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Abstract: The assessment of model fit in latent trait modeling is an integral part of correctly applying the
model. Still the assessment of model fit has been less utilized for ideal point models such as the Generalized
Graded Unfolding Models (GGUM). The current study assesses the performance of the relative fit indices
AIC and BIC, and the absolute fit adjusted chi-square statistic for the GGUM for both dichotomous and
polytomous data. Factors included data generation model, sample size, instrument length, and screening
value. Results show that relative fit indices performed well in identifying the GGUM when at least 20-items
were used. For polytomous data the correct generation model was identified as the best fitting mode
irrespective of the number of items and sample size. The adjusted chi-square statistic performed well in
correctly identifying GGUM as the best fit for the GGUM dichotomous data generation, but performed
pootly with the dominance models. With polytomous data case these fit indices always correctly identified
GGUM as the best fit for the GGUM data. An explanation for this performance is provided.
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Introduction

Item response theory (IRT) models provide several advantages over classical test theory such as the
independence of item and person parameter estimation from calibration samples and the assessment of
person parameter estimation accuracy at the individual level. However, these advantages will not be realized
if the selected IRT model does not fit the data. Surprisingly, fit determination in applications is not as
ubiquitous as one would expect. For example, it has been estimated that more than 40% of published articles
in the organizational research literature utilizing IRT models do not include any fit examination (Nye et al.,
2020).

There are many IRT models that may be used for proficiency, attitude, or personality assessment. One
IRT taxonomy classifies these models as either ideal point or dominance models. The 1-, 2-, 3-parameter
models and the graded response model (GRM; Samejima, 1969) are examples of dominance-based models.
With dominance models a person’s disagree-agree response to an attitude item reflects the extent to which
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their opinion (i.e., their location on the latent trait) is greater than the sentiment stated in the item (L., item’s
location) (cf. Roberts & Laughlin, 1996). In contrast, with ideal point models a person’s disagree-agree
response reflects the extent to which their opinion coincides with the sentiment stated in the item (i.e.,
person and item locations match). The graded unfolding model and the generalized graded unfolding model
(GGUM; Roberts et al., 2000) are examples of ideal point models (Roberts, Donoghue, & Laughlin, 2000).
Several researchers (Drasgow et al., 2010; Chernyshenko et al., 2007 (cited in Tay et al., 2011); Nye et al.,
2020; Roberts et al., 2000; Stark et al., 2006; Tay et al., 2011) have shown that both dichotomously- and
polytomously-scored attitude or personality statements involving self-report are best represented by ideal
point models.

Although Roberts (2008) has examined item data fit for ideal point models (GGUM), few studies have
systematically examined fit for ideal point models relative to dominance models (Roberts, 2008). A fit
statistic commonly used with the GGUM is the adjusted chi-square statistic. Unfortunately, studies
examining its performance have shown contradictory results (see Nye et al., 2020; Tay et al., 2011). This
study investigates the (absolute fit) adjusted chi-square statistic as well as information criterion (relative) fit
approaches (AIC and BIC) in detecting GGUM misfit with unidimensional dichotomous and ordered
polytomous simulated data. Below we briefly introduce the dominance and ideal point models followed by
a contrast between the two classes, and a review of the fit literature as it applies to the GGUM.

Literature Review
IRT Dominance Models

One commonly used model for dichotomous unidimensional data is the three-parameter logistic model
(B3PLM; Birnbaum, 1968). The 3PLM specifies the probability (p) of a response x; (e.g., correct
response/endorsement) on item 7 given the latent trait of interest () as:

e 1.702¢Zi(9—5i)
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where «;1s the discrimination parameter, d;1s an item location parameter, ¥ ;is the pseudo-guessing parameter;
; = 1.0 items. By setting ¥, = 0 we obtain the two-parameter logistic model (2PLM). The
p(x; = 116, a;, 8;,v;) as a function of s represented by an item response function (IRF).

Although multiple IRT models are applicable to ordered polytomous data our focus in on the graded
response model (GRM; Samejima, 1969). The GRM compares response probabilities in a cumulative
fashion. Thus, according to the GRM the probability of obtaining a category score x; or higher on item 7
conditional on #is:

. RACEI)
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where Py is the cumulative probability, o, is the discrimination, 4., is the category boundary location for
category score x;, and x; = {0, 1, .., m;}; m, represents the number of category boundaries. The d,-,
represents the boundary between categories £ and £ — 1. To obtain the probability of a response in a specific
category £ (p:) requires taking the difference between successive Pyjs. For example, to obtain the probability
in a specific category £ (i.e., x; = £) we have py, = Py — Pg—1 withP§ = landPp;;; = 0. This
probability as a function of fis represented by an option response function (ORF).
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IRT Ideal Point Models

Ideal point models do not assume the dominance models' cumulative monotonic response function, but
rather a non-cumulative unfolding single-peaked response function (Roberts et al., 2000) that reflects that a
person’s response depends on the proximity between an item’s location and the person’s standing on the
latent trait. The GGUM is:

exp{a; [c(8= 8i)~Tj=o Tur)}+ expla; [(M=c)(6 = 8:)-Ti—o Tik]} )
B —olexp {a; [w(0— 8;)—Xp_o Tik|}+ exp{a; [(M-w)(0- 8;)-Zh_o Tik]}}’

where x; represents the observed response to item 7 1 indicates the location of the £th response category
threshold on the latent continuum with respect to the zth item location (Roberts et al., 2000), with ¢ = 0 and
¢ = B indicating the strongest level of disagreement and agreement, respectively, B is the number of
observable response categories minus 1 (l.e.,, ¢ =0, 1,2, ..., B), M= 2B + 1, and all other symbols are defined
above.

