܯ ௞ܲ
௫(ℓ௫

଴, ݇௫
଴)

=
ℓ݌

଴

௞݌
଴   and  

ܯ ℓܲ
௬൫ℓ௬

଴ , ݇௬
଴൯

ܯ ௞ܲ
௬൫ℓ௬

଴ , ݇௬
଴൯

=
ℓ݌

଴

௞݌
଴, 

 so that 
 

ܯ ℓܲ
௫(ℓ௫

଴, ݇௫
଴)

ܯ ௞ܲ
௫(ℓ௫

଴, ݇௫
଴)

=
ܯ ℓܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
ܯ ௞ܲ

௬൫ℓ௬
଴ , ݇௬

଴൯
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establishing equation (20.5). Because the firm producing good x is producing its output ݔ଴ with 
the input basket (ℓ௫

଴, ݇௫
଴), that input basket lies on its ݔ଴-isoquant or  

 
݂௫(ℓ௫

଴, ݇௫
଴) =  ,଴ݔ

 
which is equation (20.6). And since both firms’ isoquants are tangent at the input baskets they 
employ (from equations (20.5) and (20.6) just established), their outputs (ݔ଴,  ଴) are located onݕ
the transformation curve (Chapter 19). This yields equation (20.9): 
 

଴ݕ =  .(଴ݔ)ܶ
 

Also, profit maximization further means that ܥܯ௫(ݔ଴) = (଴ݕ)௬ܥܯ ௫ and݌ =  ,௬ at݌
respectively, ݔ଴ and ݕ଴ (see, for example, equation (13.3) in Chapter 13).1  Dividing the second 
equation into the first gives 
 

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ =

௫݌
଴

௬݌
଴ ,                                                              (20.12) 

 
and combining equations (20.11) and (20.12) results in equation (20.10)): 
 
 

(଴ݔ)௫ܥܯ
(଴ݕ)௬ܥܯ =

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

 . 

 
To obtain equations (20.3) and (20.4), use characteristic (c) of the definition of general 

equilibrium stating that, at such an equilibrium, supply equals demand in all markets. Since, at 
the general equilibrium specified, ݔଵ

଴ and ݔଶ
଴ are the quantities demanded of good x by the two 

consumers, the market quantity demanded is ݔଵ
଴ + ଶݔ

଴. Moreover, at this general equilibrium the 
profit-maximizing output which is the same as the quantity supplied by the firm producing x is 
 ,଴. Since equality of the two is requiredݔ
 

ଵݔ
଴ + ଶݔ

଴ =  .଴ݔ
 
Similarly, in the market for good ݕ: 
 

ଵݕ
଴ + ଶݕ

଴ =  .଴ݕ
 
 Finally, at the specified general equilibrium, summing the profit-maximizing quantities of 
inputs l and k demanded by the two firms gives, respectively, the market demands ℓ௫

଴ + ℓ௬
଴  and 

݇௫
଴ + ݇௬

଴. And the market quantities supplied by the two consumers combined are the fixed 
quantities ℓ* and ݇*.  Equilibrium in the factor markets now yields equations (20.7) and (20.8): 

 
1 As in Chapter 19, the short-run (SR) and long-run (LR) designations in the cost-function symbolism of earlier 
chapters is dropped. 
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ℓ௫

଴ + ℓ௬
଴ = ℓ* 

 
and 
 

݇௫
଴ + ݇௬

଴ = ݇*. 
 
Therefore, all of the equations required for Pareto optimality are satisfied so general equilibrium 
is Pareto optimal. 

---------------------------------------------------------- 
 
 
 
 Use the phrase “perfectly competitive price system” to refer to the mechanism of the 
competitive forces of supply and demand by which equilibrium prices and hence equilibrium 
quantities and their distribution are established in the Walrasian model. Implicit in this 
mechanism are the profit maximization by firms and constrained utility maximization by 
consumers that generate supply and demand. 2 If general equilibrium were not Pareto optimal, 
then at any equilibrium distribution it would be possible through changing quantities of outputs 
produced, or redistributing inputs among firms or final goods (outputs) among consumers, to 
make at least one person better off in terms of utility without making the other worse off. In this 
sense there would be waste. Thus it may be said that the first fundamental theorem of welfare 
economics asserts that the perfectly competitive price system is nonwasteful.  
  
 As previously described in Chapter 17, the perfectly competitive price system is taken as 
an explanation of how the real microeconomy operates, and each complete set of observations of 
prices and quantities in that economy is understood as a general equilibrium. It follows that the 
workings of the real microeconomy, or what is represented in the Walrasian model by the 
perfectly competitive price system, can be said to have this nonwastefulness property. That is, 
each observed distribution of commodities among consumers is Pareto optimal and it is not 
possible through redistribution to make one person better off without making another worse off. 
 
 Note that if at least one of the two firms, say the firm producing x, were operating in an 
imperfectly competitive output market (such markets will be considered in due course), then the 
general equilibrium achieved in that case would not necessarily be Pareto optimal. For example, 
if the firm producing good x were a monopolist, then, as will be seen in Chapter 22, ܥܯ௫(ݔ଴) 
would be less than the output price ݌௫

଴ . In that case, the above argument establishing equation 
(20.12) need not hold and the ratio of marginal costs would not necessarily equal the output-price 
ratio. The latter is required to obtain equations (20.1) and (20-10). Without them, Pareto 
optimality cannot be established, and the first fundamental theorem would not hold. 
 
 The second fundamental theorem of welfare economics states:  
 

 
2 Apart from the description of the competitive forces of demand and supply in Chapter 3 and the implicit profit 
and constrained utility maximization behind them, no further characterization of this mechanism will be given 
here. 



159 
 

For each Pareto optimal distribution of outputs and associated input quantities, 
there are prices at which that distribution and its output and input quantities are 
part of a perfectly competitive general equilibrium. 

 
 This theorem will not be demonstrated here. But the theorem indicates that all Pareto 
optimal distributions, even those in which one person receives only very small quantities of 
goods, can arise as general equilibria. Thus, the perfectly competitive price system need not lead 
to an equal or near equal distribution of goods among consumers. 
 
 The fact that all distributions on a variety of different consumption contract curves (each 
corresponding to a different pair of outputs on the transformation curve) are possible general 
equilibria means that the perfectly competitive price system is not biased away from any 
particular distribution along any curve. It is in this sense that the second fundamental theorem 
asserts that the perfectly competitive price system is unbiased. Applied to the real 
microeconomy, the inner workings of that economy do not push distributions away from any 
outcome that might be observed. 
 
 Thus, as long as what happens in the real microeconomy is interpreted in terms of the 
Walrasian model that has been built to understand it, the nonwastedfulness and unbiasedness 
properties of general equilibrium say something about the world in which real microeconomic 
activity takes place. The former asserts that it is not possible by changing inputs, outputs, or their 
distribution to make one person better off without making someone else worse off.  And from the 
latter it is understood that unequal distributions of goods across consumers are not only possible 
but also have the same status in terms of Pareto optimality or efficiency as more equal 
distributions. 

---------------------------------------------------------------------------- 
 
 
 
 Knowing that general equilibrium under perfect competition is Pareto optimal does not 
indicate which equilibrium is best from society’s point of view. In terms of the consumption 
Edgeworth box, distributions on the consumption contract curve such as B In Figure 20-1 can be 

 
Figure 20-1 

 ଵݔ
 ଶݕ

 ଵݕ
 ଶݔ

1 

2 

B 

A 
C 



160 
 

said to always be better than distributions off of the contract curve such as A because both 
individuals have higher utility at B than at A. But without introducing additional elements into 
the Walrasian model, there is no way of determining which of two distributions on the contract 
curve, such as B and C, is better since, in moving from one to the other, one person’s utility 
necessarily rises while that of the other falls. To see that this statement also applies to 
distributions that are Pareto optimal in the general sense, consider the following: 
 
 Recall that the utility functions for persons 1 and 2 are written respectively as µଵ =
,ଵݔ)ଵݑ ଵ) and µଶݕ = ,ଶݔ)ଶݑ  ଶ). These functions are ordinal and there are many of them thatݕ
represent the same underlying preferences and indifferences.3 It will simplify matters to specify 
particular utility functions for the two individuals with the property that 
 

ଵ(0,0)ݑ = 0     and     ݑଶ(0,0) = 0.                                      (20.13) 
 

In what follows, these functions remain fixed and are not permitted to change. 
 

Now choose a basket of outputs or point (ݔᇱ,  ᇱ) on the transformation curve andݕ
construct the consumption Edgeworth box associated with it. In the same way that the 
transformation curve was obtained from the production contract curve in Chapter 19, plot the 
two persons’ utility values corresponding to tangent indifference curves that arise when moving 
along the consumption contract curve from the origin of person 1 to that of person 2. In parallel 
with the transformation curve, the result is a diagram containing a quadrant with co-ordinates µଵ 
and µଶ and a curve in that quadrant called a utility possibility curve. It is illustrated in Figure 20-
2. Note that the utility possibility curve slopes downward because as one person’s utility rises  

 
along the contract curve, that of the other must fall. But unlike the strictly concave 
transformation curve in Figure 19-2, the utility possibility curve in Figure 20-2 is drawn as a 
wavy line because its exact shape is generally taken to be unknown.4 It should be emphasized 

 
3 Recall that, for example, ݑߙଵ(ݔଵ, ߙ ଵ) represents the same preferences and indifferences for eachݕ > 0. 
4 It was pointed out in footnote 2 of Chapter19 that strict concavity of production functions implies strict concavity 
of the transformation function. But unlike productions functions which are fixed by technology and as noted 
above, there are many utility functions satisfying (20.13) that represent the same underlying preferences and 
indifferences of the two individuals.  Some of these could be strictly concave. Due to the variety of conceivable 
utility functions, the parallel assumption of strict concavity from footnote 2 of Chapter 19 is not imposed on utility 
functions and the utility possibility curve. 
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 ଶߤ

Figure 20-2 

Curve drawn 
for  (ݔᇱ,  (ᇱݕ



161 
 

that, with fixed specifications of utility functions, each utility possibility curve is identified with 
a single point (ݔᇱ,  .ᇱ) on the transformation curve and no otherݕ
 
 Now, keeping the specified utility functions the same, choose a second point (ݔᇱᇱ,  ᇱᇱ) onݕ
the transformation curve and construct the utility possibility curve for that point. Do this for all 
points on the transformation curve. This provides a web of utility possibility curves. The outer 
boundary of all of these curves is called the grand utility possibility curve. It is pictured as the 
red line in Figure 20-3 along with two ordinary utility possibility curves, each associated with its 

 
own unique point (ݔᇱ, ,ᇱᇱݔ) ᇱ) orݕ  ᇱᇱ) on the transformation curve. Observe that each point suchݕ
as A or E on the grand curve also lies on an ordinary utility possibility curve and, in turn, is 
associated with  
 

(i) a unique point on the transformation curve and hence a unique production-Pareto-  
     optimal distribution of inputs among firms in the corresponding production  
     Edgeworth box, and 
 
(ii) a unique consumption Edgeworth box and a unique consumption-Pareto-optimal  
     distribution in that box of the outputs that have been identified on the  
     transformation curve among consumers. 

 
To see how these associations work out geometrically, consider Figure 20-4. Start at 

point A with coordinates (ߤଵ
଴, ଶߤ

଴) on the grand utility possibility curve in the upper-left diagram. 
That point also lies on an ordinary utility possibility curve. The ordinary curve, in turn, 
corresponds to the consumption contract curve in the consumption Edgeworth box of the upper-
right diagram. And the coordinates (ߤଵ

଴, ଶߤ
଴) identify two tangent indifference curves, one, for 

consumer 1, along which the utility value is ߤଵ
଴ and the other, for consumer 2, along which the 

utility value is ߤଶ
଴. The point of tangency of the two curves, B, lies on the consumption contract 

curve. The coordinates of that point determine the distribution (ݔଵ
଴, ଵݕ

଴, ଶݔ
଴, ଶݕ

଴) of quantities of 
commodities among the two consumers. The sums ݔଵ

଴ + ଶݔ
଴ and ݕଵ

଴ + ଶݕ
଴ of the individuals’ 

quantities of the two goods in the distribution, namely, ݔ଴ and ݕ଴, define the dimensions of the 
consumption Edgeworth box and comprise the coordinates (ݔ଴,  ଴) of the associated point C onݕ
the economy’s transformation curve pictured in the center-left diagram. 
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 The transformation curve, in turn, corresponds to the production contract curve in the 
production Edgeworth box in the lower-right diagram of Figure20-4 (recall Figures 19-2 and 19-
3 from Chapter 19). And the coordinates of the point (ݔ଴,  ଴) on the transformation curveݕ
identify two isoquants tangent at point E on the contract curve, one for the firm producing good x 
along which the output value is ݔ଴, and the other for the firm producing good y,\ along which the 
output value is ݕ଴. The coordinates of the point E determine a distribution ൫ℓ௫

଴, ݇௫
଴, ℓ௬

଴ , ݇௬
଴൯ of the 

fixed factor supplies (the total amounts of input quantities available from consumers) among the 
two firms. Note that the sums  ℓ௫

଴ + ℓ௫
଴  and ݇௫

଴ + ݇௬
଴ of the firms’ quantities of the two inputs in 

the distribution, namely, ℓ* and ݇* are precisely the market fixed factor supplies and define the 
dimensions of the production Edgeworth box. 

 
 Now consider points such as A and E on the grand curve of Figure 20-5. Moving from 
one to the other requires transferring to a different ordinary curve and relocating to a distribution 
among consumers of a different basket of outputs along the transformation curve. Were A and E 
on the same ordinary curve (a possibility not pictured in Figure 20-5), the outputs on the 
transformation curve would not change but there would still be a rearranging of their 
distribution. In either case, as can be inferred from Figure 20-5, such a move cannot increase one 
person’s utility without lowering that of the other. Clearly, points on the grand curve must be 
Pareto optimal. In \addition, starting at a point off of the grand curve that lies on an ordinary  

 
curve, it is always possible to move to a point on another ordinary curve (or on the grand curve) 
and increase the utility of one person without lowering that of the other or raise the utility of both 
persons simultaneously. In the example of Figure 20-5, moving from C to B increases person 1’s 
utility keeping person 2’s the same, while moving from B to A makes person 2 better off without 
hurting person 1. And moving from G to F to E increases the utility of both persons in each case. 
Clearly, outputs and their distributions corresponding to at points C, B, G, and F are not Pareto 
optimal, 
 

Thus, although points off the grand curve but still on an ordinary curve are associated 
with distributions that are Pareto optimal in consumption, only points on the grand curve can be 
Pareto optimal in the general sense. And since moving from one point on the grand curve to 
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another always increases one person’s utility at the expense of the other’s, it is not possible 
without adding something more to the Walrasian model to determine which points on the grand 
curve along with their associated distributions of outputs are better from society’s perspective. 
This is so even when comparing points in the middle of the grand curve with points at the ends 
of the curve where one individual’s utility value is zero and that person has zero quantities of 
both goods. Hence the same conclusion derived from the consumption contract curve in the 
consumption Edgeworth box of Figure 20-1 applies in relation to the general form of Pareto 
optimality to the entire microeconomy. One way to think about “adding something more” is 
considered in the next chapter. 
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Chapter 21 
Welfare Maximization and Market Failure 

 
 
 What is observed when looking at the real microeconomy are prices and quantities 
(which includes distributions of produced goods among and incomes of consumers). To explain 
where they came from, a Walrasian model has been built and the prices and quantities observed 
are interpreted as those of a general equilibrium in that model. The model indicates that there are 
many possible general equilibria and each one along with its distribution is Pareto optimal or 
efficient.1 The question is: among the possible general equilibria is there, from the broad 
perspective of society as a whole, a general equilibrium that is better than, that is, preferred to the 
one that has been observed. Of course, in moving to such an equilibrium and its accompanying 
distribution, at least one person would have to be made worse off while at least one other would 
become better off. Thus, the determination that one general equilibrium is preferred to another 
requires the making of value judgments – judgments based on cultural and moral commitments 
about whether it is, from society's point of view, beneficial and proper to take something away 
from one person in order that someone else could have more. Once such a determination is made, 
it would become desirable to make the changes needed to move to the better or more preferred 
general equilibrium. And if among all possibilities, a best or most preferred general equilibrium 
could be found, the goal would be to attain it. 
 

