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Abstract: The reliability of assessment tools is critical for accurately monitoring student performance in 
various educational contexts. When multiple assessments are combined to form an overall evaluation, each 
assessment serves as a data point contributing to the student’s performance within a broader educational 
framework. Determining composite reliability in such cases can be complex, particularly in naturalistic, 
unbalanced datasets in nested designs, which are common in programmatic and workplace-based 
assessments, where students are evaluated on unique, practical occasions. This paper introduces the 
compositeReliabilityInNestedDesigns package in R, designed to estimate composite 
reliability using multivariate generalizability theory and enhance the analysis of assessment data. The package 
produces extensive Generalizability and Decision study results with graphical interpretations. Composite 
reliability incorporates weights and covariance to integrate results across assessment tools. Weights can be 
optimized to minimize standard error of measurement or maximize reliability. Overall, the package’s flexible 
use and optimization empowers assessment tailoring and robust insights into student performance. The 
approach is suitable for programmatic assessment. The package facilitates reliable, comprehensive evaluation 
across diverse assessments. 
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Introduction 

Generalizability theory, originally introduced by Cronbach, Rajaratnam, and Gleser (1963), is a statistical 
framework utilized to estimate the reliability of measurements by analyzing the sources of measurement 
errors  caused  by  different  conditions (Brennan,  2001;  Cronbach et al., 1972;  Rajaratnam,  Cronbach, &  
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Gleser, 1965; Shavelson & Webb, 1991; Swanson, 1987). Often, the object of measurement is a person (e.g. 
a student). A set of similar conditions of measurement is called a facet. Examples of facets are items, 
assessors, test formats, and so on. By employing generalizability theory, we conduct Generalizability studies 
(G-studies) to gain a deeper understanding of the facets contributing to the measurements and the amount 
of error caused by each facet and their interactions. Additionally, Decision studies (D-studies) are designed 
to estimate the reliability of the same data collected under different conditions (Monteiro, Sullivan, & Chan, 
2019). Generalizability theory has been applied to various fields, including educational assessment (Brennan, 
2010; Crossley et al., 2002; Hays, Fabb, & van der Vleuten, 1995), sports (Heitman, Kovaleski, & Pugh, 
2009; Sanz-Fernández et al., 2024), and social behavior (Vispoel, Morris, & Kilinc, 2018). 

The designs of studies in Generalizability theory must specify whether facets are crossed or nested. 
‘Crossed’ refers to the designs in which all the sampled levels of any facet are present for all levels of any 
other facet(s). In contrast, ‘nested’ refers to the fact that only some of the sampled levels of a given facet are 
present for each level of the other facet(s) (Li et al., 2015). In practice and in research literature, univariate 
designs are more commonly encountered. 

Multivariate Generalizability Theory extends traditional Generalizability Theory and provides a 
systematic and rigorous method for evaluating the dependability and reliability of measurements involving 
multiple variables, e.g. multiple observations per person, to assess the consistency and stability of 
measurements across various conditions, considering the interrelationships among the measured variables. 
This nuanced approach is particularly pertinent in fields such as psychology, education, and other social 
sciences, where phenomena are often complex and multifaceted.  

Generalizability Theory, both univariate and multivariate, is described and applied in many different 
settings. Huebner and Lucht (2019) describe the efficient application of generalizability theory in the 
statistical software environment R (R Core Team, 2019) using package gtheory (Moore, 2016), including 
data formatting, computing key quantities, and tabulating and visualizing results. This package can be applied 
to various univariate and multivariate models. Jiang et al. (2020) showed how selected multivariate 
Generalizability Theory designs can be analyzed using the glmmTMB package (Bolker, 2024), and discussed 
advantages and disadvantages of this approach compared to mGENOVA (Brennan, 2001). Vispoel, Lee, and 
Hong (2024) further demonstrated that multivariate GT designs also can be analyzed using structural 
equation modeling packages such as lavaan (Rosseel, 2012) in R. Brennan et al. (2022) extend multivariate 
generalizability theory (MGT) to tests with different random-effects designs for each level of a fixed facet, 
applied to mixed-format tests composed of multiple-choice and free-response items. Vispoel et al. (2023) 
describe Multivariate Generalizability Theory when scale scores are combined to form composites and 
compare MGT indices of score consistency and measurement error to those obtained using alternative GT-
based procedures and across different software packages for analyzing multivariate GT designs. Vispoel, Lee 
and Chen (2024) extended multivariate G-theory to congeneric factor models with code in R provided for 
analyzing those and corresponding G-theory designs. 

Most of these referenced studies assume that the objects of measurement are crossed with the other 
sources of measurement error. In this paper, we will focus on multivariate Generalizability Theory designs 
in which facet conditions are nested under the objects of measurement (Brennan, 2001). 