P(xi:C|9j):2

Dominance and Ideal Points Models’ Item Response Functions

The use of the 2PLLM with self-report data such as those assessing attitudes and personality (i.e.,
noncognitive items) can be found in the literature (e.g., Tay et al., 2011). As mentioned above, these data
may also be represented by an ideal point process (Roberts & Laughlin, 1996). In this regard, Tay etal. (2011)
found “... the GGUM fits dominance data about as well as the 2PLM shor? scales and is only slightly inferior
for long scales” (p. 287, italics ours); ’short” scales are defined as 15 items.

Figure 1. Response Functions (Left: GGUM, « = 0.9, 6 = 2, 1, = -1.3; 2PLM, « = 1.1, 6 = 0.5) and GGUM
ORFs (Right: GGUM, o = 0.7, = 0.3, 1y = -2, 1, = -0.8, 13 = -0.3).
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Figure 1 (left panel) shows the GGUM and 2PLM IRFs for a hypothetical dichotomously scored item.
For instance, assume we have an item "When can a woman have an abortion?" with responses "Never" and
"Anytime." We score "Nevet" as 0, "Anytime" as 1. Our construct’s continuum runs from less/not favorable
at the low end to favorable at the upper end. As can be seen, the GGUM IRF shows that the probability of
endorsing this item has an ideal location on the continuum (i.e., around 2) and that as one progresses away
from this location in either direction the probability decreases. In contrast, the 2PLM IRF predicts that as a
person's location increases the probability of endorsing this item increases. Thus, to the extent that the
observed data at the upper end on the continuum reflect individuals who believe abortions are permissible
only under certain circumstances (e.g., rape/incest), the 2PLM will not appropriately model the data. In
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contrast, this data pattern can be correctly modeled with the GGUM. As can be seen, the GGUM and 2PLM
response functions provide very similar response probabilities for persons located below approximately 1.5.
This similarity of GGUM and 2PLM IRFs is common except for large item locations (e.g., 6 > 3). In other
words, unless the GGUM location parameters are extreme enough for their response probabilities to be
differentiable from those of dominance models, dominance IRT models such as the 2PLM can fit GGUM
data well for items with low to moderate item locations (e.g., 6 < 1.5; see Figure 1 (left panel)).

Figure 1 (right panel) presents the GGUM’s ORF's for a hypothetical ordered polytomously-scored item.
To provide context assume that we are interested in measuring the need for cognition, which is “the tendency
for an individual to engage in and enjoy thinking” (Cacioppo & Petty, 1982, p. 116). The continuum has
individuals who would score high on the need for cognition at one end (e.g., faculty, researchers, physicians,
nurses) and individuals who would score low at the other end such as construction workers and
“hypothetically” some intellectuals (e.g., philosophers) who might argue that mental deliberation doesn’t
always lead to the best course of action (Arpaly & Schroeder, 2018). This latter group might in turn disagree
to statements that would lead to high scores on the inventory. An example item from the scale is “I tend to
set goals that can be accomplished only by expending considerable mental effort” with a four-point response
scale of “almost never true,” “rarely true,” “often true,” and “almost always true.” As can be seen, the
probability of selecting category 0 (e.g., “almost never true”) is the highest for individuals at the lower and
upper continuum. Similarly, category 1 (“rarely true”) is the most likely response for individuals located at
approximately -1.5 and 1.5. Respondents located in the center of the continuum are most likely to select
category 3 (“almost always true”) although category 2 is still a stronger possibility than either category 0 or
1. Conditional on 6 the probabilities of responding to each category sum to 1.

) ¢

Model Fit Statistics

One common fit approach involves the squared residuals between the observed and predicted responses
to determine the degree of misfit between the data and fitted model. The process of examining and
comparing residuals in IRT for item/model fit examination usually involves chi-square or likelihood-ratio
tests (Ames & Penfield, 2015). As mentioned above, research involving these absolute fit indices has, in
general, not yielded consistent results in identifying GGUM misfit.

Drasgow et al. (1995) presented a family of absolute fit statistics known as the chi-square statistic. One
can calculate these statistics for an item or for multiples of items. The former is referred to as an item single,
whereas the latter can involve two, three, or more items and is discussed below. The general form of the chi
square fit statistic for item singles and dichotomous data is:

[0i(K)—E;(k)]?
Xt = Zik=o I )

where 0;(k) is the observed frequency of option 4 and E;(k) represents the expected number of
respondents selecting option £. E;(k) is obtained by E;(k) = N [ P(x; = k|0)f(8)d(8), where frefers
to the 0 density (e.g., a unit normal), and the integration uses 161 quadrature points across [-3, 3] (Drasgow

et al., 1995). That is, these statistics calculate the expected response frequencies based on an assumption of
a unit normal distribution.

An item double is a y* statistic based on the expected frequency of endorsing response options £ and £’
concurrently (i.e., expected frequency for an item pair in the (&, £)" cell of the two-way contingency table
for items 7 and j, respectively). After determining the observed frequencies for items 7 and / from a two-way
contingency table the expected frequencies are obtained by:

Ei(k, k") = N [ P(x; = k|0)P(x; = K|8)()d(6), ©)
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In a similar fashion Equation 5 can be extended to obtain a j’ for item triples. For example, a three-way
contingency table is used for estimating the y° using item triplets (see Tay et al., 2011). There are (é) b

possible statistics for item doubles and (é) i for item triples. Because the possible combinations of item
doubles and triples exponentially as the number of items increases, Drasgow et al. (1995) divided the I test
items into I/3 sets of three items. These sets were then used to compute the corresponding j° statistics for
individual items, item pairs for doubles, and the whole set for triples. The degrees of freedom (d)) for these
i statistics equals the number of cells minus one. For instance, for an item with three response categories
there are two dfs and for an item double where each item has 3 response categories the df = 3*3 — 1 = 8.

