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Exploratory structural equation (ESEM) has received increased attention in the methodological 
literature as a promising tool for evaluating latent variable measurement models. It overcomes 
many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor 
analysis (CFA), while capitalizing on the benefits of each. Given that the recent introduction of 
ESEM in statistical software has made its use more accessible to applied researchers, we describe 
the differences between these three approaches to evaluating measurement models and provide 
an illustration of their differences through an applied example. Syntax for running these models 
is also provided that can be modified for application by others. 
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Introduction 
 Unlike variables that are directly observable and 
measurable with physical instruments (e.g., time, 
height), many substantive questions in the social 
sciences involve the use of latent variables that are not 
directly observable (e.g., depression, self-esteem). In 
the case of latent variables, quantification of their 
presence is inferred through the collection of 
measurable characteristics (e.g., items on a survey or 
questions on an assessment) that are presumed to be 
indicators of them. Otherwise stated, the directly 
unobservable latent construct is presumed to influence 
those characteristics which can be observed, and the 
directly observable indicators are presumed to be 
influenced by the underlying latent variables that are 
not directly observable. For example, the construct of 
school climate is not an objectively measurable variable 
but might be measured through the use of survey items 
administered to students that ask about different 
experiences thought to be influenced by healthy school 
climates (Konold, et al., 2018).  

 Researchers seeking to measure latent variables 
begin by collecting observed measures (e.g., items) 
theoretically believed to be indicators of one or more 
latent variables, and these observed indicators are then 
evaluated within a latent variable measurement model. 
Historically, exploratory factor analysis (EFA; 
Spearman, 1904) has been the procedure of choice for 
understanding and quantifying the number and nature 
of factors alleged to exist within a set of indicators. 
While EFA remains a useful tool, it has largely given 
way to the use and popularity of confirmatory factor 
analysis (CFA; Joreskog, 1969) which is often 
described as constituting a more theory driven 
approach to model evaluation. However, in more 
recent years, CFA has been found to be too restrictive 
in evaluations of many latent variable measurement 
models, and attention has turned to exploratory 
structural equation models (ESEM; Asparouhov & 
Muthen 2009; Marsh et al. 2009). ESEM can be 
characterized as a hybrid of EFA and CFA that draws 
from the advantages of both. In comparison to CFA, 
ESEM is less likely to result in biased structural 
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relationships among factors and is less likely to result 
in the rejection of trivially mis-specified models (e.g., 
Marsh et al., 2014). This has been demonstrated across 
a number of controlled simulation studies 
(Asparouhov & Muthén, 2009; Konold & Sanders, 
2024; Steenkamp & Maydeu-Olivares, 2023); as well as 
in numerous substantive applications related to 
investigations of mental health (van Zyl & Klooster, 
2022), student evaluations of university teaching 
(Marsh et al., 2009), bullying and victimization (2011); 
the Big Five personality traits (Marsh et al., 2010), and 
self-concept (Marsh et al., 2020).  

 Given ESEMs relatively recent re-introduction 
into the literature, that coincided with its recent 
availability to users in statistical computing software 
(Asparouhov & Muthén, 2009), the current paper 
describes ESEM along with considerations involved in 
conducting an ESEM for purposes of evaluating a 
latent variable measurement model. We supplement 
this with an applied example that illustrates its 
usefulness and provide example code that can be 
adapted for application. Because ESEM can be 
considered a hybrid of EFA and CFA, we briefly 
review these procedures and in doing so point to 
reasons for the evolution that has been taking place.   

Latent Variable Measurement Models 

 As noted above, the quantification of some 
variables does not require a measurement model 
because they are directly observable and obtainable 
through a single measurement (e.g., the number of 
students in a school, the number of doctor visits in a 
given year). By contrast, latent variables are not directly 
observable and require the use of things we can 
observe (e.g., responses to questions) in order to draw 
inferences about their presence and magnitude. For 
example, the constructs of adult-student relationships 
and inclusive instruction shown in Table 1 might be 
measured by student (or teacher) response to the items 
that are listed under each in order to operationalize 
them. Various latent variable measurement models are 
graphically illustrated in Figure 1 that could be used to 
evaluate the psychometric characteristics of these 
measurement models. Common to each is a set of 
observed indicators (in boxes) and some number of 
latent variables (or factors, depicted in ovals) that 
might be correlated with one another (double headed 
curve arrows). The factors are presumed to influence 
the observed indicators (single headed arrows) and 

explain the common variance among the indicators 
that are linked to them. The unexplained portions of 
the observed variables are depicted by smaller single 
headed arrows below the boxes. In estimating these 
characteristics of the model through one of the 
methods described below, focus is often on the 
strength of the indicator-factor relationships (factor 
loadings), the proportion of observed variable variance 
that is unexplained by its factor(s), and how strongly 
the factors are associated (i.e., structural relationships).  

