{ ’ < .
\/

PARE

g ¢ |
& /r —_— o
Practical Assessment,
Research, and
Evaluation &
¢

A peer reviewed, open-access electronic journal: ISSN 1531-7714

Systematic Comparison of Two Approaches for
Evaluating and Using Rater-Mediated Performance
Assessments

Chunling Niu, University of the Incarnate Word 1
Kelly Bradley, Marshall University '

Rui Jin, Shenzhen University 1

Ashley Love, Southern New Hampshire University (|

Abstract: Rater-mediated performance assessments (RMPAs) involve third-party raters evaluating
individual performance and are increasingly used across educational, organizational, and research contexts.
However, challenges persist in accounting for rater bias and measurement errors, as well as addressing
concerns around equity and fairness, especially for historically marginalized populations. This paper
addresses these challenges by first discussing the methodological limitations of widely used RMPA
evaluation techniques based on classical test theory (CTT), including factor analysis, Cronbach’s alpha, and
interrater reliability analysis. An alternative approach using Many-Facet Rasch Modeling (MFRM) is then
introduced. The two frameworks are systematically compared from both theoretical and empirical
perspectives. An empirical example using Al safety evaluation data from the DICES dataset demonstrates
how MFRM yields enhanced diagnostic insights (including rater severity differences, rating scale functioning
issues, and construct dimensionality) that CTT approaches may not readily provide. Finally, commonly used
MFRM-based analytical techniques are introduced for typical RMPA evaluation studies. This paper not only
aims to enhance the methodological rigor of RMPAs but also seeks to contribute to the ongoing dialogues
on creating more equitable and fair performance assessment practices.
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Introduction

Rater-mediated performance assessments (RMPAs) involve systematic evaluation of an individual's
performance or capabilities by trained observers or judges using standardized criteria and rubrics. These
assessments capture complex behaviors, skills, and competencies that may be difficult to measure through
traditional testing formats. The raters observe and document performance according to established
protocols, generating detailed evaluative data that can inform important decisions across educational,
professional, and research contexts. While self-report measures and automated scoring systems also involve
human judgment (through item design and algorithm development, respectively), RMPAs directly
incorporate real-time human observation and evaluation of performance. This approach allows trained raters
to apply nuanced, context-sensitive judgments within standardized evaluation frameworks. This approach
has gained increasing prominence due to its ability to generate rich, detailed evidence about complex
performances that may be difficult to capture through other assessment methods. RMPAs have been used

in a variety of contexts, including educational, organizational, and health care research. (Borman et al., 2003;
Leung et al., 2008).

The past three decades have seen a substantial growth in the use of RMPAs in survey research (Darling-
Hammond et al., 2010; Madaus et al, 1999; Modell, 2004). This is primarily because RMPAs typically involve
an external observer who can provide a relatively objective/unbiased evaluation of the participant’s
performance (Goh, 2012). RMPAs are particularly useful when measuring complex behaviors that are
difficult to self-report, such as interpersonal skills or job performance (Latham & Wexley, 1993).
Additionally, in contexts requiring direct observation of complex behaviors, such as interpersonal
communication or procedural skills, RMPAs can capture performance details that may be difficult to assess
through self-report alone, as they allow trained observers to evaluate multiple aspects of a behavior or
performance simultaneously (Knoch et al., 2021).

Among various types of application in research and practice, RMPAs are increasingly being used to
provide feedback to employees and to measure their progress in professional development programs
designed for teachers (Reagan et al., 2016), nurses (Robb & Dietert, 2002), and for other professionals, such
as police officers (Bertilsson et al., 2020). Moreover, RMPAs have also been adopted as a type of self- and/or
peer-assessments. For example, abundant empirical findings showed that the use of a RMPA improved the
accuracy of self-assessment and peer-assessment scores in a sample of university students (Farrokhi et al.,
2011; Han, 2018). These findings suggest that RMPAs can be a valuable tool for improving the accuracy and
reliability of large-scale self- and peer-assessments in academic settings.

However, RMPAs face several inherent methodological challenges that affect measurement quality.
These include: (a) ensuring rating accuracy due to various rater effects and biases that can influence scoring;
(b) establishing reliable and valid rating criteria, which requires extensive rater training; (c) maintaining
consistent interpretations across different raters who may view criteria differently; (d) developing rating
scales that function consistently both across multiple raters and within individual raters' use; and (e)
sustaining rating reliability over time as raters’ familiarity with criteria and ratees changes (Guo, 2021; Wind,
2019). Traditional CTT-based approaches attempt to evaluate these challenges through various statistical
indices, but as we will demonstrate, they have important limitations in addressing these fundamental
measurement issues.

Equally important in the discourse on RMPAs is the consideration of equity and fairness, particularly
concerning historically marginalized populations. The potential for rateeive biases in RMPAs - stemming
from cultural, racial, or socioeconomic factors - raises significant concerns regarding the fairness of
assessments. These biases can lead to disparate impacts on marginalized individuals, influencing their
teedback, opportunities for development, and overall outcomes in professional or educational advancement.
Acknowledging the importance of addressing these biases, researchers have begun to explore methodologies
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that ensure more equitable assessment practices. Strategies such as diversifying rater pools and enhancing
cultural competency training for raters are among the approaches being discussed to mitigate bias in RMPAs
(Montgomery & Fernandez, 2019). Furthermore, the integration of Many-Facet Rasch Modeling (MFRM)
offers a promising avenue for analyzing and correcting for potential biases, providing a more equitable
assessment framework (Linacre, 2018).