Multivariate nested designs 

We observe a multivariate model design in which each ‘person’ p is observed during a (varying) set of 
occasions receiving rating i, and each rating i is associated with only one observation type m. We regard 
person p as the object of measurement, rating i as random facet and observation type m as fixed facet. Figure 
1 presents a graphical representation of this multivariate nested design, denoted by i°:p•. Additionally, the 
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relative error variance 𝜎2 (𝛿) captures the variability attributed to effects that include both the facet of interest 
and the object of measurement.  

Figure 1. Graphical representation of the multivariate nested design. 

 
This design is common in situations where learners gain expertise and competence during practice at the 

workplace. The concept of programmatic assessment (Heeneman et al., 2021), particularly exemplified by 
workplace-based assessment (WBA; Driessen et al., 2012), adopts a sophisticated methodology aimed at 
comprehensive learner evaluation. This approach seeks to glean insights into the capabilities of a learner p 
from diverse sources within unique, authentic professional settings. Commencing during the undergraduate 
phase, learners undergo frequent monitoring of their performance through a spectrum of assessments, each 
providing them with constructive and timely feedback within genuine contexts. 

Feedback providers or assessors in this framework are teachers and professionals, each providing 
individualized feedback on a unique and specific authentic occasion of which the rating is denoted by i. Not 
only the number of occasions, and thus ratings, and assessments but also the number of assessors could vary 
between learners, with one learner for example receiving feedback or assessment from thirty and another 
one from only three different assessors. There are generally no unique learner-assessor combinations, as each 
assessor could assess one or multiple students and on several authentic occasions, or the assessor being 
unknown which is common in in Multisource Feedback (MSF; Lockyer & Sargeant, 2022). In addition, 
anonymous patients or clients can provide feedback on the performance of a learner during an interaction 
at the learner’s workplace. 

Various assessment tools, denoted by m, are deployed, each concentrating on distinct aspects and goals. 
For example, in medical education, performances are assessed using mini clinical evaluation exercises 
(MINICEXs), case-based discussions (CBDs), objective structured assessments of technical skill (OSATS), 
and Multisource Feedback (MSF), among others. These assessments provide valuable information on 
performance across diverse settings, contexts, and courses, with varying levels of stakes attributed to them. 
Importantly, while the assessments may differ in focus, they are harmonized within an overarching 
educational framework. 

Crucially, learners’ evaluation and guidance transcend the traditional singular examination approach. 
Instead, their progress is appraised based on the aggregated results derived from diverse assessments over 
longer periods of time in different learning contexts, contributing to a more nuanced and comprehensive 
understanding of their capabilities within the specified educational framework. Ensuring the quality of 
decision-making in the assessment process is paramount. Therefore, we aim to ensure that the workplace-
based assessment outcomes accurately reflect the true level of learners’ performance. To achieve this, we 
assess the reliability of the combined set of different assessment tools, as introduced by Moonen-van Loon 
et al. (2013). 
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While our primary focus is on workplace-based assessment, the i°:p• design and its variants have broad 
applications in multivariate nested designs. As outlined by Brennan (2001), this structure is particularly useful 
in contexts where individual measurements are grouped within higher-level units. For example, in 
educational assessment, students (p) may complete multiple essays graded by different raters resulting in 
grades (i) as part of a writing proficiency exam. In a balanced design, each student would have the same 
number of essays rated by an equal number of assessors, ensuring comparability in variance estimates. 
However, an unbalanced version may occur if students submit varying numbers of essays or if some raters 
grade more essays than others, introducing complexities in the reliability analysis. Similarly, in medical 
diagnostics, patients (p) undergoing diagnostic tests (i) may be assessed by multiple radiologists to ensure 
diagnostic consistency. A balanced design would involve each patient receiving evaluations from an equal 
number of radiologists, whereas an unbalanced design could arise if different radiologists read varying 
numbers of scans due to workload distribution. Another application arises in performance-based workplace 
evaluations, where employees (p) receive feedback, or ratings (i), from multiple supervisors or peer reviewers 
over time. Balanced designs might occur in structured review systems, such as standardized 360-degree 
feedback assessments, whereas unbalanced scenarios emerge when employees receive differing amounts of 
feedback due to role-specific variations or fluctuating workloads. These diverse applications illustrate the 
i°:p• design’s flexibility in modeling complex, real-world measurement structures while maintaining robust 
reliability estimation. 

Structure of the paper 

In this paper, we introduce the compositeReliabilityInNestedDesigns package in R (R 
Core Team, 2019), a free software environment for statistical computing and graphics. The package allows 
researchers to conveniently input raw datasets that fit to the multivariate nested design i°:p• possibly 
naturalistic and unbalanced, and obtain comprehensive results from G- and D-studies in Generalizability 
theory, along with visually informative graphs. Notably, the easy-to-use code supports the inclusion of 
weights for different numbers of m, enabling the determination of overall composite reliability. Furthermore, 
the package contains optimization functionalities in which the optimal weighting is presented, both to 
maximize the composite reliability and to minimize the standard error of measurement (SEM). These 
features enhance the package’s robustness, making it suitable for analyzing naturalistic and unbalanced 
datasets. 