Exploratory Factor Analysis (EFA) 

 EFA can be considered a dimension reduction 
procedure that seeks to identify latent dimensions (or 
factors) within a set of indicators based on their shared 
variance (Bartholomew et al., 2011). A key feature of 
EFA is that solutions result in as many factors as there 
are indicators entering into the analysis and all 
indicators are allowed to be associated with (i.e., load 
on) all factors, as illustrated in Panel A of Figure 1. 
Researchers attempting to evaluate the quality of their 
measurement models within an EFA framework 
simultaneously attempt to identify the number of 
factors that are present in the data along with which 
indicators are the best measures of them.  

 Spearman’s (1904) seminal work in EFA spawned 
a proliferation of methodological advances for 
evaluating the number and nature of underlying factors 
believed to explain the covariance structure of a set of 
indicators. As a result, applications of EFA typically 
involve a number of considerations that could include 
different rotations (see below), use of different 
estimators, evaluations of different heuristics in settling 
on the number of factors to retain (e.g., parallel 
analysis, Horn, 1965; eigenvalues greater than one, 
Kaiser, 1960), and consideration of the resulting 
solutions with respect to theories of the measurement 
structure; all of which are further evaluated within the 
context of obtaining simple structure (Thurstone, 
1947). Where, simple structure reflects that each factor 
has several target indicators with high loadings, that 
each indicator is strongly influenced by only one factor, 
and that non-target indicators have low (though not 
necessarily zero) loadings on non-target factors. See, 
for example, Panel B of Figure 1. Here, indicators are 
typically ignored when factor loadings are at or below 
some threshold value (e.g., < .30; Tabachnick & Fidell, 
2007) or above some threshold to be considered salient 
(e.g., > .40; Steenkamp & Maydeu Olivares, 2021). 



Practical Assessment, Research & Evaluation, Vol 29 No 15 Page 3 
Afolabi & Konold., The Circle of Methods 
 
Factor extraction for continuous data is typically 
performed using maximum likelihood (ML) estimation 
that  rests on the assumption of multivariate normality, 
and  provides goodness-of-fit statistics for evaluating 
model quality (Brown, 2015; Schmitt, 2011). 

 EFA allows for cross-loadings, where variables can 
load onto multiple factors (Flora, 2017), and does not 
require pre-specification of common factors. The 
number of factor loadings estimated in an EFA 
framework can reduce clarity of the solution. As a 
result, rotations are used to help simplify the factor 
structure and increase interpretability (see for example, 
Flora, 2017; Osborne, 2015). While EFA is useful for 
exploring dimensionality, it has been criticized as being 
based on the subjective application of extraction and 
rotation criteria (Gorsuch, 1983; Grice, 2001). 
Different rotations will give rise to an infinite number 
of solutions with respect to the model estimated 
parameters (e.g., factor loadings and factor 
correlations), all of which will result in the same model 
implied covariance matrix when applied to the same 
data. Because factor scores are not uniquely defined, 
the resulting indeterminacy limits the use of EFA in 
calculating and interpreting factor scores, evaluating 
measurement invariance across groups, and modeling 
method effects (Gorsuch, 1983; Grice, 2001; Morin et 
al, 2016; van Zyl & Ten Klooster, 2022). 

Confirmatory Factor Analysis (CFA) 

 The development of confirmatory factor analysis 
(CFA; Joreskog, 1969) and structural equation 
modeling (SEM; Joreskog; 1978) paved the way for 
addressing many of the limitations inherent to EFA. In 
contrast to EFA, applications of CFA require users to 
specify in advance the number of factors they believe 
to exist within a set of variables along with which 
observed variables are believed to be associated with 
each factor. The independent cluster model (ICM) 
confirmatory factor model has been considered the 
gold standard for evaluating latent variable 
measurement models (Marsh et al., 2014). It assumes 
that each observed indicator should only be related to 
a single latent factor, and that these indicators are 
unrelated to other factors in the model (i.e., simple 
structure). This is illustrated in Panel B of Figure 1. 
Here, the researcher posits that the covariances among 
the observed indicators are best explained by two  

(correlated) latent factors. Each factor has three target 
indicator variables that are believed to be uniquely 
associated with their respective target factors, and 
associations (i.e., factor loadings) between non-target 
indicators and non-target factors are fixed to zero.    

 In contrast to EFA models, CFA models result in 
a single solution when conditioned on a particular 
estimator (e.g., maximum likelihood) and overcome 
the aforementioned limitations associated with EFA. 
Notably they allow for tests of more restricted models 
that better align with theory, provide for more stable 
factor scores, allow for tests of measurement 
invariance, provide formal tests for different factor 
solutions, and provide a better mechanism to evaluate 
method effects (Brown, 2015). Moreover, constraining 
some parameters to be zero (or imposing equality 
constraints) results in a restricted model implied 
variance-covariance matrix that can be used to obtain 
a formal test of model fit when compared to the 
observed sample variance-covariance matrix. For 
example, the likelihood ratio (LR; also known as the χ2 
test) is based on the ML fit function (Fml) that reflects 
the similarity of the model implied covariance matrix 
to that of the observed sample covariance matrix, 
weighted by N–1 (Bollen, 1989): 𝐿𝑅 = (𝑁 − 1)𝐹𝑚𝑙. 
However, given the tendency of this test statistics to 
reject what are often believed to be trivially mis-
specified models, researchers are more likely to rely on 
more approximate measures of fit (McDonald & Ho, 
2002) such as the Comparative Fit Index (CFI: Bentler, 
1990) or the Root Mean Square Error of 
Approximation (RMSEA; Steiger & Lind, 1980) when 
evaluating model quality.    

