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Abstract: The assessment of model fit in latent trait modeling is an integral part of correctly applying the 
model. Still the assessment of model fit has been less utilized for ideal point models such as the Generalized 
Graded Unfolding Models (GGUM). The current study assesses the performance of the relative fit indices 
AIC and BIC, and the absolute fit adjusted chi-square statistic for the GGUM for both dichotomous and 
polytomous data. Factors included data generation model, sample size, instrument length, and screening 
value. Results show that relative fit indices performed well in identifying the GGUM when at least 20-items 
were used. For polytomous data the correct generation model was identified as the best fitting mode 
irrespective of the number of items and sample size. The adjusted chi-square statistic performed well in 
correctly identifying GGUM as the best fit for the GGUM dichotomous data generation, but performed 
poorly with the dominance models. With polytomous data case these fit indices always correctly identified 
GGUM as the best fit for the GGUM data. An explanation for this performance is provided. 
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Introduction 

Item response theory (IRT) models provide several advantages over classical test theory such as the 
independence of item and person parameter estimation from calibration samples and the assessment of 
person parameter estimation accuracy at the individual level. However, these advantages will not be realized 
if the selected IRT model does not fit the data. Surprisingly, fit determination in applications is not as 
ubiquitous as one would expect. For example, it has been estimated that more than 40% of published articles 
in the organizational research literature utilizing IRT models do not include any fit examination (Nye et al., 
2020). 

There are many IRT models that may be used for proficiency, attitude, or personality assessment. One 
IRT taxonomy classifies these models as either ideal point or dominance models. The 1-, 2-, 3-parameter 
models and the graded response model (GRM; Samejima, 1969) are examples of dominance-based models. 
With dominance models a person’s disagree-agree response to an attitude item reflects the extent to which 
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their opinion (i.e., their location on the latent trait) is greater than the sentiment stated in the item (i.e., item’s 
location) (cf. Roberts & Laughlin, 1996). In contrast, with ideal point models a person’s disagree-agree 
response reflects the extent to which their opinion coincides with the sentiment stated in the item (i.e., 
person and item locations match). The graded unfolding model and the generalized graded unfolding model 
(GGUM; Roberts et al., 2000) are examples of ideal point models (Roberts, Donoghue, & Laughlin, 2000). 
Several researchers (Drasgow et al., 2010; Chernyshenko et al., 2007 (cited in Tay et al., 2011); Nye et al., 
2020; Roberts et al., 2000; Stark et al., 2006; Tay et al., 2011) have shown that both dichotomously- and 
polytomously-scored attitude or personality statements involving self-report are best represented by ideal 
point models. 

Although Roberts (2008) has examined item data fit for ideal point models (GGUM), few studies have 
systematically examined fit for ideal point models relative to dominance models (Roberts, 2008). A fit 
statistic commonly used with the GGUM is the adjusted chi-square statistic. Unfortunately, studies 
examining its performance have shown contradictory results (see Nye et al., 2020; Tay et al., 2011). This 
study investigates the (absolute fit) adjusted chi-square statistic as well as information criterion (relative) fit 
approaches (AIC and BIC) in detecting GGUM misfit with unidimensional dichotomous and ordered 
polytomous simulated data. Below we briefly introduce the dominance and ideal point models followed by 
a contrast between the two classes, and a review of the fit literature as it applies to the GGUM. 

 

Literature Review 

IRT Dominance Models 

One commonly used model for dichotomous unidimensional data is the three-parameter logistic model 
(3PLM; Birnbaum, 1968). The 3PLM specifies the probability (p) of a response xi (e.g., correct 
response/endorsement) on item i given the latent trait of interest (θ) as: 

𝑝(𝑥𝑖 = 1|𝜃, 𝛼𝑖 , 𝛿𝑖 , 𝛾𝐢) =  𝛾𝑖 + (1 − 𝛾𝑖) 
𝑒1.702𝛼𝑖(𝜃−𝛿𝑖)

1+ 𝑒1.702𝛼𝑖(𝜃−𝛿𝑖),                (1) 

where αi is the discrimination parameter, δi is an item location parameter, 𝛾i is the pseudo-guessing parameter; 

i = 1...I items. By setting 𝛾i = 0 we obtain the two-parameter logistic model (2PLM). The 

𝑝(𝑥𝑖 = 1|𝜃, 𝛼𝑖 , 𝛿𝑖 , 𝛾i) as a function of θ is represented by an item response function (IRF). 

Although multiple IRT models are applicable to ordered polytomous data , our focus in on the graded 
response model (GRM; Samejima, 1969). The GRM compares response probabilities in a cumulative 
fashion. Thus, according to the GRM the probability of obtaining a category score xi or higher on item i 
conditional on θ is: 

Pxi
∗ =  

𝑒𝛼𝑖(θ−𝛿𝑥𝑖)

1+ 𝑒𝛼𝑖(θ−𝛿𝑥𝑖)
,                  (2) 

where Pxi
∗  is the cumulative probability, αi is the discrimination, δxi is the category boundary location for 

category score xi, and xi = {0, 1, ..., mi}; mi represents the number of category boundaries. The δxi=k 
represents the boundary between categories k and k – 1. To obtain the probability of a response in a specific 

category k (pk) requires taking the difference between successive Pxi
∗ s. For example, to obtain the probability 

in a specific category k (i.e., xi = k) we have 𝑝𝑘 = 𝑝𝑘
∗ − 𝑝𝑘−1

∗  with P0
∗  1 and P𝑚𝑖+1

∗   0. This 
probability as a function of θ is represented by an option response function (ORF).  