Section 2 formally describes the model, composite reliability, assumptions and requirements for applying 
the package to a dataset containing educational or professional development data in a programmatic, 
workplace-based assessment approach. In Section 3, we present the practical application of the 
compositeReliabilityInNestedDesigns package on a dataset containing educational data of 
International Medical Graduates; foreign doctors who follow a workplace-based assessment program to 
qualify for practicing medicine in Australia (Nair et al., 2017; Nair et al., 2021). 

 

Implementation 
Each person p may have one or more ratings i of each type m, where the number of ratings per person 

can vary, also among the types. Every rating i is ‘scored’ on the same scale. Consequently, the object of 
measurement p is crossed with the fixed multivariate variable m, and the facet i is nested within the fixed 
multivariate variables as each student is administered a unique sample of assessments, denoted as i°:p•. 
Multiple universe score (co-)variances are estimated across types and error score variances. Assumptions of 
independent item sampling and uncorrelated residual effects lead to zero error score co-variances. Because 
of the varying number of raters, the absence of rater-person combinations and the anonymity in many cases, 
the raters are not represented by a facet in this model. 
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G-study 

In generalizability theory, the initial step involves defining the universe of scores and facets that we aim 
to generalize across. For each person p, the universe score represents the expected value of the mean score. 
In a multivariate design, a universe score exists not only for each individual measure but also for the 
composite across all measures. The variance of universe scores across all persons p in the population is 
referred to as the universe score variance 𝜎!(𝑝), which conceptually aligns with the notion of true score 
variance in classical test theory. Additionally, the relative error variance 𝜎!(𝛿) captures the variability 
attributed to interactions between facets but excludes main effects. 

To assess the reliability/generalizability of each individual observation type m, we calculate the reliability 
coefficient – a measure of the proportion of true variance present in a set of raw test scores (Aron & Aron, 
2003). This coefficient is defined as the ratio of the universe score variance to the sum of the universe score 
variance and the error variance, 

𝐸𝜌! =
𝜎!(𝑝)

𝜎!(𝑝) + 𝜎!(𝛿) 

where the relative and absolute error variance are equal in this design because the i and i:p terms are 
confounded. 

The compositeReliabilityInNestedDesigns package determines the observed variance 
Σ+"! (𝑝) and covariance Σ+""#(𝑝) components of the persons p and ratings i nested in p, Σ+"! (𝑖: 𝑝), presented 
for all observation types m, m’. These components, calculated using package ‘lme4’ (Bates et al., 2023), offer 
insights into the variability present within the data. 

For each observation type 𝑚, the observed universe score variance corresponds to Σ+"! (𝑝)  and the 

observed error score is calculated as Σ+"! (𝛿) =
$%!" (':))	
,!

, where nm denotes the number of ratings for 
observation type m. As each person p in the population may have a different number of ratings of type m, nm 
(p), we employ the harmonic mean to determine the effective number of ratings nm. Let |𝑃"| be the number 
of persons with at least one rating of type m, then the harmonic mean for this type m is defined as 𝑛" =

|.!|

∑ #
$!(&)

|)!|
&*#

. 

The estimated reliability coefficient is obtained by dividing the universe score variance by the sum of the 
universe score variance and the error variance. Additionally, the standard error of measurement (SEM) is 
calculated as the square root of the observed error score. 

D-study 

As previously discussed, the number of ratings i per observation type m plays a crucial role in determining 
reliability. In the D-study conducted by package compositeReliabilityInNestedDesigns, the 
reliability and the standard error of measurement (SEM) are graphically presented for various numbers of 
ratings per type. 

Relating this to the practical setting, introduced in Section 1.1, these graphs provide valuable insights 
into how the reliability is affected when more or fewer assessments (i) per observation type (m) are required 
or recommended in an educational program. By visualizing the relationship between the number of 
assessments and reliability, educators and assessment designers can gain a deeper understanding of the 
impact of assessment quantity on the overall assessment quality for each assessment tool and make informed 
decisions regarding assessment program requirements and recommendations. For an example, see  Figure 2 
and Figure 3 in Section 3.2. 
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Composite reliability 

To estimate the composite reliability of person p across ratings i with different observation types m, we 
employ multivariate generalizability theory. This approach enables the integration of ratings i from diverse 
observation types m to generate a comprehensive evaluation of person p’s observations. In addition to 
considering the observed variance Σ+"! (𝑝) for each observation type m and the observed error score Σ+"! (𝛿), 
we also need to include the covariance Σ+""#(𝑝) components representing the interrelationships between 
person p for different observation types m and m’. 

When combining multiple observation types to calculate the composite reliability, each type 𝑚 is 
assigned a positive weight wm, where the sum of all the weights is equal to 1. If the weights are unknown, it 
is common practice to assign equal weights to each observation type. However, in many practical 
(educational) settings, there may already be predetermined weights or importance assigned to each 
observation type m. 