In the model developed here, one way to incorporate the relevant value judgments and 
express society’s preferences among distributions is with a "welfare function." A welfare 
function is like an individual's ordinal utility function but for society as a whole. It expresses 
society's preferences among the various distributions that emerge from economic activity. Since 
each distribution contains baskets of goods for every individual, and since utility functions assign 
utility values to the baskets in the distributions individuals obtain, the welfare function can be 
defined in terms of those utility amounts,2 one amount for each individual. Although it is not 
usually possible in practice to specify a real society's welfare function, that function is often 
implicit in its behavior. For example, in the US, it has been decided that society's welfare is 
increased by taking money away from those who are able to consume significantly more and 
giving it in some form to those who wind up consuming significantly less. This can be seen in 
the country’s income taxation system in which persons with higher income pay more tax, and 
various assistance programs for low-income persons such as housing choice vouchers and food 
stamps. 

 
 

1 Up to this point the concepts of general equilibrium and Pareto optimality have been considered only in the 
context of a world containing two persons, two firms, two produced goods, and two inputs. But these ideas can 
also be applied more generally to situations in which there are many persons, many firms, many produced goods, 
and many inputs. The statement of the definition of general equilibrium (Supplementary Note 6) applies in this 
more general context without modification. The statements of the definitions of Pareto optimality in consumption 
(Chapter 18) and production (Chapter 19) also carry over without change. That for Pareto optimal (in general) 
requires relatively minor modification. (However, the systems equations that characterize these notions of Pareto 
optimality become more complex.) The following discussion may be understood in terms of the more general 
versions of these notions unless otherwise stated. 
2 As in Chapter 20, the utility functions for individuals have to be fixed for a welfare function to be specified. 
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Return to the two-good, two-person world of previous chapters and continue with the 
assumptions from Chapter 20 that ݑଵ(0,0) = 0 and ݑଶ(0,0) = 0. In formal terms, let society’s 
welfare function ܹ be expressed as 
 

߱ = ܹ(µଵ, µଶ), 
 
where ߱ varies over ordinal welfare values, and µଵ and µଶ vary over utility values for persons 1 
and 2 respectively. This function is assumed to have the same properties earlier imposed on 
individual utility functions (Supplemental Note C), and the indifference curves obtained from ܹ, 
called welfare-indifference curves, are derived in the same way and have the same properties as 
the indifference curves required of individual utility functions (Chapter 5). The function W can 
be used to determine the produced output quantities and their distribution among consumers that 
maximizes society’s welfare subject to a constraint in a similar fashion to that of the 
determination of individual consumer demand quantities through utility maximization subject to 
the budget constraint. 
 
 The possibilities for baskets (µଵ, µଶ) that are achievable by consumers given the 
economy’s resources consist of those that lie on the utility possibility curves. Each such basket is 
associated with a distribution of outputs that could be produced by the firms in the economy 
(Chapters 19, 20). The grand curve, that is, the outer boundary of all of the ordinary curves, 
imposes a limit on the achievable (µଵ, µଶ) baskets and plays the same role here as the consumer’s 
budget constraint in the model of consumer buying behavior. There are not enough factor 
supplies to obtain a basket of utilities beyond that curve. And in parallel with the consumer 
model, society’s welfare will be maximized at the basket (µଵ଴, µଶ଴) on the grand utility possibility 
curve that also lies on the welfare indifference curve that is farthest out from the origin. This 
appears at tangency A in Figure 21-1.3 From the second fundamental theorem of welfare  

 
economics (Chapter 20), the outputs and their distribution associated with (µଵ଴, µଶ଴) and 

 
3 Like the mathematical statement of other tangencies in this volume, the equations that fully characterize the 
tangency in Figure 21-1 are the statement that the two slopes are equal at A together with the equation associated 
with the grand-utility -possibility-curve constraint evaluated at the tangency. Adding the former of these equations 
to the system of equations in Chapters 19 and 20 (e.g., 20.1-20.10) that are associated with Pareto optimality, 
would now determine the value of µଵ଴. That is, µଵ଴ no longer has to be specified independently. And the solution 
values of the system not only are identified with Pareto optimality but are also those that maximize welfare. 
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appropriate market prices are part of a perfectly competitive general equilibrium. Those welfare-
maximizing values (that is, µଵ଴, µଶ଴ and their associated general equilibrium price, output, input, 
and distribution values) may or may not be the ones that are actually observed in the real 
microeconomy. In other words, even though the prices, quantities, and distributions that are 
actually observed are interpreted as a general equilibrium and, from the first fundamental 
theorem, Pareto optimal, it does not follow that the utility values from that distribution, although 
necessarily lying on the grand utility possibility curve, will always be located at a tangency 
between a welfare indifference curve and the grand curve. That is, maximum welfare is not 
guaranteed in the real microeconomy. For example, the distribution that is observed could 
provide a utility basket such as B in Figure 21-1 instead of at the welfare-maximizing basket A.  
 
 It is also the case, as has been suggested in Chapter 20, that general equilibrium under 
perfect competition, even if it maximizes social welfare, does not necessarily lead to an equal or 
near-equal distribution of goods among people. In the two-person situation, distributions 
associated with points near either end of the grand curve where one individual has very small 
quantities of both goods are potential outcomes. 
 
 If knowledge of the welfare function were available, then government policies could be 
devised to ensure that society would achieve maximum welfare. But since it is generally not 
possible to know what the welfare functions is,4 judgments to undertake policies that might 
improve social welfare like food-stamp or housing-voucher programs are generally made one at 
a time and largely independently of each other. 

--------------------------------------------- 
 
 It should be kept in mind that the relationship between general equilibrium and Pareto 
optimality as defined by the first and second fundamental theorems of welfare economics applies 
only to the situation in which all of the economy’s markets are perfectly competitive. And it is 
well known that the characteristics of many (if not most) markets in the real microeconomy do 
not approximate perfectly competitive conditions very well. So it is worth considering the kinds 
of adjustments that might be introduced into the Walrasian model in order to make it, with 
respect to market characteristics, more consistent with microeconomic reality.  
 

Towards that end, a market is said to fail when there is a “malfunction” in it that prevents 
the perfectly competitive outcome that is, the price and quantity that would arise if the market 
were perfectly competitive, from emerging. Introducing the possibility of market failure into the 
Walraasian model, then, will bring that model closer to what is actually experienced in the real 
microeconomy. But. as has been suggested in Chapter 20, the first fundamental theorem of 
welfare economics implies that when a real market fails, Pareto optimality cannot be guaranteed 
in the real microeconomy, and it is usually possible by changing outputs and/or their distribution 
among consumers to make one person better off (in terms of utility) without making at least one 
other worse off.  
 
 There are four kinds of market failures that will be considered. Although they will be 
examined more closely in the following chapters, each is briefly summarized here. 

 
4 For example, the voting paradox described in Chapter 25 suggests that the welfare function cannot be 
determined by majority-rule, pair-wise voting. 
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 1. Imperfectly competitive market structures. The types of imperfect competition to be 
considered here arise when there are no longer a large number of small sellers or a standardized 
product in the market under consideration. There are several forms that such imperfectly 
competitive markets can take on. And in each circumstance, firms are able to raise the price of 
their output without the demand for that output falling to zero. This will imply, in the case of, for 
example, the firm producing and selling good x, that short- or long-run marginal cost is less than 
the market price at the profit maximizing output. Assuming the firm producing y remains a 
perfect competitor, the argument establishing the first fundamental theorem of welfare 
economics, which relies on the equation ܥܯ௫(ݔ଴) =  ௫, breaks down, consumer marginal rates݌
of substitution at the resulting distribution no longer equal the marginal rate of transformation at 
the economy’s produced outputs, and the outcome cannot be consistent with general efficiency 
or Pareto optimality. 
 
 2. Externalities. An externality is a cost or benefit arising from a transaction that is 
imposed on individuals or firms not involved in that transaction. For example, the production and 
sale of electricity that creates air-borne pollutants that fall as acid rain imposes costs on the 
individuals living in the acid-rain area. Similarly, the production and sale of output by an 
upstream firm that dumps production pollutants into the water raises the costs and hence output 
price of the down-stream firm that needs clean water to manufacture its output. And spending 
money to fix up one’s yard may make the neighborhood properties more valuable or the 
neighborhood itself more beautiful thereby benefiting neighbors. Since these costs or benefits lie 
outside of the market in which the transactions take place, they are not included in, respectively, 
the marginal cost or market price5 of the transaction. Once again, inefficiency or absence of 
Pareto optimality arises. 
 
 3. Public goods. Generally, a public good is one that cannot be produced for one person 
without making it available to everyone free of charge. Street lighting, TV and radio 
broadcasting, and national defense are examples. Since individuals do not have to pay directly 
for public goods, there is no demand curve indicating the market quantity demanded of such a 
good for each possible price. Firms cannot, therefore, respond to market demands by equating 
price to marginal cost. Although governments usually step in to arrange for the production of a 
public good, since its demand is unknown, the first fundamental theorem does not apply and the 
Pareto optimal output quantity cannot usually be determined, let alone achieved. 
 
 4. Imperfect information. When the perfect information requirement of perfect 
competition is violated and buyers or sellers do not have full information on all characteristics 
(including prices) of products, non-maximizing transactions can occur. For example, consumer 
1, say, may think that buying (ݔଵ଴,  ଵ଴) will be utility-maximizing. But after purchase, becauseݕ
he/she did not know everything about the products being bought, that is found to be false. So for 

that purchase, it turns out that ܷܯ௫
ଵ(ݔଵ଴, (ଵ଴ݕ

,ଵ଴ݔ)௬ଵܷܯ (ଵ଴ݕ
൘ ≠ ௫݌ ௬ൗ݌  and that consumer’s 

marginal rate of substitution actually achieved cannot equal person two’s marginal rate of 
substitution and the marginal rate of transformation. The latter conditions are necessary for the 

 
5 It will be seen in Chapter 25 that the market price of a good reflects the benefits per unit of that good to the 
individuals buying it. 
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argument establishing the first fundamental theorem to apply (equations (20.1) and (20.9) of 
Chapter 20). Thus, for a reason different from those in the first three forms of market failure 
described above, the argument establishing that general equilibrium is Pareto optimal no longer 
holds up. 
 
 In all of these instances of market failure the Pareto optimality or efficiency of perfect 
competition breaks down. That fact establishes the case for government intervention in the failed 
market to mitigate the failure. The purpose of the intervention would be to move the 
microeconomy from a position off the grand utility possibility curve to, or closer to a non-
wasteful Pareto optimal situation on the grand curve. By doing so the government might increase 
the utility of at least one person without lowering that of any other. But this intervention only 
reduces or eliminates one particular kind of waste. It does not guarantee that the intervention will 
result in welfare maximization or even making it to the grand curve. In the context of Figure 21-
1, it might push the utilities of the two persons from where they are closer to a point like B rather 
than to maximum welfare at A. 

---------------------------------------------- 
 
 
 The first form of market failure to be taken up here is imperfectly competitive market 
structures. It is necessary to begin by characterizing the types of imperfect competition that will 
be considered in the next three chapters. To do so, start with the definition of a perfectly 
competitive market given in Chapter 1. With respect to the properties of perfect competition, 
maintain the assumptions of a large number of small buyers and of perfect information. But 
permit the possibilities of a small number of large sellers (including a single seller), non-
standardized or differentiated products across sellers, and limited entry into and exit from the 
market. Consider only output markets in which the buyers are consumers and the sellers are 
firms. The different types of market structures to be considered in subsequent chapters appear in 
Table 21-1. Thus, for example, keeping all of the characteristics of perfect competition intact 
 

Table 21-1 

 Number and Size of Sellers 

 
Type of Product 

Large Number 
of Small 
Sellers 

Small Number 
of Large 
Sellers 

 
One Seller 

 
Standardized 
(Homogeneous) 
 

Perfect 
Competition 

Perfect 
Oligopoly Monopoly 

 
Differentiated 
(Heterogeneous) 
 

Monopolistic 
Competition 

Monopolistic 
Oligopoly  

 
 
 

Free Entry 
and Exit 

Limited Entry 
of Sellers 

Entry of 
Sellers Is 
Blocked 
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except that of standardized products and requiring the product of each firm to be slightly 
different from that of all other firms in the market results in monopolistic competition. And 
additionally changing the number and size of sellers to be, respectively, small and large, and 
switching to limited entry leads to monopolistic oligopoly. 
 
 In Table 21-1, and apart from perfect competition, free entry and exit is maintained only 
for monopolistic competition. There cannot be free entry of firms for monopoly. For once 
abnormal profit leads to the entry of a second firm, the monopoly would no longer be a 
monopoly. Entry has to be limited for both forms of oligopoly for a similar reason. And it is 
implicit in the case of monopoly that the product being produced has no close substitutes 
available for purchase in outside markets. 
 

In all cases, perfect competition will be assumed in all input markets. This will mean that 
cost functions and cost curves will be constructed as in earlier chapters without modification. 
Thus, the only changes that occur in previous discussions of the firm appear in the calculation of 
revenue functions and curves. This, of course, will imply alterations in profit-maximizing 
positions. 
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Chapter 22 
Monopoly 

 
 

Monopoly, the first form of market failure to be considered, is a market situation with a 
large number of small buyers (it will be assumed that they are consumers) in which there is one 
firm producing a product for which there are no close substitutes and in which entry into the 
market by other producers is blocked. 
 
 As noted at the end of Chapter 21, because it is assumed that the monopolist buys its 
inputs in perfectly competitive markets, its cost functions and curves are identical to that of the 
perfectly competitive firm. The only difference between explanations of the behavior of the two 
types of firms is in terms of the demand curves they face and their revenues. Recall from Chapter 
13 that a firm producing under perfectly competitive conditions, no matter what it does, can have 
no impact on the market price of its output. That price is dictated by the market, and the firm can 
sell all it wants at that price, call it ݌௫

଴. The demand curve facing the firm is its average revenue 
as curve pictured in Figure 22-1. Total revenue along the curve as ݔ varies is ܴܶ(ݔ) = ௫݌ݔ

଴,  

 
Where ݌௫

଴ is constant. The graph of ܴܶ(ݔ) is an upward sloping straight line emanating from the 
origin. The firm’s marginal revenue curve is the same as the demand curve it faces since 
(ݔ)ܴܯ = (ݔ)ܴܣ = ௫݌

଴. 
  

Unlike the perfectly competitive firm, the monopolist, as will be seen, sets the market  
 

 

 ௫݌

 ݔ
Figure 22-1 

௫݌
଴  

 ௫݌

 ݔ
Figure 22-2 

 ܦ
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price. Also by contrast, the demand curve facing the monopolist, the only seller in the market, is 
the market demand curve.1 An example of that curve, labeled as ܦ, is shown in Figure 22-2. (For 
purposes of simplicity here and in subsequent diagrams appearing in the next two chapters, the 
monopolist’s demand curve along with market demand curves and demand curves facing firms 
under other forms of imperfect competition, will be drawn as downward sloping straight lines.) 
As the monopolist moves along this demand curve, price is not constant, that is, ܴܶ(ݔ) =  ,௫݌ݔ
where ݌௫ changes as ݔ varies. To sell more, the monopolist has to lower its price. Suppose, then, 
that the monopolist, while selling a specified output quantity at a particular price, decides to 
increase the quantity of output it sells by, say, one unit. Then it must sell that extra unit at a 
lower price. But the increase in revenue obtained from selling the extra unit is offset by a loss 
incurred because, according to the demand curve it faces, it must also lower the price of all other 
units sold at that price. This suggests the following formula for the monopolist’s marginal 
revenue: 
 

(ݔ)ܴܯ = the lower price ݌௫ less the loss in revenue on the other units 
      it could have been selling at the original price. 

 
It follows that the monopolist’s marginal revenue is always less than the selling price. This 
conclusion also emerges in the geometric argument below. 
 