 

 

 
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IRT Ideal Point Models 

Ideal point models do not assume the dominance models' cumulative monotonic response function, but 
rather a non-cumulative unfolding single-peaked response function (Roberts et al., 2000) that reflects that a 
person’s response depends on the proximity between an item’s location and the person’s standing on the 
latent trait. The GGUM is: 

𝑝(𝑥𝑖 = 𝑐 | θj) =  
exp{𝛼𝑖 [𝑐(𝜃𝑗− 𝛿𝑖)−∑ τ𝑖𝑘

𝑐
𝑘=0 ]}+ exp{𝛼𝑖 [(𝑀−𝑐)(𝜃𝑗− 𝛿𝑖)−∑ τ𝑖𝑘

𝑐
𝑘=0 ]}

∑ {exp {𝛼𝑖 [𝑤(𝜃𝑗− 𝛿𝑖)−∑ τ𝑖𝑘
𝑤
𝑘=0 ]}𝐵

𝑤=0 + exp{𝛼𝑖 [(𝑀−𝑤)(𝜃𝑗− 𝛿𝑖)−∑ τ𝑖𝑘
𝑤
𝑘=0 ]}}

,        (3) 

where xi represents the observed response to item i, τik indicates the location of the kth response category 
threshold on the latent continuum with respect to the ith item location (Roberts et al., 2000), with c = 0 and 
c = B indicating the strongest level of disagreement and agreement, respectively, B is the number of 
observable response categories minus 1 (i.e., c = 0, 1, 2, ..., B), M = 2B + 1, and all other symbols are defined 
above. 

Dominance and Ideal Points Models’ Item Response Functions 

The use of the 2PLM with self-report data such as those assessing attitudes and personality (i.e., 
noncognitive items) can be found in the literature (e.g., Tay et al., 2011). As mentioned above, these data 
may also be represented by an ideal point process (Roberts & Laughlin, 1996). In this regard, Tay et al. (2011) 
found “… the GGUM fits dominance data about as well as the 2PLM short scales and is only slightly inferior 
for long scales” (p. 287; italics ours); ”short” scales are defined as 15 items. 

Figure 1. Response Functions (Left: GGUM, α = 0.9, δ = 2, τ1 = -1.3; 2PLM, α = 1.1, δ = 0.5) and GGUM 
ORFs (Right: GGUM, α = 0.7, δ = 0.3, τ1 = -2, τ2 = -0.8, τ3 = -0.3). 

 

Figure 1 (left panel) shows the GGUM and 2PLM IRFs for a hypothetical dichotomously scored item. 
For instance, assume we have an item "When can a woman have an abortion?" with responses "Never" and 
"Anytime." We score "Never" as 0, "Anytime" as 1. Our construct’s continuum runs from less/not favorable 
at the low end to favorable at the upper end. As can be seen, the GGUM IRF shows that the probability of 
endorsing this item has an ideal location on the continuum (i.e., around 2) and that as one progresses away 
from this location in either direction the probability decreases. In contrast, the 2PLM IRF predicts that as a 
person's location increases the probability of endorsing this item increases. Thus, to the extent that the 
observed data at the upper end on the continuum reflect individuals who believe abortions are permissible 
only under certain circumstances (e.g., rape/incest), the 2PLM will not appropriately model the data. In 
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contrast, this data pattern can be correctly modeled with the GGUM. As can be seen, the GGUM and 2PLM 
response functions provide very similar response probabilities for persons located below approximately 1.5. 
This similarity of GGUM and 2PLM IRFs is common except for large item locations (e.g., δ > 3). In other 
words, unless the GGUM location parameters are extreme enough for their response probabilities to be 
differentiable from those of dominance models, dominance IRT models such as the 2PLM can fit GGUM 
data well for items with low to moderate item locations (e.g., δ < 1.5; see Figure 1 (left panel)). 

Figure 1 (right panel) presents the GGUM’s ORFs for a hypothetical ordered polytomously-scored item. 
To provide context assume that we are interested in measuring the need for cognition, which is “the tendency 
for an individual to engage in and enjoy thinking” (Cacioppo & Petty, 1982, p. 116). The continuum has 
individuals who would score high on the need for cognition at one end (e.g., faculty, researchers, physicians, 
nurses) and individuals who would score low at the other end such as construction workers and 
“hypothetically” some intellectuals (e.g., philosophers) who might argue that mental deliberation doesn’t 
always lead to the best course of action (Arpaly & Schroeder, 2018). This latter group might in turn disagree 
to statements that would lead to high scores on the inventory. An example item from the scale is “I tend to 
set goals that can be accomplished only by expending considerable mental effort” with a four-point response 
scale of “almost never true,” “rarely true,” “often true,” and “almost always true.” As can be seen, the 
probability of selecting category 0 (e.g., “almost never true”) is the highest for individuals at the lower and 
upper continuum. Similarly, category 1 (“rarely true”) is the most likely response for individuals located at 
approximately -1.5 and 1.5. Respondents located in the center of the continuum are most likely to select 
category 3 (“almost always true”) although category 2 is still a stronger possibility than either category 0 or 
1. Conditional on θ the probabilities of responding to each category sum to 1.  

Model Fit Statistics 

One common fit approach involves the squared residuals between the observed and predicted responses 
to determine the degree of misfit between the data and fitted model. The process of examining and 
comparing residuals in IRT for item/model fit examination usually involves chi-square or likelihood-ratio 
tests (Ames & Penfield, 2015). As mentioned above, research involving these absolute fit indices has, in 
general, not yielded consistent results in identifying GGUM misfit.  

Drasgow et al. (1995) presented a family of absolute fit statistics known as the chi-square statistic. One 
can calculate these statistics for an item or for multiples of items. The former is referred to as an item single, 
whereas the latter can involve two, three, or more items and is discussed below. The general form of the chi 
square fit statistic for item singles and dichotomous data is: 

𝜒𝑖
2 =  ∑

[𝑂𝑖(𝑘)−𝐸𝑖(𝑘)]2

𝐸𝑖(𝑘)
1
𝑘=0 ,               (4) 

where 𝑂𝑖(𝑘) is the observed frequency of option k and 𝐸𝑖(𝑘)  represents the expected number of 

respondents selecting option k. 𝐸𝑖(𝑘)  is obtained by 𝐸𝑖(𝑘) = 𝑁 ∫ 𝑃(𝑥𝑖 = 𝑘|θ)𝑓(θ)𝑑(θ), where f refers 
to the θ density (e.g., a unit normal), and the integration uses 161 quadrature points across [-3, 3] (Drasgow 
et al., 1995). That is, these statistics calculate the expected response frequencies based on an assumption of 
a unit normal distribution.  