For a specific number of ratings per observation type m, the composite universe score variance is the 
weighted sum of all the elements of the variance and covariance components. The estimated reliability 
coefficient 𝐸𝜌2 ! is defined as the ratio of the composite universe score variance to the sum of the composite 
universe score variance and the composite relative error variance: 

𝐸𝜌2 ! =
∑ 𝑤"! Σ+"! (𝑝)" + ∑ ∑ 𝑤"𝑤"#Σ+""#(𝑝)"#0""

∑ 𝑤"! Σ+"! (𝑝)" + ∑ ∑ 𝑤"𝑤"#Σ+""#(𝑝)"#0"" +∑ 𝑤"! Σ+"! (𝛿)"
 

The standard error of measurement (SEM) is equal to 5∑ 𝑤"! Σ+"! (𝛿)" .  

By specifying different weight distributions, users can observe the resulting composite reliability 
coefficient and SEM for each possibility. This flexibility allows for the examination of how different weight 
assignments affect the overall outcomes and provides a means to tailor the setting (e.g., assessment program) 
to specific requirements or preferences. 

By definition, when the standard error of measurement (SEM) is reduced, it leads to a narrower 
confidence interval. This reduction indicates a decrease in the expected distribution of error around the 
mean scores, which is an important objective in e.g. assessment design and evaluation. By minimizing the 
SEM, we aim to enhance the precision and accuracy of the results. A smaller SEM signifies less random 
error in the measurement process, resulting in more reliable and precise estimates of persons’ true scores. 
This reduction in measurement error allows for a more confident interpretation of the outcomes and 
enhances the overall quality and validity of the setting at hand. 

To minimize the SEM by adjusting the weights, subject to the constraint that the sum of (positive) 
weights equals 1, i.e. minimize 5∑ 𝑤"! Σ+"! (𝛿)"  subject to ∑ 𝑤"" = 1, we use the Lagrange multiplier 
ℒ8𝑤1, … , 𝑤|2|, 𝜇< = ∑ 𝑤"! Σ+"! (𝛿)" − 𝜇(∑ 𝑤" − 1)" , where |𝑀| is the number of different observation 
types. For each type m, we set the derivative equal to 0, thus  

𝜕ℒ
𝜕𝑤"

= 2𝑤"Σ+"! (𝛿) − 𝜇 = 0⟺ 2𝑤"Σ+"! (𝛿) = 𝜇, ∀𝑚 

𝜕ℒ
𝜕𝜇 = −DE 𝑤" − 1

"
F = 0 ⟺E 𝑤" = 1

"
 

Using the first equality, rewriting gives 
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2𝑤"Σ+"! (𝛿) = 2𝑤1Σ+1!(𝛿) ⟺ 𝑤" =
𝑤1Σ+1!(𝛿)
Σ+"! (𝛿)

, ∀𝑚 > 1 

Rewriting the constraint of the minimization function ∑ 𝑤" = 1" , using the equation above, yields  

E 𝑤" = 𝑤1 + E
𝑤1Σ+1!(𝛿)
Σ+"! (𝛿)"31

=
"

H1 + E
Σ+1!(𝛿)
Σ+"! (𝛿)"31

I𝑤1 = 1 

𝑤1 = H1 + E
Σ+1!(𝛿)
Σ+"! (𝛿)"31

I
41

= HE
Σ+1!(𝛿)
Σ+"! (𝛿)"

I
41

 

Concluding, to minimize the composite standard error or measurement, weights are set to 𝑤1 =

J∑ $%#"(5)
$%!" (5)

" K
41

 and 𝑤" = $%#"(5)
$%!" (5)

𝑤1 for all 𝑚 > 1. 

However, minimizing the SEM is not necessarily equal to maximizing composite reliability; a test can 
have high composite reliability but still have a high SEM if overall score variability is large. Likewise, reducing 
SEM does not always improve composite reliability, especially if the test has heterogeneous items. It depends 
on the exact setting which measure is preferred over the other. Minimizing SEM is preferred when absolute 
precision of individual scores is important. For example, in high-stakes testing or diagnostic assessments, 
reducing SEM ensures that observed scores closely approximate true ability levels, improving decision 
accuracy. Maximizing composite reliability is preferred when the goal is to assess internal consistency in 
multi-item measures. This is crucial in research settings where constructs are measured using multiple items 
(e.g., psychological scales, surveys). Higher composite reliability suggests that items are reliably capturing the 
intended construct. Because of this trade-off, the compositeReliabilityInNestedDesigns 
package provides a possibility to determine the weights that maximize the composite reliability coefficient, 
using function solnp for the nonlinear optimization using augmented Lagrange method of package 
Rsolnp (Ghalanos & Theussl, 2015). 