To address these challenges, two major measurement frameworks have been used to examine the
psychometric properties of RMPAs: Classical Test Theory (CTT) and Many-Facet Rasch Modeling (MFRM).
While both frameworks can provide evidence related to wvalidity, reliability, and fairness, they differ
fundamentally in their theoretical foundations and analytical capabilities. Thus, this paper proceeds as
follows: First, we examine the theoretical limitations of CTT-based approaches. Next, we introduce MFRM
as an alternative measurement framework. We then systematically compare both approaches both
theoretically and empirically, using a synthetic dataset from a scientist evaluation context where three senior
scientists rated 40 junior scientists on five professional traits. This dataset combines authentic ratings with
partially simulated data to ensure adequate sample size for analysis. This empirical example demonstrates
how CTT and MFRM analyses yield different insights when applied to the same rater-mediated assessment
data. Finally, we provide practical guidance for implementing MEFRM-based analyses in RMPA contexts,
supported by concrete examples from the scientist evaluation study. Through this combination of theoretical
comparison and practical application, we aim to help researchers and practitioners make informed decisions
about measurement approaches for their specific RMPA contexts.

Limitations of the CTT-Based Evaluation Approach

The CTT-based techniques for analyzing RMPAs adopt the test score tradition or number-correct
approach (Engelhard et al., 2018), employing various statistical indices such as rater agreement indices,
intraclass correlation coefficients (ICC), kappa coefficients, and generalizability coefficients to quantify
rating consistency (Cronbach et al., 1972; Johnson et al., 2008; von Eye & Von Eye, 2005). While these
methods can describe observed score patterns and summarize the degree of agreement between raters
through measures like percentages of exact and adjacent category usage, they cannot directly adjust for rater
effects or bias. Furthermore, these approaches rest upon a fundamental assumption that the observed ratings
represent equal intervals that can be meaningfully combined using sum scores. This assumption implies that
the psychological distance between rating categories (e.g., between 1 and 2, or between 2 and 3) is uniform
across the rating scale - an assumption which is rarely supported empirically in rubric-based RMPAs.

For instance, on a 3-point rating scale (1 = “Needs Improvement”, 2 = “Satisfactory”, 3 = “Excellent”),
CTT methods treat the difference between scores of 1 and 2 as equivalent to the difference between 2 and
3. However, the psychological distance between “Needs Improvement” and “Satisfactory” may be quite
different from the distance between “Satisfactory” and “Excellent”. This assumption of equal intervals can
mask important differences in how raters interpret and use the rating scale. Therefore, even if the interrater
reliability indices, such as the ICC or kappa coefficients, appear acceptable, it still does not justify the usage
of a RMPA that is free from rater bias/effects.

Introduction to MFRM

As an alternative method to account for the rater variability, measurement models based on the scaling
tradition (Engelhard, 2013) parameterize the structure of rating categories with category coefficients (i.e.,
thresholds). Thresholds that define rating categories do not need to have equal width (Engelhard & Wind,
2013). As a measurement model specifically designed for RMPAs (Eckes, 2015), MFRM is a generalized
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form of the Rasch model that can incorporate multiple facets, such as raters, items, and other relevant factors
that may influence the measurement process. While some facets may represent construct-irrelevant variance
(e.g., systematic rater severity differences), others may capture construct-relevant aspects of the
measurement. (Wright & Linacre, 1989).

The MFRM approach extends the fundamental principles of Rasch measurement to accommodate
multiple facets that may influence the measurement process. While commonly used with polytomous rating
scale models (Andrich 1978) and partial credit models (Masters, 1982), MFRM can extend any standard
Rasch model while maintaining core measurement properties. In RMPA applications, this flexibility allows
researchers to incorporate facets such as raters, items/tasks, and other relevant factors alongside the primary
measurement of ratee ability/skill/proficiency, enabling systematic evaluation of their contributions to the
measurement process.

In a MFRM analysis, the log-odds of each transition between adjacent rating scale categories are modeled
as a function of multiple parameters estimated on a common scale: performance proficiency (for ratees),
severity (for raters), and difficulty (for traits and rating scale categories). This shared metric allows direct
comparison across all facets of the measurement system. Mathematically, a MFRM version of the rating
scale model takes the following basic form (Linacre, 1990):

/”[pm'jk / Pm'jk-l] =B,— D — Cj— F, (1)

where P, denotes the probability of ratee # being rated £ on item/task 7 by rater j, while Py refers to the
probability of ratee 7 being rated £ - 1 on item/task 7 by ratet /. B, represents level of performance proficiency
for ratee 7, and D, means difficulty of item/task 7 Rater parameter G denotes severity of rater /, and I, refers
to difficulty of scale category £ relative to scale category £— 1 (i.e., thresholds).

When it is not appropriate or necessary to use a fixed distance between thresholds for all items, a MFRM
version of the partial credit model may be defined based on the adaptation of Equation (1) as below:

/”[ijk / Pm'jk-l] =B,— D — Cj— Fi, (2)

where P, denotes the probability of ratee # being rated £ on item/task 7 by rater j, while P 1 refers to the
probability of ratee # being rated £ - 1 on item/task 7 by rater . B, represents level of performance proficiency
for ratee 7, and D; means difficulty of item/task 7 Rater parameter C; denotes severity of rater /. Fy represents
the difficulty of scale category £ relative to category £ - 1 for item 7 allowing thresholds to vary across items
(but not across raters) for better model parsimony while still capturing important rating scale functioning
(Eckes, 2015).

A partial credit model is specified based on the assumption that each rater interprets and uses each rubric
element/dimension in their own individual ways. Thus, the partial credit model is a more complex model
than the rating scale model and allows for the estimation of additional parameters for both raters and rubric
element thresholds (Bond & Fox, 2015; Eckes, 2015; Myford & Wolfe, 2003).

