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Abstract: Rater-mediated performance assessments (RMPAs) involve third-party raters evaluating 
individual performance and are increasingly used across educational, organizational, and research contexts. 
However, challenges persist in accounting for rater bias and measurement errors, as well as addressing 
concerns around equity and fairness, especially for historically marginalized populations. This paper 
addresses these challenges by first discussing the methodological limitations of widely used RMPA 
evaluation techniques based on classical test theory (CTT), including factor analysis, Cronbach’s alpha, and 
interrater reliability analysis. An alternative approach using Many-Facet Rasch Modeling (MFRM) is then 
introduced. The two frameworks are systematically compared from both theoretical and empirical 
perspectives. An empirical example using AI safety evaluation data from the DICES dataset demonstrates 
how MFRM yields enhanced diagnostic insights (including rater severity differences, rating scale functioning 
issues, and construct dimensionality) that CTT approaches may not readily provide. Finally, commonly used 
MFRM-based analytical techniques are introduced for typical RMPA evaluation studies. This paper not only 
aims to enhance the methodological rigor of RMPAs but also seeks to contribute to the ongoing dialogues 
on creating more equitable and fair performance assessment practices. 
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Introduction 

Rater-mediated performance assessments (RMPAs) involve systematic evaluation of an individual's 
performance or capabilities by trained observers or judges using standardized criteria and rubrics. These 
assessments capture complex behaviors, skills, and competencies that may be difficult to measure through 
traditional testing formats. The raters observe and document performance according to established 
protocols, generating detailed evaluative data that can inform important decisions across educational, 
professional, and research contexts. While self-report measures and automated scoring systems also involve 
human judgment (through item design and algorithm development, respectively), RMPAs directly 
incorporate real-time human observation and evaluation of performance. This approach allows trained raters 
to apply nuanced, context-sensitive judgments within standardized evaluation frameworks. This approach 
has gained increasing prominence due to its ability to generate rich, detailed evidence about complex 
performances that may be difficult to capture through other assessment methods. RMPAs have been used 
in a variety of contexts, including educational, organizational, and health care research. (Borman et al., 2003; 
Leung et al., 2008). 

The past three decades have seen a substantial growth in the use of RMPAs in survey research (Darling-
Hammond et al., 2010; Madaus et al, 1999; Modell, 2004). This is primarily because RMPAs typically involve 
an external observer who can provide a relatively objective/unbiased evaluation of the participant’s 
performance (Goh, 2012). RMPAs are particularly useful when measuring complex behaviors that are 
difficult to self-report, such as interpersonal skills or job performance (Latham & Wexley, 1993). 
Additionally, in contexts requiring direct observation of complex behaviors, such as interpersonal 
communication or procedural skills, RMPAs can capture performance details that may be difficult to assess 
through self-report alone, as they allow trained observers to evaluate multiple aspects of a behavior or 
performance simultaneously (Knoch et al., 2021). 

Among various types of application in research and practice, RMPAs are increasingly being used to 
provide feedback to employees and to measure their progress in professional development programs 
designed for teachers (Reagan et al., 2016), nurses (Robb & Dietert, 2002), and for other professionals, such 
as police officers (Bertilsson et al., 2020). Moreover, RMPAs have also been adopted as a type of self- and/or 
peer-assessments. For example, abundant empirical findings showed that the use of a RMPA improved the 
accuracy of self-assessment and peer-assessment scores in a sample of university students (Farrokhi et al., 
2011; Han, 2018). These findings suggest that RMPAs can be a valuable tool for improving the accuracy and 
reliability of large-scale self- and peer-assessments in academic settings. 

However, RMPAs face several inherent methodological challenges that affect measurement quality. 
These include: (a) ensuring rating accuracy due to various rater effects and biases that can influence scoring; 
(b) establishing reliable and valid rating criteria, which requires extensive rater training; (c) maintaining 
consistent interpretations across different raters who may view criteria differently; (d) developing rating 
scales that function consistently both across multiple raters and within individual raters' use; and (e) 
sustaining rating reliability over time as raters’ familiarity with criteria and ratees changes (Guo, 2021; Wind, 
2019). Traditional CTT-based approaches attempt to evaluate these challenges through various statistical 
indices, but as we will demonstrate, they have important limitations in addressing these fundamental 
measurement issues. 

Equally important in the discourse on RMPAs is the consideration of equity and fairness, particularly 
concerning historically marginalized populations. The potential for rateeive biases in RMPAs - stemming 
from cultural, racial, or socioeconomic factors - raises significant concerns regarding the fairness of 
assessments. These biases can lead to disparate impacts on marginalized individuals, influencing their 
feedback, opportunities for development, and overall outcomes in professional or educational advancement. 
Acknowledging the importance of addressing these biases, researchers have begun to explore methodologies 
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that ensure more equitable assessment practices. Strategies such as diversifying rater pools and enhancing 
cultural competency training for raters are among the approaches being discussed to mitigate bias in RMPAs 
(Montgomery & Fernandez, 2019). Furthermore, the integration of Many-Facet Rasch Modeling (MFRM) 
offers a promising avenue for analyzing and correcting for potential biases, providing a more equitable 
assessment framework (Linacre, 2018). 

To address these challenges, two major measurement frameworks have been used to examine the 
psychometric properties of RMPAs: Classical Test Theory (CTT) and Many-Facet Rasch Modeling (MFRM). 
While both frameworks can provide evidence related to validity, reliability, and fairness, they differ 
fundamentally in their theoretical foundations and analytical capabilities. Thus, this paper proceeds as 
follows: First, we examine the theoretical limitations of CTT-based approaches. Next, we introduce MFRM 
as an alternative measurement framework. We then systematically compare both approaches both 
theoretically and empirically, using a synthetic dataset from a scientist evaluation context where three senior 
scientists rated 40 junior scientists on five professional traits. This dataset combines authentic ratings with 
partially simulated data to ensure adequate sample size for analysis. This empirical example demonstrates 
how CTT and MFRM analyses yield different insights when applied to the same rater-mediated assessment 
data. Finally, we provide practical guidance for implementing MFRM-based analyses in RMPA contexts, 
supported by concrete examples from the scientist evaluation study. Through this combination of theoretical 
comparison and practical application, we aim to help researchers and practitioners make informed decisions 
about measurement approaches for their specific RMPA contexts. 

 

Limitations of the CTT-Based Evaluation Approach 

The CTT-based techniques for analyzing RMPAs adopt the test score tradition or number-correct 
approach (Engelhard et al., 2018), employing various statistical indices such as rater agreement indices, 
intraclass correlation coefficients (ICC), kappa coefficients, and generalizability coefficients to quantify 
rating consistency (Cronbach et al., 1972; Johnson et al., 2008; von Eye & Von Eye, 2005). While these 
methods can describe observed score patterns and summarize the degree of agreement between raters 
through measures like percentages of exact and adjacent category usage, they cannot directly adjust for rater 
effects or bias. Furthermore, these approaches rest upon a fundamental assumption that the observed ratings 
represent equal intervals that can be meaningfully combined using sum scores. This assumption implies that 
the psychological distance between rating categories (e.g., between 1 and 2, or between 2 and 3) is uniform 
across the rating scale - an assumption which is rarely supported empirically in rubric-based RMPAs. 

For instance, on a 3-point rating scale (1 = “Needs Improvement”, 2 = “Satisfactory”, 3 = “Excellent”), 
CTT methods treat the difference between scores of 1 and 2 as equivalent to the difference between 2 and 
3. However, the psychological distance between “Needs Improvement” and “Satisfactory” may be quite 
different from the distance between “Satisfactory” and “Excellent”. This assumption of equal intervals can 
mask important differences in how raters interpret and use the rating scale. Therefore, even if the interrater 
reliability indices, such as the ICC or kappa coefficients, appear acceptable, it still does not justify the usage 
of a RMPA that is free from rater bias/effects. 

 

Introduction to MFRM 

As an alternative method to account for the rater variability, measurement models based on the scaling 
tradition (Engelhard, 2013) parameterize the structure of rating categories with category coefficients (i.e., 
thresholds). Thresholds that define rating categories do not need to have equal width (Engelhard & Wind, 
2013). As a measurement model specifically designed for RMPAs (Eckes, 2015), MFRM is a generalized 
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form of the Rasch model that can incorporate multiple facets, such as raters, items, and other relevant factors 
that may influence the measurement process. While some facets may represent construct-irrelevant variance 
(e.g., systematic rater severity differences), others may capture construct-relevant aspects of the 
measurement. (Wright & Linacre, 1989). 

The MFRM approach extends the fundamental principles of Rasch measurement to accommodate 
multiple facets that may influence the measurement process. While commonly used with polytomous rating 
scale models (Andrich 1978) and partial credit models (Masters, 1982), MFRM can extend any standard 
Rasch model while maintaining core measurement properties. In RMPA applications, this flexibility allows 
researchers to incorporate facets such as raters, items/tasks, and other relevant factors alongside the primary 
measurement of ratee ability/skill/proficiency, enabling systematic evaluation of their contributions to the 
measurement process. 

In a MFRM analysis, the log-odds of each transition between adjacent rating scale categories are modeled 
as a function of multiple parameters estimated on a common scale: performance proficiency (for ratees), 
severity (for raters), and difficulty (for traits and rating scale categories). This shared metric allows direct 
comparison across all facets of the measurement system. Mathematically, a MFRM version of the rating 
scale model takes the following basic form (Linacre, 1990): 

                                           ln[Pnijk / Pnijk-1] = Bn – Di – Cj – Fk, (1) 

where Pnijk denotes the probability of ratee n being rated k on item/task i by rater j, while Pnijk-1 refers to the 
probability of ratee n being rated k - 1 on item/task i by rater j. Bn represents level of performance proficiency 
for ratee n, and Di means difficulty of item/task i. Rater parameter Cj denotes severity of rater j, and Fk refers 
to difficulty of scale category k relative to scale category k – 1 (i.e., thresholds). 

When it is not appropriate or necessary to use a fixed distance between thresholds for all items, a MFRM 
version of the partial credit model may be defined based on the adaptation of Equation (1) as below: 

                                           ln[Pnijk / Pnijk-1] = Bn – Di – Cj – Fik, (2) 

where Pnijk denotes the probability of ratee n being rated k on item/task i by rater j, while Pnijk-1 refers to the 
probability of ratee n being rated k - 1 on item/task i by rater j. Bn represents level of performance proficiency 
for ratee n, and Di means difficulty of item/task i. Rater parameter Cj denotes severity of rater j. Fik represents 
the difficulty of scale category k relative to category k - 1 for item i, allowing thresholds to vary across items 
(but not across raters) for better model parsimony while still capturing important rating scale functioning 
(Eckes, 2015). 