 Before pursuing the implications of these divergences from the explanation of the 
behavior of the perfectly competitive firm, since the linear demand curve will be used repeatedly 
in this and subsequent chapters, it is worth recalling its characteristics in relation to the total and 
marginal revenue curves and the various elasticity values that arise along it. These originally 
appeared in Chapter 4. That discussion is restated below along with Figure 4-5 which is 
reproduced here as Figure 22-3. With respect to the latter: 
 
 1. Given the demand curve D, the marginal revenue curve MR is determined by drawing  

    a straight line from D’s vertical intercept at σ through the mid-point ݔᇱ between  
    the origin and D’s horizontal intercept ݔᇱᇱ on the ݔ-axis (Supplemental Note B). 

 
 2. Since ܴܶ(ݔ) =   ௫ along the demand curve, the total revenue curve TR must start at݌ݔ

    the origin where ݔ = 0 along the demand curve and meet the ݔ-axis at ݔᇱᇱ where ݌௫ = 
    0 also along the demand curve.  In between, where marginal revenue is positive (0 < 
ݔ     < ᇱݔ) ᇱ), the TR curve slopes upward; where marginal revenue is negativeݔ < ݔ < 
ݔ) ᇱᇱ),  it slopes downward; and where marginal revenue is zeroݔ     =   ᇱ), TR has aݔ
    maximum. 
 

 3. From the equation ܴܯ = ௫൫1݌ − 1 ൗߝ ൯, the demand curve is elastic (∞ > ߝ > 1) where  
    marginal revenue is positive (on the interval 0 < ݔ < ᇱ); it is inelastic (1ݔ > ߝ > 0)  
    where marginal revenue is negative (on the interval ݔ′ < ݔ <   ᇱᇱ); and it is unitarilyݔ
    elastic (ߝ = 1) where marginal revenue is zero (at ݔ =  .(ᇱݔ
 

 
1 In the case of monopoly, the demand curve facing the firm, that is, the quantity the firm can sell at each price, is 
the same as the quantity buyers will buy at each price. As in Chapter 13, this curve is known to the firm. 
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 4. Moving along the demand curve in the elastic range (0 < ݔ <   ,ݔ ᇱ) by increasingݔ
    price and total revenue move in opposite directions (price falls and total revenue rises).  
    Moving along the demand curve in the inelastic range (ݔᇱ < ݔ <  ᇱᇱ ), also byݔ
    increasing ݔ, price and total revenue move in the same direction (price falls and total  
    revenue falls). 

 

 
Observe that, as noted above and implied by the equation ܴܯ = ௫൫1݌ − 1 ൗߝ ൯, at each output ݔ 
in Figure 22-3, 
 

(ݔ)ܴܯ <  ௫.                                                                   (22.1)݌
----------------------------------------------- 

 
 
 
 Turning to the model explaining the monopolist’s buying and selling behavior, impose 
the same assumptions on the monopolist as were required of the perfectly competitive firm 
(Supplemental Note D) and determine its cost functions in the same way. The short run profit of 
the monopolist as a function of output when ݇ = ത݇ is given by 
 

(ݔ)ߨ = (ݔ)ܴܶ − ௞തܥܴܶܵ  (22.2)                                                 ,(ݔ)

D 

MR 

$ 

∞ ݔ > ߝ > 1 1 > ߝ > 0 

ߝ = 1 

TR 

 ′′ݔ ′ݔ

σ 

0 

Figure 22-3 
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where ܴܵܶܥ௞ത  is obtained as described (ݔ)ܴܶ is calculated as it was in Chapter 12, and (ݔ)
above. Profit maximization requires finding the output ̅ݔ that equates the derivative of (22.2) to 
zero, that is, that satisfies the first-order condition  
 

(ݔ̅)ܴܯ = ௞തܥܯܴܵ  (22.3)                                                    .(ݔ̅)
 
The second-order condition ensuring that ̅ݔ is actually associated with maximum profit and not a 
minimum or inflection point is more complex than that for the perfectly competitive firm and  
appears in Supplemental Note H.2 Satisfaction of that condition, of course, ensures that the graph 
of (ݔ)ߨ in equation (22.2) is strictly concave around the output ̅ݔ (see Figure 22-4 below). But, 
as shown in Supplemental Note H, it is not necessary that the marginal cost curve always slope 
upward at the profit-maximizing value ̅ݔ as under perfect competition. The mathematics of long-
run profit maximization (that is, first- and second-order derivative conditions) is similar. Thus 
replace ܴܵܶܥ௞ത ௞തܥܯܴܵ and (ݔ)  to obtain, for (ݔ)ܥܯܴܮ and (ݔ)ܥܴܶܮ ,by, respectively (ݔ)
example,  
 

(ݔ̅)ܴܯ =  .(ݔ̅)ܥܯܴܮ
 
 The geometry of short-run profit maximization appears in Figure 22-4 in which the shape  
of the total revenue curve is that of Figure 22-3 (in that it starts at the origin, rises to a maximum, 
and then declines), the cost curves are the same as those for the perfectly competitive firm in 
Figure 13-4 of Chapter 13, and the total variable cost and average variable cost curves are not 
drawn. The differences between Figure 13-4 (profit maximization for the perfectly competitive 
firm) and Figure 22-4 arise only due to the different revenue curves. Note that: 
 
(ݔ)ܴܯ has a maximum and (ݔ)ܴܶ .1  = 0 at ݔ′. 

௞തܥܯܴܵ is maximized and (ݔ)ߨ .2 (ݔ) =  .ݔ̅ at (ݔ)ܴܯ
 
(When drawing this diagram so as to include the appropriate characteristics of the curves 
involved, the following procedure could be employed: After lining up the two pairs of coordinate 
axes, draw the SRTܥ௞ത  and TR curves first.  Then, in the following order, draw ߨ, MR [making 
sure that the MR line crosses the horizontal axis at ݔᇱ where the TR curve has a maximum], the 
demand curve D [so that the distance from the point where the demand curve meets the 
horizontal axis is twice that from the origin to where marginal revenue is zero], SRAܥ௞ത  
[identifying that curve’s minimum point at ݔො and intersecting it with the demand curve at ݔ෤ᇱ and 
௞തܥ෤ᇱᇱ where profit is zero]. Finally, draw SRMݔ  so that it intersects MR at the profit-maximizing 
output ̅ݔ and SRAܥ௞ത  at the latter’s minimum point at ݔො.) 
 

 
2 In subsequent discussion, the possibility that ̅ݔ could be associated with minimum profit is ignored. Indeed, in the 
geometry of Figure 22-4 to be presented shortly, the total revenue and short-run total cost curves are drawn in 
such a way that a minimum satisfying equation (22.3) is not present. 
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The following characteristics of the monopoly can be thought of in reference to Figure 
22-4: 

 
1. The profit-maximizing output ̅ݔ, which requires (ݔ̅)ܴܯ = ௞തܥܯܴܵ   can never be ,(ݔ̅)
    revenue maximizing since maximum revenue must occur at an ݔ for which (ݔ)ܴܯ = 
    0 and, for all values of ݔ including the profit maximizing ̅ܥܯܴܵ ,ݔ௞ത (ݔ) > 0. 
 
2. The monopolist will never produce in the inelastic portion of the demand curve D since 
    marginal revenue is negative there and short run marginal cost is always positive. 
 
3. The monopolist can lose money, that is earn a negative profit. This will happen if the  
    short run total and average cost curves lie entirely above the total revenue and demand 
    (average revenue) curves, respectively. 
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The output price set by the monopolist is that price at which, according to the demand curve it 
faces (D in Figure 22-4), all of (and no more than) its profit-maximizing output ̅ݔ will be sold. 
This is illustrated in Figure 22-24 and repeated in Figure 22-5 at A where ̅ݔ denotes the profit- 
maximizing output and the monopoly price is set at ̅݌௫. Were the monopolist to charge more than 
 ௫, it could not, according to the demand curve it faces, sell all of the profit-maximizing output̅݌
and profit would not be maximized. Were it to charge less for  ̅ݔ, its revenue would be less that it 
should be and, maximum profit would not be achieved. Notice in Figure 22-5 that  ̅݌௫ >
௞തܥܯܴܵ  The same inequality is obtained mathematically by combining (22.1) and .ݔ̅ at (ݔ̅)
(22.3), Thus, under monopoly the argument establishing the first fundamental theorem of welfare 
economics (Chapter 20) breaks down and inefficiency or an absence of Pareto optimality arises. 
That is, accounting for the remainder of the microeconomy’s markets at whatever distribution is 
in force, consumer marginal rates of substitution would not equal the marginal rate of 
transformation at the economy’s outputs. Even if all other markets in the microeconomy were 
perfectly competitive, it would still be possible by rearranging inputs, outputs, or their 
distribution to make one person better off (higher utility) without making anyone else worse off 
(lower utility).   

 
 

However, it should be pouted out that this inefficiency could be offset by economies of 
scale (Chapter 12). That is, due to its size and the nature of its cost curves, the monopolist could 
be using mass-production techniques that would not be available were it a smaller perfectly 
competitive firm. These techniques would enable it to produce its output at a much lower cost 
and therefore sell that output at a much lower price than would be the case under perfect 
competition. That, in turn, would increase consumer surplus (Chapter 8), thereby benefiting 
consumers and making up, to some extent, for the loss of Pareto optimality. 

 
It has already been indicated in Chapter 21 that the presence of inefficiencies provides a 

justification for government intervention aimed at their reduction or elimination. The idea would 
be to lower the discrepancy between marginal cost and price in order to move closer to the 
perfectly competitive ideal. With respect to Figure22-5, that ideal occurs at B where ݌௫

ᇱ =
௞തܥܯܴܵ  In spite of the downward sloping demand curve, as long as the market for good y .(ᇱݔ)
remains perfectly competitive, equation 20.12 of Chapter 20 holds, the first fundamental theorem 
of welfare economics applies, and Pareto optimality is restored. To achieve a movement towards 

௫̅݌  

௞തܥܯܴܵ  

 ܴܯ

 ݔ̅

 ܦ
$ 

 ݔ
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B, government intervention might mean breaking up the one large firm into several smaller ones 
as was done with AT&T when it had a monopoly in the United States telephone service 
industry,3 or regulating the price that may be set as is currently done for monopolists who charge 
for delivering electricity to homes and businesses. 
 

Returning to the analytics of monopoly, it should also be noted that there is no supply 
curve for the monopolist as there is for the perfectly competitive firm. This is because the 
monopolist does not determine the quantity it will supply for each price dictated by the market. 
Rather, the monopolist takes profit-maximizing action against the entire market demand curve 
(not against specific individual prices) to set both the output it will supply and the per-unit price 
it will charge for that output. This results in an equilibrium since the market demand curve 
indicates the quantities consumers will buy at each price.  Once the price is set by the 
monopolist, consumers act on the quantity they demand at that price and the market is at rest. It 
follows that the competitive forces of demand and supply described in Chapter 3 no longer set 
the market price at the intersection of demand and supply curves in a market with a monopoly as 
they do under perfectly competitive conditions. A similar conclusion applies in the long run to be 
considered momentarily. 
 

Since the labor market has been assumed to be perfectly competitive, the labor input the 
monopolist hires to produce the profit-maximizing output is determined the same way as that for 
the perfectly competitive firm – at the intersection of the isoquant associated with the profit-
maximizing output ̅ݔ  and the short run expansion path. In Figure 22-6, which is similar to the 
right-hand diagram in Figure 13-5 in Chapter 13, the monopolist hires ℓ଴  units of labor.  

 
 Like the short run, the long run analysis of monopoly also parallels that of the perfectly 
competitive firm (Chapter 13). In this case, the monopolist selects not only a profit-maximizing 
output and an output price, but also a profit-maximizing firm size ݇଴ with which to produce that 
output. Thus, as previously suggested, replace ܴܵܶܥ௞ത  in equation (22.2) and (ݔ)ܥܴܶܮ with (ݔ)
adjust equations and graphs accordingly. Geometrically, profit maximization appears at ̅ݔ in 
Figure 22-7 and the output price is set at ̅݌௫. The profit-maximizing quantities of labor and  
 

 
3 This break up resulted in lower telephone service costs, and a greater variety of telephone services and 
telephones available for consumers. 

Short-run expansion 
path 

 isoquant ݔ̅

Figure 22-6 
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capital to be employed are determined, as in the perfectly competitive case, at the intersection of 
the long-run expansion path and the ̅ݔ isoquant. Thus in Figure 22-8, which is similar to the left-
hand diagram in Figure 13-5 in Chapter 13, the firm hires (ℓ଴, ݇଴),  and the short-run cost curves 
of the firm of size ݇଴ appear in blue in Figure 22-7. With respect to Figure 22-7, the long- and  
 

 
short-run average cost curves are tangent and the long- and short-run marginal cost curves 
intersect at ̅ݔ (Chapter 12). Of course, abnormal profit (the box labeled ߨ in Figure 22-7) is not 
eaten away by the entry of new firms as under perfect competition. In the case of monopoly all 
entry is blocked. 

--------------------------------------------- 
 
 
 Comparisons of the market outcomes for monopoly as opposed to those for perfect 
competition are not straightforward and require numerous assumptions. One such comparison is 
as follows: 
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 Consider two alternative organizations of an industry – one as perfectly competitive with 
a large number of identical small firms; the other as a monopoly with all of the small firms 
combined into one. Assume input prices do not change when passing from one circumstance to 
the other. Assume also that the production function is the same for all firms and the monopoly. 
The relevant part of the production function for the small firms is associated with inputs 
relatively close to the origin of the input space; those for the monopoly are much farther out. 
Assume that, for fixed capital, the production function generates short run cost curves shaped 
like those drawn in Figure 22-4. Assume that, when both inputs vary, the production function has 
constant returns to scale so that long run average costs have constant economies of scale and are 
therefore constant as ݔ varies (Chapter 12). Call the constant ߜ so that (ݔ)ܥܣܴܮ =  Then .ߜ
(ݔ)ܥܴܶܮ = (ݔ)ܥܯܴܮ and hence ߜݔ =  That is, the long-run average cost and the long-run .ߜ
marginal cost curves are the same. With the long-run average cost curve a straight line at δ 
parallel to the ݔ-axis, each short-run average cost curve generated by a different firm size 
(Chapter12) is tangent at its minimum point to the long-run average cost curve. Geometrically, 
the relationship between the long-run and short-run average cost curves appears in Figure 22-9 
where the two curves are drawn in red and blue respectively. (The short-run marginal cost curves 
pass through the minimum of their respective short-run average cost curves and are not drawn.)   

 
Since the production function is the same for both the identical small firms and the monopoly, 
the long-run marginal cost curve is also the same for both. The identical small perfectly 
competitive firms will have short-run average costs curves relatively close to the vertical axis 
based on the small amount of capital they employ. With its much larger amount of capital, the 
short-run average cost curve for the monopolist will be farther to the right. This is  
shown in Figure 22-10 where the same red line labeled ܥܣܴܮ =  applies to both the ܥܯܴܮ
representative perfectly competitive firm and the monopoly. This line was identified with ߜ in 
Figure 22-9. 
 

When there is one firm in the industry, long-run profit is maximized for the monopolist at 
 ெ in Figure 22-10 where marginal revenue based on the market demand curve equals long-runݔ
marginal cost. The monopolist sets the market price at ݌௫

ெ. The long-run profit maximizing value 
of capital, call it ݇ᇱᇱ, determines the short-run average cost curve along which the firm produces. 
It is shown in Figure 22-10 as tangent at A to the long-run average cost curve and labeled 
௞ᇲᇲܥܣܴܵ

. Were its associated short-run marginal cost curve drawn, it would intersect the short-
run average cost curve at A. 