The MFRM analysis allows researchers to evaluate the impact of each facet on the measurement process
by estimating its unique parameter (e.g., level of severity for each rater), and then to compute the overall
probability of any ratee performing on any item/task for any score category threshold and for any rater, after
accounting for the estimated parameters of all facets (Bond & Fox, 2007). It is in this sense that MFRM is
tully capable of modeling various facets in the RMPA setting, estimating their effects on ratings, and placing
them on the same logit scale for comparison. Each facet is calibrated from the potentially ordinal raw ratings
(as rating scales are often used in RMPAs), and all facets (ratee, task, rater, etc.) are placed on a single
common linear scale called a variable or facets map. Thus, MEFRM treats each rating as a function of the
interaction between ratee ability, task difficulty, criterion difficulty, rater severity, and possibly the effects of
other external, measurement-irrelevant factors (Barkaoui, 2013; McNamara, 1996).
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While MFRM can handle some missing data patterns when there is adequate connectivity in the rating
design (i.e., sufficient linking between facets through common elements), the model’s desirable measurement
properties - such as the placement of all facets on a common metric and meaningful interpretation of
parameter estimates - depend critically on good model-data fit. When these conditions are met, MEFRM can
provide valid parameter estimates without requiring complete rating designs or assumptions about parameter
distributions (Linacre, 2018). However, systematic misfit or insufficient connectivity in the rating design can
compromise the interpretability of results and the validity of adjustments for rater severity. Therefore, careful
evaluation of model-data fit, and rating design connectivity should precede any substantive interpretations
of MFRM results.

Comparison of the CTT vs. MFRM Measurement Frameworks for RMPAs

The commonly used techniques for analyzing RMPAs under CT'T and MFRM frameworks are detailed
in Table 1 below. These frameworks differ fundamentally in both their theoretical foundations and analytical
capabilities for addressing three critical aspects of measurement quality in RMPAs: evaluation of internal
structure, assessment of rater functioning, and examination of measurement precision. While both
frameworks can provide evidence related to validity, reliability, and fairness, their different theoretical
foundations lead to distinct approaches for addressing these measurement challenges (Engelhard & Wind,
2018).

Scale/Rubric Internal Structure Analysis

When examining scale/rubric internal structure, CT'T and MFRM frameworks offer distinct approaches
with different analytical strengths. CT'T factor analysis helps describe sample-dependent patterns in rating
data, evaluating how well items align with hypothesized dimensions (Boone, 2016). However, factor analysis
can be influenced by item difficulties, potentially identifying separate factors based on difficulty levels rather
than true dimensional differences. Additionally, inter-item correlations and factor loadings may reflect
sample characteristics more than fundamental measurement properties (McAuley et al., 1989).

MFRM’s dimensionality analysis provides a prescriptive approach that identifies departures from
unidimensional measurement while maintaining sample independence. Through analysis of standardized
residuals and fit statistics, MIFRM can detect subtle violations of measurement assumptions that might not
be apparent in factor analysis. This approach helps identify specific items or rating patterns that compromise
measurement quality, rather than just describing overall factor structure.

Rater Functioning & Interrater Analysis

CTT-based approaches to evaluating rater functioning primarily rely on interrater reliability (IRR)
indices, which fall into two broad categories: consensus measures and consistency measures (Hayes &
Krippendorff, 2007; Stemler & Tsai, 2008). Consensus measures assess absolute rating correspondence,
including exact/adjacent agreement percentages and chance-cortrected indices such as Cohen’s Kappa for
two raters, Fleiss” Kappa for multiple raters rating the same ratees, and Krippendorff’s Alpha, which
accommodates any number of raters, various levels of measurement, and missing data (Cohen, 1960; Fleiss,
1971; Krippendortf, 2011). Consistency measures such as Pearson correlations and intraclass correlation
coefficients (ICC) examine relative ordering of ratings rather than exact agreement. However, these
approaches have important limitations. High IRR statistics don’t necessarily indicate accurate ratings since
(a) raters can show high consistency while sharing systematic biases, and (b) neither type of index can detect
problematic rating scale use patterns or rater severity differences (Eckes, 2012). Additionally, treating ordinal

rating data as interval-level measurements in these analyses can mask important non-linearities in rating scale
functioning (Wright & Linacre, 1989; Thorndike, 1904).
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Table 1. List of Techniques of the CTT- vs. MFRM-Based Measurement Frameworks

Measurement Internal Structure Rater Functioning Measurement Precision
Frameworks
CTT Factor Analysis: Consensus measures: Scale/Rubric Reliability
- Exploratory (EFA) - Exact/adjacent rater Analysis:
- Confirmatory (CFA) agreement - Cronbach’s Alpha
- Item correlation - Rater agreement percentages ~ Coefficient
patterns Consistency measures: - Item-scale/total
- Parallel analysis - Pearson interrater correlations  correlations
- Item correlation matrix - Intraclass correlation - Standard error of
- Item covariance matrix  coefficients measurement
- Factor loadings - Cohen's Kappa - Split-half reliability
- Fleiss' Kappa - Test-retest reliability
- Krippendorff’s Alpha - Generalizability coefficients
MFRM Unidimensionality Rater Effect Analysis: Scale/Rubric Functioning
Analysis: - Rater severity measures Analysis:
- Overall Model-Data fit - Rater fit statistics - Item fit statistics
statistics - Rater-facet separation index - Item-facet separation index

- Individual fit indices
- Principal components

- Rater-facet y2 value
- Rater x criterion interactions

- Item difficulty estimates
- Differential item

analysis of standardized - Rater bias/interaction functioning

residuals (PCAR) analyses - Item response category

- Point biserial - Observed and expected functioning

correlations percentages of exact rater - Wright maps (variable

- Standardized residual ~ agreements maps)

analysis - Single rater-rest of the raters - Information functions

- Local independence (SR/ROR) cotrrelation - Conditional standard errors
evaluation measures

- Differential rater functioning
- Rater consistency measures

By contrast, MFRM addresses these limitations through a sophisticated measurement framework that
fundamentally reconceptualizes how rater effects are understood and analyzed. Rather than simply
describing rating patterns, MEFRM models the rating process as an interaction between multiple facets -
ratees, raters, items, and other relevant factors. This approach allows systematic investigation of rater
functioning within the broader measurement context.