To account for the dependency of y* on sample size as well as to enhance the comparability across
different sample sizes the y° for item singles, doubles, and triples ate adjusted to a sample size of 3,000 (Tay
etal., 2011), referred to as the (adjusted y°) chi-square statistics. The fit statistic for such items is the ratio of
the chi-square to the respective df y°/df (i.e., the normed chi-square). Therefore, with the sample size
adjustment we have essentially a modified noncentrality parameter estimate:

2_
adj x? = 3,0005=% + df, ©)

The adj Xl-z ratio fit statistic for item singles, doubles, and triples has also been extended to assessing
model-level fit by aggregating the item-level statistics. The premise involves taking the mean of the adj x?
ratios and comparing it with the value of 3. Mean ratios less than 3 for item singles, doubles, and triples
indicate good model fit (Chernyshenko et al., 2001); this criterion also applies to the y’/df ratios (Drasgow
et al., 1995). The value of 3 is based on empirical findings using empirical large cognitive ability and
personality data sets with dominance models (Chernyshenko et al., 2001; Drasgow et al., 1995). Additionally,
their design did not allow an investigation of the statistic’s ability to identify known misfit/fit nor was the
justification for a value of 3 articulated. Although based on a normed chi-square it should be noted that the
adj x? ratios and mean adj x? ratios may be negative. Thus, this statistic does not follow a chi-square
distribution.

Research has shown that the chi-square statistic ratio for item singles is generally insensitive to detecting
misfit under various conditions. For example, Nye et al. (2020) and Tay et al. (2011) found that a chi-square
statistic ratio for item singles is a poor indicator of misfit (i.e., predicated on a value of 3) under most
conditions pertaining to different sample sizes and number of items. However, the use of doubles and triples
have, generally speaking, have had mixed results. For instance, Tay and colleagues (2011) found the adj x?
ratio fit tests for item pairs and triplets had difficulty detecting misfit when the GGUM was fit to 2PLM
generated data with 15 items. In contrast, Nye et al. (2020) found that adj x? ratio for item doubles and
triples were among the most accurate indicators of misfit; data were generated according to the 2PLLM and
3PLM. However, the adj x? ratio for single items did not perform as well in detecting misfit as item doubles
and triples. Nevertheless, power did improve for adj x? ratio for single items once the number of items was

greater than 20. The adjusted chi-square fit statistics will be denoted as either adj x? ratio or ratios in the
following.

The above statistic seeks to determine if the model is correct (i.e., absolute fit). An alternative approach
is to determine which of a set of candidate models fits the best (i.e., relative fit). Two commonly used
measures of relative model fit are the Akaike’s information criterion (AIC, Akaike, 1973) or Bayesian
information criterion (BIC, Schwarz, 1978). These indices penalize the log-likelihood function for the
number of model parameters. BIC differs from AIC by using a penalty that also involves the sample size.
AlCis given by —2InL + 2v and BICis—2InL + v log (N), where /nl_is the log-likelihood, » is the number
of parameters in the model, and N is the sample size. These relative fit statistics have shown promising
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results for correctly identifying fit for ideal point and dominance models under conditions different than
those studied here (Nye et al., 2020).

Contribution of the Current Study to the GGUM Model Fit Literature

In many situations in which IRT is applied the practitioner is interested in applying a particular model
rather than selecting among competing models. Thus, an absolute fit statistic would be useful. The current
study seeks to shed light on the mixed findings discussed above. To accomplish this objective the study’s
design is similar in scope to studies such as Nye et al. (2020) and Tay et al. (2011). In part, this study attempts
to verify previous findings (cf. replicability crisis) while simultaneously contributing new knowledge. To this
end, there are notable differences. First, no study has used the AA4IC index with ideal point models; the
AAIC index is discussed below. Additionally, Tay et al. (2011) used adj x? ratios in a relative fashion and
software which is most likely no longer available to the practitioner. For instance, the FORSCORE software
used for obtaining the adj x? ratios is dated 1993 and the GGUM2004 (MMLE) calibration program used
was an unreleased version in 2011 (i.e., its comparability to the released version cannot be assumed). This
study uses software which is freely available as R packages and because of its inclusion of AIC does not use

adj x? ratios in a relative fashion, but from an absolute perspective.

Additionally, Tay et al. (2011) dropped items located in the middle of the continuum because it was
“difficult to obtain IRT estimates of items close to the middle of the continuum with dominance procedures”
(p. 292). In contrast, no items were dropped in this study and we did not encounter difficulties with obtaining
estimates in the middle of the continuum. Finally, Tay et al. (2011) did not examine AIC and essentially
looked at upper asymptote misfit. Our inclusion of the 3PLM allows us to examine lower tail asymptotic
misfit.