An item double is a χ2 statistic based on the expected frequency of endorsing response options k and k’ 
concurrently (i.e., expected frequency for an item pair in the (k, k’)th cell of the two-way contingency table 
for items i and j, respectively). After determining the observed frequencies for items i and j from a two-way 
contingency table the expected frequencies are obtained by:  

𝐸𝑖(𝑘, 𝑘′) = 𝑁 ∫ 𝑃(𝑥𝑖 = 𝑘|θ)𝑃(𝑥𝑗 = 𝑘′|θ)𝑓(θ)𝑑(θ),           (5) 
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In a similar fashion Equation 5 can be extended to obtain a χ2 for item triples. For example, a three-way 

contingency table is used for estimating the χ2 using item triplets (see Tay et al., 2011). There are (𝐼
2
) χ2 

possible statistics for item doubles and (𝐼
3
) χ2 for item triples. Because the possible combinations of item 

doubles and triples exponentially as the number of items increases, Drasgow et al. (1995) divided the I test 
items into I/3 sets of three items. These sets were then used to compute the corresponding χ2 statistics for 
individual items, item pairs for doubles, and the whole set for triples. The degrees of freedom (df) for these 
χ2 statistics equals the number of cells minus one. For instance, for an item with three response categories 
there are two dfs and for an item double where each item has 3 response categories the df = 3*3 – 1 = 8.  

To account for the dependency of χ2 on sample size as well as to enhance the comparability across 
different sample sizes the χ2 for item singles, doubles, and triples are adjusted to a sample size of 3,000 (Tay 
et al., 2011), referred to as the (adjusted χ2) chi-square statistics. The fit statistic for such items is the ratio of 
the chi-square to the respective df: χ2/df (i.e., the normed chi-square). Therefore, with the sample size 
adjustment we have essentially a modified noncentrality parameter estimate: 

𝑎𝑑𝑗 χ𝑖
2 = 3,000

χ𝑖
2−𝑑𝑓

𝑁
+ 𝑑𝑓,               (6) 

The 𝑎𝑑𝑗 χ𝑖
2 ratio fit statistic for item singles, doubles, and triples has also been extended to assessing 

model-level fit by aggregating the item-level statistics. The premise involves taking the mean of the 𝑎𝑑𝑗 χ𝑖
2 

ratios and comparing it with the value of 3. Mean ratios less than 3 for item singles, doubles, and triples 
indicate good model fit (Chernyshenko et al., 2001); this criterion also applies to the χ2/df ratios (Drasgow 
et al., 1995). The value of 3 is based on empirical findings using empirical large cognitive ability and 
personality data sets with dominance models (Chernyshenko et al., 2001; Drasgow et al., 1995). Additionally, 
their design did not allow an investigation of the statistic’s ability to identify known misfit/fit nor was the 
justification for a value of 3 articulated. Although based on a normed chi-square it should be noted that the 

𝑎𝑑𝑗 χ𝑖
2 ratios and mean 𝑎𝑑𝑗 χ𝑖

2 ratios may be negative. Thus, this statistic does not follow a chi-square 
distribution. 

Research has shown that the chi-square statistic ratio for item singles is generally insensitive to detecting 
misfit under various conditions. For example, Nye et al. (2020) and Tay et al. (2011) found that a chi-square 
statistic ratio for item singles is a poor indicator of misfit (i.e., predicated on a value of 3) under most 
conditions pertaining to different sample sizes and number of items. However, the use of doubles and triples 

have, generally speaking, have had mixed results. For instance, Tay and colleagues (2011) found the 𝑎𝑑𝑗 χ𝑖
2 

ratio fit tests for item pairs and triplets had difficulty detecting misfit when the GGUM was fit to 2PLM 

generated data with 15 items. In contrast, Nye et al. (2020) found that 𝑎𝑑𝑗 χ𝑖
2 ratio for item doubles and 

triples were among the most accurate indicators of misfit; data were generated according to the 2PLM and 

3PLM. However, the 𝑎𝑑𝑗 χ𝑖
2 ratio for single items did not perform as well in detecting misfit as item doubles 

and triples. Nevertheless, power did improve for 𝑎𝑑𝑗 χ𝑖
2 ratio for single items once the number of items was 

greater than 20. The adjusted chi-square fit statistics will be denoted as either 𝑎𝑑𝑗 χ𝑖
2 ratio or ratios in the 

following. 

The above statistic seeks to determine if the model is correct (i.e., absolute fit). An alternative approach 
is to determine which of a set of candidate models fits the best (i.e., relative fit). Two commonly used 
measures of relative model fit are the Akaike’s information criterion (AIC, Akaike, 1973) or Bayesian 
information criterion (BIC, Schwarz, 1978). These indices penalize the log-likelihood function for the 
number of model parameters. BIC differs from AIC by using a penalty that also involves the sample size. 

AIC is given by −2𝑙𝑛𝐿 + 2𝑣 and BIC is−2𝑙𝑛𝐿 + 𝑣 log (𝑁), where lnL is the log-likelihood, v is the number 
of parameters in the model, and N is the sample size. These relative fit statistics have shown promising 
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results for correctly identifying fit for ideal point and dominance models under conditions different than 
those studied here (Nye et al., 2020). 

Contribution of the Current Study to the GGUM Model Fit Literature 

In many situations in which IRT is applied the practitioner is interested in applying a particular model 
rather than selecting among competing models. Thus, an absolute fit statistic would be useful. The current 
study seeks to shed light on the mixed findings discussed above. To accomplish this objective the study’s 
design is similar in scope to studies such as Nye et al. (2020) and Tay et al. (2011). In part, this study attempts 
to verify previous findings (cf. replicability crisis) while simultaneously contributing new knowledge. To this 

end, there are notable differences. First, no study has used the ∆AIC index with ideal point models; the 

∆AIC index is discussed below. Additionally, Tay et al. (2011) used 𝑎𝑑𝑗 χ𝑖
2 ratios in a relative fashion and 

software which is most likely no longer available to the practitioner. For instance, the FORSCORE software 

used for obtaining the 𝑎𝑑𝑗 χ𝑖
2 ratios is dated 1993 and the GGUM2004 (MMLE) calibration program used 

was an unreleased version in 2011 (i.e., its comparability to the released version cannot be assumed). This 
study uses software which is freely available as R packages and because of its inclusion of AIC does not use 

𝑎𝑑𝑗 χ𝑖
2 ratios in a relative fashion, but from an absolute perspective.  