 
Application and Discussion 

In this section, we illustrate the functionality of the 
compositeReliabilityInNestedDesigns package using an educational dataset. The context 
for our study is the multisource feedback (MSF) part of the assessment program for the licensing 
requirements of International Medical Graduates (IMGs) in Australia. The IMGs originate from many 
different countries including Egypt, India, Sweden, South Africa, Brazil, Sri Lanka, Pakistan, Myanmar 
Burma, Iraq, among others. The dataset consists of all MSF assessments submitted between July 2019 and 
February 2024. Each form required assessors to evaluate trainee performance using a predefined set of 
criteria over the past 1 or 6 months, using a 5-point rating scale, and is filled out either by a Medical Colleague 
or another Co-worker in health care. The questionnaire is slightly different for the two types of assessors, 
but similar for the 1- and 6-month period. The assessors of an individual IMG are typically different in each 
period. The dataset comprises 1577 assessments of 130 IMGs. 

In terms of Multivariate Generalizability Theory, each IMG p may have one or more graded assessments 
i of each assessment tool m, where the number of assessments per IMG can vary, also among the assessment 
tools. Every assessment i is scored on the same 1-5 Likert scale, of which the average was calculated. 
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G-study 

The GStudy() function is designed to assess the reliability coefficient and the standard error of 
measurement (SEM) for each assessment tool. This function utilizes the harmonic mean of the number of 
assessments per tool as a measure of effective assessment quantity. By providing a dataset as input, users can 
obtain reliable estimates of the reliability coefficient and SEM for each assessment tool. The desired number 
of decimal places in the output (nrDigitsOutput) can be added as input. 

R> library(compositeReliabilityInNestedDesigns) 
> GStudy(mydata,nrDigitsOutput=4) 

The second code line facilitates the execution of the G-study, which encompasses the calculation of 
composite reliability. It generates a descriptive statistics matrix. In our current example, the output is 
presented in Table 1, offering valuable information for each assessment type “Medical Colleague – Month 
1” (MC1), “Co-Worker – Month 1” (CO1), “Medical Colleague – Month 6” (MC6) and “Co-Worker – 
Month 6” (CO6). The table presents the number of assessments (NrAssessments) and IMGs (NrStudents), 
the average score (MeanScore), and the standard deviation (StDev) of the assessment scores. Additionally, 
the table provides insights into the average number of assessments per student (AvgNrAssessments) and 
the harmonic mean (HarmonicMean) of the number of assessments per student. 

Table 1. Describing statistics of the dataset for each of the four different assessment types. 

 CO1 CO6 MC1 MC6 

NrAssessments 395 395 394 393 

NrAssessees 130 130 130 130 

MeanScore 4.1849 4.31 3.8079 3.9047 

StDev 0.6969 0.652 0.6809 0.6591 

AvgNrAssessments 3.0385 3.0385 3.0308 3.0231 

HarmonicMean 3.0116 2.9828 2.9771 2.9658 

MaxNrAssessments 6 6 6 6 

MinNrAssessments 2 1 1 1 

MedianNrAssessments 3 3 3 3 

ReliabilityCoeff_HM 0.2641 0.1242 0.4263 0.4254 

SEM_HM 0.3798 0.3688 0.3534 0.3423 

 

The harmonic mean for a given assessment tool in the synthetic dataset is determined by dividing the 
number of students who have at least one assessment of that tool by the sum of the reciprocals of the 
number of assessments per student. 

Overall, these descriptive statistics and harmonic mean calculations provide valuable insights into the 
distribution of assessments and student performance within the dataset, contributing to a comprehensive 
understanding of the assessment program’s characteristics and dynamics. 

To view the observed variances, covariances, and error scores, the dataset, along with a vector specifying 
the number of assessments per assessment tool, can be added as input to the calculateVarCov() function. 
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This function plays a crucial role in the comprehensive analysis provided by the package, working in 
conjunction with other functions to offer a complete suite of statistical tools for researchers. While the 
function is an integral component of the package’s functionality, it is presented here to address the needs of 
researchers seeking detailed insights into the measurement properties of the dataset. 

R> varcov <- calculateVarCov(mydata, c("CO1"=3.0116, "CO6"=2.9828, 
"MC1"=2.9771, "MC6"=2.9658)) 
> varcov$S_p 
> varcov$S_iINp 
> varcov$S_delta 
 
Table 2 showcases the observed variance Σ+"! (𝑝) and covariance Σ+""#(𝑝) components of the students p 
and assessment scores i nested within students Σ+"! (𝑖: 𝑝) for each assessment tool m and m’ within the dataset. 
The table provides a comprehensive overview of the variability and interrelationships among the assessment 
scores, enabling a detailed examination of the measurement properties associated with each assessment tool. 

Specifically, for assessment tool MC6, the observed universe score (Σ+267! (𝑝)) is equal to 0.0867, and 

the observed error score is equal to Σ+267! (𝛿) = $%+,-
" (':))	
,+,-

= 8.:;<=
!.>7=?

= 0.1172, giving estimated reliability 

coefficient 𝐸𝜌2267! = 8.8?7<
8.8?7<@8.11<!

= 0.4253, and SEM = √0.1172 = 0.3423, as shown in Table 1. 