In this study and with respect to AIC/BIC we introduce to the psychometric literatutre the use of AAIC
and its use with screening values. In terms of the absolute fit index adj x? ratio tests, previous studies have
assumed the conventional “critical value” of 3 for misfit detection used with dominance models is
appropriate for ideal point models. This value comes from analyses involving dominance models with
empirical data although it is unclear what the justification for this value is. Additionally, in the fit studies
presented above the value of 3 was assumed to be applicable to the ideal point model. Moreover, no studies
were found that investigated other screening values under known conditions. (Tay etal. [2011] suggests that
a value of 3 be re-examined.) In the present study we examine several screening values in addition to 3 to
assess the effect on fit detection. Third, previous simulation work has always used the location range [-2, 2].
This range is well within the -3 to 3 integration range used for calculating the chi-squares’ expected values.
As such, the [-2, 2] range does not allow an assessment of the adj X7 ratios with values that may be observed
in practice nor can past results be generalized to locations outside of the [-2, 2] range. Furthermore, extending
the range captures the non-overlapping regions of the IRT models’ item response functions (IRFs) which is
seen as the divergence above a theta level of 2 (see Figure 1, left panel). Thus, the aforementioned proposed
methodological differences between the current study and previous ones complement and contribute to the
extant literature.

Methods
Factors

The four factors examined were sample size (IN: 500, 1000, 2000, 3000), number of items (I: 10, 20, 40),
generation model (GGUM, 2PLM, 3PLM, GRM), and screening value. Relative to the GGUM the 2PLM
creates misfit in the upper asymptote, whereas the 3PLLM is used to create misfit in the upper and lower
asymptotes. The polytomous data are comprised of four ordered response categories. Within each condition,
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data are generated and calibrated 100 times (i.e., 100 replications). For the absolute fit indices the
performance for screening values between 0.25 and 3 in 0.25 increments were examined. All simulations,
calibrations, and estimations of the relative model and absolute fit indices were conducted in R using GGUM
(Tendeiro & Castro-Alvarez, 2020), mirt (Chalmers, 2012), and cat Irt (Nydick, 2014) packages. MMLE
execution parameters for GGUM and mirt were matched to one another. The choice of sample sizes and
number of items was based on previous model fit simulation studies (Nye et al., 2020; Roberts, 2008; Tay et
al., 2011) and recommended rough guidelines (see De Ayala, 2009). Nonconvergence was encountered a few
times with the 10-item condition. However, in these cases the data were regenerated until a data set was
obtained that led to convergence.

Data Generation

Item and Person Parameters. Person parameters were randomly sampled from a N(0, 1) and were
allowed to vary across replications. The distributions for item parameter generation came from Nye et al.
(2020), Roberts et al. (2002), and Tay et al. (2011). The item parameters were allowed to vary across
replications. For the 2PLLM and 3PLM the «; were randomly sampled from a log-normal (0, 0.5) distribution
and following Tay et al. (2011) divided by 1.702 with the item locations randomly sampled from a uniform
distribution U[-3, 3]; the ¥; came from a U[0, 0.3]. The GGUM’s o; were randomly sampled from a UJ0.5,
2.0], the 1 from a U[-1.4. -0.4], with Js randomly sampled from a UJ[-3, 3]. This range permits an examination
of the effect large ds might have on the proportion of correct model identification.

For the polytomous data the o; for the GRM were sampled from a I.N(0, 0.5) distribution and following
Tay et al. (2011) divided by 1.702, whereas for the GGUM they came from a uniform random distribution
[0.5, 2.0]. The GRM category boundary locations were randomly generated from UJ-2, -0.5], U[-0.5, 0.5],
U[0.5, 2], respectively (see Nye et al., 2020). For the GGUM and following Roberts et al. (2002), the 1, were
generated independently for each item. For a selected item 7, the highest 1, (t5) was drawn from a U[-1.4, -
0.4]. Successive ts for each item (i.e., 1, or 1;) were sampled using the following recursive formula:

Tik-1 = Tix — 0.25+ €Cik-1, for k = 2, 3, ., F, (7)

where e;,_; represents a random error term sampled from a N(0, 0.04), F is the number of observable
response categories minus 1. The item ds were randomly sampled from UJ-3, 3].

Response Data Generation. Dichotomous responses were generated by comparing a model’s item
response probabilities to a U0, 1]. A response of 1 was assigned if the uniform random was less than the
item probability, O otherwise.

For polytomous data (m; = 3) the sums of successive response probabilities for categories 0, 1, and 2
were obtained and compared to a random number from U[0,1]. A response (score) of 0, 1, or 2, was assigned
if the randomly sampled uniform number was less than or equal to the category O probability, the sum of
category probabilities 0 and 1, or the sum of category probabilities 0, 1, 2, respectively, otherwise the
response was a 3. For the dominance models catIrt’s 1-based responses were recoded to be O-based. For
the GGUM model response data are generated using the GGUM R package by setting the program’s category
threshold indicator to 1 and 3 for dichotomous data and polytomous data, respectively (Tendeiro & Castro-
Alvarez, 2020).

Model Calibration

The GGUM model was fit to the data using the GGUM package (Tendeiro & Castro-Alvarez, 2020);
GGUM uses MMLE. The selected number of nodes, maximum iterations, and convergence tolerance values
followed those in Tay et al. (2011). The 2PLM, 3PLM, and GRM models were fit to the data using mirt
and to obtain the relative fit indices. With mirt MMLE was selected for model calibration and execution
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parameters (e.g., the number of nodes, maximum iterations) were matched to those of GGUM. Descriptive
statistics for the 3PLM showed that the median y; ranged from 0.06 to 0.14. However, because the
corresponding the mean y; ranged from 0.14 to 0.19 mirt had difficulty estimating y; for one or more
items. The difficulty was most pronounced for the N = 500/ = 10 condition with a difference between
the M and median of 0.13 and, as one would expect, became progressively smaller as N and [ increased.
Thus, the use of priors was implanted in phases.