A key methodological advantage of MFFRM lies in its ability to distinguish between different sources of
rating variability. While CTT approaches might identify inconsistent ratings, MEFRM can determine whether
these inconsistencies stem from rater severity differences, scale/rubric usage patterns, interactions with
particular items, or other systematic effects. This diagnostic capability not only identifies problems but also
suggests specific remedies for improving rating quality (Engelhard & Wind, 2018).

Moreover, MFRM’s transformation of ordinal ratings into interval measures provides a more
theoretically sound basis for analyzing rater behavior. By placing all facets (including raters) on the same
logit scale, MFRM enables meaningful comparisons of rater severity and consistency that are not possible
with raw scores. When model assumptions are met, these measures can be adjusted for systematic rater
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effects while maintaining measurement precision - a capability that goes well beyond traditional interrater
reliability coefficients.

Perhaps most importantly, MFRM provides a unified framework for understanding rater functioning as
part of the overall measurement process. Rather than treating rater effects as mere error to be minimized,
MFRM acknowledges raters as an integral part of the measurement system and provides tools for monitoring
and improving rating quality. This comprehensive approach enables more sophisticated analysis of rating
quality and more targeted interventions for improving rater performance (Engelhard & Wind, 2018).

Scale/Rubric Measurement Precision Analysis

CTT approaches to measurement precision primarily rely on scale-level reliability indices, with
Cronbach’s alpha being the most widely used. These approaches are based on correlational statistical models
that treat individual items as separate variables, computing a single standard error from variance not
attributable to the assumed latent construct (Fisher Jr. et al., 2010). Supplementary evidence may come from
item-scale total correlations, split-half reliability, and test-retest reliability coefficients.

However, Cronbach’s alpha and related CTT indices face significant methodological limitations. As
Sijtsma (2009) demonstrates, alpha values provide ambiguous evidence about scale/rubric functioning —
scales/rubrics with different factorial structures can yield identical alpha values, and single-factor scales can
show widely varying alphas. More fundamentally, when used to estimate scale/rubric reliability, alpha from
a single test administration cannot adequately capture individual-level measurement precision.

MFRM offers several methodological advantages for assessing scale/rubric measurement precision.
Rather than relying on group-level statistics, MFRM provides individual-level error estimates that function
like sampling confidence intervals. These estimates become more precise with increased observations,
whether through more items per person or more ratings per item (Fisher Jr. et al., 2010). The framework
enables sophisticated analysis of scale/rubric functioning through:

- Item fit evaluation that flags items exhibiting misfit, prompting further investigation into potential sonrces of measurement
error

Scale calibration that reveals category functioning and threshold structure

- Information functions that show measurement precision across the trait continuum

Standard error estimates that quantify precision at individual levels
- Wright maps that visnally display measurement targeting

These tools provide detailed diagnostic information about both item-level and scale/rubric-level
performance, enabling more precise assessment of measurement quality than possible with CTT indices.
Most importantly, MFRM’s interval-level measurement properties allow meaningful interpretation of score
differences and more accurate assessment of measurement precision across different rating contexts.

To sum up, these fundamental differences between CTT and MFRM frameworks have important
implications for RMPA practice. While CTT methods can provide useful descriptive information about
rating patterns, MEFRM offers additional analytical capabilities for examining and potentially adjusting for
various measurement effects. However, these advantages depend on meeting model assumptions and
establishing adequate connectivity in rating designs.

Table 1 provides a comprehensive inventory of techniques available within each framework. The
following empirical demonstration illustrates typically used techniques from each category; a complete
demonstration of all listed methods is beyond the scope of a single example, though the principles generalize
across techniques within each framework.



Practical Assessment, Research, and Evaluation, 170l. 30, Issue 1, No. 13 Page 8
Niu, et al., Comparing RMPA Evaluation Methods

Typical MFRM-based Evaluation Procedures and Techniques

This section presents a brief tutorial on how to conduct an MEFRM-based evaluation study for RMPAs.
First, typical Research Questions in such evaluation studies are identified and listed, followed by the
explanation about Research Design. Most importantly, the Data Analysis Techniques are cleatly outlined for
addressing the typical Research Questions, involving all necessary procedures and techniques.

Sample Research Questions

A comprehensive MFRM-based evaluation study for RMPAs typically addresses the following eight
research questions regarding how to control various construct-irrelevant measurement errors of using the
RMPA instrument:

1. To what extent do the observed rating data obtained from the RMPA instrument fit the MFRM
modeling?

. To what extent does the RMPA instrument separate ratees into distinct levels of proficiency?
. To what extent do raters differ in terms of the relative severity with which they rate ratees?
. To what extent do raters consistently rate the performance of ratees?

. To what extent do raters consistently rate the performance of ratees across the RMPA items?

AN L AW

. To what extent can the score levels of the individual RMPA items be distinguished, without certain
score levels being either underused or overused?

7. To what extent are the rater behaviors associated with the professional/personal background
characteristics of ratees?

8. To what extent are the rater behaviors associated with the professional/personal background
characteristics of the raters themselves?