Table 2. Observed variance and covariance components. 

Σ+𝒎𝟐 (𝒑) CO1 CO6 MC1 MC6             Σ+𝒎𝟐 (𝒊: 𝒑) CO1 CO6 MC1 MC6 

CO1 0.0518 0.0384 0.0607 0.0624  CO1 0.4345 0 0 0 

CO6 0.0384 0.0193 0.0328 0.0554  CO6 0 0.4058 0 0 

MC1 0.0607 0.0328 0.0928 0.0550  MC1 0 0 0.3719 0 

MC6 0.0624 0.0554 0.0550 0.0867  MC6 0 0 0 0.3475 

 

D-study 

As previously discussed, the number of assessments per tool has a notable impact on the reliability 
estimation. To investigate the relationship between the number of assessments and reliability, the D-study 
functionality within the program provides an analysis of the reliability coefficient and standard error of 
measurement (SEM) for varying numbers of assessments per tool. To execute the D-study and obtain these 
insights, researchers can utilize 

R> plots <- DStudy(mydata, maxNrAssessments = 60) 
> plots$plotRel 
> plots$plotSEM 
 

The results for the synthetic dataset, spanning up to 60 assessments per assessment tool, are graphically 
presented in Figure 2 and Figure 3. Each graph depicts the number of assessments per tool on the x-axis. 
The first graph illustrates the reliability coefficient value on the y-axis, while the second graph represents the 
standard error of measurement (SEM). 

These figures display the practical implications of varying assessment quantities on reliability and SEM, 
offering a visual representation of the relationship between these factors. This information can guide the  
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Figure 1. Reliability coefficient for each of the assessment tools for varying numbers of assessments (x-
axis). 

 
 

Figure 2. SEM for each of the assessment tools for varying numbers of assessments (x-axis). 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

CO1 CO6 MC1 MC6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

CO1 CO6 MC1 MC6



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 4 Page 11 
Moonen-van Loon & Donkers, R Package for Optimizing Composite Reliability 
 
development of assessment programs that strike a balance between reliability, precision, and efficiency. 
Solely in terms of reliability, it seems that the assessments of medical colleagues outperform the assessments 
of other co-workers. Although candidates are assessed on a similar scale, each group of assessors views a 
different aspect of the candidate’s performance. Therefore, a combination of the assessments in the 
assessment program is highly beneficial to just leaning on either one of the tools. 

Composite reliability 

The estimation of composite reliability, encompassing the integration of student results from 
assessments of various tools, is performed utilizing multivariate generalizability theory. Leveraging the 
capabilities of compositeReliabilityInNestedDesigns, researchers can obtain a 
comprehensive analysis that includes the determination of weights optimizing the standard error of 
measurement (SEM) and the subsequent presentation of the composite reliability value.  

The R package provides researchers with the flexibility to input different sets of numbers of assessments 
and weights as data, enabling the estimation of the composite reliability coefficient and the standard error of 
measurement (SEM). These metrics serve as crucial indicators of the extent to which the assessments 
accurately capture students’ true performance across various assessment tools.  

For the current educational program for IMGs, they are advised to collect 3 assessments per type. 
Currently, the weight attached to each assessment tool is equal. 

R> compRel <- computeCompositeReliability(mydata, 
+ n=c("CO1"=3,"CO6"=3,"MC1"=3,"MC6"=3), 
+ weights = c("CO1"=0.25,"CO6"=0.25,"MC1"=0.25,"MC6"=0.25), 
+ optimizeSEM=FALSE) 
> compRel$reliability 
> compRel$SEM 
 

The composite reliability is 0.6232 and the SEM is 0.1803. 

If the Boolean value optimizeSEM is set to TRUE, the package offers a corresponding set of weights 
that minimizes the SEM. These weights represent the relative importance assigned to each assessment tool 
when evaluating the overall performance of the student. By optimizing the weights, the precision and 
accuracy of the assessment outcomes are enhanced, effectively minimizing measurement error. The 
utilization of this weight optimization process provides researchers with a more refined and precise 
assessment of students’ performance. By effectively minimizing measurement error, the package ensures that 
the assessment outcomes reflect the true abilities and achievements of the students better. 

For the current example, running the same code with optimizeSEM=TRUE, improves the composite 
reliability to 0.6301 and SEM to 0.1796. The output compRel$weights gives 0.2227 for CO1, 0.2385 
for CO6, 0.2603 for MC1, and 0.2785 for MC6. 

By leveraging multivariate generalizability theory and the functionalities provided by the R package, 
researchers gain valuable insights into the composite reliability of student assessments. This allows for a 
comprehensive evaluation of student performance and supports informed decision-making in educational 
assessment contexts. 