In phase 1 beta and normal with different shape or location/variability parameters, respectively, were
utilized to improve estimation of yj. Beta prior results were comparatively poor with mirt providing the
warning “Lower and upper bound parameters (g and u) should use 'norm' (i.e., logit) prior”. Of the three
normal priors examined a normal prior with M = -1.5 and SD = 0.5 produced the best results.

Descriptive statistics by condition showed that mirt had difficulty estimating the discrimination
parameter(s) for one or more items. Consequently, in phase 2 a series of lognormal priors for discrimination
estimation was investigated. The results showed a I.N(0.2, 0.2) prior worked best.

Because descriptive statistics for each condition showed one or more items with location estimates that
were in the double digits, phase 3 examined different priors for the intercept. Corresponding results led to
a normal prior located at 0 with variability 1.5 being selected.

Adjusted Chi-square (Absolute Model Fit index)

Because for the absolute fit index model comparisons are unnecessary only the GGUM was fitted to
cach data generation model. As one would do in practice the adj x? ratios were calculated using the
estimated parameters in each replication were used. To compare the performance of the item-level fit
statistics (y2: item singles) to item subsets-level fit statistics (e.g., adj x? ratios based on item subsets for
item doubles and triples) the proportion of items exhibiting misfit per replication were averaged across
replications.

Evaluating model fit for the average adj X? ratios for item singles, doubles, and triples entailed dividing
each index by their corresponding df. Ratios greater than a given screening value of, for example, 3 indicate
misfit. The corresponding correct detection rates across replications for each of the fit indices were
calculated as an indicator of model fit/misfit. For example, if the fit statistic led to incotrectly rejecting the
model-data fit hypothesis when the GGUM model is fit to GGUM generated data four times across the 100
replications, then the incorrect detection rate is .04. Conversely, if the GGUM model is fit to the 2PLM
generated data and the fit statistic led to correctly rejecting the model-data fit hypothesis 89 times across the
100 replications, then the correct detection rate is .89. Unlike other studies (e.g., Nye et al., 2020) that use,
for example, the term “power” and Type I error rate we use the term “correct detection” and “incorrect
detection” (proportion) rates, respectively. Our reasoning lies in the number of replications (100).
Specifically, 100 replications are statistically insufficient for us to treat our proportions as reflective of
probabilities. Rather our proportions are indicative of the relative frequency one might observe over the
long run (i.e., a probability). Unfortunately, the execution times with current computing power and software
does not realistically allow performing 10,000 replications or more to obtain an accurate estimate of a
probability.

Relative Model Fit Indices

In contrast to above, to assess relative fit each model was fitted to each data generation model.
Specifically, for the dichotomous condition the GGUM, 2PLM, and 3PLM were fit to each data generating
models. Similarly, for the polytomous condition the GGUM and GRM were fit to each data generating
models. AIC was utilized using two conventions. First, the model with the lowest AIC,,, (or BIC,,,) was
selected as the “best” fitting model. Second, the difference between model #’s AIC and the minimum AIC
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was calculated (AAIC = AIC, - AIC,,;,). Following Burnham, Anderson, and Huyvaert (2011) a AAIC < 2
indicates that model 4 shows substantial support relative to the model with the minimum AIC and a 4 <
AAIC <7 shows that model 4 has some support; a AAIC > 10 shows no support for model 4. For example,
let AIC,,, be for the GGUM and AIC, for the 2PLM, then a AAIC < 2 indicates strong evidence in favor
of the 2PLM and a 4 < AAIC < 7 indicates some support for the 2PLM fitting as well as the GGUM. Across

the 100 replications the number of times a model was selected as the best fitting was recorded for each
condition.

Results
Absolute Fit Indices for Dichotomous Data

Figure 2 presents the cotrect detection proportions for adj Xiz ratios for item singles, doubles, and triples
across the 100 replications as a function of screening value. As can be seen, correct detection rate is affected
by I, N, and item variants (i.e., singles, doubles, triples) to a greater extent at the lower end of screening value
scale than at its upper end. For screening values of 1.0 and larger and for all item variants, the average adj X7
ratio statistics show correct detection rates greater than .90 and typically closer to 1.0 when the GGUM was
the underlying data model. Correct detection rates for ideal point data progressively fell as the screening
value decreased, this rate of decline varied with item variant, N, and I except for singles with a N = 500.
These declines were associated with an increase in correct detection of dominance data (i.e., 2PLM, 3PLM)
with, generally speaking, larger N associated with greater improvement in detection by item doubles and
triples. For I = 10 increasing IN led to an improvement in detecting that GGUM was inappropriate for the
2PLM (and to a lesser extent the 3PLM). When N < 1000 increasing the instrument length leads to a
comparative improvement in correct detection of dominance data albeit proportions are less than .5. When
I'=20 or 40 and N = 3000 there is an increase in the correct detection of the 2PLM data (and to a lesser
extent the 3PLM data) with a concomitant decrease in correctly identifying ideal point data.

Contrasting Figures 2a, 2b, and 2c shows that for dominance data item doubles and triples outperformed
item singles in correct detection rates for screening values less than approximately 1.0. For NN = 3000 and
screening values 0.5 or less the item doubles correct detection of dominance data ranged from .3 to .87, but
correct detection of ideal point data decreased from 0.3 to .65. For N < 2000 item triples correct detection
of dominance data improved with increasing I with correct detection of the 2PLM approaching .8. When
N = 3000 and a screening value 0.25 correct detection of dominance data was effectively 1.0, but 0 with
respect to ideal point data. When the screening value increased to 0.5, then correct detection of dominance
data fell to 60% to 65% as was the case with ideal point data. This screening value is far below the typically
used value of 3.0.