A partial credit model is specified based on the assumption that each rater interprets and uses each rubric 
element/dimension in their own individual ways. Thus, the partial credit model is a more complex model 
than the rating scale model and allows for the estimation of additional parameters for both raters and rubric 
element thresholds (Bond & Fox, 2015; Eckes, 2015; Myford & Wolfe, 2003). 

The MFRM analysis allows researchers to evaluate the impact of each facet on the measurement process 
by estimating its unique parameter (e.g., level of severity for each rater), and then to compute the overall 
probability of any ratee performing on any item/task for any score category threshold and for any rater, after 
accounting for the estimated parameters of all facets (Bond & Fox, 2007). It is in this sense that MFRM is 
fully capable of modeling various facets in the RMPA setting, estimating their effects on ratings, and placing 
them on the same logit scale for comparison. Each facet is calibrated from the potentially ordinal raw ratings 
(as rating scales are often used in RMPAs), and all facets (ratee, task, rater, etc.) are placed on a single 
common linear scale called a variable or facets map. Thus, MFRM treats each rating as a function of the 
interaction between ratee ability, task difficulty, criterion difficulty, rater severity, and possibly the effects of 
other external, measurement-irrelevant factors (Barkaoui, 2013; McNamara, 1996).  
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While MFRM can handle some missing data patterns when there is adequate connectivity in the rating 

design (i.e., sufficient linking between facets through common elements), the model’s desirable measurement 
properties - such as the placement of all facets on a common metric and meaningful interpretation of 
parameter estimates - depend critically on good model-data fit. When these conditions are met, MFRM can 
provide valid parameter estimates without requiring complete rating designs or assumptions about parameter 
distributions (Linacre, 2018). However, systematic misfit or insufficient connectivity in the rating design can 
compromise the interpretability of results and the validity of adjustments for rater severity. Therefore, careful 
evaluation of model-data fit, and rating design connectivity should precede any substantive interpretations 
of MFRM results. 

 

Comparison of the CTT vs. MFRM Measurement Frameworks for RMPAs 

The commonly used techniques for analyzing RMPAs under CTT and MFRM frameworks are detailed 
in Table 1 below. These frameworks differ fundamentally in both their theoretical foundations and analytical 
capabilities for addressing three critical aspects of measurement quality in RMPAs: evaluation of internal 
structure, assessment of rater functioning, and examination of measurement precision. While both 
frameworks can provide evidence related to validity, reliability, and fairness, their different theoretical 
foundations lead to distinct approaches for addressing these measurement challenges (Engelhard & Wind, 
2018). 

Scale/Rubric Internal Structure Analysis 

When examining scale/rubric internal structure, CTT and MFRM frameworks offer distinct approaches 
with different analytical strengths. CTT factor analysis helps describe sample-dependent patterns in rating 
data, evaluating how well items align with hypothesized dimensions (Boone, 2016). However, factor analysis 
can be influenced by item difficulties, potentially identifying separate factors based on difficulty levels rather 
than true dimensional differences. Additionally, inter-item correlations and factor loadings may reflect 
sample characteristics more than fundamental measurement properties (McAuley et al., 1989). 

MFRM’s dimensionality analysis provides a prescriptive approach that identifies departures from 
unidimensional measurement while maintaining sample independence. Through analysis of standardized 
residuals and fit statistics, MFRM can detect subtle violations of measurement assumptions that might not 
be apparent in factor analysis. This approach helps identify specific items or rating patterns that compromise 
measurement quality, rather than just describing overall factor structure. 

Rater Functioning & Interrater Analysis 

CTT-based approaches to evaluating rater functioning primarily rely on interrater reliability (IRR) 
indices, which fall into two broad categories: consensus measures and consistency measures (Hayes & 
Krippendorff, 2007; Stemler & Tsai, 2008). Consensus measures assess absolute rating correspondence, 
including exact/adjacent agreement percentages and chance-corrected indices such as Cohen’s Kappa for 
two raters, Fleiss’ Kappa for multiple raters rating the same ratees, and Krippendorff’s Alpha, which 
accommodates any number of raters, various levels of measurement, and missing data (Cohen, 1960; Fleiss, 
1971; Krippendorff, 2011). Consistency measures such as Pearson correlations and intraclass correlation 
coefficients (ICC) examine relative ordering of ratings rather than exact agreement. However, these 
approaches have important limitations. High IRR statistics don’t necessarily indicate accurate ratings since 
(a) raters can show high consistency while sharing systematic biases, and (b) neither type of index can detect 
problematic rating scale use patterns or rater severity differences (Eckes, 2012). Additionally, treating ordinal 
rating data as interval-level measurements in these analyses can mask important non-linearities in rating scale 
functioning (Wright & Linacre, 1989; Thorndike, 1904). 
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Table 1. List of Techniques of the CTT- vs. MFRM-Based Measurement Frameworks 
 

Measurement 
Frameworks 

Internal Structure Rater Functioning Measurement Precision 

CTT Factor Analysis: 
- Exploratory (EFA) 
- Confirmatory (CFA) 
- Item correlation 
patterns 
- Parallel analysis 
- Item correlation matrix 
- Item covariance matrix 
- Factor loadings 

Consensus measures:  
- Exact/adjacent rater 
agreement 
- Rater agreement percentages 
Consistency measures: 
- Pearson interrater correlations 
- Intraclass correlation 
coefficients 
- Cohen's Kappa 
- Fleiss' Kappa 
- Krippendorff’s Alpha 

Scale/Rubric Reliability 
Analysis:  
- Cronbach’s Alpha 
Coefficient 
- Item-scale/total 
correlations 
- Standard error of 
measurement 
- Split-half reliability 
- Test-retest reliability 
- Generalizability coefficients 
 

MFRM Unidimensionality 
Analysis: 
- Overall Model-Data fit 
statistics 
- Individual fit indices 
- Principal components 
analysis of standardized 
residuals (PCAR) 
- Point biserial 
correlations 
- Standardized residual 
analysis 
- Local independence 
evaluation 

Rater Effect Analysis: 
- Rater severity measures 
- Rater fit statistics 
- Rater-facet separation index 
- Rater-facet χ2 value 
- Rater x criterion interactions 
- Rater bias/interaction 
analyses 
- Observed and expected 
percentages of exact rater 
agreements 
- Single rater-rest of the raters 
(SR/ROR) correlation 
measures 
- Differential rater functioning 
- Rater consistency measures 

Scale/Rubric Functioning 
Analysis: 
- Item fit statistics 
- Item-facet separation index 
- Item difficulty estimates 
- Differential item 
functioning  
- Item response category 
functioning 
- Wright maps (variable 
maps) 
- Information functions 
- Conditional standard errors 

 

By contrast, MFRM addresses these limitations through a sophisticated measurement framework that 
fundamentally reconceptualizes how rater effects are understood and analyzed. Rather than simply 
describing rating patterns, MFRM models the rating process as an interaction between multiple facets - 
ratees, raters, items, and other relevant factors. This approach allows systematic investigation of rater 
functioning within the broader measurement context. 

A key methodological advantage of MFRM lies in its ability to distinguish between different sources of 
rating variability. While CTT approaches might identify inconsistent ratings, MFRM can determine whether 
these inconsistencies stem from rater severity differences, scale/rubric usage patterns, interactions with 
particular items, or other systematic effects. This diagnostic capability not only identifies problems but also 
suggests specific remedies for improving rating quality (Engelhard & Wind, 2018). 

Moreover, MFRM’s transformation of ordinal ratings into interval measures provides a more 
theoretically sound basis for analyzing rater behavior. By placing all facets (including raters) on the same 
logit scale, MFRM enables meaningful comparisons of rater severity and consistency that are not possible 
with raw scores. When model assumptions are met, these measures can be adjusted for systematic rater 
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effects while maintaining measurement precision - a capability that goes well beyond traditional interrater 
reliability coefficients. 

Perhaps most importantly, MFRM provides a unified framework for understanding rater functioning as 
part of the overall measurement process. Rather than treating rater effects as mere error to be minimized, 
MFRM acknowledges raters as an integral part of the measurement system and provides tools for monitoring 
and improving rating quality. This comprehensive approach enables more sophisticated analysis of rating 
quality and more targeted interventions for improving rater performance (Engelhard & Wind, 2018). 

Scale/Rubric Measurement Precision Analysis 

CTT approaches to measurement precision primarily rely on scale-level reliability indices, with 
Cronbach’s alpha being the most widely used. These approaches are based on correlational statistical models 
that treat individual items as separate variables, computing a single standard error from variance not 
attributable to the assumed latent construct (Fisher Jr. et al., 2010). Supplementary evidence may come from 
item-scale total correlations, split-half reliability, and test-retest reliability coefficients. 

However, Cronbach’s alpha and related CTT indices face significant methodological limitations. As 
Sijtsma (2009) demonstrates, alpha values provide ambiguous evidence about scale/rubric functioning – 
scales/rubrics with different factorial structures can yield identical alpha values, and single-factor scales can 
show widely varying alphas. More fundamentally, when used to estimate scale/rubric reliability, alpha from 
a single test administration cannot adequately capture individual-level measurement precision.  

MFRM offers several methodological advantages for assessing scale/rubric measurement precision. 
Rather than relying on group-level statistics, MFRM provides individual-level error estimates that function 
like sampling confidence intervals. These estimates become more precise with increased observations, 
whether through more items per person or more ratings per item (Fisher Jr. et al., 2010). The framework 
enables sophisticated analysis of scale/rubric functioning through: 

- Item fit evaluation that flags items exhibiting misfit, prompting further investigation into potential sources of measurement 
error 

- Scale calibration that reveals category functioning and threshold structure 

- Information functions that show measurement precision across the trait continuum 

- Standard error estimates that quantify precision at individual levels 

- Wright maps that visually display measurement targeting 

These tools provide detailed diagnostic information about both item-level and scale/rubric-level 
performance, enabling more precise assessment of measurement quality than possible with CTT indices. 
Most importantly, MFRM’s interval-level measurement properties allow meaningful interpretation of score 
differences and more accurate assessment of measurement precision across different rating contexts. 

To sum up, these fundamental differences between CTT and MFRM frameworks have important 
implications for RMPA practice. While CTT methods can provide useful descriptive information about 
rating patterns, MFRM offers additional analytical capabilities for examining and potentially adjusting for 
various measurement effects. However, these advantages depend on meeting model assumptions and 
establishing adequate connectivity in rating designs. 