 Despite the many advantages of CFA, it has 
recently been shown that these models may in fact be 
too overly restrictive, and that the idea of 
unidimensional indicators may be more of a 
“convenient fiction” than reality (Marsh, et al., 2013, p. 
258). Notably, recent research has demonstrated that 
constraining even small cross-loadings to zero in a 
CFA framework results in biased structural 
relationships (e.g., factor correlations used for 
evaluating convergent and discriminant validity), and 
the rejection of trivially mis-specified models 
(Asparouhov & Muthén, 2009; Konold & Sanders, 
2024; Marsh et al., 2014; Steenkamp & Maydeu-
Olivares, 2023) 
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Exploratory Structural Equation Modeling 
(ESEM) 

 Exploratory structural equation modeling (ESEM)1 
provides an integration of the best features of 
exploratory factor analysis (EFA) and confirmatory 
factor analysis (CFA)/structural equation modeling 
(SEM; Marsh et al., 2009, 2010; Steenkamp & Maydeu-
Olivares, 2023), and its recent introduction into 
software (e.g., Mplus; Asparouhov & Muthén, 2009) 
has made it more accessible to users. All three methods 
evaluate the same measurement model but differ with 
respect to assumptions that are made about how the 
indicators are related to the factors. Whereas EFA 
estimates all indicator-factor relationships and CFA 
only estimates these relationships for each factor’s 
target indicators, ESEM provides for both. ESEM 
allows researchers to overcome the limitations of 
traditional CFAs, which are often too restrictive (i.e., 
reject models that may be trivially mis-specified), and 
result in inflated factor correlations that undermine 
discriminant validity (Asparouhov & Muthén, 2009; 
Marsh et al., 2010; Steenkamp & Maydeu-Olivares, 
2023). By contrast, ESEM estimates factors with both 
target loadings (TLs) and cross-loadings (CLs)2 while 
also incorporating key features of CFA/SEM such as 
tests of model fit, tests of predictive relations, 
measurement invariance (MI), and complex structural 
models (Marsh et al., 2009, 2013).  

 Panel C of Figure 1 illustrates a hypothetical two-
factor ESEM model. Where, each factor is defined by 
three target indicators (solid arrows) and non-target 
indicators are permitted to cross-load on their non-
target factors (dashed arrows). In estimating this 
model, the magnitude of cross-loadings is typically 
constrained to be below some pre-specified threshold 
(e.g., less than 0.5; Marsh et al., 2009). ESEM’s 
accommodation of CLs in multidimensional factor 
models has been shown to reduce bias in factor 
correlations, that are often used to gauge 
convergent/discriminant validity, when compared to 
results that would be obtained by constraining these 
relationships to zero through a CFA investigation. The 
direction of this bias (positive or negative) depends on 
both the sign of the omitted CL in relation to the sign 

 
 
1 ESEM is sometimes referred to as unrestricted factor analysis (UFA; Steenkamp & Maydeu-Olivares, 2023) when 
applied to latent variable measurement models (vs. full structural equation models). 
2 It also remains possible to constrain some CLs to zero. 

and magnitude of the true correlation among the 
constructs (De Luca et al., 2021; Konold & Sanders, 
2024; Steenkamp & Maydeu-Olivares, 2023). For 
example, when CLs are positive and the true 
correlation is positive, constraining the CLs to zero in 
a CFA framework results in an upwardly biased factor 
association. Conversely, when CLs are negative and the 
true correlation is positive, the CFA correlation has 
been found to be downwardly biased. 

 

Factor Rotations 
 Similar to a kaleidoscope creating ever-changing 
patterns, rotations present researchers with an array of 
possible structures underlying their data. Rotations are 
motivated by a quest for simple structure, shifting 
alignments to clarify associations. Similar to EFA, the 
interpretability of ESEM solutions can be facilitated 
through the use of different factor rotations. Rotations 
refer to the movements of factor axes in 
multidimensional space to improve their nearness to 
the observed indicators. Rotations can be specified to 
maintain right angles (i.e., 90o) of the axes (i.e., 
orthogonal or uncorrelated factors) or not (i.e., non-
orthogonal, oblique, or correlated factors). 
Geometrically, factor loadings can be conceptualized 
as the distance of an indicator to a factor line. 
Consequently, a goal of rotation is often to place these 
factor lines as close to the center of a cluster of 
indicators as possible (under constraints of the 
approach) such that the factor loading for a cluster of 
indicators on a given factor become larger and the 
factor loadings for that same cluster of indicators on a 
different factor become smaller. Different rotations for 
a given number of factors will result in explaining the 
same amount of total shared variance among a set of 
indicators, but typically results in differences in the 
distribution of this variance to the factors in the model. 
See Osborne (2015) for a good gentle introduction to 
rotation. Although there are many types of rotations, 
Geomin and Target rotations are the most frequently 
used approaches in ESEM frameworks (Asparouhov 
& Muthén, 2009; Marsh et al., 2014; Steenkamp & 
Maydeu-Olivares, 2023). However, an advantage of
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Figure 1. 