Relative Fit Indices for Dichotomous Data

Table 1 presents the proportion of times a model was selected as best fitting by AIC,,;, or by AAIC, and
the median AAIC. (Because of space limitations we present only the AIC results; BIC results are similar and
are available from the first author). The GGUM was correctly identified by AIC,,;, and AAIC as best fitting
the GGUM data 100% of the time. For the 2PLLM data AIC,,;, and AAIC correctly identified the appropriate

model over 95% of the time when I > 20 and N > 500. However, with I = 10 AIC,,;, and AAIC incorrectly
identified GGUM as the appropriate model with proportions from .64 to .99 contingent on IN. Neither

AIC,;, and AAIC performed well with the 3PLM generated data.
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Absolute Fit Indices for Polytomous Data

Figure 3 presents the correct detection proportions for adj x? ratios for item singles, doubles, and triples
across the 100 replications as a function of screening value. As can be seen, for screening values 1 and above
and for all item variants, the average adj x? ratio statistics showed correct detection rates between .96 and
1.00 when the GGUM was the underlying data model. In contrast, the average adj x? ratio statistics (singles)
correctly detected that the GGUM was a “misfit” (i.e., the underlying model was the GRM ) increased as
the screening value decreased without a concomitant decrease correct detection rate of ideal point data. This
pattern did not hold for item doubles and triples. In contrast to what is seen with dichotomous data, with
item doubles and triples there was a “sweet spot” that maximize correct detection of both ideal point data
and dominance data; both greater than .95 correct detection rate. This screening value shifted up the scale
from approximately 0.5 for N = 500 to about 1.0 when IN = 3000. In general, for these polytomous data the
screening value 0.75 might be considered to be a good compromise across the N and I conditions. This
screening value could also be considered to work reasonably well with item singles because the correct
detection rate would exceed 80% for both ideal point and dominance data except for when N = 500 and [

= 10. As was the case with dichotomous data, this screening value is far below the typically used value of
3.0.

Relative Fit Indices for Polytomous Data

Table 2 presents the proportion of times a model was selected as best fitting by AIC,,;, or AAIC, and the
median AAIC for the GGUM and GRM polytomous data. Using AIC,,;, or AAIC the GGUM model was
found to best fit the GGUM data regardless of the number of items and sample size 100% of the time.

Moreover, for the GRM data and when I > 20 AIC,,;, and AAIC correctly identified the GRM greater than
99% of the time regardless of N. With less than 20 items AIC,,;’s and AAIC’s accuracy decreased, but still

tended to correctly identify the GRM the majority of the time with .4IC,,;, and AAIC showing comparable
results.
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Figure 2a. adj x? ratios (singles): Correct detection proportions (dichotomous) vs. screening values, I, N.
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Figure 2b. adj x? ratios (doubles): Correct detection proportions (dichotomous) vs. screening values, I, N.
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Figure 2c. adj x? ratios (triples): Correct detection proportions (dichotomous) vs. screening values, I, N.
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Table 1. Relative Fit Indices correct and incorrect detection proportions, dichotomous data.

Model GGUM Data 2PI.M Data 3PLM Data

I | N |Selected | a1C | a4ic | adic<7 | AIC | aaic | a4dic<7 | AIC | a4ic | a41c<7
GGUM [ 1 81.43 1 0.64 | 31.72 0.66 02 [ 598 | 027

500 | 2PLM 0 - 0 036 | 10.49 0.34 08 [1195] 0.73
3PLM 0 _ 0 0 _ 0 0 - 0

GGUM [ 1 [ 163.11 1 0.85 | 50.44 085 [ 043 978 | 050

1000 | 2p1.m 0 - 0 0.15 | 1045 015 [057 [ 987 | 050
10 3PLM 0 - 0 0 - 0 0 - 0
GGUM [ 1 [ 302.73 1 096 | 11625 096 | 0582527 0.59