Research Design

A MFRM-based evaluation study for RMPAs is conducted within a Rasch framework, including the
investigation of dimensionality, ratee fit, item fit, rater fit, overall data-model-fit, as well as possible
interactions between any of the modeled facets/factors. The key lies in systematically calibrating the
measures of all the involved facets (e.g., test item, ratee, raters, and other external factors) on a common
continuum scale, so that the construct-irrelevant measurement errors (especially rater bias) can be effectively
identified and accounted for. The calibrated ratings/scores after the MFRM analysis can theoretically be
compared with confidence across different rating contexts.

Data Analysis Techniques

We illustrate techniques that researchers can use to evaluate RMPAs using a MFRM approach with open-
source R packages (standalone commercial Rasch software programs such as Facets and Winsteps can also
be used if preferred).

Local Independence. Local independence (LID) refers to the assumption that item responses are
independent from one another after controlling for the construct of interest (DeMars, 2010). Therefore,
there should be no significant correlation between two items after controlling for the underlying trait, as
some residual association may occur due to random variation. In other words, the items should only be
correlated primarily through the latent trait that the test is measuring,.
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LID violations are problematic because they may influence parameter estimates as well as inflate
reliability estimates (Marais & Andrich, 2008), since locally dependent items always cause substantial
information loss for IRT modeling.

Among the variety of methods for identifying LID violations that have been proposed in the related
literature, the most widely used approach is based on Yen’s 05 (1993) statistics through computing item
residuals (observed item responses minus their expected values); and then correlating these residuals. Thus,
in practice, LID violations are detected through observing the correlation matrix of item residuals based on
estimated item and person parameters, and residual correlations above a certain cut-off value are pinpointed
as the items that appear to be locally dependent.

Although no single critical cut-off value of ( statistics is appropriate across all situations, simulation
studies suggest that the  critical value tends to be approximately 0.2 above the average residual correlation.
Item residual correlations that exceed this guideline may indicate potential local dependence, and residual
correlations that are 0.3 above the average correlation are generally uncommon for independent items.
(Christensen, Makransky, & Horton, 2017).

The Yen’s O (1993) statistics can be calculated and investigated in R using packages such as mirt or
through custom functions that compute correlations between item residuals after fitting the MEFRM model
with the “TAM” package (as demonstrated in Appendix A). When using the “TAM” package, item residuals
can be extracted from the fitted model and their correlations examined to identify potential local
dependence. Alternatively, this analysis can also be conducted in the Winsteps software program, where
Table 23.99 (i.e., largest residual correlations for items) can be obtained for pairwise, item-level residual
correlations by specifying the command of "PRCOMP = R" in the control file.

Unidimensionality. Unidimensionality is related to LID and refers to the assumption that all
assessment items measure only one common construct. Unidimensionality is evaluated by conducting a
Principal Components Analysis (PCA) on the standardized residuals (PCAR) following the MFRM analysis.
The number and type of facets depend on the specific RMPA context, while common configurations include
ratees, items, and raters, with additional facets (e.g., rating occasions, tasks, contexts) incorporated as
warranted by the research design. The PCAR can be conducted in R using the “TAM” package by extracting
standardized residuals from the fitted model and performing principal components analysis on these
residuals using base R functions (prcomp () or princomp ()). As illustrated in Appendix A, this
provides eigenvalues and variance explained statistics for evaluating dimensionality. Alternatively, the PCAR
can also be conducted using the Winsteps software program, version 4.7.0 (Linacre, 2020).

The general procedures for conducting PCAR analysis in R include: (a) fitting a MEFRM model using the
“TAM” package with the appropriate facets specified (as shown in Appendix A, using the
tam.mml.mfr () function), (b) extracting standardized residuals from the fitted model, and (c)
conducting principal components analysis on these residuals to identify potential secondary dimensions.
Alternatively, when using dedicated Rasch software, the procedures are as follows: (a) a MFRM analysis is
carried out in Facets (Linacre, 2020) with facets specified according to the research design (e.g., ratees, items,
raters, and any additional relevant facets), and (b) a rectangular data output file is exported from Facets into
Winsteps, containing the RMPA items as its columns and “ratees + raters” combined as its rows for a PCAR
analysis in the Rasch framework.

PCAR analyses are used to evaluate whether there are systematic patterns in the item-level standardized
residuals. If there are patterns in the residuals, a secondary dimension (i.e., a contrast) may be present. It is
assumed that all items should be loaded on the first contrast of the Rasch dimension, and the PCAR
specifically tests whether any items group on secondary contrasts. Each contrast has an associated
eigenvalue, and the eigenvalues represent the number of items that make up the respective contrast. If
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eigenvalues for all secondary contrasts are less than 2.0 (indicating there are fewer than two elements on the
secondary contrasts), the unidimensionality assumption is generally considered supported (Linacre, 2023;
Smith, 2002). However, this guideline should be applied with judgment, as the appropriate threshold may
vary depending on test length, sample size, and the specific measurement context (Chou & Wang, 2010).

Overall Model Fit. To evaluate the overall model fit of the MFRM analysis, the absolute values of the
standardized residuals are examined. Standardized residuals represent the number of standard deviations the
observed score/rating deviates from the expected score/rating. For instance, standardized residuals of | 2.0 |
indicate that the observed score deviates by two standard deviations from the expected score. Thus, a
commonly applied guideline suggests that standardized residuals greater than |2.0| often indicate
unexpected scores, and these would typically be expected to appear less than 5% of the time in data that fit
reasonably well with the chosen MFRM model (Bond & Fox, 2015). In typical MFRM-based evaluation
studies, data are deemed to have good overall model-fit, if fewer than 5% of the standardized residuals
appear greater than or equal to |2.0].