Panel A: EFA Model  

 
Panel B: ICM-CFA with Target Indicators (no CLs) 

 
Panel C: ESEM Model with Target and Non-Target Indicators (CLs) 

 

target rotation is that target indicators (e.g., items) can 
be specified to load onto their corresponding factors 
and non-target indicators can be constrained to be as 
close to zero as possible (Asparouhov & Muthén, 
2009). Salient characteristics of these forms of 
rotations are described below, along with an 
orthogonal rotation that might be useful in some 
unique instances (e.g., bi-factor models).  

 Geomin is an oblique rotation that allows factors 
to correlate and is the default in Mplus (Asparouhov & 
Muthén, 2009). It has been found to work well in a 
variety of circumstances (Marsh et al., 2014) and 
provides a good balance between achieving simple 
structure and allowing for correlations among factors 
(Browne, 2001; Costello & Osborne, 2005; Fabrigar & 
Wegener, 2011). It is generally considered a good 
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choice when factors are expected to be distinct, but 
associated (Marsh et al., 2014; Asparouhov & Muthén, 
2009). It is considered a bit more exploratory than 
target rotation (Marsh et al., 2014) and may be more 
useful for simpler models with fewer factors or in the 
development of new instruments where factor 
structure is less clear (Howard et al., 2017).  

 Geomin permits regulation of cross-loading values 
through utilization of an epsilon (ε)  parameter to 
restrict the threshold for loadings targeted for rotation 
(Browne, 2001). Factor loadings with an absolute value 
less than epsilon are estimated without restriction, 
while loadings greater than epsilon are adjusted 
downward through rotation. Larger epsilon values 
allow for larger cross-loading values (Asparouhov & 
Muthén, 2009). In ESEM applications, epsilon values 
are typically within the 0.01 to 0.50 range, with 0.50 
being suitable for significant but not excessive cross-
loadings in most cases (Marsh et al., 2014). Adopting 
smaller epsilon values restricts more loadings to zero, 
enhancing simplicity and interpretability. Conversely, 
the use of larger epsilon values may enhance model fit 
(Marsh et al., 2014) by decreasing model restrictions.  

 Target rotation (Asparouhov & Muthén, 2009) 
was developed specifically for use in ESEM 
frameworks. As the name implies, target indicators are 
pre-specified to load on their respective factors in 
order to guide rotation toward a simplified solution 
(Marsh et al., 2014). Target rotation has been described 
as being “superior to traditional rotations in its ability 
to identify the proper solution” in ESEM models 
(Asparouhov & Muthén, 2009; p. 431) because it 
rotates directly toward a hypothesized pattern. As such, 
it requires a stronger a priori theory about the expected 
factor structure than is required for goemin rotations, 
making it more suitable for more confirmatory 
evaluations (Osborne, 2015). Although sensitivity to 
the specified target indicators can be a limitation 
(Morin & Asparouhov, 2018), appropriate attention to 
these specifications from prior research or theory 
allows target rotation to maximize the likelihood of 
recovering the hypothesized factor structure (Fabrigar 
& Wegener, 2011). Target rotation is also 
recommended for more complex models to improve 
model conformability while retaining flexibility (Marsh 
et al., 2014). It also allows users to explicitly set certain 
cross-loadings to zero if desired in order to test subtle 
distinctions between factors, without restrictive 

independent cluster model constraints (Morin et al., 
2013).  

 Orthogonal rotation produces factors that are 
uncorrelated with each other (Osborne, 2015), and are 
said to uphold Thurstone's (1947) original principle of 
simple structure which sought to simplify factors while 
retaining independence (Fabrigar & Wegener, 2011). 
Within ESEM frameworks, the most common 
orthogonal approach is varimax rotation. The goal of 
varimax rotation is to maximize the variance of squared 
loadings on each factor, resulting in some very high 
and very low loadings that enhance interpretability 
(Costello & Osborne, 2005). However, Browne (2001) 
cautions that varimax solutions often involve splitting 
factors that contain heterogeneous clusters of 
variables. Moreover, Osborne (2015) notes that forcing 
orthogonality when factors are correlated can distort 
the underlying factor structure. As a result, Fabrigar 
and Wegener (2011) suggest varimax may be best 
viewed as a starting point before moving on to other 
rotation methods if the varimax-rotated solution is not 
satisfactory. Within ESEM frameworks, orthogonal 
rotations are typically needed in the analysis of bifactor 
models (Morin et al., 2016), but have also been found 
to be helpful in the analysis of multidimensional 
psychiatric scales (Prokofieva et al., 2023) and in 
psychometric evaluations of positive psychology 
measures (van Zyl & ten Klooster, 2022).  