2000 | 2p1.M 0 - 0 0.04 | 13.28 004 | 0421346 041
3PLM 0 - 0 0 - 0 0 - 0

GGUM [ 1 [ 501.59 1 099 [171.07] 098 [o068[37.10] 0.72

3000 | 2PL.M 0 - 0 0.01 6.03 002 | 0321548 ] 0.28
3PLM 0 _ 0 0 _ 0 0 B 0

GGUM [ 1 [ 187.11 1 0.01 | 17.77 0.01 0 - 0

500 | 2PL.M 0 - 0 0.99 | 3157 0.99 1 [3492] 1.00
3PLM 0 _ 0 0 _ 0 0 - 0

GGUM [ 1 [ 330.67 1 0.04 | 21.16 0.04 0 - 0

1000 | 2pL.M 0 - 0 0.96 | 33.11 0.96 1 [3586| 1.00
20 3PLM 0 - 0 0 - 0 0 - 0
GGUM [ 1 [ 642.48 1 0.05 | 33.20 0.04 0 - 0

2000 | 2pr.M 0 - 0 0.95 | 31.84 0.96 1 [3556[ 1.00
3PLM 0 - 0 0 - 0 0 - 0

GGUM [ 1 [1058.77 1 0.05 | 42.91 0.13 0 R 0

3000 | 2PL.M 0 - 0 0.95 | 3239 0.87 1 [3544 1.00
3PLM 0 _ 0 0 _ 0 0 B 0

GGUM [ 1 [ 460.76 1 0 - 0 0 - 0

500 | 2PL.M 0 - 0 1 64.17 1 1 |[66.24 1
3PLM 0 - 0 0 - 0 0 - 0

GGUM [ 1 [ 957.88 1 0 - 0 0 - 0

1000 | 2pL.M 0 - 0 1 65.81 1 1 ]66.93 1
40 3PLM 0 - 0 0 - 0 0 - 0
GGUM [ 1 [1958.87 1 0 - 0 0 - 0

2000 | 2p1.M 0 - 0 1 65.37 1 1 [e6561| 1.00
3PLM 0 - 0 0 - 0 0 - 0

GGUM [ 1 [2977.17 1 0 _ 0 0 R 0

3000 [ 2p1.M 0 - 0 1 66.38 1 1 [6359] 1.00
3PLM 0 _ 0 0 _ 0 0 B 0

Data generation model indicated by “<model> + Data”; AAIC: median value across replications; AIC is AIC,,;,. For AIC
and AAIC<7 shaded cells indicate correct proportion matches between fitted model and data generating model and unshaded
cells indicate incorrect proportion matches between fitted model and data generating model (i.e., lowest AIC and/ or AAIC<7
obtained by a mismatching model relative to the model’s generated data). Priors used with 3PLM.



Practical Assessment, Research, and Evaluation, 1 0l. 30, Issue 1, No. 10
Alzarouni & De Ayala, Assessing Model Fit of the GGUM

Page 15

Figure 3a. adj x? ratios (singles): Correct detection proportions (polytomous) vs. screening values, I, N.
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Figure 3b. adj x? ratios (doubles): Correct detection proportions (polytomous) vs. screening values, I, N.
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Figure 3c. adj x? ratios (triples): Correct detection proportions (polytomous) vs. screening values, I, N.
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Table 2. Relative Fit Indices correct and incorrect detection proportions, polytomous data.
GGUM Data GRM Data
Model
I N AIC AAIC | AAIC<7 | AIC AAIC | AAIC<T
Selected
200 GGUM 1 374.37 1 0.28 32.92 0.27
GRM 0 - 0 0.72 88.05 0.73
1000 GGUM 1 745.33 1 0.33 56.49 0.27
10 GRM 0 - 0 0.67 192.97 0.73
2000 GGUM 1 1378.61 1 0.34 169.90 0.29
GRM 0 - 0 0.66 293.91 0.71
3000 GGUM 1 2278.15 1 0.33 257.39 0.32
GRM 0 - 0 0.67 389.72 0.68
500 GGUM 1 838.04 1 0.01 2.87 0
GRM 0 - 0 0.99 290.52 1
GGUM 1 1791.31 1 0 - 0
1000
20 GRM 0 - 0 1 536.59 1
GGUM 1 3579.41 1 0 - 0
2000
GRM 0 - 0 1 976.07 1
GGUM 1 5195.68 1 0 - 0
3000
GRM 0 - 0 1 1485.43 1
i~ GGUM 1 2074.6 1 0 - 0
GRM 0 - 0 1 420.76 1
GGUM 1 4280.06 1 0 - 0
1000
10 GRM 0 - 0 1 751.9 1
GGUM 1 8307.04 1 0 - 0
2000
GRM 0 - 0 1 1400.44 1
GGUM 1 12,763.51 1 0 - 0
3000
GRM 0 - 0 1 2203.92 1

Data generation model indicated by “<model> + Data”; 4 response categories; AAIC: median value across replications; AIC
is AIC,,;,.. For AIC and AAIC<7 shaded cells indicate correct proportion matches between fitted model and data generating
model and unshaded cells indicate incorrect proportion matches between fitted model and data generating model (i.e., lowest AIC

and/ or AAIC<7 obtained by a mismatching model relative to the model’s generated data).

Discussion

This study examined the performance of the absolute adj X?ratio statistics and relative fit with .4IC,,;,
and AAIC indices for the GGUM with dichotomous and ordered polytomous dominance and ideal point
data. As indicated in the Contribution of the Current Study section, the objective was to contribute to the
model-data fit work in this area by verifying previous findings, more fully investigating the screening value
issue, and resolving previous conflicting results.
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For the absolute fit statistic results and item singles, doubles, and triples the GGUM fit the GGUM data
correct detection rate increased as screening value increased with a detection rate of over 96% of the time
with screening value of 0.75 or higher. Therefore, if the practitioner/researcher believes that an individual
will agree with, for example, an attitude statement that reflects the participant’s view (i.e., §; = ¢) and will
disagree with a statement that is less or more extreme than their view (i.e., ideal point data), then this result
is encouraging. In contrast, with dominance data the adj x? ratio test correctly detected that the GGUM
was a “misfit” only between 0% and 20% performing slightly better with the 2PLM than with the 3PLM
data; this result is similar to Tay et al. (2011). Recall that with dominance data the practitioner/researcher
believes that an individual will agree with a statement to the extent that the statement reflects a perspective
that is equal to less extreme than their view (i.e., for J; < 0 then p(x = 1) is maximized).