Additionally, Tay et al. (2011) dropped items located in the middle of the continuum because it was 
“difficult to obtain IRT estimates of items close to the middle of the continuum with dominance procedures” 
(p. 292). In contrast, no items were dropped in this study and we did not encounter difficulties with obtaining 
estimates in the middle of the continuum. Finally, Tay et al. (2011) did not examine AIC and essentially 
looked at upper asymptote misfit. Our inclusion of the 3PLM allows us to examine lower tail asymptotic 
misfit. 

In this study and with respect to AIC/BIC we introduce to the psychometric literature the use of ∆AIC 

and its use with screening values.  In terms of the absolute fit index 𝑎𝑑𝑗 χ𝑖
2 ratio tests, previous studies have 

assumed the conventional “critical value” of 3 for misfit detection used with dominance models is 
appropriate for ideal point models. This value comes from analyses involving dominance models with 
empirical data although it is unclear what the justification for this value is. Additionally, in the fit studies 
presented above the value of 3 was assumed to be applicable to the ideal point model. Moreover, no studies 
were found that investigated other screening values under known conditions.  (Tay et al. [2011] suggests that 
a value of 3 be re-examined.)  In the present study we examine several screening values in addition to 3 to 
assess the effect on fit detection. Third, previous simulation work has always used the location range [-2, 2]. 
This range is well within the -3 to 3 integration range used for calculating the chi-squares’ expected values. 

As such, the [-2, 2] range does not allow an assessment of the 𝑎𝑑𝑗 χ𝑖
2 ratios with values that may be observed 

in practice nor can past results be generalized to locations outside of the [-2, 2] range. Furthermore, extending 
the range captures the non-overlapping regions of the IRT models’ item response functions (IRFs) which is 
seen as the divergence above a theta level of 2 (see Figure 1, left panel). Thus, the aforementioned proposed 
methodological differences between the current study and previous ones complement and contribute to the 
extant literature. 

 

Methods 

Factors 

The four factors examined were sample size (N: 500, 1000, 2000, 3000), number of items (I: 10, 20, 40), 
generation model (GGUM, 2PLM, 3PLM, GRM), and screening value. Relative to the GGUM the 2PLM 
creates misfit in the upper asymptote, whereas the 3PLM is used to create misfit in the upper and lower 
asymptotes. The polytomous data are comprised of four ordered response categories. Within each condition, 



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 10 Page 7 
Alzarouni & De Ayala, Assessing Model Fit of the GGUM 

 

 

data are generated and calibrated 100 times (i.e., 100 replications). For the absolute fit indices the 
performance for screening values between 0.25 and 3 in 0.25 increments were examined. All simulations, 
calibrations, and estimations of the relative model and absolute fit indices were conducted in R using GGUM 

(Tendeiro & Castro-Alvarez, 2020), mirt (Chalmers, 2012), and catIrt (Nydick, 2014) packages. MMLE 

execution parameters for GGUM and mirt were matched to one another. The choice of sample sizes and 
number of items was based on previous model fit simulation studies (Nye et al., 2020; Roberts, 2008; Tay et 
al., 2011) and recommended rough guidelines (see De Ayala, 2009). Nonconvergence was encountered a few 
times with the 10-item condition. However, in these cases the data were regenerated until a data set was 
obtained that led to convergence. 

Data Generation 

Item and Person Parameters. Person parameters were randomly sampled from a N(0, 1) and were 
allowed to vary across replications. The distributions for item parameter generation came from Nye et al. 
(2020), Roberts et al. (2002), and Tay et al. (2011). The item parameters were allowed to vary across 
replications. For the 2PLM and 3PLM the αi were randomly sampled from a log-normal (0, 0.5) distribution 
and following Tay et al. (2011) divided by 1.702 with the item locations randomly sampled from a uniform 

distribution U[-3, 3]; the 𝛾i came from a U[0, 0.3]. The GGUM’s αi were randomly sampled from a U[0.5, 
2.0], the τik from a U[-1.4. -0.4], with δis randomly sampled from a U[-3, 3]. This range permits an examination 
of the effect large δs might have on the proportion of correct model identification. 

For the polytomous data the αi for the GRM were sampled from a LN(0, 0.5) distribution and following 
Tay et al. (2011) divided by 1.702, whereas for the GGUM they came from a uniform random distribution 
[0.5, 2.0]. The GRM category boundary locations were randomly generated from U[-2, -0.5], U[-0.5, 0.5], 
U[0.5, 2], respectively (see Nye et al., 2020). For the GGUM and following Roberts et al. (2002), the τik were 
generated independently for each item. For a selected item i, the highest τik (τ3) was drawn from a U[-1.4, -
0.4]. Successive τs for each item (i.e., τ2 or τ1) were sampled using the following recursive formula: 

τ𝑖𝑘−1 =  τ𝑖𝑘 − 0.25 + 𝑒𝑖𝑘−1,   for 𝑘 = 2, 3, … , 𝐹,            (7) 

where 𝑒𝑖𝑘−1 represents a random error term sampled from a N(0, 0.04), F is the number of observable 
response categories minus 1. The item δis were randomly sampled from U[-3, 3]. 

Response Data Generation. Dichotomous responses were generated by comparing a model’s item 
response probabilities to a U[0, 1]. A response of 1 was assigned if the uniform random was less than the 
item probability, 0 otherwise. 

For polytomous data (mi = 3) the sums of successive response probabilities for categories 0, 1, and 2 
were obtained and compared to a random number from U[0,1]. A response (score) of 0, 1, or 2, was assigned 
if the randomly sampled uniform number was less than or equal to the category 0 probability, the sum of 
category probabilities 0 and 1, or the sum of category probabilities 0, 1, 2, respectively, otherwise the 
response was a 3. For the dominance models catIrt’s 1-based responses were recoded to be 0-based. For 

the GGUM model response data are generated using the GGUM R package by setting the program’s category 
threshold indicator to 1 and 3 for dichotomous data and polytomous data, respectively (Tendeiro & Castro-
Alvarez, 2020). 

Model Calibration 

The GGUM model was fit to the data using the GGUM package (Tendeiro & Castro-Alvarez, 2020); 

GGUM uses MMLE. The selected number of nodes, maximum iterations, and convergence tolerance values 

followed those in Tay et al. (2011). The 2PLM, 3PLM, and GRM models were fit to the data using mirt 
and to obtain the relative fit indices. With mirt MMLE was selected for model calibration and execution 
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parameters (e.g., the number of nodes, maximum iterations) were matched to those of GGUM. Descriptive 

statistics for the 3PLM showed that the median 𝛾i ranged from 0.06 to 0.14.  However, because the 

corresponding the mean 𝛾i ranged from 0.14 to 0.19 mirt had difficulty estimating 𝛾i for one or more 
items.  The difficulty was most pronounced for the N = 500/I = 10 condition with a difference between 
the M and median of 0.13 and, as one would expect, became progressively smaller as N and I increased. 
Thus, the use of priors was implanted in phases.  