A Pedagogical Example 

 We demonstrate the usefulness of ESEM, as an 
alternative to CFA, for evaluating the psychometric 
characteristics of multi-factor measurement models in 
instances in which 1) small cross-loadings can give rise 
to biased structural coefficients (e.g., factor 
correlations) when they are constrained to zero in a 
traditional CFA, and 2) that such constraints can result 
in poorer fitting models that are only trivially mis-
specified. In doing so, we  

 These ideas are illustrated through applications of 
CFA and ESEM to a substantive question pertaining 
to the psychometric characteristics of items related to 
school climate. Healthy and supportive school climates 
are important priorities at national and state levels 
(Darling-Hammond & DePaoli, 2020). We draw from 
items located on the Authoritative School Climate 
Survey (ASCS; Cornell et al., 2016) that characterizes 
positive school climates as those that hold high 
disciplinary expectations for their students and have 
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supportive adult-student relationships. We examine 8 
items that might be considered indicators of (and 
influenced by) two dimensions of school climate: 
Adult-Student Relationships and Inclusive 
Instruction3, as shown in Table 1. In other words, we 
examine the measurement characteristics of 8 items 
designed to measure two distinct (but related) factors. 
This hypothesis allows us to specify a CFA model with 
four target indicators for each factor, and cross-
loadings set to zero; and to also specify salient items 
for each factor in an ESEM target rotation. 

 

Data Source 
 Data were obtained from the Virginia Center for 
School and Campus Safety’s 2023 survey of climate 
and working conditions. The cohort of respondents 
consisted of 49,350 classroom instructors from 430 
schools in the state, which equated to a response rate 
of 65.6% of all teachers. The composition of teacher’s 
gender identity included males (10.6%), females 
(83.2%), and non-binary (0.3%); with 5.8% opting to 
not disclose their gender identity. Participants also 
identified as American Indian or Alaskan Native, 
(0.7%), Asian (2.6%), Black or African American 
(11.8%), Native Hawaiian or Pacific Islander (0.2%), 
White (82.1%), and other racial categories (2.5%). 

 

Methods 
 Because school climate is a school level construct 
and informants within schools provide valuable 
indicators of these factors (Konold & Sanders, 2020; 
Stapleton et al., 2016), individual reports from teachers 
within schools were aggregated to the school level for 
analysis. Consequently, our examination of 
measurement structure of the 8 items was conducted 
on a sample size of 430 (schools).  

 To illustrate differences among some of the 
methods described above, data were analyzed through 
use of CFA and four different ESEM specifications. 
These included an orthogonal rotation (forcing the 
factor correlations to zero), two Geomin rotations 

 
 
3 These domain names are constructions of the authors of this paper for illustrative purposes. They should not be 
taken to reflect the intended uses of these items as constructed by the authors of the Virginia Center for School and 
Campus Safety survey. 

(with epsilon values set at 0.0001 and 0.5 to 
accommodate differences in cross loading 
magnitudes), and a target rotation. Evaluation of 
model quality typically includes consideration of 
several quantitative indicators of fit. For this purpose, 
we consider the LRT (i.e., χ2 statistic) but caution that 
it is well-known to reject reasonably specified models 
(Cheung & Rensvold, 2002; Schumacker & Lomax, 
2010). We place greater emphasis on the comparative 
fit index (CFI) and Tucker-Lewis index (TLI) where 
values > .95 are often associated with good fit (Hu & 
Bentler, 1999); the RMSEA where values < .05 and < 
.08 are often associated with good and mediocre fit, 
respectively, (MacCallum et al., 1996); and the AIC and 
BIC for model comparisons. Although strict adherence 
to these thresholds should be avoided because they 
were derived from simulations on a finite set of 
conditions that may not apply to the specific 
conditions present in a particular model, they are often 
a useful starting point in model evaluations. All models 
were estimated with Robust Maximum Likelihood 
Estimation (MLR) in Mplus 8.10 on a macOS operating 
system. Mplus code for our different model 
specifications is provided in the Appendix. Although 
Mplus currently provides the most robust platform in 
terms of functionality and efficiency for estimating 
ESEM models, the open-source packages of R 
(‘lavann’ and ‘psych’) and JASP also provide some 
functionality for ESEM.   

 

Results and Discussion 
 Model fit estimates for the various models are 
shown on the bottom of Table 2. As described above, 
all ESEM rotations resulted in the exact same estimates 
of fit regardless of rotation type. Consequently, they 
are of little help in differentiating between the different 
ESEM solutions when the same number of factors are 
specified. Neither the CFA, χ2(19) = 90.33, p < .05; or 
the ESEM models, χ2(13) = 44.75, p < .05, were found 
to provide a good approximation to the observed 
unstructured variance-covariance matrix as gauged by 
the LRT. Other measures of model fit for the CFA 
were somewhat mixed in that the CFI of .95 was at a 
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threshold value considered good, the TLI was only 
slightly below this at .93, and the RMSEA confidence 
interval (CI) contained .08 (90% CI: .075, .113). 
Consequently, a case could be made that the CFA 
solution provides a reasonable approximation to the 
observed data, when non-zero CLs are constrained to 
zero. Further evidence of a reasonable fit for this 
model could be obtained from inspection of the factor 
loadings that reveal strong associations between each 
indicator and their target factors. In such 
circumstances, it is likely that many researchers would 
conclude with this model and not consider alternative 
specifications that allow for the estimation of CLs4.  