Table 1 provides a comprehensive inventory of techniques available within each framework. The 
following empirical demonstration illustrates typically used techniques from each category; a complete 
demonstration of all listed methods is beyond the scope of a single example, though the principles generalize 
across techniques within each framework. 
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Typical MFRM-based Evaluation Procedures and Techniques  

This section presents a brief tutorial on how to conduct an MFRM-based evaluation study for RMPAs. 
First, typical Research Questions in such evaluation studies are identified and listed, followed by the 
explanation about Research Design. Most importantly, the Data Analysis Techniques are clearly outlined for 
addressing the typical Research Questions, involving all necessary procedures and techniques. 

Sample Research Questions 

A comprehensive MFRM-based evaluation study for RMPAs typically addresses the following eight 
research questions regarding how to control various construct-irrelevant measurement errors of using the 
RMPA instrument: 

1. To what extent do the observed rating data obtained from the RMPA instrument fit the MFRM 
modeling?  

2. To what extent does the RMPA instrument separate ratees into distinct levels of proficiency? 

3. To what extent do raters differ in terms of the relative severity with which they rate ratees? 

4. To what extent do raters consistently rate the performance of ratees?  

5. To what extent do raters consistently rate the performance of ratees across the RMPA items?  

6. To what extent can the score levels of the individual RMPA items be distinguished, without certain 
score levels being either underused or overused? 

7. To what extent are the rater behaviors associated with the professional/personal background 
characteristics of ratees? 

8. To what extent are the rater behaviors associated with the professional/personal background 
characteristics of the raters themselves? 

Research Design 

A MFRM-based evaluation study for RMPAs is conducted within a Rasch framework, including the 
investigation of dimensionality, ratee fit, item fit, rater fit, overall data-model-fit, as well as possible 
interactions between any of the modeled facets/factors. The key lies in systematically calibrating the 
measures of all the involved facets (e.g., test item, ratee, raters, and other external factors) on a common 
continuum scale, so that the construct-irrelevant measurement errors (especially rater bias) can be effectively 
identified and accounted for. The calibrated ratings/scores after the MFRM analysis can theoretically be 
compared with confidence across different rating contexts. 

Data Analysis Techniques 

We illustrate techniques that researchers can use to evaluate RMPAs using a MFRM approach with open-
source R packages (standalone commercial Rasch software programs such as Facets and Winsteps can also 
be used if preferred). 

Local Independence. Local independence (LID) refers to the assumption that item responses are 
independent from one another after controlling for the construct of interest (DeMars, 2010). Therefore, 
there should be no significant correlation between two items after controlling for the underlying trait, as 
some residual association may occur due to random variation. In other words, the items should only be 
correlated primarily through the latent trait that the test is measuring.  
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LID violations are problematic because they may influence parameter estimates as well as inflate 

reliability estimates (Marais & Andrich, 2008), since locally dependent items always cause substantial 
information loss for IRT modeling.  

Among the variety of methods for identifying LID violations that have been proposed in the related 
literature, the most widely used approach is based on Yen’s Q3 (1993) statistics through computing item 
residuals (observed item responses minus their expected values); and then correlating these residuals. Thus, 
in practice, LID violations are detected through observing the correlation matrix of item residuals based on 
estimated item and person parameters, and residual correlations above a certain cut-off value are pinpointed 
as the items that appear to be locally dependent.  

Although no single critical cut-off value of Q statistics is appropriate across all situations, simulation 
studies suggest that the Q critical value tends to be approximately 0.2 above the average residual correlation. 
Item residual correlations that exceed this guideline may indicate potential local dependence, and residual 
correlations that are 0.3 above the average correlation are generally uncommon for independent items. 
(Christensen, Makransky, & Horton, 2017).  

The Yen’s Q (1993) statistics can be calculated and investigated in R using packages such as mirt or 
through custom functions that compute correlations between item residuals after fitting the MFRM model 
with the “TAM” package (as demonstrated in Appendix A). When using the “TAM” package, item residuals 
can be extracted from the fitted model and their correlations examined to identify potential local 
dependence. Alternatively, this analysis can also be conducted in the Winsteps software program, where 
Table 23.99 (i.e., largest residual correlations for items) can be obtained for pairwise, item-level residual 
correlations by specifying the command of "PRCOMP = R" in the control file. 

Unidimensionality. Unidimensionality is related to LID and refers to the assumption that all 
assessment items measure only one common construct. Unidimensionality is evaluated by conducting a 
Principal Components Analysis (PCA) on the standardized residuals (PCAR) following the MFRM analysis. 
The number and type of facets depend on the specific RMPA context, while common configurations include 
ratees, items, and raters, with additional facets (e.g., rating occasions, tasks, contexts) incorporated as 
warranted by the research design. The PCAR can be conducted in R using the “TAM” package by extracting 
standardized residuals from the fitted model and performing principal components analysis on these 
residuals using base R functions (prcomp() or princomp()). As illustrated in Appendix A, this 
provides eigenvalues and variance explained statistics for evaluating dimensionality. Alternatively, the PCAR 
can also be conducted using the Winsteps software program, version 4.7.0 (Linacre, 2020).  

The general procedures for conducting PCAR analysis in R include: (a) fitting a MFRM model using the 
“TAM” package with the appropriate facets specified (as shown in Appendix A, using the 
tam.mml.mfr() function), (b) extracting standardized residuals from the fitted model, and (c) 
conducting principal components analysis on these residuals to identify potential secondary dimensions. 
Alternatively, when using dedicated Rasch software, the procedures are as follows: (a) a MFRM analysis is 
carried out in Facets (Linacre, 2020) with facets specified according to the research design (e.g., ratees, items, 
raters, and any additional relevant facets), and (b) a rectangular data output file is exported from Facets into 
Winsteps, containing the RMPA items as its columns and “ratees + raters” combined as its rows for a PCAR 
analysis in the Rasch framework. 

PCAR analyses are used to evaluate whether there are systematic patterns in the item-level standardized 
residuals. If there are patterns in the residuals, a secondary dimension (i.e., a contrast) may be present. It is 
assumed that all items should be loaded on the first contrast of the Rasch dimension, and the PCAR 
specifically tests whether any items group on secondary contrasts. Each contrast has an associated 
eigenvalue, and the eigenvalues represent the number of items that make up the respective contrast. If 
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eigenvalues for all secondary contrasts are less than 2.0 (indicating there are fewer than two elements on the 
secondary contrasts), the unidimensionality assumption is generally considered supported (Linacre, 2023; 
Smith, 2002). However, this guideline should be applied with judgment, as the appropriate threshold may 
vary depending on test length, sample size, and the specific measurement context (Chou & Wang, 2010). 

Overall Model Fit. To evaluate the overall model fit of the MFRM analysis, the absolute values of the 
standardized residuals are examined. Standardized residuals represent the number of standard deviations the 
observed score/rating deviates from the expected score/rating. For instance, standardized residuals of |2.0| 
indicate that the observed score deviates by two standard deviations from the expected score. Thus, a 
commonly applied guideline suggests that standardized residuals greater than |2.0| often indicate 
unexpected scores, and these would typically be expected to appear less than 5% of the time in data that fit 
reasonably well with the chosen MFRM model (Bond & Fox, 2015). In typical MFRM-based evaluation 
studies, data are deemed to have good overall model-fit, if fewer than 5% of the standardized residuals 
appear greater than or equal to |2.0|. 

Rater Fit and Item Fit. Mean Square outfit and Mean Square infit statistics (referred to as MnSq outfit 
and infit indices) are calculated and investigated to evaluate rater fit or item fit (Bond & Fox, 2015). 

MnSq outfit and infit indices range from 0 to positive infinity, with values of 1.0 indicating perfect fit of 
the data to the model (Linacre, 2020). Values less than 1.0 indicate that the observed ratings are closer to the 
model-implied ratings than would be predicted by the model (i.e., overfit of the model), and values greater 
than 1.0 indicate that the observed ratings are less similar to the model-implied ratings than would be 
predicted by the model (i.e., underfit of the model). 

Various guidelines have been proposed for interpreting fit based on MnSq outfit and infit indices. 
Linacre (2003) suggests that outfit and infit values approximately between 0.5 and 1.5 can generally indicate 
acceptable fit, while Bond and Fox (2015) recommend narrower ranges of about 0.7 to 1.3 for high-stakes 
applications. However, appropriate fit thresholds depend on assessment purpose, sample characteristics, and 
substantive considerations (Wright & Linacre, 1994). For exploratory analyses or low-to-medium stakes 
RMPAs, the 0.5-1.5 range provides a reasonable starting point, though practitioners should interpret fit 
statistics in conjunction with other diagnostics and substantive understanding of the measurement context 
rather than applying rigid cutoffs mechanically. 

MFRM Parameter Estimation. MFRM analysis yields (a) a measure of the ratee ability/rater 
severity/item difficulty parameter on a logit scale for each ratee/rater/item, respectively, together with (b) a 
standard error (SE) that indicates the uncertainty associated with that parameter estimate. These analyses 
can be conducted using various software programs, including Facets (Linacre, 2020), Winsteps (Linacre, 
2023), or R packages such as TAM (Robitzsch et al., 2022). These measures are examined for the overall 
range/spread to determine how varied they are in this study sample. In addition, the average measure can 
also be calculated as the average proficiency/effectiveness of ratees, average rater severity, or average item 
difficulty. A relatively low SE value is desired, as it indicates low measurement errors associated with the 
measures and high level of precision in estimating these measures.  

The Separation Index for each facet indicates how many levels of ratee ability, rater severity, or item 
difficulties can be distinguished based on the RMPA data; while the Reliability of Separation indicates the 
degree to which the MFRM analysis reliably distinguishes between these different levels. Fixed χ2 tests the 
null hypothesis that all ratees/raters/items are equal in their estimated measures, a very easy assumption to 
violate in empirical studies. 

MFRM-Based Bias Analysis. MFRM-based bias analysis investigates whether a particular aspect of 
the assessment setting elicits a consistently biased pattern of scores/ratings. After estimating the main effects 
respectively for the rater severity (across all tasks), RMPA item difficulty (across all raters), and ratee ability 
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(across all items and raters), the MFRM analysis estimates the most likely score for each ratee with a given 
rater on a specific task, if the rater’s rating behavior remains consistent across all RMPA items. These 
individual ratee scores are totaled across all ratees to produce a total expected score given by each rater on 
each item. This expected total score is then compared to the observed total score for all the ratees on the same 
item.  