Rater Fit and Item Fit. Mean Square outfit and Mean Square infit statistics (referred to as MnSq outfit
and infit indices) are calculated and investigated to evaluate rater fit or item fit (Bond & Fox, 2015).

MnSq outfit and infit indices range from 0 to positive infinity, with values of 1.0 indicating perfect fit of
the data to the model (Linacre, 2020). Values less than 1.0 indicate that the observed ratings are closer to the
model-implied ratings than would be predicted by the model (i.e., overfit of the model), and values greater
than 1.0 indicate that the observed ratings are less similar to the model-implied ratings than would be
predicted by the model (i.e., underfit of the model).

Various guidelines have been proposed for interpreting fit based on MnSq outfit and infit indices.
Linacre (2003) suggests that outfit and infit values approximately between 0.5 and 1.5 can generally indicate
acceptable fit, while Bond and Fox (2015) recommend narrower ranges of about 0.7 to 1.3 for high-stakes
applications. However, appropriate fit thresholds depend on assessment purpose, sample characteristics, and
substantive considerations (Wright & Linacre, 1994). For exploratory analyses or low-to-medium stakes
RMPAs, the 0.5-1.5 range provides a reasonable starting point, though practitioners should interpret fit
statistics in conjunction with other diagnostics and substantive understanding of the measurement context
rather than applying rigid cutoffs mechanically.

MFRM Parameter Estimation. MFRM analysis yields (a) a measure of the ratee ability/rater
severity/item difficulty parameter on a logit scale for each ratee/rater/item, respectively, together with (b) a
standard error (SE) that indicates the uncertainty associated with that parameter estimate. These analyses
can be conducted using various software programs, including Facets (Linacre, 2020), Winsteps (Linacre,
2023), or R packages such as TAM (Robitzsch et al., 2022). These measures are examined for the overall
range/spread to determine how varied they are in this study sample. In addition, the average measutre can
also be calculated as the average proficiency/effectiveness of ratees, average rater sevetity, or average item
difficulty. A relatively low SE value is desired, as it indicates low measurement errors associated with the
measures and high level of precision in estimating these measures.

The Separation Index for each facet indicates how many levels of ratee ability, rater severity, or item
difficulties can be distinguished based on the RMPA data; while the Reliability of Separation indicates the
degree to which the MFRM analysis reliably distinguishes between these different levels. Fixed j* tests the
null hypothesis that all ratees/raters/items are equal in their estimated measutes, a very easy assumption to
violate in empirical studies.

MFRM-Based Bias Analysis. MFRM-based bias analysis investigates whether a particular aspect of
the assessment setting elicits a consistently biased pattern of scores/ratings. After estimating the main effects
respectively for the rater severity (across all tasks), RMPA item difficulty (across all raters), and ratee ability
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(across all items and raters), the MFRM analysis estimates the most likely score for each ratee with a given
rater on a specific task, if the rater’s rating behavior remains consistent across all RMPA items. These
individual ratee scores are totaled across all ratees to produce a total expected score given by each rater on
each item. This expected total score is then compared to the observed total score for all the ratees on the same
item.

If the observed score for a given RMPA item is higher than the expected score, this item seems to have
elicited more lenient behavior than usual on the part of the raters. Fit statistics of the bias analysis summarize
for each rater, item, and ratee the extent to which the differences between expected and observed values are
within a normal range (expressed in standard deviations from the mean fit statistics).

McNamara (1996) and Kondo-Brown (2002) suggest that researchers may focus on potentially biased
interactions with Z-values approximately equal to or higher than the absolute value of 2, along with MnSq
infit values falling roughly within the range of two standard deviations around the mean of infit values.

An Empirical Example
Empirical RMPA Context

This study utilized data from the DICES (Diversity in Conversational Artificial Intelligence Evaluation
for Safety) Dataset 350, a publicly available benchmark designed to capture diverse perspectives on the safety
evaluation of conversational Artificial Intelligence (AI) systems (Aroyo et al., 2023). The dataset contains
multi-turn adversarial conversations generated by human agents interacting with a Large Language Model,
with each conversation rated for safety by a diverse human rater pool. This context represents an emerging
application of RMPA methodology: using human raters to assess Al performance (i.e., evaluating Al-
generated content for safety) and alignment rather than traditional human performance assessment.

The original DICES 350 dataset comprises 350 adversarial conversations rated by 123 unique raters,
with raters balanced by gender (man, woman) and race/ethnicity (White, Black, Latine, Asian, Multiracial).
Each rater evaluated all conversations, yielding a fully crossed rating design that enables comprehensive
examination of rater effects, item functioning, and measurement precision.

For this methodological demonstration, we randomly selected a subset of 5 raters evaluating 100
conversations to ensure computational feasibility while maintaining the fully crossed design. This yielded the
final analytic dataset comprised 500 observations with complete ratings across six aggregate safety items:
harmful content overall (Q2), bias overall (QQ3), misinformation (Q4), political affiliation (Q5), policy
guidelines overall (Q06), and an overall safety rating (Q_overall). Responses were recorded as NO (0),
UNSURE (1), or YES (2). The six aggregate items were selected over the 24 original sub-items to avoid
redundancy, maintain local independence assumptions, and align with the original DICES study’s data
analytical approach.

Unlike traditional RMPA contexts where rater disagreement may reflect measurement error, this dataset
presents unique challenges: rater variability may stem from legitimate differences in individual rater
interpretations of harm, the inherent ambiguity of adversarial conversational content, and systematic
differences in safety perceptions across demographic groups. These characteristics make the DICES dataset
particularly well-suited for demonstrating how MFRM can disentangle multiple sources of variance in
complex rating contexts.