$ 

 ݔ
Figure 22-9 
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 Now consider the industry as organized perfectly competitively. At long-run equilibrium 
under perfect competition, price equals long-run marginal cost at the level of minimum of long-
run average cost (Chapter 13 and 15). Since, in Figure 22-10 the long-run average cost curve is a 
horizontal line at ݌௫

஼, every point on it is a minimum, and since the long-run marginal and 
average cost curves are identical, all conditions for long-run equilibrium (market supply equals 
market demand and, for the representative firm, ݌௫

஼ = (∗ݔ)ߨ and (∗ݔ)ܥܯܴܮ = 0) are met at the 
intersection of the red ܥܯܴܮ line and the demand curve, that is, at (ݔ஼, ௫݌

஼). Assuming the 
number of identical small firms in the industry (market) is known, dividing that number into ݔ஼ 
gives the output of each perfectly competitive firm. That output, that is, the output of the 
representative firm, is taken to be ݔ∗ in Figure 22-10. The appropriate short-run average cost 
curve for producing this output is ܴܵܥܣ௞ᇲ

,  the one whose associated firm size is ݇ᇱand is 
tangent to the long-run average cost curve at point B. Again, the relevant short-run marginal cost 
curve which would pass through B, is not shown. 
 

Under the highly restrictive assumptions imposed here, in the long run market price is 
higher and market (output) quantity lower under monopoly. As can be seen in Figure 22-10, 
profit is positive under monopoly and vanishes as it should under perfect competition. 

௫݌  

௫݌
ெ 

௫݌
஼  

஼ݔ ெݔ ∗ݔ  ݔ 

 ܦ

ܥܣܴܮ =  ܥܯܴܮ

Monopoly ܴܵܥܣ௞ᇲᇲ
 

௞ᇲܥܣܴܵ
 of representative 

perfectly competitive firm 

Figure 22-10 

 ܴܯ

B 
A 



181 
 

Chapter 23 
The Social Cost of Monopoly and  

Monopolistic Competition 
 
 
 The social cost of monopoly due to inefficiencies (the absence of Pareto optimality) can 
be measured in terms of the loss of consumer surplus (Chapter 8) net of any gain in producer 
surplus (Chapter 14) when the outcome under monopoly is compared to that arising were the 
monopolist to charge the perfectly competitive price. That price would be based on its short-run 
marginal cost curve or what would be the supply curve if the monopolist were a perfectly 
competitive firm. Since those surpluses are seen as benefits to the consumer, the greater the loss 
of surplus, the greater the social cost. In Figure 32-1, (ݔ஼, ௫݌

஼) is the perfectly competitive  

 
outcome where, as described in Chapter 22, the monopolist, behaving like a perfect competitor, 
equates it’s short run marginal cost1 to the market price ݌௫

஼. The monopoly outcome, where 
௞തܥܯܴܵ (ݔ) = ,ெݔ) occurs at (ݔ)ܴܯ ௫݌

ெ). In moving to the monopoly position from that in which 
the monopolist charges the perfectly competitive price, the loss in consumer surplus is the 
enclosed area ܣ + ܣ The gain in producer surplus accounting for the loss of area C is .ܤ −  .ܥ
Combining the two, the (net) social cost of monopoly resulting from the monopoly form of 
market failure, also referred to as the deadweight loss, is  
 

ܣ) + (ܤ − ܣ) − (ܥ = ܤ +  .ܥ
 
 Suppose the government were to point to the market failure arising from the presence of 
inefficiency in terms of Pareto optimality as the justification for a proposal to require the 
monopoly to move its position from (ݔெ, ௫݌

ெ) towards (ݔ஼, ௫݌
஼) . It could suggest, for example, 

regulating the monopoly by forcing it to charge a lower price. But the monopolist might respond 
by using its abnormal profit (which, as has been seen in Chapter 14, is part of producer surplus) 
for political or lobbying activity to protect that profit rather than returning it to the owners of the 
firm. In that case, consumers would benefit less because the funds owners (who are consumers) 

 
1 As in Figure 14-6, the marginal cost curve is extended to the vertical axis for geometric simplicity. 
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receive would be smaller thereby making the social cost of monopoly greater. This is called rent-
seeking behavior. To the extent that it is successful, it leads to what may be referred to as 
government failure to reduce the effects of the monopoly- induced market failure. 

-------------------------------------------------------- 
 
 
 
 Attention now turns to the second form of market failure to be considered here, namely, 
monopolistic competition. This is a situation in which all of the properties of perfect competition 
are maintained except that each firm is now producing a “unique” product that is at least slightly 
different from, and closely substitutable for all others in the market. Because its product is 
unique, it will be seen that, like the monopolist, the monopolistically competitive firm is able to 
set the price of its output. Here, the requirement that there are a large number of small sellers 
means that the firm faces a demand curve determined by its market share. That share is assumed 
to be fixed by market characteristics beyond the control of the firm.2 As in the case of monopoly, 
the demand curve facing the firm is taken to be a downward sloping straight line known by the 
firm.  
  
 Market power is the ability of the firm to raise the price it charges for its output and still 
maintain some or most of its customers. Generally, the source of market power is the availability 
or lack thereof of substitute commodities to which buyers can switch as the firm raises its price. 
Under perfect competition, where all firms in a market sell identical products, the firm has no 
market power and the demand curve it faces is a straight line parallel to the output axis at the 
level of the market price. Were such a firm to raise its price above the market price, it would lose 
all of its sales. In the case of monopoly, where there is only one firm selling a product for which 
there is no close substitutes, the demand curve the firm faces is the market demand curve. The 
firm’s market power is maximal in the sense that the sales it loses upon raising its price arise 
only because some customers no longer want to buy the product at the higher price. The market 
power of the monopolistically competitive firm is in between that of the perfectly competitive 
firm and the monopolist. That is because if the firm were to raise its price, (a) some customers 
may no longer want to but any of the market’s products as in the case of monopoly and (b) the 
availability of close substitute commodities makes it possible for some buyers, who still want to 
buy the product, to switch to other firms’ products. As the monopolistically competitive firm 
raises its price, then, it will lose more sales than if it were a monopolist. The buyers who 
continue to buy from the monopolistically competitive firm as it raises its price are considered to 
be loyal to that firm’s “brand.”  
 

Since elasticity indicates the responsiveness of quantity changes to price changes at each 
point on the demand curve (Chapter 4), it may be taken to be a measure of the firm’s market 
power at those points. The lower the elasticity, the lower the percentage response to the same 
price increase and the greater the market power. Thus, the elasticity along the demand curve 
facing the monopolistically competitive firm would lie between that of the perfectly competitive 
firm (infinite elasticity) and the monopolist (the elasticity of the market demand curve).  
 

 
2 The possibility that the firm might be able to increase its market share or the demand for its output through 
advertising is not considered. 
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 The firm operating under monopolistically competitive conditions may be thought of as a 
“weak” monopolist in the sense that no other firm sells the exact same product, although there 
are other products that can substitute for it. The model built to explain the monopolistically 
competitive firm’s behavior, then, is like that constructed for the monopolist except for the 
particularization of the demand curve facing the firm. The mathematics for the maximization of 
its profit is identical. For the short run with ݇ = ത݇, 
 

(ݔ)ߨ = (ݔ)ܴܶ − ௞തܥܴܶܵ  ,(ݔ)
 
and profit is maximized at that value ݔ଴ for which the first-order condition ݀(ݔ)ߨ

ൗݔ݀ = 0 is 
satisfied or 
 

(଴ݔ)ܴܯ = ௞തܥܯܴܵ  ,(଴ݔ)
 
with second-order conditions appropriately satisfied as described in Chapter 22. Geometrically, 
diagrams similar to Figures 22-4, 22-5 and 22-6 of Chapter 22 depicting short-run profit 
maximization for the monopolist apply, with the demand curve facing the monopolistically 
competitive firm replacing that of the monopolist. The latter two diagrams as modified for 
present use are reproduced here. In Figure 23-2, the profit-maximizing output is ݔ଴ and the price  
 

 
 
set by the monopolistically competitive firm is ݌௫

଴. As with monopoly, ݌௫
௢ > ௞തܥܯܴܵ  and (଴ݔ)

inefficiency is present. Observe that, as drawn, the representative firm has abnormal profit since 
(଴ݔ)ߨ > 0. The firm’s profit- maximizing quantity of labor input is ℓ଴ in Figure 23-3.  Figure 
23-3 is also similar to the right-hand diagram of Figure 13-5 in Chapter 13 for the perfectly 
competitive firm. 
 
  In the long run, the above mathematics is the same with (ݔ)ܥܴܶܮ and (ݔ)ܥܯܴܮ 
replacing ܴܵܶܥ௞ത ௞തܥܯܴܵ and.(ݔ) -But here, if abnormal profit were present (as in Figure 23 (ݔ)
2), outsiders would see and take advantage of an investment opportunity and cause new firms, 
each producing new and different substitute products (with the same cost and revenue functions 

௫݌
଴ 

௞തܥܯܴܵ  

 ܴܯ

 ଴ݔ

 $ ܦ

 ݔ

Figure 23-2 

௞തܥܣܴܵ ߨ  
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and curves as the existing firms), to enter the market. This would result in a decline in market 
share of the previously existing firms, and a shift of the demand curves facing them and 
 

 
 
associated marginal revenue curves towards the origin. Abnormal profits would fall. Entry would 
continue until all abnormal profits of all firms old and new in the market disappeared. The firms 
and industry would then be at long-run equilibrium. At this point, the geometry of the 
representative firm would appear as shown in Figures 23-4 and 23-5. In Figure 23-4, the long-  

 
and short-run average cost curves are tangent to each other and to the demand curve facing the 
firm at the profit-maximizing output ݔ଴, and the long-run and short-run marginal cost curves 
intersect at that same level of output (Chapter 12). The tangencies indicate that ߨ(ݔ଴) = 0, that 
is, that the area representing total revenue in Figure 23-4 is identical to that representing short- 
and long-run total cost. Thus, abnormal profit is no longer present. In Figure 23-5, which is 
similar to Figure 22-8 (Chapter 22) and the left-hand diagram in Figure 13-5 (Chapter 13), the 
firm employs its profit-maximizing quantity of capital ݇଴ as determined by the intersection of the 
isoquant for the profit-maximizing output and the long-run expansion path, and this, in turn,  

Short-run expansion 
path 

 ଴ isoquantݔ

Figure 23-3 

݇ 

ℓ 

ത݇ 

 ℓ଴ 

௫݌
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 ௞బܥܯܴܵ

 ܴܯ

 ଴ݔ

 ܦ
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 ݔ
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determines the firm’s size and theܴܵܥܣ௞బ and ܴܵܥܯ௞బ curves in Figure 23-4. 

------------------------------------------------------------------ 
 
 
 The long-term position of a representative firm under monopolistic competition (shown 
in Figure 23-4) as compared to that of the same firm under long-run perfectly competitive 
conditions (from Figure 15-5 of Chapter 15) is pictured in Figure 23-6. This comparison assumes  

 
that, in spite of the differences in the products produced, all monopolistically competitive firms 
have the same cost curves as they would if they operated under perfectly competitive conditions. 
That is, the long-run average cost curves are the same for both types of firms. Short-run curves 
are not shown. When the industry is monopolistically competitive, the representative firm’s long-
run output-price position is located at a tangency between the downward sloping demand curve it 
faces and its long-run average cost curve. When the industry is organized perfectly 
competitively, the representative firm produces at minimum long-run average cost. Thus the 
representative firm charges a higher price ݌௫

ெ஼  and produces a smaller output ݔெ஼  under 
monopolistic competition than under perfect competition, where its output price is ݌௫

஼ and its 
output is ݔ஼.  
 

Long-run expansion 
path 

 ଴ isoquantݔ

Figure 23-5 
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It has been previously noted that since output price is greater than marginal cost in a 
monopolistically competitive industry, inefficiency (a lack of Pareto optimality) is present. That 
is, by changing output quantities, changing input quantities, or distributing them differently 
across the microeconomy, it would be possible to increase at least one person’s utility without 
lowering that of any other person. But there is a benefit offsetting the loss of Pareto optimality 
under monopolistic competition, namely, that in a monopolistically competitive market there is a 
large number of different product varieties among which consumers are able to choose. Rather 
than providing only one manifestation of a product for all buyers as in the perfectly competitive 
or monopoly case, the monopolistically competitive market like, for example, the market for 
breakfast cereals,3 provides a huge variety of product manifestations so as to satisfy a large 
number of different tastes or preferences. 
 
 Precise comparisons of the long run price and quantity outcomes of the same industry 
organized under perfect competition, monopolistic competition, or monopoly are complicated 
and will not be pursued here. Suffice it to say that because of the differences in market power in 
the different competitive situations, and because, in the long run, the monopolist generally 
retains abnormal profit while the perfectly and monopolistically competitive firms do not, one 
might expect that, as pictured along a market demand curve in Figure 23-7, the price of the 
product to be highest were the industry organized perfectly competitively (at ݌௫

஼). The quantity 

 
produced would be lowest under monopoly (at ݔெ) and highest in the perfectly competitive 
situation (at ݔ஼). And the average price and full market quantity over all firms under a 
monopolistically competitive organization would be in between at (ݔெ஼, ௫݌

ெ஼). But it should be 
noted that recognizing differences in production and cost functions across the different 
competitive organizations and within the monopolistically competitive industry, and differences 
in demand curves facing the monopolistically competitive firms could easily confound this 
expectation. 
 

 
3 Although there are very large firms producing breakfast cereals, this market still has characteristics of a 
monopolistically competitive industry. 
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Chapter 24  
Oligopoly 

 
 

Turning to the third form of market failure, a market or industry having a large number of 
small buyers facing a small number of large sellers with limited seller entry into the market is an 
oligopoly. Products could either be standardized (perfect oligopoly) or differentiated 
(monopolistic oligopoly). Like monopoly and monopolistic competition, in an oligopolistic 
market the competitive forces of supply and demand do not set the market price at the 
intersection of demand and supply curves. 

 
 To explain the buying and selling behavior of a firm under perfectly competitive, 
monopolistically competitive, or monopoly conditions, it has been assumed that the firm knows 
the demand curve it faces. Using that demand curve to obtain the firm’s total revenue function 
and calculating the firm’s total cost function (given prices in assumed perfectly competitive input 
markets) allows determination of its profit function. Then applying the assumption that the firm 
hires inputs and produces output so as to maximize profit leads to an explanation of the firm’s 
output supply and input demand behavior. 
 
 However, this procedure cannot generally be followed for oligopoly. Since there are only 
a few large firms and since market demand is fixed, each firm knows that any price decision it 
makes will likely have a direct impact on its competitors. And it is the way its competitors react 
in terms of their own price decisions that determines the demand curve facing the firm. For 
example, if firm A, at one point on the demand curve it faces, were to lower the price of its 
product, sales would probably be drawn away from firm B. Were that to happen, firm B would 
likely respond by lowering its own price. Depending on how much firm B reduces it price, some 
or all of its sales would be restored, and B’s lower price might even draw additional sales away 
from firm A. Firm A, then, cannot know what it can sell at the lower price, that is, it cannot 
know the point associated with the lower price on the demand curve facing it, until it sees what B 
will do. Thus, without knowing how B will react to its price changes, A cannot know the demand 
curve it faces. But there is a problem here that applies to all oligopolistic firms. In general, these 
firms do not know how their competitors will react to their price changes. And therefore, they 
cannot know the demand curves they face. In this sense oligopoly situations are characterized by 
uncertainty. 
 
 In light of this uncertainty, there are two ways to construct explanatory models of the 
oligopolistic firm and thereby explain its behavior: 
 
 1. Incorporate the uncertainty and include it as part of the explanation. This approach 
generally employs the notion of ‘strategic behavior’ – the idea that one firm’s actions take into 
account possible measures and reactions taken by its competitors – as the basis for constructing 
explanatory models. This approach, however, will not be considered here. 
 
 2. Assume away the uncertainty. That is, make assumptions about the behavior of the 
firm and its competitors that allow determination of the demand curve it faces. Once the demand 
curve facing that firm is obtained, construction of an explanatory model of its behavior proceeds 
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as described for other forms of market structures in previous chapters.  The type of assumptions 
made in this approach determines the nature of the explanation obtained.1 
 
 In the discussion that follows, three examples of explanatory oligopoly models based on 
assuming away the uncertainty will be considered. The first two apply to the case of standardized 
products; the third to differentiated products. In all cases firm profit-maximizing output quantity 
is inconsistent with efficiency or Pareto optimality since the marginal cost of that output is 
always less than the output price. 
 