 At the same time, relaxing the assumption that CLs 
be fixed to zero and allowing them to be estimated to 
varying degrees (through the use of different rotations) 
within an ESEM model resulted in improved, and 
more uniform fit across the CFI (= .98), TLI (= .96), 
and RMSEA (= .08) values. Moreover, the lower AIC 
(∆AIC = 80.89) and BIC (∆BIC = 56.50) values 
associated with the ESEM models (vs. the CFA model) 
favored the more saturated ESEM models. As can be 
seen in Table 2, model fit values are the same across 
different rotations and are of little help in adjudicating 
among the different solutions. However, evaluation of 
the factor loadings with the perspective of their 
behavior under controlled and known conditions (i.e., 
prior simulation work) can help elucidate what we are 
seeing.  

 Orthogonal rotations fix factor correlations to 
zero with the goal of obtaining distinct variable 
separation across factors (Reise et al., 2010) and they 
can be particularly useful in bifactor models. In our 
school climate analysis, however, we do not consider a 
bifactor model and different dimensions of schools of 
school climate are often expected to be associated with 
one another (Wang & Degol, 2016). In the current 
illustration, two things are evident that should alert 
researchers to the fact that factor correlations are not 
likely to be zero in the data. First, setting the factor 
correlation to zero (when it is not) forces the  

 
 
4 The number of items in this example limits the ability to test a more saturated three factor model, and 
specification of a more restrictive single factor model would be expected to result in a worse fit than the two-factor 
model. 
5 We also note that larger values of ε may be needed to aid in convergence in more complex measurement models 
with a larger number of factors. See Asparouhov & Muthen (2009). 

misspecification to other locations in the model. Here, 
when the two sets of items cannot express their 
association through their factor correlations, the result 
is CL values that disguise a more simple structure that 
may be present in the data, where non-target items 
produce more moderate factor loadings on their non-
target factors. Second, a comparison of the orthogonal 
solution with the factor correlation produced from all 
the other non-orthogonal rotations shown in Table 2  
(that range from .61 to .81) suggests that the factor 
correlation is a non-zero value. 

 Geomin and target rotations both allow for CLs to 
be estimated (unlike most applications of CFA), factor 
correlations to be non-zero (unlike orthogonal 
rotations), and both attempts to clarify the factor 
structure through reducing variable complexity by 
yielding larger TLs and smaller CL values. As can be 
seen in Table 2, the Geomin solutions resulted in larger 
loadings for the target indicators and smaller loadings 
for the non-target indicators, when compared to the 
orthogonal rotation. A key benefit of Geomin rotation 
is more direct control over variable complexity through 
different specifications of the epsilon (ε) parameter. 
Smaller values of ε constrain non-target indicator 
loadings to be smaller and higher values enables them 
to be more freely estimated across factors5. This is 
illustrated in Table 2 between ε values of 0.0001 and 
0.5. Restricting the non-target indicators to have 
smaller loadings on their non-target factors (ε = 
0.0001) results in a larger factor correlation (r = .77) 
than when these are more freely estimated (ε = 0.5; r = 
.61), as more of the indicator relationships with one 
another are absorbed into the factor loadings. The use 
of different ε values can be helpful in examining 
potentially different representations of the data and 
applying targeted constraints (Quilty et al., 2014). 
However, caution is needed to avoid overfitting 
solutions (through the use of larger ε values) and 
unnecessarily attenuating other model parameters 
(Hopwood & Donnellan, 2010; Marsh et al., 2014; Sass 
& Schmitt, 2010) like factor correlations, as can be seen 
in the current illustration. 
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Table 1. Item Stems, Correlations, and Means 
 
Items Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Mean 
Adult-Student Relationships        
Adults at this school…          
Q1: want students to do well 1        5.49 
Q2: listen to what students have to say 0.84 1       5.13 
Q3: recognize and value each individual’s cultural background 0.79 0.87 1      5.14 
Q4: are treated with respect by students 0.57 0.69 0.58 1     4.13 
          
Inclusive Instruction          
Teachers at this school…          
Q5: want students to think about different ways to solve problems 0.64 0.69 0.67 0.54 1    5.14 
Q6: encourage students to value and search for a diversity of  
       opinions, perspectives, and abilities 0.60 0.67 0.73 0.51 0.81 1   4.93 
Q7: often connect what students are learning to life outside the  
       Classroom 0.65 0.74 0.72 0.57 0.75 0.79 1  4.95 
Q8: The content taught at this school reflects multiple cultural  
       backgrounds, ethnicities, and identities 0.56 0.65 0.75 0.53 0.71 0.82 0.74 1 4.77 
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Table 2. Standardized Factor Loadings and Estimates of Model Fit across Measurement Models and Rotations  
 