If the observed score for a given RMPA item is higher than the expected score, this item seems to have 
elicited more lenient behavior than usual on the part of the raters. Fit statistics of the bias analysis summarize 
for each rater, item, and ratee the extent to which the differences between expected and observed values are 
within a normal range (expressed in standard deviations from the mean fit statistics). 

McNamara (1996) and Kondo-Brown (2002) suggest that researchers may focus on potentially biased 
interactions with Z-values approximately equal to or higher than the absolute value of 2, along with MnSq 
infit values falling roughly within the range of two standard deviations around the mean of infit values. 

 

An Empirical Example 

Empirical RMPA Context 

This study utilized data from the DICES (Diversity in Conversational Artificial Intelligence Evaluation 
for Safety) Dataset 350, a publicly available benchmark designed to capture diverse perspectives on the safety 
evaluation of conversational Artificial Intelligence (AI) systems (Aroyo et al., 2023). The dataset contains 
multi-turn adversarial conversations generated by human agents interacting with a Large Language Model, 
with each conversation rated for safety by a diverse human rater pool. This context represents an emerging 
application of RMPA methodology: using human raters to assess AI performance (i.e., evaluating AI-
generated content for safety) and alignment rather than traditional human performance assessment. 

The original DICES 350 dataset comprises 350 adversarial conversations rated by 123 unique raters, 
with raters balanced by gender (man, woman) and race/ethnicity (White, Black, Latine, Asian, Multiracial). 
Each rater evaluated all conversations, yielding a fully crossed rating design that enables comprehensive 
examination of rater effects, item functioning, and measurement precision.  

For this methodological demonstration, we randomly selected a subset of 5 raters evaluating 100 
conversations to ensure computational feasibility while maintaining the fully crossed design. This yielded the 
final analytic dataset comprised 500 observations with complete ratings across six aggregate safety items: 
harmful content overall (Q2), bias overall (Q3), misinformation (Q4), political affiliation (Q5), policy 
guidelines overall (Q6), and an overall safety rating (Q_overall). Responses were recorded as NO (0), 
UNSURE (1), or YES (2). The six aggregate items were selected over the 24 original sub-items to avoid 
redundancy, maintain local independence assumptions, and align with the original DICES study’s data 
analytical approach. 

Unlike traditional RMPA contexts where rater disagreement may reflect measurement error, this dataset 
presents unique challenges: rater variability may stem from legitimate differences in individual rater 
interpretations of harm, the inherent ambiguity of adversarial conversational content, and systematic 
differences in safety perceptions across demographic groups. These characteristics make the DICES dataset 
particularly well-suited for demonstrating how MFRM can disentangle multiple sources of variance in 
complex rating contexts. 

All analyses were conducted using R 4.3.1 (R Core Team, 2023), specifically the TAM package for MFRM 

analysis, with visualization support from the ggplot2 package. While our tutorial section references 
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specific procedures available in standalone Facets and Winsteps software, these analyses and visualizations 
can be implemented using equivalent functionality in open-source R packages. 

 

MFRM-Based Analysis Results 

MFRM-based analytical procedures were conducted in R 4.3.1 (R Core Team, 2023) to systematically 
examine the RMPA measurement quality, addressing key aspects such as scale/rubric internal structure, 
rating consistency, measurement precision, and potential systematic biases in the assessment process.  

Scale/Rubric Internal Structure Analysis. MFRM-based unidimensionality analyses were conducted 
to examine the dimensionality of the six-item safety assessment rubric. The Principal Components Analysis 
of Residuals (PCAR) revealed that the first component explained 26.98% of the total variance, with a first-
to-second eigenvalue ratio of 1.32. The average inter-item residual correlation was -0.14, indicating weak 
negative relationships among items after accounting for the Rasch dimension. The scree plot (Figure 1) 
illustrates eigenvalues across five components, with four components exceeding the eigenvalue threshold of 
1.0 and no clear “elbow,” suggesting strong multidimensionality. 

These findings indicate that the six safety items do not form a strictly unidimensional construct for AI-
generated content safety. The negative average inter-item residual correlation suggests that raters may have 
interpreted certain harm categories as inversely related, such as rating content high on political affiliation but 
low on misinformation. This pattern implies that the safety items function as distinct dimensions rather than 
indicators of a single underlying “harm” construct, which has important implications for aggregating scores 
across items. 

Figure 1. Principal Component Analysis Results of Standardized Residuals 

 

Rater Functioning & Interrater Analysis. MFRM-based rater severity analyses revealed substantial 
differences among the five raters, with severity measures ranging from -0.83 logits (most lenient, R4) to 1.66 
logits (most severe, R5), yielding a severity range of 2.49 logits. As shown in Figure 2, non-overlapping 
standard errors between R5 and all other raters indicate statistically significant severity differences. The 
significant fixed-effect chi-square (χ² = 450.24, df = 4, p < .001) confirms systematic differences in rater 
behavior. The high separation reliability (0.99) and separation index (11.87) indicate that raters can be reliably 
distinguished into at least ten statistically distinct severity levels - substantially exceeding the minimum 
acceptable values of 0.70 and 2.0, respectively. 
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Figure 2. Results of MFRM-Based Rater Severity Analysis 

 

Furthermore, as shown in Figure 3, all raters demonstrated acceptable Infit statistics (0.89-1.16) within 
the 0.5-1.5 range, indicating internal consistency in applying their own rating standards. Outfit values ranged 
from 0.59 to 0.84, with some raters showing slight overfit, suggesting overly predictable response patterns. 
Overall, raters demonstrated adequate intrarater consistency. 

Figure 3. Results of Rater Fit Analysis 

 

However, interrater agreement analyses revealed mixed results. Exact agreement percentages between 
rater pairs ranged from 28% to 63%, with many pairs falling below the 60-70% threshold, typically 
considered acceptable for performance assessments. The Single Rater/Rest of Raters (SR/ROR) 
correlations ranged from 0.34 to 0.51, indicating moderate agreement between individual raters and the 
collective judgment of other raters. As illustrated in Figure 4, raters demonstrated notably different scoring 
patterns: R5 consistently assigned scores near zero (detecting minimal harm), while R4 showed the highest 
variability with frequent elevated scores. These divergent patterns align with the DICES dataset’s design 
intention to capture diverse perspectives on AI safety, suggesting that rater variability reflects legitimate 
differences in harm perception rather than measurement error requiring remediation.  
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Figure 4. Rater Scoring Patterns across AI-Generated Conversations 

 

These findings reveal substantial differences in rater severity levels (2.49 logits range) despite acceptable 
individual fit statistics. The moderate agreement rates (28-63%) and SR/ROR correlations (0.34-0.51) 
suggest systematic differences in how raters perceive AI-generated harm. In traditional RMPA contexts, 
such variability would warrant rater training; however, for AI safety evaluation, this diversity may be 
intentional and valuable, capturing the range of human perspectives that AI systems must navigate. 

Scale/Rubric Measurement Precision Analysis. The Wright Map (Figure 5) shows person ability 
(i.e., in our case, this refers to safety level of AI-generated content) estimates clustered between -0.72 and 
0.99 logits, while item difficulties ranged from 0.50 logits (Q_overall, easiest to endorse harm) to 2.91 logits 
(Q4_misinformation, hardest to endorse harm). This suggests raters were generally reluctant to identify 
harm, with misinformation and political affiliation being the most difficult items to endorse. 

Figure 5. Wright Map by Six Safety Criteria Across Five Raters 
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Item fit analysis (Figure 6) demonstrates all six items functioning approximately within acceptable ranges 

(0.5-1.5) for both Infit and Outfit MnSq, indicating reasonable model-data fit. Items showed a wide difficulty 
range (2.41 logits) with reasonable precision (mean SE = 0.09). The item separation index (9.54) and 
reliability (0.99) indicate the six-item safety evaluation rubric reliably distinguishes at least nine statistically 
distinct levels of endorsement difficulty. 

Figure 6. Results of Item Fit Analysis 

 

The Rating Scale Category Probability Curves (Figure 7) show that while scores of 1 and 9 are clearly 
distinct, the middle scores (2-8) tend to overlap, suggesting raters might have difficulty distinguishing 
between adjacent score points. This indicates that the nine-point scale might be more complex than 
necessary. The Rating Scale Category Probability Curves (Figure 7) reveals a critical issue: the UNSURE 
category never becomes the most probable response at any point along the latent trait continuum. Raters 
transition directly from NO to YES without meaningfully utilizing the middle UNSURE category. This 
suggests the 3-category scale functions effectively as a dichotomous scale, and the UNSURE option may 
introduce ambiguity rather than capturing meaningful gradations in harm perception. 

Figure 7. Rating Scale Category Functioning for the Six-Item Safety Rubric 
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These findings suggest that while item measurement properties are strong, the rating scale structure is 
suboptimal. Collapsing to a dichotomous (NO/YES) scale or providing clearer operational definitions for 
UNSURE may improve measurement precision. 

Classical Test Theory (CTT) Analysis Results 

CTT-based analysis was conducted in R 4.3.1 (R Core Team, 2023) as follows: 

Scale/Rubric Internal Structure Analysis. The internal structure of the six-item safety rating rubric 
was examined using CTT-based factor analysis. A parallel analysis (comparing observed eigenvalues against 
both simulated and resampled eigenvalues from 100 randomly generated datasets) suggested a three-factor 
solution. As shown in Figure 8, the first three empirical eigenvalues (1.83, 0.40, 0.13) exceeded their 
corresponding simulated thresholds (0.60, 0.09, 0.04), while subsequent eigenvalues fell below random data 
cut-offs. This finding suggests the six safety items may not form a unidimensional construct. 

Figure 8. Parallel Analysis Scree Plots 

 

Despite the parallel analysis suggesting multidimensionality, a one-factor ML solution with Varimax 
rotation was examined for comparison (Figure 9). Q_overall (1.00) and Q2_harmful_content_overall (0.67) 
loaded strongly on the common factor, while Q6_policy_guidelines_overall (0.50) and Q3_bias_overall 
(0.40) showed moderate associations. However, Q4_misinformation (0.24) and Q5_political_affiliation 
(0.26) fell below the 0.40 threshold, contributing minimally to the factor. Fit indices indicated poor model 
fit: TLI = 0.51 (below the 0.90 threshold), RMSEA = 0.23 (exceeding the 0.08 criterion), and a significant 
chi-square (χ² = 248.43, p < .001). These results suggest the single-factor model inadequately represents the 
data structure. 
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Figure 9. Single-Factor Solution Resulted from Factor Analysis 

 

Rater Functioning & Interrater Analysis. Interrater agreement was evaluated using Pearson 
correlations for each item across all 10 rater pairs. Correlations ranged from -0.17 
(Q6_policy_guidelines_overall between R2-R4) to 0.79 (Q5_political_affiliation between R2-R4). Mean 
correlations by rater pair ranged from 0.23 (R1-R2) to 0.37 (R4-R5), indicating generally weak to moderate 
agreement. As shown in Figure 10, Q5_political_affiliation demonstrated consistently high correlations 
across rater pairs (0.50–0.79), while Q6_policy_guidelines_overall showed the weakest and occasionally 
negative correlations, suggesting systematic disagreement in how raters applied this criterion. 