In phase 1 beta and normal with different shape or location/variability parameters, respectively, were 

utilized to improve estimation of 𝛾i. Beta prior results were comparatively poor with mirt providing the 

warning “Lower and upper bound parameters (g and u) should use 'norm' (i.e., logit) prior”. Of the three 
normal priors examined a normal prior with M = -1.5 and SD = 0.5 produced the best results.  

Descriptive statistics by condition showed that mirt had difficulty estimating the discrimination 
parameter(s) for one or more items. Consequently, in phase 2 a series of lognormal priors for discrimination 
estimation was investigated. The results showed a LN(0.2, 0.2) prior worked best.  

Because descriptive statistics for each condition showed one or more items with location estimates that 
were in the double digits, phase 3 examined different priors for the intercept. Corresponding results led to 
a normal prior located at 0 with variability 1.5 being selected.  

Adjusted Chi-square (Absolute Model Fit index) 

Because for the absolute fit index model comparisons are unnecessary only the GGUM was fitted to 

each data generation model. As one would do in practice the 𝑎𝑑𝑗 χ𝑖
2 ratios were calculated using the 

estimated parameters in each replication were used. To compare the performance of the item-level fit 

statistics (χ2: item singles) to item subsets-level fit statistics (e.g., 𝑎𝑑𝑗 χ𝑖
2 ratios based on item subsets for 

item doubles and triples) the proportion of items exhibiting misfit per replication were averaged across 
replications.  

Evaluating model fit for the average 𝑎𝑑𝑗 χ𝑖
2 ratios for item singles, doubles, and triples entailed dividing 

each index by their corresponding df. Ratios greater than a given screening value of, for example, 3 indicate 
misfit. The corresponding correct detection rates across replications for each of the fit indices were 
calculated as an indicator of model fit/misfit. For example, if the fit statistic led to incorrectly rejecting the 
model-data fit hypothesis when the GGUM model is fit to GGUM generated data four times across the 100 
replications, then the incorrect detection rate is .04. Conversely, if the GGUM model is fit to the 2PLM 
generated data and the fit statistic led to correctly rejecting the model-data fit hypothesis 89 times across the 
100 replications, then the correct detection rate is .89. Unlike other studies (e.g., Nye et al., 2020) that use, 
for example, the term “power” and Type I error rate we use the term “correct detection” and “incorrect 
detection” (proportion) rates, respectively. Our reasoning lies in the number of replications (100). 
Specifically, 100 replications are statistically insufficient for us to treat our proportions as reflective of 
probabilities. Rather our proportions are indicative of the relative frequency one might observe over the 
long run (i.e., a probability). Unfortunately, the execution times with current computing power and software 
does not realistically allow performing 10,000 replications or more to obtain an accurate estimate of a 
probability.   

Relative Model Fit Indices 

In contrast to above, to assess relative fit each model was fitted to each data generation model. 
Specifically, for the dichotomous condition the GGUM, 2PLM, and 3PLM were fit to each data generating 
models. Similarly, for the polytomous condition the GGUM and GRM were fit to each data generating 
models. AIC was utilized using two conventions.  First, the model with the lowest AICmin (or BICmin) was 
selected as the “best” fitting model. Second, the difference between model d’s AIC and the minimum AIC 
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was calculated (∆AIC = AICd - AICmin). Following Burnham, Anderson, and Huyvaert (2011) a ∆AIC < 2 
indicates that model d shows substantial support relative to the model with the minimum AIC and a 4 < 

∆AIC < 7 shows that model d has some support; a ∆AIC > 10 shows no support for model d.  For example, 

let AICmin be for the GGUM and AICk for the 2PLM, then a ∆AIC < 2 indicates strong evidence in favor 

of the 2PLM and a 4 < ∆AIC < 7 indicates some support for the 2PLM fitting as well as the GGUM.  Across 
the 100 replications the number of times a model was selected as the best fitting was recorded for each 
condition. 

 

Results 

Absolute Fit Indices for Dichotomous Data 

Figure 2 presents the correct detection proportions for 𝑎𝑑𝑗 χ𝑖
2 ratios for item singles, doubles, and triples 

across the 100 replications as a function of screening value. As can be seen, correct detection rate is affected 
by I, N, and item variants (i.e., singles, doubles, triples) to a greater extent at the lower end of screening value 

scale than at its upper end. For screening values of 1.0 and larger and for all item variants, the average 𝑎𝑑𝑗 χ𝑖
2 

ratio statistics show correct detection rates greater than .90 and typically closer to 1.0 when the GGUM was 
the underlying data model. Correct detection rates for ideal point data progressively fell as the screening 
value decreased, this rate of decline varied with item variant, N, and I except for singles with a N = 500. 
These declines were associated with an increase in correct detection of dominance data (i.e., 2PLM, 3PLM) 
with, generally speaking, larger N associated with greater improvement in detection by item doubles and 
triples. For I = 10 increasing N led to an improvement in detecting that GGUM was inappropriate for the 
2PLM (and to a lesser extent the 3PLM). When N < 1000 increasing the instrument length leads to a 
comparative improvement in correct detection of dominance data albeit proportions are less than .5. When 
I = 20 or 40 and N = 3000 there is an increase in the correct detection of the 2PLM data (and to a lesser 
extent the 3PLM data) with a concomitant decrease in correctly identifying ideal point data. 

Contrasting Figures 2a, 2b, and 2c shows that for dominance data item doubles and triples outperformed 
item singles in correct detection rates for screening values less than approximately 1.0.  For N = 3000 and 
screening values 0.5 or less the item doubles correct detection of dominance data ranged from .3 to .87, but 
correct detection of ideal point data decreased from 0.3 to .65.   For N < 2000 item triples correct detection 
of dominance data improved with increasing I with correct detection of the 2PLM approaching .8.  When 
N = 3000 and a screening value 0.25 correct detection of dominance data was effectively 1.0, but 0 with 
respect to ideal point data.  When the screening value increased to 0.5, then correct detection of dominance 
data fell to 60% to 65% as was the case with ideal point data.  This screening value is far below the typically 
used value of 3.0. 