                  
      ESEM  
                  
   CFA  Orthogonal  Geomin (ε = 0.0001)  Geomin (ε = 0.5)  Target  
                  
   F1 F2  F1 F2  F1 F2  F1 F2  F1 F2  
 Q1  0.87 0.00  0.78 0.36  0.85 0.01  0.78 0.12  0.89 -0.04  
 Q2  0.96 0.00  0.90 0.39  1.01 -0.03  0.92 0.10  1.06 -0.10  
 Q3  0.91 0.00  0.73 0.53  0.67 0.28  0.66 0.34  0.69 0.25  
 Q4  0.69 0.00  0.61 0.35  0.62 0.10  0.59 0.17  0.65 0.06  
 Q5  0.00 0.86  0.44 0.73  0.12 0.76  0.23 0.69  0.10 0.77  
 Q6  0.00 0.92  0.36 0.89  -0.11 1.04  0.07 0.91  -0.15 1.07  
 Q7  0.00 0.87  0.51 0.69  0.25 0.66  0.33 0.62  0.24 0.66  
 Q8  0.00 0.86  0.39 0.78  0.01 0.86  0.15 0.77  -0.02 0.88  
                  
 rF1,F2  0.82  0.00  0.77  0.61  0.81  
             
 Model Fit           
 χ2  90.33*  44.75*  44.75*  44.75*  44.75*  
 df  19.00  13.00  13.00  13.00  13.00  
 CFI  0.95  0.98  0.98  0.98  0.98  
 TLI  0.93  0.96  0.96  0.96  0.96  
 RMSEA  0.09  0.08  0.08  0.08  0.08  
 SRMR  0.03  0.02  0.02  0.02  0.02  
 AIC  -2949.23  -3030.12  -3030.12  -3030.12  -3030.12  
 BIC  -2847.64  -2904.14  -2904.14  -2904.14  -2904.14  
                  

CFA = Confirmatory Factor Analysis, ESEM = Exploratory Structural Equation Modeling, ε = epsilon. 

*p < 0.05.  Note. For a given rotation, EFA would produce the same results as those of ESEM.
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 Target rotation, as the name implies, rotates 
directly toward a hypothesized pattern. As such, it 
requires a stronger a priori theory about the expected 
factor structure than is required for goemin rotation, 
making it somewhat more suitable for more 
confirmatory evaluations (Osborne, 2015). Here, target 
indicators are pre-specified to load on their respective 
factors in order to guide rotation toward a simplified 
solution (Marsh et al., 2014) and has been described as 
being “superior to traditional rotations in its ability to 
identify the proper solution” in ESEM models 
(Asparouhov & Muthén, 2009; p. 431). Target rotation 
simplifies solutions by constraining smaller cross-
loadings while retaining model complexity 
(Asparouhov & Muthén, 2009). In the current 
illustration, there is good separation in factor loadings 
for each item with respect to their target and non-target 
factors (i.e., TLs are much higher than their CL values), 
see right side of Table 2.  

 Given the discussion above on how the 
suppression of non-zero CLs (in a CFA model) can 
produce biased factor correlations, readers may be 
surprised to see that the factor correlations from the 
CFA and target rotation models are nearly identical (.82 
and .81, respectively). However, this is the case in the 
current illustration because the CLs are a mix of 
negative and positive values, that have been shown to 
cancel out bias in factor correlations (Konold & 
Sanders, 2024). More generally, the direction of this 
bias (positive or negative) depends on both the sign of 
the omitted CL in relation to the sign and magnitude 
of the true correlation among the constructs (De Luca 
et al., 2021; Konold & Sanders, 2024; Steenkamp & 
Maydeu-Olivares, 2023). For example, when CLs are 
positive, and the true correlation is positive, 
constraining CLs to zero in a CFA framework results 
in an upwardly biased factor association. Conversely, 
when CLs are negative and the true correlation is 
positive, the CFA correlation has been found to be 
downwardly biased.  

 
Summary 
 Across all model results in Table 2, we would tend 
toward advocating for the ESEM target rotation. 
Support for this could come from the ESEM models 
providing somewhat better fit to the data than the CFA 
model. Among the ESEM models, the orthogonal 
rotation is furthest from simple structure and a factor 