 Before proceeding, a preliminary point should be mentioned. When a firm under perfect 
or monopolistic competition or monopoly is hiring inputs and producing outputs so as to 
maximize its profit, that firm is thought to be in equilibrium because it is at rest and has no desire 
to change anything. The firm is doing the best that it can against what the market as a whole 
presents to it (that is, against the market price or the demand curve it faces) and has no reason to 
change its output, input and, if it sets the price of its output, its output price. When a firm is at 
equilibrium under oligopoly in which an assumption that eliminates the uncertainty has been 
imposed, the equilibrium is referred to as a Nash equilibrium. At that equilibrium, the firm is 
doing the best it can against what its individual competitors present to it (their reactions to 
various prices set by the firm) and, again, there is no reason for it to change anything. 

--------------------------------------------------------------- 
 
 
 
 The first explanatory oligopoly model to be considered here arises in the context of short-
run perfect oligopoly and focuses on an industry structure in which there is price leadership by a 
dominant firm. In particular, there is one dominant firm in the market with the remaining firms 
following the dominant firm’s lead. The assumption that eliminates the uncertainty is as follows: 
 

The dominant firm sets the market price, lets the remaining firms sell all they want to sell 
at that price, and then sells to the demand that is left over. 

 
Since the remaining firms take the price set by the dominant firm as fixed, this assumption 
implies that they behave as if they were perfect competitors reacting to a fixed price set by the 
market. As in the case of perfect competition, the supply curve of the remaining firms combined 
is the sum of their short-run marginal cost curves given their fixed quantity of capital (Chapter 
14). For convenience that curve is taken to be a straight line starting from the vertical axis. To 
obtain the demand curve facing the dominant firm, at each price, the total quantity supplied by 
the remaining firms is subtracted from the total quantity demanded on the market. Using this 
demand curve and the dominant firm’s cost function, the dominant firm’s profit function is 
calculated. The dominant firm then chooses the profit-maximizing output and price as if it were a 
monopolist. The geometry appears in Figure 24-1. 
 

In reference to Figure 24-1, the market demand curve is the downward sloping green line, 
and the supply curve of the remaining firms combined is the upward sloping green line. Both 

 
1 These approaches overlap in that identical analytical structures can emerge from their application to the same 
oligopoly phenomenon. 
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curved are assumed to be known to the dominant firm. The demand curve facing the dominant 
firm, the upper solid  black line, is calculated by taking the quantity demanded of the dominant 
firm’s output at each price, say ݌௫

ௗ, as the difference, ݔௗ, between the market quantity demanded 
at that price, ݔ௠, and the sum of the quantities supplied by the remaining firms at that price, ݔ௦, 
that is 
 

ௗݔ = ௠ݔ −  .௦ݔ
 
 Therefore, if the dominant firm sets the price at ݌௫

ᇱ  (or higher), the remaining firms supply the entire 
market ݔᇱ and the dominant firm sells nothing. If the dominant firm sets the price at ݌௫

ᇱᇱ (or 
lower), then the remaining firms supply nothing, and the dominant firm supplies the entire 
market, at least ݔᇱᇱ. The demand curve facing the dominant firm follows the upper solid black 
line from the vertical axis at ݌௫

ᇱ  to point A and then continues along the green line from A to the 
  axis. The dominant firm’s marginal revenue curve, the lower solid lack line, is calculated in-ݔ

 
the usual manner by extending the black portion of its demand curve to the ݔ-axis (Chapters 4 
and 22, and supplemental Note B). The latter extension is not shown in the diagram. (The 
marginal revenue curve for the green portion of its demand curve facing the dominant firm is 
irrelevant for this diagram.) 
 
 Like the monopolist, the dominant firm maximizes its profit at ݔௗ where its short-run 
marginal cost given its capital input or plant size equals its marginal revenue. Like the 
monopolist, it sets the market price at the level ݌௫

ௗ at which, according to the demand curve it 
faces, it can sell that output. The quantity sold on the market is ݔ௠. The remaining firms sell 
௦ݔ = ௠ݔ  −  .ௗݔ

--------------------------------------------------------------- 
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 The second explanatory model of perfect oligopoly behavior to be discussed here is that 
of the cartel. Cartels are illegal in the United States. But they exist elsewhere in the world. 
Perhaps the most well-known is the Oil Producing and Exporting Countries or OPEC cartel. 
When the cartel controls the entire industry, the assumption that eliminates the uncertainty is 
stated as: 
 

Each firm in the industry follows the price and output instructions of a central office 
which seeks to maximize the profits of the industry as a whole. 

 
That is, the central office turns the industry into a monopoly facing the known market demand 
curve. To illustrate in the short run with two firms in the industry numbered 1 and 2, let ݔଵ and 
 .ଶ indicate their respective outputs, and ത݇ଵ and ത݇ଶ their respective capital inputs or plant sizesݔ
Write ܴܵܶܥଵ௞ത భ and ܴܵܶܥଶ௞ത మ for their short-run total cost functions. Then with ܴܶ designating 
the combined revenue function based on the market demand curve, industry or cartel profit ߨ 
would be written as 
 

,ଵݔ)ߨ (ଶݔ = ଵݔ)ܴܶ + (ଶݔ − ଵ௞തܥܴܶܵ భ(ݔଵ) − ଶ௞തܥܴܶܵ మ(ݔଶ), 
 
where ݔଵ +  .ଶ represents total market quantity demanded from which total revenue is calculatedݔ
Denote industry marginal revenue by ݔ)ܴܯଵ +  ଶ). Assuming second-order conditions areݔ
satisfied, maximization of cartel profit requires ݔଵ and ݔଶ be selected so that2 
 

ଵݔ)ܴܯ + (ଶݔ = ଵ௞തܥܯܴܵ భ(ݔଵ) = ଶ௞തܥܯܴܵ మ(ݔଶ).                                    (24.1) 
 
If the two short-run marginal costs were not equal, then transferring production from the firm 
with the higher marginal cost to the one with the lower marginal cost would reduce the total cost 
of producing the same output and increase profit. Hence cartel profit could not be at a maximum. 
Since the two marginal costs are equal, their value becomes the cartel short-run marginal cost. 
Cartel profit is then maximized by setting cartel marginal revenue equal to cartel short-run 
marginal cost. The verbal argument that at maximum profit marginal revenue should equal short-
run marginal cost is the same here as that given following equation (13.6) in Chapter 13. The two 
marginal equations obtained from (24.1), namely 
 

ଵݔ)ܴܯ + (ଶݔ = ଵ௞തܥܯܴܵ భ(ݔଵ)     and     ݔ)ܴܯଵ + (ଶݔ = ଶ௞തܥܯܴܵ మ(ݔଶ), 
 
determine the maximizing values of ݔଵ and ݔଶ by solving them simultaneously. Based on these 
determinations, the cartel sets the output quantities that firm 1 and firm 2 produce. As with 
monopoly, the market price is also set by the cartel so that, according to the market demand 
curve, all of (and no more than) the maximizing quantities ݔଵ and ݔଶ are sold. 

--------------------------------------------------------------- 
 
 The last explanatory oligopoly model to be considered is that of the ‘kinked” demand 
curve. It has been observed in the past that under certain oligopoly situations, relatively long 

 
2 The mathematical derivation of these first-order equations is not presented here.  
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periods of time have occurred during which firm output price and output quantity have remained 
relatively constant in spite of input cost and output demand changes. The short-run kinked 
demand curve model was constructed to explain this phenomenon. In that context, there are 
several assumptions that need to be made to eliminate the uncertainty and construct the demand 
curve facing the firm: 
 

a) Products sold in the market are differentiated. That is, the firm on which attention  
    focuses is selling a unique product for which there are close substitutes. 
 
b) There are two known demand curves facing the firm –– one, ܦଵ, based on the  
     assumption that no competitor follows the firm’s price changes and the other, ܦଶ,  
     based on the assumption that all competitors follow its price changes. 
 
c) A price ݌௫

଴ and output ݔ଴ has been established in the market and the two demand  
    curves it faces intersect at (݌௫

଴,   ଶܦ ଵ (in black) flatter thanܦ ଴). The curves appear withݔ
    (in green) in Figure 24-2 for the following reason: If no competitor follows a cut in price  
    from ݌௫

଴, then the firm will sell more at the new price along ܦଵ than if all competitors  
    follow along ܦଶ. And if no competitor follows a price increase from ݌௫

଴, then the firm  
    will sell less at the new price along ܦଵ than if all competitors follow along ܦଶ. 

 
d) Finally assume that all competitors follow price reductions from ݌௫

଴ but no competitor  
    follows price increases. 

 
Under these assumptions, the demand curve facing the firm is ܦଵ for prices above ݌௫

଴ and ܦଶ for 
prices below ݌௫

଴, thus producing a kink where the two parts of the demand curve meet at A. 
 
 The geometry of profit maximization under these assumptions is shown in Figure 24-3. In 
that diagram, the demand curve facing the firm (reproduced with the same colors on a larger 
scale from Figure 24-2) consists of the solid black and green lines labeled ܦଵ and ܦଶ respectively, 
that meet with a kink at point A. The marginal revenue curve for ܦଵ is calculated in the usual 
way after extending the solid line ܦଵ to the ݔ-axis. (The extension appears as a dotted black line.) 
Only the solid portion of that marginal revenue curve, labeled ܴܯଵ, from the vertical axis to 
point B is relevant since the demand curve changes at output ݔ଴ (point A). The marginal revenue 
curve for ܦଶ is obtained by extending ܦଶ to the vertical axis (dotted green line) and only the solid 

 ݔ

௫݌  

௫݌
଴ 

 ଴ݔ

 ଶܦ

 ଵܦ
A 

Figure 24-2 



192 
 

portion labeled ܴܯଶ starting a point C is used. Because, when moving along demand curve its 
slope jumps across many values at point A, the marginal revenue there consists of the range of 
values between points B and C. Combining ܴܯଵ and ܴܯଶ with the vertical line connecting points 
B and C (colored red) gives the complete marginal revenue curve of the firm.  

 
Profit maximization occurs at the output for which the marginal revenue curve intersects 

the short-run marginal cost curve specified for the firm’s capital ത݇. In the diagram, this 
intersection occurs in the vertical portion between points B and C, and the firm is selling the 
established quantity ݔ଴ at the established price ݌௫

଴. Now if input prices change, then the marginal 
cost curve will change. As long as the input price variations (with the marginal revenue curve 
remaining fixed) are not large enough to move the intersection of marginal revenue and short-run 
marginal cost outside of the vertical (red) portion of the marginal revenue curve, there will be no 
change in the firm’s output price and output quantity. Changes in demand might affect either or 
both of the two demand curves ܦଵ and ܦଶ. Assume their slopes are altered while maintaining 
their intersection at (݌௫

଴,  ଶ and hence the length of the redܴܯ ଵ andܴܯ ଴). This, in turn, will affectݔ
vertical portion of the marginal revenue curve. Once again, as long as points B and/or C (with the 
marginal cost curve remaining fixed) do not modify so that the intersection of marginal revenue 
and short-run marginal cost remains in the vertical (red) portion of the marginal revenue curve, 
then these changes in demand will have no effect on output price and output quantity. Thus the 

௫݌
଴ 

௫݌  

 ݔ ଴ݔ

௞തܥܯܴܵ  

 ଶܦ

 ଶܴܯ

 ଵܦ

 ଵܴܯ

A 

B 

C 

Figure 24-3 



193 
 

kinked demand curve model suggests that with sufficiently small changes in input prices and 
demand conditions, output price and quantity can remain constant for long periods of time.
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Chapter 25 
Externalities, Public Goods, and  

Imperfect Information 
 
 
 The last three chapters have focused on firm behaviors and efficiency issues that arise 
when markets fail due to imperfections in their competitive structures. It is now time to consider 
the problems of externalities, public goods, and imperfect information – market failures that arise 
for different reasons. These failures were defined and examples of them provided in Chapter 21.  
 
 Recall that an externality exists if the buying-selling actions of one or more persons or 
firms in a market impose costs on or provide benefits to other individuals or firms outside of the 
market. When an externality imposes costs, it is referred to as a negative externality; when it 
provides benefits, it is called a positive externality. Until now the possible presence of an 
externality in a perfectly competitive market has been ignored. The costs or benefits associated 
with it have not been accounted for in any of the concepts or equations of the Walrasian model 
described in previous chapters. Clearly, introducing them into the model necessarily leads to a 
different position of rest or equilibrium. Call the latter an externality-generated general 
equilibrium. In that context, it can be shown that an externality-generated general equilibrium is 
Pareto optimal.1 But its distribution of inputs and outputs is different from that obtained in the 
original perfectly competitive general equilibrium before that model was modified to account for 
the externality. Once the modification is made, the before-modification distribution of inputs and 
outputs is no longer Pareto optimal and at that distribution it is now possible through 
redistribution with possibly modified output quantities to make at least one person better off 
(higher utility) without making anyone else worse off (lower utility). This may be understood to 
happen because in a market with an unaccounted-for externality, either market price no longer 
measures the actual worth or benefit of a unit of the good to society or (short-run or long-run) 
marginal cost no longer measures the true marginal cost of that unit to society. The market fails 
since the Pareto optimal outcome that now accounts for the costs or benefits of the externality is 
not achieved. 
 
 To be more specific, focus on a single firm in the short run. When externalities are not 
present, profit in the perfectly competitive firm producing good x is defined by the difference 
between total revenue and total cost (Chapter 13): 
 

(ݔ)ߨ = (ݔ)ܴܶ −  (25.1)                                                    .(ݔ)ത݇ܥܴܶܵ
 
In this equation, ܴܵܶܥ௞ത  And .ݔ represents only the cost of the inputs used to produce output (ݔ)
with ݌௫ thought of as what consumers are willing to pay per unit of quantity ݔ (Chapter 8) and 
hence as a measure of the benefits per unit of quantity ݔ accruing to them, ܴܶ(ݔ) =  ௫ may be݌ݔ
understood as total benefits to society received from the sale of output 2 .ݔ Under this 

 
1 The argument is essentially the same as that given in Chapter 20 to establish the first fundamental theorem of 
welfare economics. 
2 Of course, this is not the same as consumer surplus. Referring to Figure 8-4 of Chapter 8, consumer surplus is the 
area of triangle ABC. Total revenue or total benefits to society is the rectangle below it. 
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interpretation, (ݔ)ߨ becomes the benefit to society of producing output ݔ net of the total cost of 
its production. Maximizing profit becomes maximizing net social benefit, and at the ݔ associated 
with that maximum  
 

௞തܥܯܴܵ (ݔ) =   (25.2)                                                            ,ݔ݌
 
(combined with the equations of the general equilibrium of which it is a part), Pareto optimality 
or efficiency prevails (Chapter 20). 
 
 Applying these ideas when both positive and negative externalities are present in the 
market, include in total revenue the benefits of output ݔ to individuals and firms outside of the 
market for good x, that is beyond the revenue internal to the firm or ݌ݔ௫. Call this expanded form 
of total revenue total social benefit (it remains a function of ݔ). Similarly, in addition to the 
internal cost of the inputs, include in total cost all of the outside costs of the externality and 
rename it total social cost (also a function of ݔ). Then equation (25.1) becomes  
 

net social benefit (ݔ) = total social benefit (ݔ) – total social cost (ݔ),                   (25.3) 
 
In parallel with the discussion of equilibrium and efficiency in the absence of externalities, to 
obtain the externality-generated general equilibrium and Pareto optimality for the full 
microeconomy that includes the externalities in the market for good x, equation (25.2) has to be 
maximized. In particular, assuming second-order conditions are satisfied, maximizing net social 
benefit by differentiating equation (25.3) and equating the derivative to zero gives a quantity ݔ 
for which the derivatives or marginals of total social benefit and total social cost are equal: 
 

marginal social benefit (ݔ) = marginal social cost (ݔ) 
 
or, symbolically representing marginal social benefit (ݔ) by (ݔ)ܤܵܯ and marginal social cost 
௞തܥby MS (ݔ)  ,(ݔ)(ݔ)
 

(ݔ)ܤܵܯ =  (25.4)                                                          .(ݔ)(ݔ)ത݇ܥܵܯ
 
Equation (25.4) replaces (25.2) for the firm producing good x. Combining (25.4) with the 
remaining equilibrium equations reflecting perfect competition elsewhere without externalities 
ensures Pareto optimality. This follows from the analogue of the first fundamental theorem of 
welfare economics when externalities are present in the market for good x. 
 