Relative Fit Indices for Dichotomous Data 

Table 1 presents the proportion of times a model was selected as best fitting by AICmin or by  ∆AIC, and 

the median ∆AIC. (Because of space limitations we present only the AIC results; BIC results are similar and 

are available from the first author). The GGUM was correctly identified by AICmin and ∆AIC as best fitting 

the GGUM data 100% of the time. For the 2PLM data AICmin and ∆AIC correctly identified the appropriate 

model over 95% of the time when I > 20 and N > 500. However, with I = 10 AICmin and ∆AIC incorrectly 
identified GGUM as the appropriate model with proportions from .64 to .99 contingent on N. Neither 

AICmin and ∆AIC performed well with the 3PLM generated data. 
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Absolute Fit Indices for Polytomous Data 

Figure 3 presents the correct detection proportions for 𝑎𝑑𝑗 χ𝑖
2 ratios for item singles, doubles, and triples 

across the 100 replications as a function of screening value. As can be seen, for screening values 1 and above 

and for all item variants, the average 𝑎𝑑𝑗 χ𝑖
2 ratio statistics showed correct detection rates between .96 and 

1.00 when the GGUM was the underlying data model. In contrast, the average 𝑎𝑑𝑗 χ𝑖
2 ratio statistics (singles) 

correctly detected that the GGUM was a “misfit” (i.e., the underlying model was the GRM ) increased as 
the screening value decreased without a concomitant decrease correct detection rate of ideal point data. This 
pattern did not hold for item doubles and triples. In contrast to what is seen with dichotomous data, with 
item doubles and triples there was a “sweet spot” that maximize correct detection of both ideal point data 
and dominance data; both greater than .95 correct detection rate. This screening value shifted up the scale 
from approximately 0.5 for N = 500 to about 1.0 when N = 3000. In general, for these polytomous data the 
screening value 0.75 might be considered to be a good compromise across the N and I conditions. This 
screening value could also be considered to work reasonably well with item singles because the correct 
detection rate would exceed 80% for both ideal point and dominance data except for when N = 500 and I 
= 10. As was the case with dichotomous data, this screening value is far below the typically used value of 
3.0. 

Relative Fit Indices for Polytomous Data 

Table 2 presents the proportion of times a model was selected as best fitting by AICmin or ∆AIC, and the 

median ∆AIC for the GGUM and GRM polytomous data. Using AICmin or ∆AIC the GGUM model was 
found to best fit the GGUM data regardless of the number of items and sample size 100% of the time. 

Moreover, for the GRM data and when I > 20 AICmin and ∆AIC correctly identified the GRM greater than 

99% of the time regardless of N. With less than 20 items AICmin’s and ∆AIC’s accuracy decreased, but still 

tended to correctly identify the GRM the majority of the time with AICmin and ∆AIC showing comparable 
results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 10 Page 11 
Alzarouni & De Ayala, Assessing Model Fit of the GGUM 

 

 

Figure 2a. 𝑎𝑑𝑗 χ𝑖
2 ratios (singles): Correct detection proportions (dichotomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
large dash line is 2PLM, green dash line is 3PLM.   
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Figure 2b. 𝑎𝑑𝑗 χ𝑖
2 ratios (doubles): Correct detection proportions (dichotomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
large dash line is 2PLM, green dash line is 3PLM.   
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Figure 2c. 𝑎𝑑𝑗 χ𝑖
2 ratios (triples): Correct detection proportions (dichotomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
large dash line is 2PLM, green dash line is 3PLM.   
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Table 1. Relative Fit Indices correct and incorrect detection proportions, dichotomous data.   