All analyses were conducted using R 4.3.1 (R Core Team, 2023), specifically the TAM package for MFRM
analysis, with visualization support from the ggplot?2 package. While our tutorial section references
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specific procedures available in standalone Facets and Winsteps software, these analyses and visualizations
can be implemented using equivalent functionality in open-source R packages.

MFRM-Based Analysis Results

MFRM-based analytical procedures were conducted in R 4.3.1 (R Core Team, 2023) to systematically
examine the RMPA measurement quality, addressing key aspects such as scale/rubric internal structure,
rating consistency, measurement precision, and potential systematic biases in the assessment process.

Scale/Rubric Internal Structure Analysis. MFRM-based unidimensionality analyses were conducted
to examine the dimensionality of the six-item safety assessment rubric. The Principal Components Analysis
of Residuals (PCAR) revealed that the first component explained 26.98% of the total variance, with a first-
to-second eigenvalue ratio of 1.32. The average inter-item residual correlation was -0.14, indicating weak
negative relationships among items after accounting for the Rasch dimension. The scree plot (Figure 1)
illustrates eigenvalues across five components, with four components exceeding the eigenvalue threshold of
1.0 and no clear “elbow,” suggesting strong multidimensionality.

These findings indicate that the six safety items do not form a strictly unidimensional construct for Al-
generated content safety. The negative average inter-item residual correlation suggests that raters may have
interpreted certain harm categories as inversely related, such as rating content high on political affiliation but
low on misinformation. This pattern implies that the safety items function as distinct dimensions rather than
indicators of a single underlying “harm” construct, which has important implications for aggregating scores
across items.

Figure 1. Principal Component Analysis Results of Standardized Residuals
PCA of Standardized Residuals
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Rater Functioning & Interrater Analysis. MFRM-based rater severity analyses revealed substantial
differences among the five raters, with severity measures ranging from -0.83 logits (most lenient, R4) to 1.66
logits (most severe, R5), yielding a severity range of 2.49 logits. As shown in Figure 2, non-ovetlapping
standard errors between R5 and all other raters indicate statistically significant severity differences. The
significant fixed-effect chi-square (* = 450.24, df = 4, p < .001) confirms systematic differences in rater
behavior. The high separation reliability (0.99) and separation index (11.87) indicate that raters can be reliably
distinguished into at least ten statistically distinct severity levels - substantially exceeding the minimum
acceptable values of 0.70 and 2.0, respectively.



Practical Assessment, Research, and Evaluation, 170l. 30, Issue 1, No. 13 Page 13
Niu, et al., Comparing RMPA Evaluation Methods

Figure 2. Results of MFRM-Based Rater Severity Analysis
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Furthermore, as shown in Figure 3, all raters demonstrated acceptable Infit statistics (0.89-1.16) within
the 0.5-1.5 range, indicating internal consistency in applying their own rating standards. Outfit values ranged
from 0.59 to 0.84, with some raters showing slight overfit, suggesting overly predictable response patterns.
Opverall, raters demonstrated adequate intrarater consistency.

Figure 3. Results of Rater Fit Analysis
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However, interrater agreement analyses revealed mixed results. Exact agreement percentages between
rater pairs ranged from 28% to 63%, with many pairs falling below the 60-70% threshold, typically
considered acceptable for performance assessments. The Single Rater/Rest of Raters (SR/ROR)
correlations ranged from 0.34 to 0.51, indicating moderate agreement between individual raters and the
collective judgment of other raters. As illustrated in Figure 4, raters demonstrated notably different scoring
patterns: R5 consistently assigned scores near zero (detecting minimal harm), while R4 showed the highest
variability with frequent elevated scores. These divergent patterns align with the DICES dataset’s design
intention to capture diverse perspectives on Al safety, suggesting that rater variability reflects legitimate
differences in harm perception rather than measurement error requiring remediation.
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Figure 4. Rater Scoring Patterns across AI-Generated Conversations
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These findings reveal substantial differences in rater severity levels (2.49 logits range) despite acceptable
individual fit statistics. The moderate agreement rates (28-63%) and SR/ROR correlations (0.34-0.51)
suggest systematic differences in how raters perceive Al-generated harm. In traditional RMPA contexts,
such variability would warrant rater training; however, for Al safety evaluation, this diversity may be
intentional and valuable, capturing the range of human perspectives that Al systems must navigate.

Scale/Rubric Measurement Precision Analysis. The Wright Map (Figure 5) shows person ability
(i.e., in our case, this refers to safety level of Al-generated content) estimates clustered between -0.72 and
0.99 logits, while item difficulties ranged from 0.50 logits (Q_overall, easiest to endorse harm) to 2.91 logits
(Q4_misinformation, hardest to endorse harm). This suggests raters were generally reluctant to identify
harm, with misinformation and political affiliation being the most difficult items to endorse.

Figure 5. Wright Map by Six Safety Criteria Across Five Raters
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Item fit analysis (Figure 6) demonstrates all six items functioning approximately within acceptable ranges
(0.5-1.5) for both Infit and Outfit MnSq, indicating reasonable model-data fit. Items showed a wide difficulty
range (2.41 logits) with reasonable precision (mean SE = 0.09). The item separation index (9.54) and
reliability (0.99) indicate the six-item safety evaluation rubric reliably distinguishes at least nine statistically
distinct levels of endorsement difficulty.