 Of course, if externalities are present but ignored by the profit-maximizing firm 
producing good x, the output of that firm still satisfies equation (25.2). But that is no longer good 
enough for Pareto optimality because the extra costs or benefits have been left out. What is 
needed in in this case to secure Pareto optimality is equation (25.4). 
 
 To clarify the argument with externalities present still further, let ܴܵܥܯ௞ത  be the (ݔ)
original marginal cost concept, that is, the marginal cost of producing output ݔ that includes only 
the cost of the inputs employed to produce it. Let MEܥ௞ത  represent the firm’s marginal external (ݔ)
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or outside-of-the-market cost of the externality that is not included in ܴܵܥܯ௞ത  Then the .(ݔ)
internal and external parts of the marginal social cost concept become explicit in the equation 
 

௞തܥܵܯ (ݔ) = ௞തܥܯܴܵ (ݔ) + ௞തܥܧܯ  (25.5)                                          .(ݔ)
 
If (ݔ)ܤܧܯ denotes the marginal external benefits not included in the output price ݌௫, then 
splitting (ݔ)ܤܵܯ into its internal and external parts yields 
 

(ݔ)ܤܵܯ = ௫݌ +  (25.6)                                              .(ݔ)ܤܧܯ
 
As previously indicated, to obtain Pareto optimality or efficiency that takes into account all costs 
and benefits requires the firm to produce an output for which equation (25.4) is satisfied. 
Substitution of equations (25.5) and (25.6) into equation (25.4) yields 
 

௞തܥܯܴܵ (ݔ) + ௞തܥܧܯ (ݔ) = ݔ݌ +  (ݔ)ܤܧܯ
 
or 
 

௫݌ = (ݔ)ത݇ܥܯܴܵ + (ݔ)ത݇ܥܧܯ −  (25.7)                                       .(ݔ)ܤܧܯ
 
And, to repeat the previous conclusion, if an externality is present and the firm producing good x 
does not take that externality into account, that leaves the firm producing where ܴܵܥܯ௞ത (ݔ) =  ݔ݌
which, in this situation, leads to inefficiency.  
 

Figure 25-1 illustrates a few possibilities assuming for convenience that MEܥ௞ത   and (ݔ)

 
௞തܥܯܴܵ varies and the marginal cost curve ݔ remain constant as (ݔ)ܤܧܯ  and hence the market 
supply curve ܵ are upward sloping straight lines. The subscripts ݂ and ݉ on ݔ indicate firm and 
market quantities respectively. Ignoring the presence of the externalities, market and profit-
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maximizing firm equilibrium occurs at (ݔ௠
଴ , ௫݌

଴) (right-hand diagram) where supply equals 
demand and at ݔ௙

଴ (left-hand diagram) where the representative firm produces at ܴܵܥܯ௞ത ቀ݂ݔ
0ቁ =

ݔ݌
0.  

 
If the ignored externalities are only negative so that (ݔ)ܤܧܯ = 0, then using equation 

(25.7), the firm’s marginal cost curve and the market supply curve shift up by the constant 
amount ܥܧܯ௞ത  The latter is .(like the specific tax in Figure 14-5 of Chapter 14) ݔ at each (ݔ)
designated by ܵᇱ. The market equilibrium price rises to ݌௫

ᇱ , and the equilibrium quantities that 
equate supply to demand and lead to profit-maximization and efficiency are to the left of, ݔ௠

଴  and 
௙ݔ

଴ at, respectively, ݔ௠
ᇱ   and ݔ௙

ᇱ  where, in terms of the representative firm, ݌௫
ᇱ = ௙ݔത݇൫ܥܯܴܵ

ᇱ ൯ +
௙ݔത݇൫ܥܧܯ

ᇱ ൯. Similarly, if the ignored externalities are only positive with MEܥ௞ത (ݔ) = 0, then again 
from (25.7), the representative firm marginal cost and market supply curves shift down, and at 
the revised equilibrium price ݌௫

ᇱᇱ, the quantities leading to profit maximization, market 
equilibrium, and efficiency lie to the right of ݔ௠

଴  and ݔ௙
଴ at ݔ௠

ᇱᇱ   and ݔ௙
ᇱᇱ where ݌௫

ᇱᇱ =
௙ݔത݇൫ܥܯܴܵ

ᇱᇱ൯ − ௙ݔ൫ܤܧܯ
ᇱᇱ൯. Thus, ignoring a negative externality that is present, at ݔ௠

଴  and ݔ௙
଴ the 

market and firms are producing too much output for efficiency; neglecting a positive externality, 
they are producing too little. 
 
 As noted in Chapter 21, the market failure arising from an externality provides a 
justification for government intervention in the market. That intervention would move the market 
closer to what is required for Pareto optimality (where (ݔ)ܤܵܯ =  and thereby make ((ݔ)ത݇ܥܵܯ
at least one person better off without making anyone else worse off. Several options available to 
the government are listed below: 
 

1. Tax or subsidize3 the production of output to change costs and revenues so that the 
curve representing ܴܵܥܯ௞ത ௞തܥܯܴܵ becomes more like that representing (ݔ) (ݔ) +
௞തܥܵܯ (ݔ) − (ݔ)ܤܧܯ For example, assume .(ݔ)ܤܧܯ = 0 and MEܥ௞ത (ݔ) =  ݔ for all ݐ
where ݐ > 0. Under these assumptions, requiring the firm to pay a specific tax of t dollars 
per unit of output sold (Chapter 14) forces the ܴܵܥܯ௞ത + ௞തܥܧܯ  curve in the left-hand 
diagram of Figure 25-1 to lie above the ܴܵܥܯ௞ത  curve by the amount t at each ݔ. That is, t 
becomes a substitute for MEܥ௞ത ௞തܥAlternatively, with ME .(ݔ) (ݔ) = 0 and (ݔ)ܤܧܯ = ݍ >
0 for all ݔ, paying the firm a subsidy of ݍ dollars per unit of output means that the 
௞തܥܯܴܵ − ௞തܥܧܯ  curve is everywhere below the firm’s marginal cost curve by the quantity 
q, and q becomes a substitute for (ݔ)ܤܧܯ. 
 
2. Impose legal constraints so that, for example, pollution can be stopped by government 
order or court injunction and those who pollute can be held liable for the damage they 
cause. The fact that General Electric had to clean out the PCBs it left in the Housatonic 
River of Massachusetts and C Connecticut after closing a manufacturing facility located 
in the former is a case in point. 
 

 
3 A subsidy is a negative tax. 
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3. Regulate directly by setting standards, for example, of what kind of and in what 
quantities pollutants can be discharged into the air and water. Government emission 
standards for automobiles is an illustration. 
 
4. Give limited quantities of permits for, say. emitting pollutants to firms and allow the 
permits to be bought and sold. Those firms not needing all of the permits they receive 
because they are polluting less than the quantity of permits they have allow, can sell their 
excess permits to those who need more. In this way a market is created for pollutant 
permits. When maximizing profits, firms that have to buy permits now include some of 
the external costs of pollution as the costs of permits in ܴܵܥܯ௞ത  This raises the original  .(ݔ)
௞തܥܯܴܵ ௞തܥbased only on input costs bringing it closer to MS (ݔ)  .(ݔ)

-------------------------------------------------------- 
 
 
 

Turning to public goods, the original definition given in Chapter 21 can be refined and 
made more precise by separating it into two parts. A consumption good is 

 
1. nonrival (in consumption) if one person’s consumption or enjoyment of a unit of it  
    does not detract from that of another’s,4 and  
 
2. nonexcludable if no one can be prevented from consuming or enjoying the benefits of  
    a unit of the good (without explicitly paying for it) once it is produced. 

 
A public good is both nonrival and nonexcludable. The example of street lighting cited in 
Chapter 21 exhibits these two properties. 
 
 Since it is nonexcludable, consumers do not determine quantities demanded of a public 
good in response to prices set by the market. And without explicit demand, that is, without 
individual and hence market demand curves, a market price as determined by the interaction of 
the competitive forces of demand and supply cannot be generated and an outcome leading to 
Pareto optimality cannot be achieved. In this sense, all markets for public goods fail. Only 
governments can, often through a contract with a private firm, arrange for their production. (An 
exception is radio and TV broadcasting which is paid for by advertising.) But then the question 
arises of how much of a public good should be produced. Can the quantity that would yield 
Pareto optimality were the public good added to the Walrasian model representing the 
microeconomy be determined? 
 
 This question has no easy answer. Suppose consumers were asked how much they were 
willing to pay per unit of a public good at each quantity ݔ. That is, each person is asked to reveal 
his/her willingness to pay curve as characterized in Chapter 8 (Public radio and TV seem to 
pursue this idea in asking individuals to contribute money to cover production costs of 
broadcasting.) As noted above, willingness to pay per unit at a quantity may be thought of as a 
measure of the marginal benefit per unit accruing to the individual when consuming that 

 
4 An apple, for example does not have this property. Once it is consumed by one person it cannot be consumed by 
another. 
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quantity. Summing these per-unit willingnesses to pay for each quantity over all persons 
consuming the public good gives an aggregate willingness-to-pay or marginal social benefit 
- curve for the good by society at large. (This involves a “vertical” sum of the willingness ܤܵܯ
to-pay curves as compared, when they are thought of demand curves, to their “horizontal” sum 
which yields the market demand curve.) A two-person example appears in Figure 25-2, where 
the willingness-to-pay curves for two persons, labeled ܦଵ and ܦଶ, are vertically summed to  

 
 

obtain the ܤܵܯ௫curve. Now, as pictured in Figure 25-3, the intersection of this aggregate ܤܵܯ 
curve with the ܴܵܥܯ௞ത  or short-run marginal cost curve of the firm that would be producing the 
public good (assuming no negative externalities) gives the quantity ݔ଴ that would lead to Pareto  
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optimality since, at that quantity, the per-unit willingness of society to pay for the public good 
௫݌

଴, that is its marginal social benefit equals the marginal cost of producing it. 
 
 But to do this, it is necessary to know what consumers are willing to pay, and individual 
consumers have no incentive to reveal that information. Indeed, they have strong incentive to 
hide it for two reasons: 
 

a. As previously suggested, because people can enjoy the benefits of a public good 
regardless of whether they pay for it or not, everyone is disinclined to pay for it. This is 
called the free rider problem. 
 
b. The provision of a public good is usually so costly that its provision does not depend 
on whether one person pays or not. So why should an individual pay? This is known as 
the drop-in-the-bucket problem. 

 
 With the willingness-to-pay approach not working, it is appropriate to return to the 
original problem: How much of a public good should the government arrange to produce? Can 
the quantity that would lead to Pareto optimality or efficiency be determined? The answers to 
these questions depend on the answer to a related question. Can individual preferences be 
revealed and aggregated into preferences for society as a whole? This is often referred to as the 
problem of social choice. If societal preferences could be obtained, Pareto optimality could be re-
expressed in terms of them. 
 
 One way of approaching the social choice problem is to have people vote. But this, too, 
has its difficulties. For example, suppose there are three alternative quantities of a public good, 
A, B, and C, from which to choose. Suppose society consists of three consumers, 1, 2, and 3. Let 
consumers express their preferences by voting for their preferred option in each option pair and 
let society’s preference in each pair be determined by majority rule. Assume individual 
preferences are as follows: 
 

Person 1 prefers A to B and B to C, and hence by transitivity, A to C. 
Person 2 prefers B to C and C to A, and hence by transitivity, B to A. 
Person 3 prefers C to A and A to B, and hence by transitivity, C to B. 

 
Now for the pair (A,B), Persons 1 and 3 prefer A to B, while Person 2 prefers B to A. By 
majority rule society prefers A to B. A similar calculation applies to pairs (B,C), and (A,C). Thus 
voting determines that 

Society prefers A to B and B to C, but C to A. 
 
Because they are transitive, each person’s preferences lead to the conclusion that one option is 
preferred by that person to the other two; Person 1 prefers A to B and C, Person 2 prefers B to A 
and C, and Person 3 prefers C to A and B. But society’s preferences obtained through this voting 
procedure violate the transitivity property. Consequently, the vote does not reveal a preference 
for one option over the remaining two at the societal level. This is known as the voting paradox. 
It suggests that this does not seem to be a good way to answer the questions raised by the 
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presence of a public good. Without having transitive societal preferences, the determination of 
the Pareto optimal or efficient amount of a public good would appear to be beyond reach. 
 
 In democratic societies, representatives are elected and bureaucrats are appointed to make 
and implement decisions for everyone. Such decisions presumably involve attempts to provide 
the quantities of public goods consistent with what might be acceptable to most people and that 
would come close to efficiency. But it is necessary to recognize that elected or appointed 
officials might, for one reason or another, make choices that do not appear to approximate very 
well either what people seem to want or Pareto optimality. When this happens market failure can 
be compounded by what in Chapter 21 has been called government failure to achieve or 
approach a situation in which it is not possible to make at least one person better off without 
making someone else worse off. 

-------------------------------------------------- 
 
 
 
 The fourth (and last) form of market failure, namely imperfect information, can arise in 
two different ways: 
 
 1. Adverse selection occurs when a buyer or seller enters into a transaction with another 
party who has more information than the buyer or seller about the product transacted. The 
difference in knowledge of the product is called asymmetric information and can lead to an 
absence of Pareto optimality in that the individuals are not receiving or giving up what they think 
they are when, respectively, buying or selling. The example of a used car dealer selling a ‘lemon’ 
to a customer who is unaware of the car’s defects illustrates the point. In that case, as described 
in Chapter 21, one of the equations, say that for person 1, needed to establish the first 
fundamental theorem of welfare economics (20.11) of Chapter 20), namely, 
 

௫ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

௬ܷܯ
ଵ(ݔଵ

଴, ଵݕ
଴)

=
௫݌

௬݌
 

 
is invalid and the theorem cannot hold. One possibility of government intervention to eliminate 
this inefficiency is the exactment of so-called ‘lemon laws’ that enable purchasers buying a 
product with a defect of which they are unaware to have the defect repaired, or to receive a 
replacement or refund. 
 