correlation value of 0 is implausible on the basis of 
both theoretical grounds that school climate variables 
tend to be related, and non-zero factor associations 
across all other rotations. The choice between Geomin 
and target rotation is a bit more nuanced. Because we 
had a hypothesis about the factor structure entering 
into the analyses (i.e., which factors would influence 
which items), target rotation provides more of a 
mechanism to incorporate this prior theory into the 
analyses, without the potentially over-restrictive 
assumption that CL values be zero. This is because the 
target indicators are specified in advance, and the 
solution rotates toward that specification. Moreover, 
others have found it to work well in recovering known 
structures (Asparouhov & Muthén, 2009; Marsh et al., 
2014). In other applications where target indicators for 
factors are less salient, Geomin rotations could offer a 
viable alternative.  
 The aim of the current paper was to elucidate 
distinctions that exist among methods for evaluating 
latent variable measurement models. The effects of 
different model constraints through CFA and ESEM 
rotations illustrated the differences in results one might 
expect and highlighted the importance of examining 
multiple solutions. Historically, standardized factor 
loadings <|.30| were often overlooked (Brown, 2015; 
Cudeck & O’Dell, 1994; Tabachnick & Fidell, 2007) 
and considered ignorable. However, ESEM research 
has highlighted the importance of cross-loadings and 
their impact on structural relationships (Asparouhov & 
Muthen, 2009; Konold & Sanders, 2024; Marsh et al., 
2009; Marsh et al., 2013; Marsh et al., 2014; Steenkamp 
& Maydeu-Olivares, 2023). Namely, that factor 
correlations tend to be biased when non-zero cross-
loadings are forced to be zero in a simple structure 
CFA specification, even for CLs as small as |.10| to 
|.30| (Asparouhov et al., 2015; Hsu et al., 2014; Marsh 
et al., 2013, 2014; Steenkamp & Maydeu-Olivares, 
2023).  

 When there is reasonable theory for the 
measurement model, we recommend that researchers 
evaluate both a CFA model and a target ESEM model. 
If the CFA model provides good fit to the data, better 
fit than the ESEM specification, and little difference in 
factor correlations, preference for this model would be 
indicated on the basis of parsimony. On the other 
hand, when these conditions are not met, results from 
ESEM are likely to provide for less biased factor 
associations. 
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Appendix 1.  
 

Mplus Code for the Substantive Illustration 
 

TITLE: Two-factor CFA with four indicators each. 
!The dataset used for the analyses. 
DATA: FILE IS "VDOE Aggregates.dat"; 
!Variables in the dataset. 
VARIABLE:  
 NAMES= id Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
!Variables used for the analyses. 
 USEVARIABLES = Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
!Each factor is defined by its target indicators. 
MODEL: f1 BY Q1 Q2 Q3 Q4; 
                f2 BY Q5 Q6 Q7 Q8; 
!Maximum likelihood was used as the estimator.  
ANALYSIS:  
 ESTIMATOR = MLR; 
!Additional output of potential interest.   
OUTPUT: STANDARDIZED RESIDUAL CINTERVAL MODINDICES (3.0) TECH2 TECH4 
SAMPSTAT; 
 
TITLE: Two-factor ESEM (Orthogonal Rotation). 
DATA: FILE IS "VDOE Aggregates.dat"; 
VARIABLE:  
 NAMES = id Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
 USEVARIABLES = Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
MODEL: f1-f2 BY Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 (*1); 
!Orthogonal rotation.        
ANALYSIS:  
 ESTIMATOR = MLR; 
 ROTATION = CF-Varimax(Orthogonal); 
OUTPUT: STANDARDIZED RESIDUAL CINTERVAL MODINDICES (3.0) TECH2 TECH4 
SAMPSTAT; 
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TITLE: Two-factor ESEM (Geomin Rotation, Epsilon = 0). 
DATA: FILE IS "VDOE Aggregates.dat"; 
VARIABLE:  
 NAMES = id Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
 USEVARIABLES = Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
!The model is specified using Geomin (oblique) rotation. 
MODEL: f1-f2 BY  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8  (*1); 
!Geomin rotation with epsilon set to default value of 0.     
ANALYSIS:  
 ESTIMATOR = MLR; 
 ROTATION = GEOMIN (OBLIQUE); 
OUTPUT: STANDARDIZED RESIDUAL CINTERVAL MODINDICES (3.0) TECH2 TECH4 
SAMPSTAT; 
 
TITLE: Two-factor ESEM (Geomin Rotation, Epsilon = 0.5). 
DATA: FILE IS "VDOE Aggregates.dat"; 
VARIABLE:  
 NAMES = id Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8;. 
 USEVARIABLES = Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
MODEL: f1-f2 BY  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 (*1); 
!Geomin rotation with epsilon set to 0.5.       
ANALYSIS:  
 ESTIMATOR = MLR; 
 ROTATION = GEOMIN (OBLIQUE, .5); 
OUTPUT: STANDARDIZED RESIDUAL CINTERVAL MODINDICES (3.0) TECH2 TECH4 
SAMPSTAT; 
 
TITLE: Two-factor ESEM (Target Rotation) with target indicators specified 
for each factor. 
DATA: FILE IS "VDOE Aggregates.dat"; 
VARIABLE:  
 NAMES=  id Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
 USEVARIABLES=  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8; 
!The model is specified with target indicators, and CL values to be small. 
MODEL: f1 BY Q1 Q2 Q3 Q4  Q5~0 Q6~0 Q7~0 Q8~0  (*1); 
                f2 BY Q1~0 Q2~0 Q3~0 Q4~0  Q5 Q6 Q7 Q8 (*1); 
ANALYSIS:  
 ESTIMATOR = MLR; 
 ROTATION = TARGET(OBLIQUE); 
OUTPUT: STANDARDIZED RESIDUAL CINTERVAL MODINDICES (3.0) TECH2 TECH4 
SAMPSTAT; 
 
 
 