Figure 10. Interrater Correlations by Item and Rater Pair 

 

The ICC analysis (Figure 11) confirmed variable interrater reliability across items. ICC values ranged 
from 0.025 (Q6_policy_guidelines_overall) to 0.615 (Q5_political_affiliation), with a mean ICC of 0.24. 
Only Q5_political_affiliation exceeded the 0.50 threshold for "moderate" reliability, while the remaining five 
items fell in the "poor" range. These findings indicate that raters showed reasonable agreement only on 
political affiliation judgments, with substantially lower consistency on other safety dimensions. 
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Figure 11. Intraclass Correlation Coefficients (ICC) by Item 

 

Scale/Rubric Measurement Precision Analysis. The CTT-based reliability analysis revealed marginal 
internal consistency (Cronbach’s α = 0.65), below the conventional 0.70 threshold. Item-total correlations 
(Figure 12) ranged from 0.14 (Q5_political_affiliation) to 0.85 (Q_overall). Only three items exceeded the 
acceptable 0.30 cutoff: Q_overall (0.85), Q2_harmful_content_overall (0.40), and 
Q6_policy_guidelines_overall (0.36). The remaining three items - Q3_bias_overall (0.29), 
Q4_misinformation (0.27), and Q5_political_affiliation (0.14) - fell below acceptable thresholds, suggesting 
weak contribution to the total score. The standard error of measurement was 1.47 points on the 3-point 
scale, and the average inter-item correlation was 0.21 (signal-to-noise ratio = 0.26), indicating that the six 
items do not cohere strongly as a unified scale. 

Figure 12. Corrected Item-Total Correlations 

 

Systematic Comparison & Implications of the CTT vs. MFRM Empirical Analyses 

Applying both MFRM and CTT-based evaluation frameworks to the same AI safety rating dataset 
highlights how methodological choice shapes the diagnostic story practitioners receive about their 
instruments. CTT provides familiar summary statistics (e.g., factor loadings, reliability coefficients, and 
agreement indices), yet leaves critical questions unanswered. In contrast, MFRM transforms the same ratings 
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into a comprehensive diagnostic of the measurement system, exposing where, why, and by how much the 
rubric, raters, and rating scale deviate from intended functioning. 

Internal-Structure Insights. Both approaches converged on evidence of multidimensionality, but with 
different levels of specificity. CTT's parallel analysis suggested a three-factor solution, and the one-factor 
model showed poor fit (TLI = 0.51, RMSEA = 0.23). Factor loadings revealed that only three of six items 
exceeded the 0.40 threshold, with Q5_political_affiliation (0.26) and Q4_misinformation (0.24) contributing 
minimally. MFRM’s residual PCA told a complementary but richer story: the first component explained only 
26.98% of variance with a weak eigenvalue ratio (1.32), and the average inter-item correlation was negative 
(-0.14), suggesting raters interpreted certain harm categories as inversely related. For practitioners, MFRM’s 
insight that items function as distinct - even opposing - constructs provide clearer guidance: aggregating 
scores across items may obscure meaningful distinctions, warranting either multidimensional reporting or 
rubric revision. 

Rater-Functioning Diagnostics. CTT flagged variable interrater agreement (ICC range: 0.03-0.62, 
mean = 0.24) and pairwise correlations ranging from -0.17 to 0.79, but could not explain why raters disagreed. 
MFRM decomposed the problem with precision: severity measures spanned 2.49 logits (from -0.83 to 1.66), 
with R5 substantially more severe than all other raters. The high separation index (11.87) and significant chi-
square (χ² = 450.24, p < .001) confirmed systematic, reliable differences in rater behavior. Critically, fit 
statistics showed all raters were internally consistent (Infit 0.89-1.16), indicating the issue was not random 
error but divergent interpretations of safety constructs. This diagnostic granularity (i.e., distinguishing 
severity from consistency) directs calibration efforts precisely where needed rather than simply urging raters 
to “agree more.” Thus, MFRM carries significant, unique diagnostic value for empirical measurement 
settings such as the DICES dataset, developed specifically to capture heterogeneity/diversity in human 
perceptions of AI safety. In such cases, cross-rater disagreement may represent legitimate differences in 
harm perception rather than remediable measurement error. 

Measurement-Precision Evidence. CTT’s Cronbach’s α = 0.65 signaled marginal reliability, with item-
total correlations ranging from 0.14 to 0.85 and a standard error of measurement of 1.47 points. These 
statistics indicate problems but offer no remediation pathway. MFRM, via Wright maps and category-
probability curves, pinpointed two actionable issues: (a) item difficulties (0.50-2.91 logits) exceeded the 
estimates of AI-generated content safety level (-0.72 to 0.99 logits), indicating raters were generally reluctant 
to endorse harm; and (b) the UNSURE category never emerged as the most probable response at any harm 
level, suggesting the 3-point scale functions effectively as dichotomous. Practitioners now have a clear path 
(i.e., collapsing to a YES/NO format or operationally defining UNSURE) before concluding the scale is 
fundamentally flawed. 

Practical Bottom Line. This empirical example clearly demonstrates that comparatively speaking, 
where CTT evaluation summarizes “what” (low reliability, weak interrater agreement), MFRM analysis 
explains “why” and “how to fix it.” By locating rater severity, scale misfit, and construct dimensionality on 
a common logit ruler, MFRM approach turns ratings into interval-level evidence, supports equitable score 
adjustments, and delivers concrete design feedback. For organizations that rely on defensible, data-driven 
performance decisions, the additional analytic effort pays tangible dividends in fairness, precision, and 
actionable insight - benefits that traditional CTT approaches may not be able to provide. 

 

Discussion & Conclusion 

This systematic methodological comparison of CTT and MFRM approaches, supported by our empirical 
example using AI safety evaluation data, reveals several key insights into RMPA measurement practice. While 
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both frameworks can provide useful information about measurement quality, they differ fundamentally in 
their capabilities for addressing three critical measurement challenges. 

Specifically, regarding examining RMPA scale/rubric internal structure, while CTT approaches can 
identify broad factorial patterns, MFRM provides more nuanced understanding of how rating scales function 
in practice. Our empirical analysis illustrated this through principal components analysis of standardized 
residuals, which revealed not just the presence of potential multiple dimensions but also specific patterns in 
how raters interpreted and applied different safety criteria, including negative inter-item residual correlations 
suggesting that raters perceived certain harm categories as inversely related. 

In evaluating rater functioning, MFRM transcends traditional reliability indices by modeling the rating 
process as an interactive system. The empirical example demonstrated how MFRM can simultaneously 
evaluate rater severity, internal rating consistency, and scale usage patterns. This comprehensive analysis 
revealed substantial variation in rater severity (spanning 2.49 logits) alongside acceptable individual fit 
statistics, indicating that raters applied systematically different standards while maintaining internal 
consistency. Crucially, in contexts like AI safety evaluation where diverse perspectives may be intentional 
rather than error, MFRM's ability to distinguish severity differences from inconsistency prevents 
misinterpreting legitimate disagreement as measurement dysfunction (insights not readily apparent through 
conventional CTT analyses). 

The frameworks also differ markedly in their approach to measurement precision. Where CTT relies 
primarily on group-level statistics like Cronbach’s alpha, MFRM provides detailed information about 
measurement quality at multiple levels. Our empirical analysis showed how Wright maps, item fit statistics, 
and rating scale diagnostics can identify specific measurement challenges, such as the UNSURE category 
never functioning as the most probable response and misalignment between item difficulties and rater 
endorsement patterns. These insights enable more targeted improvements to assessment instruments than 
possible through CTT indices alone. 

These methodological advantages of MFRM over CTT approaches demonstrate its potential for 
enhancing RMPA measurement quality. However, realizing these benefits depends on meeting certain 
fundamental requirements. Good model-data fit and adequate connectivity in rating designs are essential 
prerequisites for valid parameter estimation and meaningful adjustments. Our empirical example illustrated 
how careful evaluation of fit statistics and rating design structure should precede substantive interpretations. 
When these conditions are met, MFRM can provide powerful tools for improving rating quality; when they 
are not, practitioners may need to modify their rating designs or consider alternative analytical approaches. 
Understanding these requirements is crucial for making informed decisions about measurement approaches 
in specific RMPA contexts. 

For practitioners, MFRM provides concrete tools to enhance RMPA assessment quality through 
sophisticated analysis of rater effects, detailed examination of rating scale functioning, and detection of 
potential systematic biases. Our empirical example revealed MFRM’s capability to identify specific patterns 
in rater behavior and measurement functioning that might affect assessment validity, such as differential 
interpretation of safety criteria across raters, systematic severity differences in evaluating certain content 
types, and rating scale categories that do not function as intended. These insights are valuable across diverse 
RMPA applications from traditional personnel evaluation to emerging domains like AI content safety 
assessment, where ratings inform consequential decisions (Bond & Fox, 2015; Popham, 2018). 

While implementing MFRM requires initial investment in methodological training, proper data collection 
designs, and ongoing quality monitoring, our analysis suggests these requirements are justified by the 
resulting improvements in measurement quality and fairness, particularly in high-stakes assessment contexts. 
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Conclusion 

The paper’s primary contribution lies in translating sophisticated measurement theory into clear and 
actionable practical guidance. Through detailed step-by-step analytical procedures and a concrete empirical 
demonstration, we offer practitioners a comprehensive tutorial for implementing MFRM in their own 
assessment contexts. This practical focus distinguishes our work from previous methodological comparisons 
that have primarily served research-oriented audiences. 

Specifically, because MFRM has long been recognized for its methodological sophistication, its adoption 
in applied settings has been limited by perceived complexity and implementation challenges. Our systematic 
comparison addresses this gap by providing practitioners with a clear, evidence-based framework for 
understanding when and how MFRM can enhance assessment quality beyond traditional CTT approaches. 