 2. Moral hazard occurs when one party to a contract passes the cost of his/her/its behavior 
on to the other party. For example, after signing an automobile insurance contract, a person 
drives more recklessly than before because he/she does not have to pay the full cost of an 
accident. In this case, the insurer does not have the same information about the risk of covering 
the cost of an accident as the insured. This also results in an absence of Pareto optimality since, 
for the insurer, the true marginal cost of producing its output (automobile insurance), which now 
includes extra risk, no longer equals its output price. Government intervention here to reduce the 
inefficiency can take the form of enacting rules such as speed limits, the violation of which can 
result in a substantial fine. 
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Supplemental Note A 

The Relationship between Marginal 
Revenue and Elasticity  

 
 
 From the (4.2) equation-specification of arc-price elasticity 𝜀𝜀𝐴𝐴𝐴𝐴 between points α and β 
on the demand curve shown in Chapter 4, 
 

𝜀𝜀𝐴𝐴𝐴𝐴 = −  �
𝑥𝑥′ − 𝑥𝑥′′

𝑝𝑝𝑥𝑥′ − 𝑝𝑝𝑥𝑥′′
� �

𝑝𝑝𝑥𝑥′

𝑥𝑥′′
� = − 𝑝𝑝𝑥𝑥′ �

1
𝑝𝑝𝑥𝑥′ 𝑥𝑥′′ − 𝑝𝑝𝑥𝑥′′𝑥𝑥′′
𝑥𝑥′ − 𝑥𝑥′′

� .                             (A. 1) 

 
Rewriting the denominator in the square brackets of (A.1),   
 
𝑝𝑝𝑥𝑥′ 𝑥𝑥′′ − 𝑝𝑝𝑥𝑥′′𝑥𝑥′′

𝑥𝑥′ − 𝑥𝑥′′
=  
𝑝𝑝𝑥𝑥′ 𝑥𝑥′′ − 𝑝𝑝𝑥𝑥′ 𝑥𝑥′ + 𝑝𝑝𝑥𝑥′ 𝑥𝑥′ − 𝑝𝑝𝑥𝑥′′𝑥𝑥′′

𝑥𝑥′ − 𝑥𝑥′′
=
𝑝𝑝𝑥𝑥′ 𝑥𝑥′′ − 𝑝𝑝𝑥𝑥′ 𝑥𝑥′

𝑥𝑥′ − 𝑥𝑥′′
+
𝑇𝑇𝑇𝑇(𝑥𝑥′) − 𝑇𝑇𝑇𝑇(𝑥𝑥′′)

𝑥𝑥′ − 𝑥𝑥′′
,     (A. 2) 

 
where 𝑝𝑝𝑥𝑥′ 𝑥𝑥′ has been both added in and subtracted from the numerator of the fraction on the left, 
and 𝑇𝑇𝑇𝑇(𝑥𝑥′) = 𝑝𝑝𝑥𝑥′ 𝑥𝑥′ and  𝑇𝑇𝑇𝑇(𝑥𝑥′′) = 𝑝𝑝𝑥𝑥′′𝑥𝑥′′. The first term to the right of the second equality in 
(A.2) reduces to 𝑝𝑝𝑥𝑥′ , and the second term is the marginal revenue in moving between 𝑥𝑥′ and 𝑥𝑥′′ 
(equation (4.7) in Chapter 4). Using these facts, (A.2) becomes 
 

𝑝𝑝𝑥𝑥′ 𝑥𝑥′′ − 𝑝𝑝𝑥𝑥′′𝑥𝑥′′

𝑥𝑥′ − 𝑥𝑥′′
= − 𝑝𝑝𝑥𝑥′ + 𝑀𝑀𝑀𝑀(𝑥𝑥′).                                                    (A. 3) 

 
Substituting the right-hand expression in (A.3) for the denominator between the square brackets 
in the fraction of (A.1) and solving for 𝑀𝑀𝑀𝑀(𝑥𝑥′), results in 
 

𝑀𝑀𝑀𝑀(𝑥𝑥′) = 𝑝𝑝𝑥𝑥′ �1 −
1
𝜀𝜀𝐴𝐴𝐴𝐴

�. 
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Supplemental Note B 
The Geometry of the Marginal Revenue Curve  

with a Linear Demand Curve 
 

 
As indicated in Chapter 4, the linear demand curve is described by 
 

ݔ = ௫݌ߙ + .B)                                                                    ,ߚ 1) 
  

where ߙ < 0 and ߚ > 0 are fixed numbers. Solving for ݌௫,   
 

௫݌ =
ݔ
ߙ

−
ߚ
ߙ

.                                                                    (B. 2) 
 
The graph of equation (B.2), the solid straight line labeled D in Figure B-1, is the same as that of  
 

 
 

(B.1) although, with respect to (B.2),. the axes are not reversed, and the dependent variable ݌௫ 
remains on the vertical axis. To determine the marginal revenue line, it is first necessary to 
calculate total revenue as a function of ݔ. Using (B.2), 
 

(ݔ)ܴܶ = ௫݌ݔ = ݔ ൤
ݔ
ߙ

−
ߚ
ߙ

൨ =  
ଶݔ

ߙ
−

ݔߚ
ߙ

,                                        (B. 3) 
 
and differentiation of (B.3) with respect to ݔ yields the marginal revenue function 
 

(ݔ)ܴܯ =
ݔ2
ߙ

−
ߚ
ߙ

.                                                                    (B. 4) 
 
The graph of (B.4) is drawn as a dashed line in Figure B-1. Now for both (B.2) and (B.4), ݌௫ =
(0)ܴܯ = − ߚ ⁄ߙ  when ݔ = 0, so that the demand and marginal revenue lines have the same ݌௫-
intercept. On the other hand, when ݌௫ = 0  along the demand curve, ݔ = (ݔ)ܴܯ But when .ߚ =

 ௫݌

 ݔ

Figure B-1 
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0  along the marginal revenue line, ݔ = ߚ 2⁄ . Thus the ݔ-intercept on the marginal revenue line 
is half the distance from the origin to the ݔ-intercept on the demand line. 
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Supplemental Note C 
Assumptions Made to Explain  

Consumer Behavior 
 

 
1. The consumer has preferences and indifferences among baskets of commodities such that, for 
any two baskets either one is preferred to the other or the two are indifferent. (Completeness.) 
 
2. Preferences and indifferences are transitive. (If basket A is preferred to basket B, and basket B 
is preferred to basket C, then basket A is preferred to basket C.  Similarly for indifferences.) 
 
3. Preferences and indifferences are represented by a utility function in the sense that (a) if one 
basket is preferred to another, then the preferred basket has a higher utility value than the other, 
and (b) if two baskets are indifferent, then they have the same utility value. 
 
4. The utility function has the following four properties: 

4a. It is continuous and all marginal utilities can be calculated. 
4b. A larger basket of commodities is always preferred to, and therefore has a higher 
      utility value than a smaller one. 
4c. Indifference curves are strictly convex. 
4d. Indifference curves do not touch the co-ordinate axes of the commodity space. 

 
5. The consumer purchases or demands that basket from his/her budget set that is preferred over 
all other baskets in the budget set and therefore provides the most utility. In other words, the 
consumer demands that basket that maximizes his/her utility subject to the budget constraint. 
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Supplemental Note D  
Assumptions Made to Explain 

 Firm Behavior 
 

 
1. The firm has a long-run production function x = f (ℓ,k) based on a given technology. 
 
2. The long-run production function has the following properties: 
 2a. Zero input produces zero output (f (0,0) = 0), and nonnegative input produces 

      nonnegative output (f (ℓ,k) ≥ 0 for all (ℓ,k) ≥ 0). 
2b. It is continuous and all marginal products can be calculated. 
2c. If ridge lines exist, all marginal products are positive and all isoquants are strictly 
      convex between the ridge lines up to an intersection point if there is one. 
2d. If ridge lines do not exist, all marginal products are positive and all isoquants ar 
      strictly convex everywhere throughout the input space, and no isoquant touches the  
     co-ordinate axes. 

 
3. Long-run and short-run total cost curves appear as drawn in this book so that average and 

 marginal cost curves can be determined and have the shapes attributed to them. 
 
4. The firm hires (demands) inputs and produces and sells (supplies) output so as to maximize its  

profit. 
 
 
 
 
(The short-run production function is obtained from the long-run production function by fixing k 
at some value k 0, that is, x = f (ℓ,k 0).) 
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Supplemental Note E 
Summary of How the Model of the Perfectly 

Competitive Firm Arrives at 
Profit Maximization 

 
 
1. If ridge lines exist in the input space, eliminate the regions outside of the area between them  

 and beyond any intersection point if there is one. This reduces the input space to its 
 relevant region. (If ridge lies do not exist, the relevant region is the entire input space 
excluding the co-ordinate axes.) 

 
2. Using input price information and cost minimization (long run) or fixed capital  

    information ത݇ (short run), calculate the appropriate expansion path in the relevant  
    region and confine attention to it. 

 
3. Using the production function, expansion path, and input price information, calculate all cost  

 functions and curves expressing cost as a function of output. 
 
4. Using output price information, calculate all revenue functions and curves. 
 
5. Using cost and revenue information, calculate the profit function and the profit-maximizing  

 output ݔ଴. 
 
6. From the intersection of the isoquant relating to the profit-maximizing output and the 

     long- or short-run expansion path, calculate the profit-maximizing input quantities.  
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Supplemental Note F 
Equivalence of the Short-Run, First-Order Profit 

 Maximization Equations with Respect 
 to Output and Labor Input 

 
 
 In the short run, let capital be fixed at ത݇ and let ݔ଴ and ℓ଴ be the profit-maximizing 
quantities of output and labor input respectively. 
 
 Start with the first-order equation ݌ℓ =  ℓ(ℓ଴) for profit maximization with respect toܲܯܸ
labor input at ℓ଴, where ݌ℓ is the price of labor.  Then ݔ଴ = ݂൫ℓ଴, ത݇൯ = ܶܲℓ(ℓ଴) is the output 
produced with labor input ℓ଴. Using the definition of ܸܲܯℓ(ℓ) in Chapter 15 and that of 
Mܲℓ(ℓ) in Chapter 10, and the convention that when labor input ℓ଴ changes by ∆ℓ, output ݔ଴ 
changes by ∆ݔ, 
 

ℓ݌ = ℓ(ℓ଴)ܲܯܸ = ℓ(ℓ଴)ܲܯ௫݌  = ௫݌ 
ܶܲℓ(ℓ଴ + ∆ℓ) − ܶܲℓ(ℓ଴)

∆ℓ
= ௫݌ 

ݔ∆
∆ℓ

 , 
 
where ݌௫ is the price of output ݔ and, by the above convention, ܶܲℓ(ℓ଴ + ∆ℓ) − ܶܲℓ(ℓ଴) =
଴ݔ + ݔ∆ − ଴ݔ =  Therefore  .ݔ∆
 

௟݌ = ௫݌
ݔ∆
∆ℓ

.                                                                           (F. 1) 
 
Solving equation (F.1) for ݌௫ and using the definition of total variable cost ܸܶ(ݔ)ܥ =  ℓℓ for݌ 
appropriately chosen ℓ, the definition of SRMܥ௞ത  from Chapter 12, and the same convention,1 (ݔ)
 

௫݌ =
௟∆ℓ݌
ݔ∆

=
ℓ(ℓ଴݌ + ∆ℓ) − ℓℓ଴݌

ݔ∆
=

଴ݔ)ܥܸܶ + (ݔ∆ − (଴ݔ)ܥܸܶ
ݔ∆

= SRMܥ௞ത  ,(଴ݔ)
 
since ݔ଴is the output produced using labor input ℓ଴. Thus 
 

௫݌ = SRMܥ௞ത  ,(଴ݔ)
 
which is the first-order equation for profit maximization with respect to output at ݔ଴. 
 

Starting with the first-order equation for profit maximization with respect to output at ݔ଴ 
and reversing these steps gives the first-order equation for profit maximization with respect to 
labor input at ℓ଴.  
 

 
1 Recall that, as described in Chapter 12, SRMܥ௞ത  .(ݔ)ܥܸܶ or (ݔ)ܥܴܶܵ may be calculated using either (ݔ)
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Supplemental Note G 
Definitions of General Equilibrium and  

Pareto Optimality  
 
 
General Equilibrium – short run: 
 The entire model of the micro-economy is at general equilibrium at 

(i) quantities of final goods bought and factors sold by each consumer, 
(ii) quantities of inputs bought and outputs produced and sold by each firm, and 
(iii) market quantities and prices of each good, and 

 provided that 
  (a) each consumer is buying final goods and selling factors so as to maximize 
   utility subject to his/her budget constraint, 
  (b) each firm is hiring inputs and producing and selling outputs so as to 
   maximize its profit, and 
  (c) supply equals demand in every market. 
 
General Equilibrium – long run: 
 Add 
  (d) all profits in all firms are zero. 
 
 
 
Pareto Optimality:  

A its distribution (ݔଵ଴, ,ଵ଴ݕ ,ଶ଴ݔ ,଴ݔ) ଶ଴) ofݕ   ଴) among consumers is Pareto optimal orݕ
efficient (in general) provided that: 

  (i) (ݔ଴,  ,଴) lies on the transformation curveݕ
  (ii) there is no other distribution of (ݔ଴,  ଴) and no distribution of any other pairݕ
   of outputs on the transformation curve at which one person is better off  

(higher utility) without the other person being worse off (lower utility).  
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Supplemental Note H 
Second-Order Condition Ensuring  

Maximum Monopoly Profit 
 
 
 In general, the second-order condition guaranteeing that ̅ݔ in equation (22.3) of Chapter 
22 identifies maximum monopoly profit is the same as the second-order equation (13.8) from 
Chapter 13 for the perfectly competitive firm (adjusted for the short run): 
 

݀ଶ(ݔ̅)ߨ
ଶݔ݀ =

݀ଶܴܶ(̅ݔ)
ଶݔ݀ −

݀ଶܴܵܶܥ௞ത (ݔ̅)
ଶݔ݀ < .ܪ)                                      .0 1) 

 
However, unlike the case of perfectly competition, it is not necessary that the marginal cost 
curve slope always upward around ̅ݔ. For example, when the demand curve facing the 
monopolist is linear as in Supplemental Note B, the marginal revenue function is given by 
equation (B.4): 
 

(ݔ)ܴܯ =
ݔ2
ߙ

−
ߚ
ߙ

,                                                                (H. 2) 
 
where ߙ < 0 and ߚ > 0.  Using (H.2), the second-order derivatives to the right of the equals sign 
in (H.1) may be rewritten as 
 

݀ଶܴܶ(̅ݔ)
ଶݔ݀ =

(ݔ̅)ܴܯ݀
ݔ݀

=
2
ߙ

    and    
݀ଶܴܵܶܥ௞ത (ݔ̅)

ଶݔ݀ =
௞തܥܯܴܵܵ݀ (ݔ̅)

ݔ݀
. 

 
And substituting these terms back into (H.1), the second-order condition for maximum profit 
becomes 
 

݀ଶ(ݔ̅)ߨ
ଶݔ݀ =

2
ߙ

−
௞തܥܯܴܵ݀ (ݔ̅)

ݔ݀
< 0  

 
or 
 

2
ߙ

<
௞തܥܯܴܵ݀ (ݔ̅)

ݔ݀
.ܪ)                                                              . 3) 

 
Since ߙ < 0, inequality (H.3) is satisfied for negative values of ܴ݀ܵܵܥܯ௞ത (ݔ̅) ⁄ݔ݀  greater (that 
is, closer to zero) than 2 ⁄ߙ . In other words, it is possible for the marginal cost curve to slope 
downward around the profit-maximizing output ̅ݔ. 
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Index

Abnormal profit, 112, 122, 125-126, 184 
Adverse selection, 202 
Arrow, K.J, iii 
Assumptions 
 discarding those for utility functions,  

54-56  
 eliminating uncertainty, 188, 190, 191 

for explaining consumer buying  
behavior, 39-40, 43-44, 209 

 for explaining consumer selling  
  behavior, 65, 67 
 for explaining firm buying and selling  

behavior, 74, 80, 99, 111, 211 
 implications of for marginal utility and  

indifference curves, 40-42 
AT&T, break-up of, 177 
Automobile emissions, setting standards for, 199 
Average fixed cost function, 92 
 geometry of graph, 92-93 
Average product 
 function, 73 
 geometry of curve, 75-77 
Average revenue function, 100 
Average variable cost function, 92 
 geometry of graph, 93-94 
 
Basket  
 containing leisure and income, 65 
 containing utility values of two  

persons, 166 
 cost minimizing, 83 

larger, 39 
of commodities, 35 

 of inputs, 71 
Break-even point, 111 
Budget 
 constraint, 43, 66 
 set, 43, 67 
 
Cartel, 190 
 assumption that eliminates   

uncertainty, 190 
 price determination by, 190 
 profit maximization by, 190 
Change in demand, 18 
Change in quantity demanded, 18 
Commodity space, 35, 65 
Competitive forces of demand and  

supply, 20-22, 124, 134, 177 
Complement goods, 18 
Constant economies of scale, 89, 179 
 and constant returns to scale, 89-90 
Constant returns to scale, 81-82, 89-90, 99n,179 
Consumer surplus, 64, 116, 181 
Contract curve, 

consumption, 146 
 production, 148 
Convex set, 12 
Convexity and concavity as second -order  

conditions, 14-15 
Cost of an input basket, 82 
 maximized, 84 
 minimization of (subject to fixed  
  output), 83-85 
 minimization of compared to utility  

maximization, 83-84 
Crowding effect, 81 
 
Deadweight loss, 181 
Demand curve 
 assuming all competitors follow, 191 
 assuming no competitors follow, 191 
 breaking up reciprocal slope of, 60-61 
 facing the firm, 99, 172, 182, 187,   
 facing the firm with kink, 191  

for input; see Input demand curve 
 geometric derivation from utility  

maximization, 48-49 
individual, 17 
linear, 31-32, 172-173, 207 
market, 19 
of dominant firm, 188-189 
reciprocal slope of, 25 
sign of reciprocal slope, 61-62 
upward sloping, 56-57, 62 