  Model 
Selected 

GGUM Data 2PLM Data 3PLM Data 

I N AIC ∆AIC ∆AIC<7 AIC ∆AIC ∆AIC<7 AIC ∆AIC ∆AIC<7 

10 

500 
GGUM 1 81.43 1 0.64 31.72 0.66 0.2 5.98 0.27 

2PLM 0 - 0 0.36 10.49 0.34 0.8 11.95 0.73 

3PLM 0 - 0 0 - 0 0 - 0 

1000 
GGUM 1 163.41 1 0.85 50.44 0.85 0.43 9.78 0.50 

2PLM 0 - 0 0.15 10.45 0.15 0.57 9.87 0.50 

3PLM 0 - 0 0 - 0 0 - 0 

2000 
GGUM 1 302.73 1 0.96 116.25 0.96 0.58 25.27 0.59 

2PLM 0 - 0 0.04 13.28 0.04 0.42 13.46 0.41 

3PLM 0 - 0 0 - 0 0 - 0 

3000 
GGUM 1 501.59 1 0.99 171.07 0.98 0.68 37.10 0.72 

2PLM 0 - 0 0.01 6.03 0.02 0.32 15.48 0.28 

3PLM 0 - 0 0 - 0 0 - 0 

20 

500 
GGUM 1 187.41 1 0.01 17.77 0.01 0 - 0 

2PLM 0 - 0 0.99 31.57 0.99 1 34.92 1.00 

3PLM 0 - 0 0 - 0 0 - 0 

1000 
GGUM 1 330.67 1 0.04 21.16 0.04 0 - 0 

2PLM 0 - 0 0.96 33.11 0.96 1 35.86 1.00 

3PLM 0 - 0 0 - 0 0 - 0 

2000 
GGUM 1 642.48 1 0.05 33.20 0.04 0 - 0 

2PLM 0 - 0 0.95 31.84 0.96 1 35.56 1.00 

3PLM 0 - 0 0 - 0 0 - 0 

3000 
GGUM 1 1058.77 1 0.05 42.91 0.13 0 - 0 

2PLM 0 - 0 0.95 32.39 0.87 1 35.44 1.00 

3PLM 0 - 0 0 - 0 0 - 0 

40 

500 
GGUM 1 460.76 1 0 - 0 0 - 0 

2PLM 0 - 0 1 64.17 1 1 66.24 1 

3PLM 0 - 0 0 - 0 0 - 0 

1000 
GGUM 1 957.88 1 0 - 0 0 - 0 

2PLM 0 - 0 1 65.81 1 1 66.93 1 

3PLM 0 - 0 0 - 0 0 - 0 

2000 
GGUM 1 1958.87 1 0 - 0 0 - 0 

2PLM 0 - 0 1 65.37 1 1 65.61 1.00 

3PLM 0 - 0 0 - 0 0 - 0 

3000 
GGUM 1 2977.17 1 0 - 0 0 - 0 

2PLM 0 - 0 1 66.38 1 1 63.59 1.00 

3PLM 0 - 0 0 - 0 0 - 0 
 

Data generation model indicated by “<model> + Data”; ΔAIC: median value across replications; AIC is AICmin. For AIC 
and ΔAIC<7 shaded cells indicate correct proportion matches between fitted model and data generating model and unshaded 
cells indicate incorrect proportion matches between fitted model and data generating model (i.e., lowest AIC and/or ΔAIC<7 
obtained by a mismatching model relative to the model’s generated data). Priors used with 3PLM. 
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Figure 3a. 𝑎𝑑𝑗 χ𝑖
2 ratios (singles): Correct detection proportions (polytomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
line is GRM.  
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Figure 3b. 𝑎𝑑𝑗 χ𝑖
2 ratios (doubles): Correct detection proportions (polytomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
line is GRM.  
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Figure 3c. 𝑎𝑑𝑗 χ𝑖
2 ratios (triples): Correct detection proportions (polytomous) vs. screening values, I, N. 

 

Plots labelled in terms of N and I (e.g., ’500, 10’: N = 500, I = 10). Data generation model: Black line is GGUM, red 
line is GRM.   
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Table 2. Relative Fit Indices correct and incorrect detection proportions, polytomous data. 

   GGUM Data GRM Data 

I N 
Model 

Selected 
AIC ∆AIC ∆AIC<7 AIC ∆AIC ∆AIC<7 

10 

500 
GGUM 1 374.37 1 0.28 32.92 0.27 

GRM 0 - 0 0.72 88.05 0.73 

1000 
GGUM 1 745.33 1 0.33 56.49 0.27 

GRM 0 - 0 0.67 192.97 0.73 

2000 
GGUM 1 1378.61 1 0.34 169.90 0.29 

GRM 0 - 0 0.66 293.91 0.71 

3000 
GGUM 1 2278.15 1 0.33 257.39 0.32 

GRM 0 - 0 0.67 389.72 0.68 

20 

500 
GGUM 1 838.04 1 0.01 2.87 0 

GRM 0 - 0 0.99 290.52 1 

1000 
GGUM 1 1791.31 1 0 - 0 

GRM 0 - 0 1 536.59 1 

2000 
GGUM 1 3579.41 1 0 - 0 

GRM 0 - 0 1 976.07 1 

3000 
GGUM 1 5195.68 1 0 - 0 

GRM 0 - 0 1 1485.43 1 

40 

500 
GGUM 1 2074.6 1 0 - 0 

GRM 0 - 0 1 420.76 1 

1000 
GGUM 1 4280.06 1 0 - 0 

GRM 0 - 0 1 751.9 1 

2000 
GGUM 1 8307.04 1 0 - 0 

GRM 0 - 0 1 1400.44 1 

3000 
GGUM 1 12,763.51 1 0 - 0 

GRM 0 - 0 1 2203.92 1 
 

Data generation model indicated by “<model> + Data”; 4 response categories; ΔAIC: median value across replications; AIC 
is AICmin. For AIC and ΔAIC<7 shaded cells indicate correct proportion matches between fitted model and data generating 
model and unshaded cells indicate incorrect proportion matches between fitted model and data generating model (i.e., lowest AIC 
and/or ΔAIC<7 obtained by a mismatching model relative to the model’s generated data). 

Discussion 

This study examined the performance of the absolute 𝑎𝑑𝑗 χ𝑖
2ratio statistics and relative fit with AICmin 

and ∆AIC indices for the GGUM with dichotomous and ordered polytomous dominance and ideal point 
data. As indicated in the Contribution of the Current Study section, the objective was to contribute to the 
model-data fit work in this area by verifying previous findings, more fully investigating the screening value 
issue, and resolving previous conflicting results. 



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 10 Page 19 
Alzarouni & De Ayala, Assessing Model Fit of the GGUM 

 

 

For the absolute fit statistic results and item singles, doubles, and triples the GGUM fit the GGUM data 
correct detection rate increased as screening value increased with a detection rate of over 96% of the time 
with screening value of 0.75 or higher. Therefore, if the practitioner/researcher believes that an individual 
will agree with, for example, an attitude statement that reflects the participant’s view (i.e., δi ≈ θ) and will 
disagree with a statement that is less or more extreme than their view (i.e., ideal point data), then this result 

is encouraging. In contrast, with dominance data the 𝑎𝑑𝑗 χ𝑖
2 ratio test correctly detected that the GGUM 

was a “misfit” only between 0% and 20% performing slightly better with the 2PLM than with the 3PLM 
data; this result is similar to Tay et al. (2011). Recall that with dominance data the practitioner/researcher 
believes that an individual will agree with a statement to the extent that the statement reflects a perspective 
that is equal to less extreme than their view (i.e., for δi < θ then p(x = 1) is maximized). 

In certain situations 𝑎𝑑𝑗 χ𝑖
2 ratio’s performance can be explained by noting that its expected value 

assumes a unit normal distribution with a quadrature integration range of [-3, 3]. For example, assume 2PLM 
data are generated for an item located at 0.0 (Figure 4). When the GGUM is fit to these data its item location 
is estimated to be higher, say 2.85, while simultaneously adjusting αi and τik to shift the modal probability up 
the scale and to broaden and increase its height so there is little discrepancy between the two IRFs between 

-3 and 3; examination of various misfitting items verified that this occurred. The 𝑎𝑑𝑗 χ𝑖
2 ratio reflects this 

correspondence between -3 and 3 and the GGUM is found to fit the 2PLM data below 3. Although the 
GGUM’s upper asymptote for this item is 0 the IRF’s transition to a monotonically decreasing function 
occurs above 3. Thus, the 2PLM and GGUM IRFs’ upper asymptotes discrepancy occurs above the 
integration range’s upper bound and is not reflected in the expected value. Thus, the IRFs discrepancy that 

would distinguish the two models from one another is not captured by the 𝑎𝑑𝑗 χ𝑖
2  ratio. Similarly, with the 

3PLM lower asymptote the IRFs the discrepancy (i.e., between an IRF with a γi = 0.2 and the GGUM lower 

asymptote of 0) may occur below -3 and would not be reflected in the 𝑎𝑑𝑗 χ𝑖
2 ratio (This explanation 

generalizes to item doubles and triples.) Because the GGUM can fit the 2PLM (or 3PLM) data between -3 
and 3, the context determines if fit in this interval is good enough for the intended purpose. By increasing 

the integration interval to [-4, 4] or [-6, 6] and a non-unit normal the 𝑎𝑑𝑗 χ𝑖
2 ratio’s ability to distinguish 

between upper and lower asymptotes could improve. 