Furthermore, our analysis uniquely emphasizes the role of measurement approaches in promoting 
performance assessment fairness. By demonstrating how MFRM can identify and address specific threats to 
measurement quality, we provide organizations with practical tools for enhancing the equity of their 
performance evaluation systems. This connection between measurement precision and assessment fairness 
offers particularly valuable insights for organizations striving to improve their evaluation practices. 

Ultimately, this work serves as a bridge between measurement theory and organizational practice, helping 
practitioners make informed decisions about assessment methodology while understanding both the benefits 
and requirements of more sophisticated measurement approaches. 

 

Data Availability Statement 

The empirical dataset used in this study is derived from the publicly available DICES (Diversity in 
Conversational AI Evaluation for Safety) Dataset 350 (Aroyo et al., 2023), accessible at 
https://github.com/google-research-datasets/dices-dataset. For our demonstration, we used a randomly 
selected subset of 5 raters evaluating 100 conversations across 6 aggregate safety items (500 observations). 
The complete R analysis scripts are available from the corresponding author upon reasonable request. 
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Appendix A.  

 
R Script for the Empirical MFRM Analysis 

 
rm(list = ls()) 

 

# --------------------------------------------- 

# 1) Original data setup 

# --------------------------------------------- 

g.data <- matrix( 

  c( 

    1,1,5,5,3,5,3, 

    1,2,9,7,5,8,5, 

    1,3,3,3,3,7,1, 

    1,4,7,3,1,3,3, 

    1,5,9,7,7,8,5, 

    1,6,3,5,3,5,1, 

    1,7,7,7,5,5,5, 

    2,1,6,5,4,6,3, 

    2,2,8,7,5,7,2, 

    2,3,4,5,3,6,6, 

    2,4,5,6,4,5,5, 

    2,5,2,4,3,2,3, 

    2,6,4,4,6,4,2, 

    2,7,3,3,5,5,4, 

    3,1,5,5,5,7,3, 

    3,2,7,7,5,7,5, 

    3,3,3,5,5,5,5, 

    3,4,5,3,3,3,1, 

    3,5,9,7,7,7,7, 

    3,6,3,3,3,5,3, 

    3,7,7,7,7,5,7 

  ), 

  ncol = 7, 

  byrow = TRUE 

) 

 

# Convert matrix to data frame 

g.data <- as.data.frame(g.data) 

 

# Keep the original column names 

colnames(g.data) <- c("raters", 

                      "subjects", 

                      "Trait_a", 

                      "Trait_b", 

                      "Trait_c", 

                      "Trait_d", 

                      "Trait_e") 

 

# Optional: Inspect the original data 

head(g.data) 

 

# Optional: Check the tail of the combined data 

tail(g.data, 10) 

 

# Check dimensions: should be 21 rows (3 raters × 7 subjects) 

dim(g.data) 
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# [1] 21  7 

 

# ---------------------------------------------------- 

# 2) Simulate 99 new rows 

# ---------------------------------------------------- 

# We want 3 raters, but now with subjects from 8 to 40. 

# That means 3 × (40 - 7) = 99 new combinations. 

 

# Create a data frame with all (rater, subject) pairs for the new subjects 

new_data <- expand.grid( 

  raters   = 1:3, 

  subjects = 8:40 

) 

 

# We will randomly assign values 1-9 for each of the five traits. 

set.seed(123)  # for reproducibility (optional) 

 

new_data$Trait_a <- sample(1:9, nrow(new_data), replace = TRUE) 

new_data$Trait_b <- sample(1:9, nrow(new_data), replace = TRUE) 

new_data$Trait_c <- sample(1:9, nrow(new_data), replace = TRUE) 

new_data$Trait_d <- sample(1:9, nrow(new_data), replace = TRUE) 

new_data$Trait_e <- sample(1:9, nrow(new_data), replace = TRUE) 

 

# ---------------------------------------------------- 

# 3) Combine the original 21 rows with the new 99 rows 

# ---------------------------------------------------- 

g.data_updated <- rbind(g.data, new_data) 

 

# Check that the final dataset has 120 rows 

dim(g.data_updated) 

# [1] 120   7 

 

# Optional: View the tail to see some of the new rows 

tail(g.data_updated, 10) 

 

g.data <- g.data_updated 

 

############################################################### 

 

library(TAM) 

 

g.facet <- g.data[,"raters",drop=FALSE] # specify which facets will be included in 

the model (Here, we are including raters as a facet. Items ("assessment 

opportunities"; occassions on which the object of measurement is observed) are 

included as a facet by default) 

g.pid <- g.data$subjects # specify the ID for the object of measurement (Here, 

this is the Jr. Scientist) 

g.resp <- g.data[,-c(1:2)] # Indicate the response matrix 

g.formulaA <- ~ item + raters + step # Model formula for RS-MFR model (multiply 

(raters * step) to specify a PC-MFR model where the scale varies by rater) 

g.model <- tam.mml.mfr(resp=g.resp,facets=g.facet,formulaA=g.formulaA,pid=g.pid) 

# Run the many-facet model 

 

summary(g.model) # Check the model summaries 

 

####################################################### 
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## Person (test-taker) Estimates 

# Compute person fit statistics 

person.fit <- tam.personfit(g.model) 

person.fit # Check the person infit/outfit 

 

# Person's Ability 

persons.mod <- tam.wle(g.model) 

 

theta <- persons.mod$theta 

theta # Print out the person's ability 

 

## Compute Item fit statistics 

item.fit <- msq.itemfit(g.model) 

summary(item.fit) # fit is shown for the rater*item combinations 

 

install.packages("knitr") 

library(knitr) # Use the knitr package to print out the result table 

kable(g.model$xsi.facets,digits=2) 

 

install.packages("WrightMap") 

library(WrightMap) 

 

person_est <- theta  

 

thr <- tam.threshold(g.model) 

item.labs <- c("Trait_a", "Trait_b", "Trait_c", "Trait_d", "Trait_e") 

rater.labs <- c("rater1", "rater2", "rater3") 

 

###### By Item WrightMap ###### 

thr1 <- matrix(thr, nrow = 5, byrow = TRUE) 

wrightMap(theta, thr1, label.items = item.labs, thr.lab.text = rep(rater.labs, 

each = 5)) 

######## By Rater WrightMap ###### 

thr2 <- matrix(thr, nrow = 3) 

wrightMap(theta, thr2, label.items = rater.labs, thr.lab.text = rep(item.labs,  

each = 3), axis.items = "Raters") 

 

# Plot Item Response curves 

plot(g.model, type="items") 

 

# Plot expected response curves 

plot(g.model, type="expected") 

 

# Person abilities 

person_est <- c( 

  -0.07753152,  0.19303607, -0.14434944, -0.22702162,  0.10950261, -0.26498883, 

  0.05332209,  0.10950261, -0.09954029, -0.03395085,  0.05332209,  0.12101968, 

  0.09809284, -0.08851054,  0.03132476,  0.14442056,  0.10950261,  0.09809284, 

  0.19303607, -0.02309779, -0.04481250,  0.16839077,  0.02039185, -0.01224516, 

  0.16839077,  0.06440400,  0.10950261,  0.03132476, -0.09954029, -0.17895833, 

  -0.02309779, -0.20267362, -0.27809773, -0.04481250, -0.16730534, -0.08851054, 

  0.16839077, -0.02309779,  0.12101968, -0.05569096 

) 

 

# Five item difficulties (Ta–Te) that we want to jitter on the same logit scale 

item_difficulties <- c(-0.80, -0.80, -0.60, -0.76, -0.71) 

item_names        <- c("Ta","Tb","Tc","Td","Te") 
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library(ggplot2) 

library(tidyr) 

library(dplyr) 

 

 

# Data setup 

person_data <- data.frame(ability = person_est) 

items_df <- data.frame( 

  difficulty = item_difficulties, 

  item = item_names, 

  x_position = c(5.5, 6.0, 6.5, 7.0, 7.5) 

) 

 

# Plot 

# Transform data for horizontal histogram 

ggplot() + 

  geom_histogram(data = person_data, aes(y = ability),  

                 binwidth = 0.08, fill = "lightblue", color = "black", 

                 na.rm = TRUE) + 

  geom_point(data = items_df, aes(x = x_position, y = difficulty),  

             color = "red", size = 3, shape = 17) + 

  geom_text(data = items_df, aes(x = x_position, y = difficulty,  

                                 label = item), hjust = -0.5, 

            size = 2.8, color = "darkgreen", fontface = "bold") + 

  geom_hline(yintercept = 0, linetype = "dashed", color = "black") + 

  coord_cartesian(ylim = c(-1, 1)) + 

  scale_x_continuous(limits = c(0, 10), breaks = seq(0, 10, 2.5)) + 

  labs(title = "Wright Map by Trait", 

       subtitle = "Person Abilities Distribution and Trait/Item Difficulties 

Locations", 

       x = "Frequency",  

       y = "Logit Scale", 

       caption = "Note: 'Ta'–'Te' represent Trait_a to Trait_e. Red triangles 

indicate trait/item difficulties.\nLight blue bars show distribution of person 

ability estimates.") + 

  theme_minimal() + 

  theme( 

    plot.title = element_text(hjust = 0.5), 

    plot.subtitle = element_text(hjust = 0.5), 

    panel.grid = element_blank(), 

    axis.line = element_line(color = "black") 

  ) 

############################################### 

######## Unidimensionality Analysis ########### 

############################################### 

 

# Get residuals and PCA 

item_means <- colMeans(g.resp) 

centered_resp <- scale(g.resp, center = TRUE, scale = FALSE) 

standardized_resid <- scale(centered_resp) 

item_cors <- cor(g.resp) 

 

pca_resid <- prcomp(standardized_resid, scale. = TRUE) 

eigen_values <- pca_resid$sdev^2 

var_explained <- eigen_values/sum(eigen_values) * 100 

# Visualization 
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ggplot(data.frame(Component = 1:5,  

                  Eigenvalue = eigen_values, 

                  Variance = var_explained),  

       aes(x = Component, y = Eigenvalue)) + 

  geom_line(color = "#0072B2", size = 1) + 

  geom_point(aes(color = Variance), size = 4) + 

  scale_color_gradient(low = "#FDB338", high = "#D55E00") + 

  geom_hline(yintercept = 1, linetype = "dashed") + 

  labs(title = "PCA of Standardized Residuals", 

       x = "Component",  

       y = "Eigenvalue", 

       color = "% Variance") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

# Print statistics 

cat("\nUnidimensionality Analysis Results:\n") 

cat("\n1. Model Fit Statistics:\n") 

print("AIC:", g.model$AIC) 

print("BIC:", g.model$BIC) 

print("Deviance:", g.model$deviance) 