As an illustration, considering the number of assessments per tool depicted in the first two columns of 
Table 3, along with the corresponding weights in the subsequent two columns, the final two columns of the 
table display the composite reliability and composite standard error of measurement (SEM) resulting from 
this combination. This presentation allows researchers to examine the impact of different numbers of 
assessments and associated weights on the overall composite reliability and SEM. By analyzing the values 
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presented in the last two columns, researchers can gain insights into the effectiveness and precision of the 
composite assessment outcomes. This information aids in understanding the interplay between the number 
of assessments, weight distribution, and the resulting composite reliability and SEM, thereby supporting 
informed decision-making in assessment design and evaluation. 

Table 3. Composite reliability with various numbers of assessments and weights per tool. 

CO1 CO6 MC1 MC6 CO1 CO6 MC1 MC6 CompRel CompSem 

N n n n w w n n CompRel CompSem 

3 3 3 3 0.25 0.25 0.25 0.25 0.6232 0.1803 

3 4 3 4 0.25 0.25 0.25 0.25 0.6529 0.1690 

3 3 4 4 0.25 0.25 0.25 0.25 0.6516 0.1695 

4 4 4 4 0.20 0.20 0.30 0.30 0.6998 0.1568 

6 6 6 6 0.20 0.20 0.30 0.30 0.7776 0.1280 

 

For the same number of assessments, Table 4 presents the calculated weights per tool that effectively 
minimize the SEM, as well as the resulting composite reliability and SEM values associated with these 
optimized weights. When comparing the resulting reliability and SEM values in the last two rows of Table 3 
and  Table 4, it becomes apparent that minimizing the SEM does not necessarily maximize the composite 
reliability, as described in Section 2.3.  

Table 4. Composite reliability with various numbers of assessments where the weights minimize the SEM. 

CO1 CO6 MC1 MC6 CO1 CO6 MC1 MC6 CompRel CompSem 

N n n n Opt w Opt w Opt w Opt w CompRel optCompSEM 

3 3 3 3 0.2227 0.2385 0.2603 0.2785 0.6301 0.1796 

3 4 3 4 0.19000 0.2712 0.2220 0.3168 0.6639 0.1659 

3 3 4 4 0.1888 0.2022 0.2942 0.3148 0.6777 0.1654 

4 4 4 4 0.2227 0.2385 0.2603 0.2785 0.6843 0.1555 

6 6 6 6 0.2227 0.2385 0.2603 0.2785 0.7730 0.1270 

 

For the any number of assessments, the package allows to determine the weights per assessment tool to 
maximize the composite reliability coefficient. 

R> compMaxRel <- computeMaxcompositeReliability(mydata, 
> + n=c("CO1"=3,"CO6"=3,"MC1"=3,"MC6"=3)) 
> compMaxRel$reliability 
> compMaxRel$SEM 
> compMaxRel$weights 

Table 5 presents the calculated weights per tool that effectively maximize the composite reliability 
coefficient, as well as the resulting SEM values associated with these optimized weights. 
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Table 5. Composite reliability with various numbers of assessments where the weights maximize the 
composite reliability. 

CO1 CO6 MC1 MC6 CO1 CO6 MC1 MC6 CompRel CompSem 

N n n n Opt w Opt w Opt w Opt w CompRel optCompSem 

3 3 3 3 0.2176 0.1641 0.2904 0.3279 0.6385 0.1828 

3 4 3 4 0.1861 0.1913  0.2385 0.3841 0.6729 0.1691 

3 3 4 4 0.1803  0.1366 0.3233 0.3598 0.6845 0.1679 

4 4 4 4 0.2176 0.1641 0.2904 0.3279 0.7019 0.1583 

6 6 6 6 0.2176 0.1641 0.2904 0.3279 0.7794 0.1292 

 

The information conveyed in Table 4 and Table 5 facilitates the evaluation and comparison of different 
weight distributions, shedding light on the impact of weight optimization on the reliability and measurement 
error of the composite assessment. This empirical analysis supports researchers in making informed 
decisions regarding the selection and assignment of weights, leading to improved assessment practices and 
more robust interpretations of student performance. 

As observed in the graphical output of the D-study (Figure 2 and Figure 3), to reach a reliability of 0.70, 
the individual assessment tools CO1, MC1, CO6 and MC6 require 20, 10, 50, and 10 assessments, 
respectively, totaling 90 assessments when considered separately. However, when these assessment tools are 
combined, the results displayed in Table 5 reveal that a mere four assessments per tool (16 in total) reach 
the same composite reliability. 

This finding highlights the efficiency and effectiveness of combining multiple assessment tools to achieve 
a desired level of reliability. By leveraging the complementary strengths of different assessment tools, a 
significant reduction in the overall number of assessments can be achieved while maintaining the desired 
reliability threshold. This information is invaluable for assessment program planning and resource allocation, 
enabling educators and researchers to optimize the assessment process and minimize the burden on students 
and assessors without compromising the reliability of the outcomes. 