Demand function 
 for income, 68 

for input; see Input demand function 
 for leisure, 68  

individual, 17, 35, 47 
market, 19 
observable properties of, 52-54, 62 
observation of, 35 

Discarding assumptions on utility function, 54-56 
Distribution 
 of fixed input supplies, 147 
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 of produced outputs, 141-142 
Drop-in-the-bucket problem, 201 
 
Economic profit, 112 
Economic rent, 130-131 
Economics vs physical science 
 laboratories, 4 
 laws, 4 
Economies of scale, 89 
 and returns to scale, 89-90 
 constant, 89-90, 179 
Edgeworth box 
 consumption, 143 
 dimensions of, 143, 147 
 production, 147 
Edgeworth, erroneous attribution to, 143n 
Effect of changes in ݌ℓ on profit-maximizing  

quantities (long and short run),  
106-107 

Effect of changes in ݌௫ on profit-maximizing  
quantities (long and short run),  
107-108 

Efficiency; see the various forms of  
Pareto optimality 

Einstein, A., 3n 
Elasticity of demand 
 and marginal revenue, 29, 205 
 and linear demand curve, 31-32 

and total revenue, 28-29 
 arc price, 26 
 categories of, 29-31 
 compared to reciprocal slope, 27-28 
 cross-price, 32 
  income, 32 
 point price, 26 
Elasticity of supply, 33 
Electricity delivery, price regulation of, 177 
Engel curve, 52 
Entry and exit of firms, 122, 125 
Equilibrium, 20, 177 
 comparing with different market  

structures, 180 184-185 
 general; See general equilibrium 
 in a firm, 113 
 in a market, 20-21 
 in a market with zero price or  

quantity, 21-22 
 Nash, 188 
 partial, 4, 136 
Equilibrium in market and firm simultaneously  
 long-run, 123-124, 184 

short-run,113 

Equivalence of firm short-tun profit maximization 
 with respect to output and input, 215 
Excess profit, 112 
Expansion path 
 long-run, 85 
 short-run, 85-86 
Explanation in Economics, 23 
 of constant price and quantity over  

periods of time, 191, 193 
 of consumer buying decisions, 47-48,   

134-135 
 of consumer selling behavior, 135 
 of firm buying and selling behavior, 106,   

135-136, 187 
 of real market operation, 22-23, 134 
 of real microeconomy operation, 3, 134,  

137 
Explanation of firm buying and selling behavior  

summarized, 105-106, 213 
Externalities, 168, 195 
 accounting for, 195-196 
 and market failure, 168 

geometry of firm and market in short-run  
equilibrium, 197 

 government options to mitigate efficiency  
loss from, 198-199 

 impact on firm first-order maximization  
equation of, 196-197 

 negative, 195 
 positive, 196 
 present but ignored, 196, 197-198 
 
Factor substitution effect, 129 
Firm buying and selling behavior explanation 

summarized, 105-106, 213 
First fundamental theorem, 155-158, 167, 176 
Free rider problem, 201 
Functions of one variable,7-9 
 approximate form for derivative of, 9 
 concave, 13 
 convex, 12-13 
 derivatives of, 8-9 
 maximum and minimum of, 9,14-115 
 strictly concave, 13 
 strictly convex, 12-13 
Functions of two variables, 10-12 
 derivatives of, 10 
 reduction to functions of one variable,  

10-12 
 
General Electric’s required clean-up of 

PCBs, 198 
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General equilibrium, 4, 137, 217 
 and Pareto optimality, 155, 159, 195 
 and societal preferences, 165 
 externality-generated, 195 
 long-run, 137 
Giffen good, 63 
Government failure, 182, 202 
Government intervention in a market  

case for, 169 
to mitigate loss of efficiency due to  

an externality, 198-199 
to mitigate loss of efficiency due to 
 monopoly, 176-177 

Grand utility possibility curve, 161 
 and Pareto optimal distributions, 163-164  
 geometry with transformation curve and  

consumption and production 
Edgeworth boxes, 161-163 

 
Hahn, F.H., iii 
 
Imperfect information, 168, 202 
 and market failure, 168 
Imperfectly competitive market, 158, 169-170 
 and market failure, 168 
Implications of assumptions for explaining  

consumer behavior, 40-42 
Income-consumption curve, 52 
Income effect, 58 
Income ratio, 61 
Indifference, 36 
Indifference curve, 36-37 
 map, 37 
 slope in relation to marginal utilities,  

38-39 
Industry, 121 
 constant cost, 126 
 decreasing cost, 126 
 increasing cost, 126 
 long-run supply curve, 125-127 
Inefficiency (absence of Pareto optimality), 176 
 and government intervention, 176-177 
 offset to, 176, 186 
Infeld, L., 3n 
Inferior good, 19, 63 
Input demand curve for labor, 117, 119 
 and minimum average variable cost,  

119-120 
 long-run, 128-130 
 property of, 120 
Input demand function, 109 
 for labor, 117 

Input space, 71 
Inputs associated with profit-maximizing output 
 (short- and long-run), 105,177, 178 
Iso-cost lone, 82 
Isoquant, 73 
 map, 63 
 slope in relation to marginal products, 74 
 
Jaffè, W., 138n, 143n 
 
Katzner, D.W., iv, 62n 
Kinked demand curve, 191-193 
 as explanation of constant price and  

quantity over periods of time, 
191, 193 

 assumptions that eliminate  
uncertainty, 191 

 marginal revenue with, 191-192 
 profit maximization with, 192 
 
Law of demand, 17-18 
Law of diminishing returns, 81,119 
Law of supply, 20 
Least cost combination of inputs, 83 
Leisure, 65 
Linear demand curve, 31-32, 172-173,  

207-208, 217 
 and marginal revenue curve, 31-32,  

172-173, 207-208 
Long run, 71 
Long-run and short-run average and marginal cost  

curves at long-run profit maximization, 
121 

Long-run average cost function, 87 
 geometry of graph, 87-88 
 geometry of relation to short-run graph,  

95-98 
Long-run marginal cost function, 87 
 geometry of graph, 87-88 

geometry of relation to short-run graph,  
97-98 

Long-run total cost function, 86 
 geometric derivation of graph, 86-87 
 geometry of graph, 87-88 
 geometry of relation to short-run graph,  

94-95 
Long-run total cost of output, 86  
 
Marginal external benefit, 197 
Marginal external cost, 196-197 
Marginal product 
 function, 74 
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 geometry in relation to isoquants, 77-78 
 geometry of curve, 75-77 
Marginal product and slope of isoquant, 74  
Marginal rate of substitution, 39, 145 
Marginal rate of technical substitution, 73, 148 
Marginal rate of transformation, 150  
Marginal revenue, 29 
 and elasticity, 29, 205 
 function, 100-101 
 of dominant firm, 188-189 
 with kinked demand curve, 191-192 
 with linear demand curve, 31-32,  

172-173, 207-208 
Marginal revenue product, 118 
Marginal social benefit, 196-197, 200 
Marginal social cost, 196-197 
Marginal utility and slope of indifference curve,  

37-39 
Market equilibrium, 20-21 
Market failure, 167 
 additional assumption employed for  

analysis of, 170 
Market power of the firm, 182 
 and elasticity, 182 
 and substitute goods, 182 
 under monopolistic competition, 182 
 under monopoly, 182 
 under perfect competition, 182 
Maximization 
 first-order conditions, 9, 14, 46-47, 67,  

101, 117, 149, 174, 183, 215 
 second-order conditions, 9, 14, 47, 102, 

117-118, 174, 183, 217 
Minimization 

first-order conditions, 9, 14, 84-85,  
145-146, 190, 196 

 second-order conditions, 9, 14, 85, 145 
Model, 3 
 general-equilibrium, 4, 137 
 of clock, 3 
 partial-equilibrium, 4 
 Walrasian, 4 
Monopolistic competition, 169, 182 
 at long-run equilibrium, 184 
 compared to perfect competition and  

monopoly, 185-186 
 determination of firm size under, 185 
 inefficiency of and offset to, 186 
 inputs associated with profit-maximizing  

output under, 183, 184-185 
 geometry of profit maximization under  

(long-run), 184-185 

 geometry of profit maximization under 
  (short-run), 183 
  market share and demand curve facing  

the firm under, 182-183 
 price determination under, 183 
 profit maximization under, 183-185 
Monopoly, 169, 171 
 absence of supply curve under, 177 
 and downward sloping short-run marginal  

cost at profit maximization, 217 
and government intervention, 176-177 

 compared to perfect and monopolistic  
competition, 171-172, 178-180,  
186 

 determination of firm size under, 177 
 inefficiency of and offset to, 176 
 inputs associated with profit-maximizing  

output under,177, 178 
 geometry of profit maximization under  

(long-run),177-178 
 geometry of profit maximization under 
  (short-run), 174-175 
 marginal revenue compared to price  

under, 172  
 perfectly competitive price under, 176, 181 

price determination under, 176 
 profit maximization under, 174-175 
 second-order condition for profit  

maximization, 217 
 social cost of, 181 
Moral hazard, 202 
 
Normal good, 18, 62 
Normal profit, 111, 125-126 
 
Oligopoly, 187 
 demand curve facing firm under, 187,  

188-189 
 characterized by uncertainty, 187 
 explanatory approach to other forms of  

competition does not apply 
without assuming away the 
uncertainty, 187-188 

 monopolistic, 169 
 perfect, 169 
Optimal input combination, 83 
Output effect, 129 
Output supply curve, 109, 110-111, 112-113 
 market, 113 
Output supply function, 109 
 long-run, 109122-123 
 long run property of, 123 
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 observable, 109 
 short-run, 109 
 short run observable property of, 111 
Owners of the firm, 111 
 
Pareto, erroneous attribution to, 138, 143n 
Pareto optimal (in general), 150, 217 
 and externality-generated general  

equilibrium, 195 
 and Pareto optimality in consumption and  

production, 150-151, 154 
 equations characterizing, 153-154 
 solving characterizing equations, 154n,  

166n     
Pareto optimal in consumption, 144-145 
 as a constrained maximization, 145-146 
 at the origin of the commodity space, 146 
 equations characterizing, 145-146 
Pareto optimal in production, 147 
 as a constrained maximization in relation  

to production contract curve, 149 
 equations characterizing, 148 
Partial equilibrium, 4, 136 
Perfect information, 4 

implying identical firms, 113, 121 
Perfectly competitive market, 4 
Perfectly competitive price system, 158 
 as explanation of workings of real  

microeconomy, 158 
 nonwasteful, 158 
 unbiased, 159 
Preference, 36 
Preferences 
 complete, 36 
 individual, 35 
 represented by a utility function, 36 
 societal, 165 
 transitive, 36 
Price as a measure of benefit, 195 
Price ceiling, 24 
Price-consumption curve, 48-49 
Price determination 
 by cartel, 190 
 by dominant firm, 189 
 long-run, 124 

short-run, 124 
under monopoly, 176 

Price floor, 24 
Price leadership by a dominant firm, 188-189 
 assumption that eliminates  

uncertainty, 188 
 demand curve facing dominant firm,  

188-189 
 price set by dominant firm, 189 
Price system, perfectly competitive, 158 
Producer surplus, 115, 181 
 at market level, 116 

long-run, 115 
 short-run, 115  
Production function, 71 
 compared to utility function, 71 
 long-run, 71 
 short-run, 71-72, 73 
 without ridge lines, 79-80 
Production possibility curve; see Transformation  

curve 
Profit, 82, 101, 110, 173 
 abnormal, 112, 122, 125-126, 184 
 and cost minimization, 82 
 as a function of labor input, 117 
 as a measure of net social benefit, 195 
 effect, 129 
 geometry of maximization with respect   

to output (long-run), 102-103,  
177-178 

geometry of maximization with respect  
to output (short-run), 103-105,  
174-175 

 long-run, 101 
 maximization with kinked demand curve, 
  192 

maximization with respect to labor input  
(short-run) of, 117-118 

 maximization with respect to output of  
(short- and long-run), 101-102,  
118, 121, 174, 189, 190 

normal, 111, 125-126 
Public goods, 168, 199 
 and government failure, 202 
 and market failure, 168 
 and voting paradox, 201 
 determination of how much should be  

produced, 199-202 
 nonexcludable, 199 
 nonrival, 199  
 
Real microeconomy, 1 
 abstraction of, 1-3 
 and near-equal distribution of outputs  

among people, 167 
 and welfare maximization, 167 
 as nonwasteful and unbiased, 158-159 
 explaining, 3, 134-138, 158 
 observations of, 134, 137 
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 observations of interpreted as a general  
equilibrium,137, 158, 165 

Relevant region of input space, 79, 84 
Rent-seeking behavior, 181-182 
Returns to fixed factor ݇଴, 81 
Returns to scale, 81-82 

and economies of scale, 89-90 
constant, 81-82, 99n, 179 

Ridge lines 
 absence of, 79-80 
 intersecting, 84 
 lower, 78 
 upper, 78 
 
Second fundamental theorem, 158-159, 166 
Short run, 71 
Short-run average cost function, 92 
 geometry of graph, 93-94 

geometry of relation to long-run graph,  
95-98 

Short-run marginal cost function, 92 
 geometry of graph, 93-94 

geometry of relation to long-run graph,  
97-98 

Short-run total cost, 110 
Short-run total cost function, 91 
 geometry of graph, 91, 93-94 

geometry of relation to long-run graph,  
94-95 

Shut-down point, 112, 120 
Size of firm, 72 
 as determined by long-run profit  

maximization, 121 
 determined under monopoly, 177 
Social benefit 
 maximizing net, 196 
 net, 195-196 
 total, 195-106 
Social cost, total, 196 
Specific tax on a market, 114 
 incidence of, 114-115 
Spreading of overhead effect, 93 
Strictly concave, reason for, 15 
Strictly convex, reason for, 15 
Substitute goods, 18 
Substitution effect, 58 
Substitution ratio, 61 
 sign of, 62 
Supply curve  

for output; see Output supply curve 
 individual, 19-20 

market, 19-20 

Supply curve for labor, 69 
 economy wide, 70 
 for an industry, 70 
 slope of, 69 
Supply function  

for output; see Output supply function 
 individual, 19-20 

market, 19-20 
Supply function for labor, 68 
 observation of, 69 
 
Technology, 71 
Time, 65, 68 
 leisure, 65 
 work-labor, 65 
Total fixed cost function, 90 
 geometry of graph, 91 
Total fixed cost of output, 90, 110 
Total product 
 function, 73 
 geometry in relation to isoquants, 77-78 
 geometry of curve, 75-77 
Total revenue, 28, 110 
 and elasticity, 28-29 
 as a measure of total social benefit,  

195-196 
 function, 99-100 
Total variable cost function, 90 
 geometry of graph, 91 
Total variable cost of output, 90, 110 
Trade in consumption Edgeworth box, 144 
 gains from, 144 
Transformation curve, 148-149 
 and Pareto optimal in production  

distributions, 150 
 geometry with consumption and  

production Edgeworth boxes,  
152-153  

 in relation to production contract curve, 
  148-149 
 strict concavity of, 149 
 
Utility 
 as a measure of welfare, 138 
 interpersonal comparisons, 138 
 numbers, 36 
Utility function, 36 
 compared to production function, 71 
 maximization of (subject to budget  

 constraint), 44-47, 67-68 
 ordinal, 36 
 particularized and fixed, 160,165 
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 properties of, 40, 67, 160 
Utility possibility curve, 160 
 absence of strict concavity, 160n 
 grand; see Grand utility possibility curve 
 
Value judgments, 165 
Value of marginal product, 118 
 dependent on capital, 129 
 graph of, 118-119 
Voting paradox, 167n, 201 
 
Walras, L., 4 
Walrasian model, 4 
 characteristics of, 3-4 
Welfare evaluation, 138 
 criterion for, 138 
 modifications and additional assumptions  

employed for, 138-139 
Welfare function, 165 
 and voting, 167n 
 constrained maximization of, 166 
 properties of, 166 
Welfare indifference curves, 166 
Welfare properties, 137-138 
Willingness to pay curve, 63, 199 
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