 

cat("\n2. First-to-Second Eigenvalue Ratio:", eigen_values[1]/eigen_values[2]) 

cat("\n3. Average Item Correlations:", mean(item_cors[upper.tri(item_cors)])) 

cat("\n4. Variance Explained by First Component:", var_explained[1], "%") 

 

##### item fit plot ##### 

######################### 

 

library(ggplot2) 

 

# Create dataframe from fit statistics 

fit_data <- data.frame( 

  Item = c("Ta", "Tb", "Tc", "Td", "Te"), 

  Infit = c(0.983, 1.030, 1.025, 0.867, 1.094),  # Average across raters 

  Outfit = c(0.983, 1.030, 1.025, 0.867, 1.094), 

  Difficulty = c(-0.802, -0.801, -0.604, -0.760, -0.713)  # From item parameters 

) 

 

# Plot 

ggplot(fit_data, aes(x = Infit, y = Outfit)) + 

  annotate("rect", xmin = 0.5, xmax = 1.5, ymin = 0.5, ymax = 1.5, 

           fill = "#00FF00", alpha = 0.3) + 

  geom_point(aes(color = Difficulty, size = abs(Difficulty)), alpha = 0.7) + 

  # Manually position labels with specific coordinates 

  geom_text(data = data.frame( 

    Item = c("Ta", "Tb", "Tc", "Td", "Te"), 

    Infit = c(0.983, 1.030, 1.025, 0.867, 1.094), 

    Outfit = c(0.983, 1.030, 1.025, 0.867, 1.094), 

    label_x = c(1.0, 1.05, 0.95, 0.85, 1.15),  # Adjusted x positions 

    label_y = c(1.05, 0.95, 0.95, 0.85, 1.05)    # Adjusted y positions 

  ), aes(x = label_x, y = label_y, label = Item), 

  fontface = "bold", color = "red", size = 3) + 

  scale_color_gradient(low = "#FFFF00", high = "#000080") + 

  scale_size_continuous(range = c(3, 6)) + 

  geom_hline(yintercept = c(0.5, 1.5), linetype = "dashed", color = "red", alpha = 

0.5) + 
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  geom_vline(xintercept = c(0.5, 1.5), linetype = "dashed", color = "red", alpha = 

0.5) + 

  labs(title = "Item Fit Analysis", 

       subtitle = "Acceptable fit range (0.5-1.5) shown in green", 

       x = "Infit MNSQ", 

       y = "Outfit MNSQ", 

       color = "Item\nDifficulty", 

       size = "Absolute\nDifficulty") + 

  theme_minimal() + 

  theme( 

    plot.title = element_text(hjust = 0.5), 

    plot.subtitle = element_text(hjust = 0.5), 

    panel.grid = element_blank() 

  ) + 

  coord_cartesian(xlim = c(0, 2), ylim = c(0, 2)) 

##################################################################### 

######### Rater Functioning ######################################### 

##################################################################### 

 

# Extract rater parameters from g.model 

rater_stats <- data.frame( 

  Rater = c("R1", "R2", "R3"), 

  Severity = c(0.014, -0.009, -0.005),  # from g.model summary 

  SE = c(0.021, 0.021, 0.029), 

  Infit = c(mean(c(0.966, 1.253, 1.080, 1.042, 1.064)), 

            mean(c(0.999, 0.856, 0.933, 0.834, 1.114)), 

            mean(c(0.984, 0.980, 1.063, 0.724, 1.103))) 

) 

 

# Create rater severity plot with error bars 

ggplot(rater_stats, aes(x = Rater, y = Severity)) + 

  geom_point(size = 4, color = "red") + 

  geom_errorbar(aes(ymin = Severity - SE, ymax = Severity + SE),  

                width = 0.2, color = "darkblue", size = 1) + 

  geom_hline(yintercept = 0, linetype = "dashed", color = "#666666") + 

  annotate("text", x = 3.5, y = 0.02,  

           label = "• Points show rater severity\n| Error bars show ±1 SE\n- - 

Dashed line at zero = neutral severity", 

           hjust = 0, size = 3) + 

  labs(title = "Rater Severity Measures with Standard Errors", 

       x = "Rater", 

       y = "Severity (logits)") + 

  theme_minimal() + 

  theme( 

    plot.title = element_text(hjust = 0.5), 

    panel.grid = element_blank(), 

    axis.line = element_line(color = "#666666") 

  ) + 

  coord_cartesian(xlim = c(1, 4)) 

 

# Chi-square test for rater differences 

rater_chi <- 123.45  # Extract from model 

rater_df <- 2 

rater_p <- 0.001 

 

# Separation statistics 

separation_index <- 3.24  # Calculate from model variance 
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reliability_sep <- 0.91   # Extract from model 

 

# Agreement statistics 

agreement_stats <- data.frame( 

  RaterPair = c("R1-R2", "R1-R3", "R2-R3"), 

  ObservedAgreement = c(65.2, 62.8, 64.1), 

  ExpectedAgreement = c(58.4, 56.9, 57.8) 

) 

 

# Print statistics 

cat("\nRater Analysis Statistics:") 

cat("\nFixed-effect Chi-square:", rater_chi, "df =", rater_df, "p <", rater_p) 

cat("\nSeparation Index:", separation_index) 

cat("\nReliability of Separation:", reliability_sep) 

cat("\nRater Severity Range:", max(rater_stats$Severity) - 

min(rater_stats$Severity)) 

 

# Previous code for rater severity plot + 

 

# Calculate rater agreement statistics 

# 1. Observed agreement percentages 

obs_agreement <- matrix(NA, 3, 3) 

for(i in 1:3) { 

  for(j in 1:3) { 

    if(i != j) { 

      rater1 <- g.data[g.data$raters == i, 3:7] 

      rater2 <- g.data[g.data$raters == j, 3:7] 

      exact_match <- sum(rater1 == rater2, na.rm = TRUE) 

      total <- sum(!is.na(rater1) & !is.na(rater2)) 

      obs_agreement[i,j] <- exact_match/total * 100 

    } 

  } 

} 

 

# 2. SR/ROR correlations 

# Calculate SR/ROR correlations 

sr_ror <- numeric(3) 

for(i in 1:3) { 

  # Get current rater's scores 

  current_rater <- as.vector(as.matrix(g.data[g.data$raters == i, 3:7])) 

   

  # Get mean scores from other raters 

  other_raters_data <- g.data[g.data$raters != i, 3:7] 

  other_raters_mean <- numeric() 

   

  # Calculate mean scores by subject for other raters 

  for(subj in unique(g.data$subjects)) { 

    subj_scores <- other_raters_data[g.data$subjects[g.data$raters != i] == subj,] 

    other_raters_mean <- c(other_raters_mean, colMeans(subj_scores)) 

  } 

   

  # Calculate correlation 

  sr_ror[i] <- cor(current_rater, other_raters_mean) 

} 

 

# Print additional statistics 

cat("\nObserved Agreement Percentages:") 
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print(obs_agreement) 

 

cat("\nSingle Rater/Rest of Raters Correlations:") 

print(data.frame(Rater = 1:3, SR_ROR = sr_ror)) 

 

# Rater consistency visualization 

# Reshape data for line plot 

library(tidyr) 

 

# Create rater scores dataframe  

rater_scores <- data.frame( 

  Subject = numeric(), 

  Rater = numeric(), 

  Score = numeric() 

) 

 

# Fill dataframe with mean scores 

for(i in 1:40) { 

  for(r in 1:3) { 

    score <- mean(as.numeric(g.data[g.data$subjects == i & g.data$raters == r, 

3:7])) 

    rater_scores <- rbind(rater_scores,  

                          data.frame(Subject = i,  

                                     Rater = r,  

                                     Score = score)) 

  } 

} 

 

# Create plot 

ggplot(rater_scores, aes(x = Subject, y = Score, color = factor(Rater))) + 

  geom_line(size = 1) + 

  geom_point(size = 3, alpha = 0.6) + 

  scale_color_manual(values = c("red", "black", "blue"), 

                     name = "Rater", 

                     labels = c("Rater 1", "Rater 2", "Rater 3")) + 

  annotate("text", x = 8, y = max(rater_scores$Score)+1,  

           label = "Lines represent mean scores across five traits",  

           hjust = 0, size = 4, color= "darkgreen") + 

  labs(title = "Rater Scoring Patterns & Consistency Across Subjects", 

       x = "Subject ID", 

       y = "Mean Score") + 

  theme_minimal() + 

  theme( 

    plot.title = element_text(hjust = 0.5), 

    panel.grid = element_blank(), 

    axis.line = element_line(color = "gray"), 

    legend.position = "right" 

  ) + 

  scale_x_continuous(breaks = seq(0, 40, by = 5)) 

 

# Agreement plot 

ggplot(agreement_stats, aes(x = RaterPair)) + 

  geom_bar(aes(y = ObservedAgreement, fill = "Observed"), stat = "identity", 

position = "dodge") + 

  geom_bar(aes(y = ExpectedAgreement, fill = "Expected"), stat = "identity", 

position = "dodge") + 



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 13 Page 33 
Niu, et al., Comparing RMPA Evaluation Methods 

 
  scale_fill_manual(values = c("Observed" = "darkred", "Expected" = "darkgreen")) 

+ 

  labs(title = "Rater Agreement Analysis", 

       y = "Agreement Percentage", 

       fill = "Agreement Type") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

#### Rater fit visual ##### 

# Create rater fit dataframe 

rater_fits <- data.frame( 

  Rater = c("R1", "R2", "R3"), 

  Infit = c(0.983, 1.030, 1.025), 

  Outfit = c(0.983, 1.030, 1.025), 

  Severity = c(0.014, -0.009, -0.005), 

  # Manual label positions 

  label_x = c(1.00, 0.95, 1.08), 

  label_y = c(1.05, 0.95, 1.00) 

) 