Figure 4. Response Functions (GGUM, α = 1.45, δ = 2.85, τ1 = -2.8; 2PLM, α = 1.5, δ = 0.0) 

 

Red dash lines depict lower/upper bounds of integration range for Ei (k,k'). 
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With ordered polytomous data we see different 𝑎𝑑𝑗 χ𝑖
2 ratio results.  With these data the GGUM will 

have some ORFs that are asymptotic with 0.0.  Because, conditional on theta, the sum of the probabilities 
of responding to the item options is 1.0, then there is one ORF that must be asymptotic with 1.0 (see Figure 
1 right panel). By definition this ORF will not transition to a monotonically decreasing function as θ 

approaches +∞ as the IRF does in the dichotomous case.  Thus, the 𝑎𝑑𝑗 χ𝑖
2 ratio can distinguish between 

the GRM and GGUM by the correspondence between the models’ ORFs within the [-3, 3] range.  

For all intents and purposes reducing the screening value for the 𝑎𝑑𝑗 χ𝑖
2  ratio did not have a meaningful 

impact in detecting GGUM misfit with the dichotomous dominance data unless one considers correct 
detection rates of 60% to 65% acceptable. However, with ordered polytomous data we see that instrument 

length, sample size, and screening value interacting to enhance the 𝑎𝑑𝑗 χ𝑖
2 ratio correct detection rate for 

identifying the GGUM not fitting the GRM data while still maintaining the ability to correctly identify ideal 
point data regardless of whether item singles, doubles, and triples are used. Moreover, it appears that part of 
the performance differences between item singles, doubles, and triples previously seen in the literature is 
due to using a screening value of 3. Nevertheless, results exhibit the previously seen pattern in which doubles 
and triples outperform item singles just not as dramatically. 

In terms of the relative fit indices, dichotomous and ordered polytomous data, AICmin and ∆AIC always 
correctly identified the GGUM as the best fitting model to the GGUM data regardless of number of items 

and N. With respect to the 2PLM and GRM data, AICmin and ∆AIC correctly identified that the GGUM was 
not the best model at least 95% or more of the time when I > 20. For the dichotomous data neither AIC 
detection approach was able to correctly identify the dominance generating model when I = 10.  Thus, with 
dichotomous data one sees that AIC/BIC’s utility affected by the reduction in the number of model 
parameters compared to the longer lengths.  Stated another way, the penalties imposed by AIC/BIC do not 
always sufficiently compensate for model complexity. (With the polytomous data this is less of an issue 

because of the increase in the number of model parameters.)  Contrasting AICmin with ∆AIC one sees very 

little difference in performance. 

Recall that AIC, ∆AIC, and BIC do not specify whether a model fits the data, but only that in comparison 
to candidate models a particular model fits the best. For example, the 2PLM may be selected as fitting a two-
dimensional data set with an interdimensional correlation of .05 better than the 1PLM or 3PLM not that the 
2PLM is the true model nor that it fits the data. As seen in this study, the 2PLM fit the 3PLM data better 
than the 3PLM.  

Utilizing absolute fit diagnostic item-level information would allow one to determine for which item, if 
any, the model is not functioning well and thereby permit the practitioner to make appropriate modifications. 

Using 𝑎𝑑𝑗 χ𝑖
2 ratio with a modified integration range and a focus on item and not model-level fit (as done 

above) might be useful for this purpose.  

This study’s 𝑎𝑑𝑗 χ𝑖
2 ratio test results do not fully agree with those from previous studies with respect to 

item doubles and triples. This discrepancy may be due to methodological differences between this study and 

that of Tay et al. (2011). In Tay et al. (2011), the assessment of fit examined the 𝑎𝑑𝑗 χ𝑖
2 ratios between IRT 

models in relative terms. That is, the proportion of the 𝑎𝑑𝑗 χ𝑖
2 ratio values across replications obtained by 

fitting the correct model to its data was compared to those of a misspecified model (i.e., the comparison was 

relative to the misspecified model). In contrast, in this study the performance of the 𝑎𝑑𝑗 χ𝑖
2 ratios for item 

singles, doubles, and triples involved comparing the 𝑎𝑑𝑗 χ𝑖
2 ratios screening values to indicate fit; this is akin 

to practice. Thus, this difference might account for the more favorable results found in Tay et al. (2011). 
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General Guidelines for the GGUM Fit Assessment 

If one intends to utilize the 𝑎𝑑𝑗 χ𝑖
2 ratios or relative fit indices to assess fit for the GGUM with either 

empirical data (e.g., from noncognitive measures) or simulated data we present general guidelines for 

consideration.  First, if one fits the GGUM to empirical data, then the 𝑎𝑑𝑗 χ𝑖
2  ratios tests of absolute fit will 

almost always perform better at correctly detecting misfit with polytomous data than with dichotomous data. 
Thus, personality statements with a dichotomous response format that are, theoretically, best represented 

by ideal point models should not rely solely on the 𝑎𝑑𝑗 χ𝑖
2  ratios tests of absolute fit. Second, the cutoff 

mean ratio value of 3 should not be taken for granted as valid for model-level fit assessment applications. 
Rather, absolute fit diagnostic item-level information might be a better option, specifically for dichotomous 
data. Moreover, although at the model-level a cutoff mean ratio value of 0.75 for polytomous data seems 
promising, additional research should examine its applicability under additional conditions (e.g., a different 
number of options, with unordered polytomous data). Finally, because with dichotomous data the penalties 
imposed by AIC/BIC do not always sufficiently compensate for model complexity at short instrument 
lengths their use by researchers should be done with care.   
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