In certain situations adj X7 ratio’s performance can be explained by noting that its expected value
assumes a unit normal distribution with a quadrature integration range of [-3, 3]. For example, assume 2PLM
data are generated for an item located at 0.0 (Figure 4). When the GGUM is fit to these data its item location
is estimated to be higher, say 2.85, while simultaneously adjusting «; and 1 to shift the modal probability up
the scale and to broaden and increase its height so there is little discrepancy between the two IRFs between
-3 and 3; examination of various misfitting items verified that this occurred. The adj x? ratio reflects this
correspondence between -3 and 3 and the GGUM is found to fit the 2PLM data below 3. Although the
GGUM’s upper asymptote for this item is O the IRF’s transition to a monotonically decreasing function
occurs above 3. Thus, the 2PLM and GGUM IRFs’ upper asymptotes discrepancy occurs above the
integration range’s upper bound and is not reflected in the expected value. Thus, the IRFs discrepancy that
would distinguish the two models from one another is not captured by the adj x? ratio. Similarly, with the
3PLM lower asymptote the IRFs the discrepancy (i.e., between an IRF with a y, = 0.2 and the GGUM lower
asymptote of 0) may occur below -3 and would not be reflected in the adj x? ratio (This explanation
generalizes to item doubles and triples.) Because the GGUM can fit the 2PLLM (or 3PLLM) data between -3
and 3, the context determines if fit in this interval is good enough for the intended purpose. By increasing
the integration interval to [-4, 4] or [-6, 6] and a non-unit normal the adj x? ratio’s ability to distinguish
between upper and lower asymptotes could improve.

Figure 4. Response Functions (GGUM, o« = 1.45, 6 = 2.85, 11 = -2.8; 2PLM, « = 1.5, 6 = 0.0)
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With ordered polytomous data we see different adj x? ratio results. With these data the GGUM will
have some ORFs that are asymptotic with 0.0. Because, conditional on theta, the sum of the probabilities
of responding to the item options is 1.0, then there is one ORF that must be asymptotic with 1.0 (see Figure
1 right panel). By definition this ORF will not transition to a monotonically decreasing function as 0
approaches +oo as the IRF does in the dichotomous case. Thus, the adj x? ratio can distinguish between
the GRM and GGUM by the correspondence between the models” ORFs within the [-3, 3] range.

For all intents and purposes reducing the screening value for the adj x? ratio did not have a meaningful
impact in detecting GGUM misfit with the dichotomous dominance data unless one considers correct
detection rates of 60% to 65% acceptable. However, with ordered polytomous data we see that instrument
length, sample size, and screening value interacting to enhance the adj X? ratio correct detection rate for
identifying the GGUM not fitting the GRM data while still maintaining the ability to correctly identify ideal
point data regardless of whether item singles, doubles, and triples are used. Moreover, it appears that part of
the performance differences between item singles, doubles, and triples previously seen in the literature is
due to using a screening value of 3. Nevertheless, results exhibit the previously seen pattern in which doubles
and triples outperform item singles just not as dramatically.

In terms of the relative fit indices, dichotomous and ordered polytomous data, AIC,,;, and AAIC always
correctly identified the GGUM as the best fitting model to the GGUM data regardless of number of items
and N. With respect to the 2PLM and GRM data, AIC,,;, and AAIC correctly identified that the GGUM was
not the best model at least 95% or more of the time when I > 20. For the dichotomous data neither AIC
detection approach was able to correctly identify the dominance generating model when I = 10. Thus, with
dichotomous data one sees that AIC/BICs utility affected by the reduction in the number of model
parameters compared to the longer lengths. Stated another way, the penalties imposed by .4IC/BIC do not
always sufficiently compensate for model complexity. (With the polytomous data this is less of an issue
because of the increase in the number of model parameters.) Contrasting AIC,,, with AAIC one sees very
little difference in performance.

Recall that AIC, AAIC, and BIC do not specify whether a model fits the data, but only thatin comparison
to candidate models a particular model fits the best. For example, the 2PLM may be selected as fitting a two-
dimensional data set with an interdimensional correlation of .05 better than the 1PLM or 3PLLM not that the
2PLM is the true model nor that it fits the data. As seen in this study, the 2PLM fit the 3PLM data better
than the 3PLM.

Utilizing absolute fit diagnostic item-level information would allow one to determine for which item, if
any, the model is not functioning well and thereby permit the practitioner to make appropriate modifications.

Using adj x? ratio with a modified integration range and a focus on item and not model-level fit (as done
above) might be useful for this purpose.

This study’s adj X? ratio test results do not fully agree with those from previous studies with respect to
item doubles and triples. This discrepancy may be due to methodological differences between this study and

that of Tay et al. (2011). In Tay et al. (2011), the assessment of fit examined the adj x? ratios between IRT

models in relative terms. That is, the proportion of the adj x? ratio values across replications obtained by
fitting the correct model to its data was compared to those of a misspecified model (i.e., the comparison was

relative to the misspecified model). In contrast, in this study the performance of the adj x? ratios for item
singles, doubles, and triples involved comparing the adj x? ratios screening values to indicate fit; this is akin
to practice. Thus, this difference might account for the more favorable results found in Tay et al. (2011).
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General Guidelines for the GGUM Fit Assessment

If one intends to utilize the adj x? ratios or relative fit indices to assess fit for the GGUM with either
empirical data (e.g., from noncognitive measures) or simulated data we present general guidelines for
consideration. First, if one fits the GGUM to empirical data, then the adj )(l2 ratios tests of absolute fit will
almost always perform better at correctly detecting misfit with polytomous data than with dichotomous data.
Thus, personality statements with a dichotomous response format that are, theoretically, best represented

by ideal point models should not rely solely on the adj xZ ratios tests of absolute fit. Second, the cutoff
mean ratio value of 3 should not be taken for granted as valid for model-level fit assessment applications.
Rather, absolute fit diagnostic item-level information might be a better option, specifically for dichotomous
data. Moreover, although at the model-level a cutoff mean ratio value of 0.75 for polytomous data seems
promising, additional research should examine its applicability under additional conditions (e.g., a different
number of options, with unordered polytomous data). Finally, because with dichotomous data the penalties
imposed by AIC/BIC do not always sufficiently compensate for model complexity at short instrument
lengths their use by researchers should be done with care.
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