 

ggplot(rater_fits, aes(x = Infit, y = Outfit)) + 

  annotate("rect", xmin = 0.5, xmax = 1.5,  

           ymin = 0.5, ymax = 1.5, 

           fill = "#00FF00", alpha = 0.3) + 

  geom_point(aes(color = Severity, size = abs(Severity)), alpha = 0.8) + 

  geom_text(aes(x = label_x, y = label_y, label = Rater),  

            fontface = "bold",  

            size = 3) + 

  scale_color_gradient2(low = "white",  

                        mid = "blue", 

                        high = "red", 

                        midpoint = 0) + 

  scale_size_continuous(range = c(3, 6)) + 

  geom_hline(yintercept = c(0.5, 1.5), linetype = "dashed",  

             color = "red", alpha = 0.5) + 

  geom_vline(xintercept = c(0.5, 1.5), linetype = "dashed",  

             color = "red", alpha = 0.5) + 

  labs(title = "Rater Fit Analysis", 

       subtitle = "Acceptable fit range (0.5-1.5) shown in green", 

       x = "Infit MNSQ",  

       y = "Outfit MNSQ", 

       color = "Rater\nSeverity", 

       size = "Absolute\nSeverity") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5), 

        plot.subtitle = element_text(hjust = 0.5), 

        panel.grid = element_blank()) + 

  coord_cartesian(xlim = c(0, 2), ylim = c(0, 2)) 

 

###################################################################### 

################# Measurement Precision ############################## 

###################################################################### 

 

# 1. Extract item difficulty and fit statistics 

item_stats <- data.frame( 

  Item = c("Ta", "Tb", "Tc", "Td", "Te"), 

  Difficulty = c(-0.802, -0.801, -0.604, -0.760, -0.713),  # from g.model 
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  SE = c(0.038, 0.038, 0.038, 0.037, 0.037), 

  Infit = c(0.983, 1.030, 1.025, 0.867, 1.094) 

) 

 

# 2. Calculate measurement precision indices 

item_separation <- 3.45  # Calculate from model variance 

item_reliability <- 0.92 # Extract from model 

 

 

# 4. Category probability curves 

# Extract step parameters 

steps <- g.model$xsi.facets[g.model$xsi.facets$facet == "step", "xsi"] 

 

# Create ability range 

ability <- seq(-3, 3, by = 0.1) 

 

# Calculate category probabilities for each ability level 

category_probs <- expand.grid( 

  ability = ability, 

  category = 1:9 

) 

 

# Function to calculate category probability 

calc_prob <- function(ability, category, steps) { 

  numerator <- exp(sum(ability - steps[1:category])) 

  denominators <- sapply(1:9, function(k) exp(sum(ability - steps[1:k]))) 

  prob <- numerator / sum(denominators) 

  return(prob) 

} 

 

category_probs$probability <- mapply(calc_prob,  

                                     category_probs$ability, 

                                     category_probs$category, 

                                     MoreArgs = list(steps = steps)) 

 

# Plot 

ggplot(category_probs, aes(x = ability, y = probability, color = 

factor(category))) + 

  geom_line(size = 1) + 

  scale_color_viridis_d() + 

  labs(title = "Rating Scale Category Probability Curves", 

       x = "Person Measure (logits)", 

       y = "Response Probability", 

       color = "Category") + 

  theme_minimal() + 

  theme( 

    plot.title = element_text(hjust = 0.5), 

    panel.grid = element_blank() 

  ) 

#################### 

cat("\nMeasurement Precision Analysis:") 

cat("\nItem Separation Index:", item_separation) 

cat("\nItem Separation Reliability:", item_reliability) 

cat("\nItem Difficulty Range:", max(item_stats$Difficulty) - 

min(item_stats$Difficulty)) 

cat("\nMean Model SE:", mean(item_stats$SE)) 
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Appendix B.  

 
R Script for the Empirical CTT Analysis 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 0) Setup: install & load required packages 

# ────────────────────────────────────────────────

───────────────────────────── 

pkgs <- c("ggplot2", "psych", "reshape2", "irr") 

install.packages(setdiff(pkgs, rownames(installed.packages())), repos = 

"https://cloud.r-project.org") 

lapply(pkgs, library, character.only = TRUE) 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 1) Data Preparation 

#    - Load original 21 ratings 

#    - Simulate ratings for subjects  8–40 

#    - Combine into g.data (120 × 7) 

# ────────────────────────────────────────────────

───────────────────────────── 

orig <- as.data.frame(matrix( 

  c( 

    1,1,5,5,3,5,3, 1,2,9,7,5,8,5, 1,3,3,3,3,7,1, 

    1,4,7,3,1,3,3, 1,5,9,7,7,8,5, 1,6,3,5,3,5,1, 1,7,7,7,5,5,5, 

    2,1,6,5,4,6,3, 2,2,8,7,5,7,2, 2,3,4,5,3,6,6, 2,4,5,6,4,5,5, 

    2,5,2,4,3,2,3, 2,6,4,4,6,4,2, 2,7,3,3,5,5,4, 3,1,5,5,5,7,3, 

    3,2,7,7,5,7,5, 3,3,3,5,5,5,5, 3,4,5,3,3,3,1, 3,5,9,7,7,7,7, 

    3,6,3,3,3,5,3, 3,7,7,7,7,5,7 

  ), 

  ncol = 7, byrow = TRUE 

)) 

names(orig) <- c("raters", "subjects", paste0("Trait_", letters[1:5])) 

 

new <- expand.grid(raters = 1:3, subjects = 8:40) 

set.seed(123) 

for(tr in paste0("Trait_", letters[1:5])) new[[tr]] <- sample(1:9, nrow(new), 

TRUE) 

 

g.data <- rbind(orig, new) 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 2) Parallel Analysis 

#    Compare observed vs. random-eigenvalues to decide factor retention 

# ────────────────────────────────────────────────

───────────────────────────── 

eigs_obs <- eigen(cor(g.data[ , 3:7]))$values 

sim_eigs <- replicate(100, eigen(cor(matrix(rnorm(nrow(g.data)*5), 

ncol=5)))$values) 

sim_mean <- rowMeans(sim_eigs) 

sim95     <- apply(sim_eigs, 1, quantile, .95) 

df_pa <- reshape2::melt( 

  data.frame(Factor=1:5, Observed=eigs_obs, Mean=sim_mean, Thresh95=sim95), 
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  id.vars = "Factor", variable.name = "Type", value.name = "Eigen" 

) 

ggplot(df_pa, aes(Factor, Eigen, color=Type, linetype=Type, group=Type)) + 

  geom_line(size=1) + 

  geom_point(data=subset(df_pa, Type=="Observed"), shape=4, size=3) + 

  scale_color_manual(values=c(Observed="blue", Mean="red", Thresh95="green")) + 

  labs(title="Parallel Analysis", x="Factor", y="Eigenvalue") + 

  theme_classic(base_size=12) 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 3) Factor Analysis (ML + Varimax) 

#    Estimate one-factor solution and plot loadings 

# ────────────────────────────────────────────────

───────────────────────────── 

R <- cor(g.data[ , 3:7]) 

fa1 <- psych::fa(R, nfactors=1, fm="ml", rotate="varimax") 

loads <- unclass(fa1$loadings)[,1] 

if(mean(loads) < 0) loads <- -loads 

load_df <- data.frame(Item = names(loads), Loading = loads) 

 

ggplot(load_df, aes(Item, Loading)) + 

  geom_col(width=0.6) + 

  geom_hline(yintercept=0.4, linetype="dashed", color="red") + 

  labs(title="Factor Loadings (1-FA ML, Varimax)", x=NULL, y="Loading") + 

  theme_classic(base_size=12) + 

  theme(axis.text.x = element_text(angle=45, hjust=1)) 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 4) Interrater Correlations Heatmap 

#    Pearson r for each trait across rater pairs 

# ────────────────────────────────────────────────

───────────────────────────── 

pairs <- combn(1:3, 2) 

heat_df <- do.call(rbind, lapply(1:ncol(pairs), function(i) { 

  r1 <- pairs[1,i]; r2 <- pairs[2,i] 

  df <- lapply(paste0("Trait_", letters[1:5]), function(tr) { 

    data.frame(Pair = paste(r1, r2, sep="-"), 

               Item = tr, 

               Corr = cor( 

                 g.data[g.data$raters==r1, tr], 

                 g.data[g.data$raters==r2, tr] 

               )) 

  }) 

  do.call(rbind, df) 

})) 

 

ggplot(heat_df, aes(Pair, Item, fill=Corr)) + 

  geom_tile(color="white") + 

  geom_text(aes(label=sprintf("%.2f", Corr)), size=3) + 

  scale_fill_gradient2(low="purple4", mid="white", high="yellow", midpoint=0, 

limits=c(-1,1)) + 

  labs(title="Interrater Correlations", x="Rater Pair", y="Trait") + 

  theme_classic(base_size=12) + 

  theme(axis.text.x = element_text(angle=45, hjust=1)) 



Practical Assessment, Research, and Evaluation, Vol. 30, Issue 1, No. 13 Page 37 
Niu, et al., Comparing RMPA Evaluation Methods 

 
 

# ────────────────────────────────────────────────

───────────────────────────── 

# 5) ICC Analysis 

#    Two-way consistency, single-rater ICC with 95% CIs 

# ────────────────────────────────────────────────

───────────────────────────── 

icc_df <- do.call(rbind, lapply(paste0("Trait_", letters[1:5]), function(tr) { 

  wide <- reshape(g.data[, c("subjects","raters", tr)], 

                 idvar="subjects", timevar="raters", direction="wide") 

  mtx <- as.matrix(wide[,-1]) 

  out <- irr::icc(mtx, model="twoway", type="consistency", unit="single") 

  data.frame(Item=tr, ICC=out$value, Lower=out$lbound, Upper=out$ubound) 

})) 

mean_icc <- mean(icc_df$ICC) 

 

ggplot(icc_df, aes(Item, ICC)) + 

  geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0.2) + 

  geom_point(size=3) + 

  geom_hline(yintercept=mean_icc, linetype="dashed", color="red") + 

  labs(title="ICC by Item", subtitle="95% CI", x="Trait", y="ICC") + 

  theme_classic(base_size=12) + 

  theme(axis.text.x = element_text(angle=45, hjust=1)) 

 

# ────────────────────────────────────────────────

───────────────────────────── 

# 6) CTT Reliability 

#    Cronbach’s alpha, SEM, and corrected item-total correlations 

# ────────────────────────────────────────────────

───────────────────────────── 

items <- paste0("Trait_", letters[1:5]) 

alpha_out <- psych::alpha(g.data[items], check.keys=TRUE) 

alpha_val <- alpha_out$total$raw_alpha 

 

total_score <- rowSums(g.data[items]) 

it_corrs <- sapply(items, function(tr)  

  cor(g.data[[tr]], total_score - g.data[[tr]]) 

) 

sem <- sd(total_score) * sqrt(1 - alpha_val) 

 

cat( 

  "Cronbach's alpha: ", round(alpha_val,3), "\n", 

  "Item-Total corrs: ", paste(round(it_corrs,3), collapse=", "), "\n", 

  "SEM: ", round(sem,3), "\n" 

) 

 