Assumptions and Requirements 

Generalizability theory, as a fundamental framework, typically assumes local independence of occasions 
or ratings, implying that each data point is independent of others. However, this assumption may not hold 
in authentic educational settings, where assessments can affect subsequent performances due to feedback 
provided to students. Despite this violation, such conditions are common in programmatic, workplace-based 
assessment settings. This underscores the need to interpret reliability indices within the dynamic nature of 
skill development. In this context, reliability estimates reflect the consistency of performance assessments 
within a structured learning trajectory rather than a static measurement framework. We accept this violation 
as the primary objective in such a setting is to differentiate between overall student performances over an 
extended period.  

When combining different assessment tools, each focusing on specific aspects in education, to evaluate 
the performance of the student using multivariate generalizability theory, the students should be graded on 
the same rating scale using the same assessment standard throughout all assessments. 

The data set utilized in the compositeReliabilityInNestedDesigns package must adhere 
to specific criteria. It should be an R dataframe with three columns labeled “ID”, “Type”, and “Score”. The 
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“Score” column must contain numeric data. To estimate the composite reliability of multiple assessment 
tools, each student must receive a grade for each assessment tool at least once. When including the desired 
number of assessments per tool, each tool must be included and receiving a numeric value. Furthermore, 
the sum of positive weights assigned to the assessment tools must be equal to one, ensuring a proper 
weighting scheme for the composite reliability calculation. 

 

Conclusions 

The compositeReliabilityInNestedDesigns R package provides a user-friendly and 
efficient solution for calculating composite reliability in settings with a multivariate nested design, particularly 
those characterized by naturalistic and unbalanced datasets. By extending the scope beyond the reliability of 
individual types, the package offers significant advancements in terms of feasibility to reach reliable results. 
It enables researchers to analyze the composite reliability of a comprehensive combination of types, 
employing multivariate generalizability theory and weighted optimization. 

Relating this to the practical setting of programmatic workplace-based assessment programs, introduced 
in Section 1.1, utilizing the package, researchers gain flexibility in adjusting the WBA program according to 
specific requirements, while also accommodating the need to assign varying degrees of importance to 
different assessment tools. It captures the interplay between multiple assessment tools and their impact on 
the overall evaluation of student performance when (formative) assessment occurs in authentic workplace 
settings. This flexibility empowers users to tailor the assessment program to their specific needs, ensuring 
that certain tools of assessment receive appropriate emphasis and consideration within the overall 
educational framework. 

For future improvements, we plan to incorporate raters as an additional facet, specifically for scenarios 
where raters are known and some provide multiple ratings, but without forming a fully crossed design. 
Another planned development is the creation of a Shiny app or web-based GUI to make the package more 
accessible to users unfamiliar with R, allowing for intuitive data input and clear visualization of composite 
reliability results. 

In conclusion, package compositeReliabilityInNestedDesigns serves as a valuable tool 
for researchers and practitioners, e.g., those involved in educational assessment programs. Its ease of use, 
ability to handle naturalistic and unbalanced datasets, and incorporation of multivariate generalizability 
theory and weighted optimization offer a solution for analyzing the composite reliability of a diverse range 
of (programmatic assessment) programs. With its flexible features, the package empowers users to fine-tune 
their (assessment) programs and derive more robust and meaningful insights into persons’ observations, e.g., 
students’ performance. 

 

Availability and requirements 

Project name: compositeReliabilityInNestedDesigns 

Project home page: https://github.com/jmoonen/compositeReliabilityInNestedDesigns   

Operating system(s): Platform independent 

Programming language: R 

Other requirements: R 4.3.1 or higher 

License: GNU General Public License version 3 

https://github.com/jmoonen/compositeReliabilityInNestedDesigns


Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 4 Page 15 
Moonen-van Loon & Donkers, R Package for Optimizing Composite Reliability 
 
Any restrictions to use by non-academics: no 
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Appendix. Complete R Code 
 
The following code presents the use of the package for the included mydata.rda dataset, which is a small 
dummy dataset. Please replace mydata your own dataset to apply the package. 
 
library(compositeReliabilityInNestedDesigns) 
GStudy(mydata,nrDigitsOutput=4) 
  
varcov <- calculateVarCov(mydata, c("CO1"=3.0116, "CO6"=2.9828, 
"MC1"=2.9771, "MC6"=2.9658)) 
varcov$S_p 
varcov$S_iINp 
varcov$S_delta 
 
plots <- DStudy(mydata, maxNrAssessments = 60) 
plots$plotRel 
plots$plotSEM 
 
compRel <- computeCompositeReliability(mydata, 
+ n=c("CO1"=3,"CO6"=3,"MC1"=3,"MC6"=3), 
+ weights = c("CO1"=0.25,"CO6"=0.25,"MC1"=0.25,"MC6"=0.25), 
+ optimizeSEM=FALSE) 
compRel$reliability 
compRel$SEM 
 
compMaxRel <- computeMaxcompositeReliability(mydata, 
+ n=c("CO1"=3,"CO6"=3,"MC1"=3,"MC6"=3)) 
compMaxRel$reliability 
compMaxRel$SEM 
compMaxRel$weights 
 