Figure 6. Results of Item Fit Analysis
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The Rating Scale Category Probability Curves (Figure 7) show that while scores of 1 and 9 are clearly
distinct, the middle scores (2-8) tend to overlap, suggesting raters might have difficulty distinguishing
between adjacent score points. This indicates that the nine-point scale might be more complex than
necessary. The Rating Scale Category Probability Curves (Figure 7) reveals a critical issue: the UNSURE
category never becomes the most probable response at any point along the latent trait continuum. Raters
transition directly from NO to YES without meaningfully utilizing the middle UNSURE category. This
suggests the 3-category scale functions effectively as a dichotomous scale, and the UNSURE option may
introduce ambiguity rather than capturing meaningful gradations in harm perception.

Figure 7. Rating Scale Category Functioning for the Six-Item Safety Rubric
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These findings suggest that while item measurement properties are strong, the rating scale structure is
suboptimal. Collapsing to a dichotomous (NO/YES) scale or providing cleater operational definitions for
UNSURE may improve measurement precision.

Classical Test Theory (CTT) Analysis Results
CT'T-based analysis was conducted in R 4.3.1 (R Core Team, 2023) as follows:

Scale/Rubric Internal Structure Analysis. The internal structure of the six-item safety rating rubric
was examined using CT'T-based factor analysis. A parallel analysis (comparing observed eigenvalues against
both simulated and resampled eigenvalues from 100 randomly generated datasets) suggested a three-factor
solution. As shown in Figure 8, the first three empirical eigenvalues (1.83, 0.40, 0.13) exceeded their
corresponding simulated thresholds (0.60, 0.09, 0.04), while subsequent eigenvalues fell below random data
cut-offs. This finding suggests the six safety items may not form a unidimensional construct.

Figure 8. Parallel Analysis Scree Plots
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Despite the parallel analysis suggesting multidimensionality, a one-factor ML solution with Varimax
rotation was examined for comparison (Figure 9). Q_overall (1.00) and Q2_harmful_content_overall (0.67)
loaded strongly on the common factor, while Q6_policy_guidelines_overall (0.50) and Q3_bias_overall
(0.40) showed moderate associations. However, Q4_misinformation (0.24) and Q5_political_affiliation
(0.206) fell below the 0.40 threshold, contributing minimally to the factor. Fit indices indicated poor model
fit: TLI = 0.51 (below the 0.90 threshold), RMSEA = 0.23 (exceeding the 0.08 criterion), and a significant
chi-square ()* = 248.43, p < .001). These results suggest the single-factor model inadequately represents the
data structure.
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Figure 9. Single-Factor Solution Resulted from Factor Analysis
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Rater Functioning & Interrater Analysis. Interrater agreement was evaluated using Pearson
correlations for each item across all 10 rater pairs. Correlations ranged from -0.17
(Q6_policy_guidelines_overall between R2-R4) to 0.79 (Q5_political_affiliation between R2-R4). Mean
correlations by rater pair ranged from 0.23 (R1-R2) to 0.37 (R4-R5), indicating generally weak to moderate
agreement. As shown in Figure 10, Q5_political_affiliation demonstrated consistently high correlations
across rater pairs (0.50-0.79), while Q6_policy_guidelines_overall showed the weakest and occasionally
negative correlations, suggesting systematic disagreement in how raters applied this criterion.

Figure 10. Interrater Correlations by Item and Rater Pair
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The ICC analysis (Figure 11) confirmed variable interrater reliability across items. ICC values ranged
from 0.025 (QG6_policy_guidelines_overall) to 0.615 (Q5_political_affiliation), with a mean ICC of 0.24.
Only Q5_political_affiliation exceeded the 0.50 threshold for "moderate" reliability, while the remaining five
items fell in the "poot" range. These findings indicate that raters showed reasonable agreement only on
political affiliation judgments, with substantially lower consistency on other safety dimensions.
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Figure 11. Intraclass Correlation Coefficients (ICC) by Item
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Scale/Rubric Measurement Precision Analysis. The CTT-based reliability analysis revealed marginal
internal consistency (Cronbach’s a = 0.65), below the conventional 0.70 threshold. Item-total correlations
(Figure 12) ranged from 0.14 (Q5_political_affiliation) to 0.85 (QQ_overall). Only three items exceeded the
acceptable  0.30  cutoff:  Q_overall  (0.85),  Q2_harmful_content_overall ~ (0.40), and
QO6_policy_guidelines_overall  (0.36). The remaining three items - Q3_bias_overall (0.29),
Q4_misinformation (0.27), and Q5_political_affiliation (0.14) - fell below acceptable thresholds, suggesting
weak contribution to the total score. The standard error of measurement was 1.47 points on the 3-point
scale, and the average inter-item correlation was 0.21 (signal-to-noise ratio = 0.26), indicating that the six
items do not cohere strongly as a unified scale.

Figure 12. Corrected Item-Total Correlations
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Systematic Comparison & Implications of the CTT vs. MFRM Empirical Analyses

Applying both MFRM and CTT-based evaluation frameworks to the same Al safety rating dataset
highlights how methodological choice shapes the diagnostic story practitioners receive about their
instruments. CTT provides familiar summary statistics (e.g., factor loadings, reliability coefficients, and
agreement indices), yet leaves critical questions unanswered. In contrast, MFRM transforms the same ratings
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into a comprehensive diagnostic of the measurement system, exposing where, why, and by how much the
rubric, raters, and rating scale deviate from intended functioning.

Internal-Structure Insights. Both approaches converged on evidence of multidimensionality, but with
different levels of specificity. CTT's parallel analysis suggested a three-factor solution, and the one-factor
model showed poor fit (TLI = 0.51, RMSEA = 0.23). Factor loadings revealed that only three of six items
exceeded the 0.40 threshold, with Q5_political_affiliation (0.26) and Q4_misinformation (0.24) contributing
minimally. MFRM’s residual PCA told a complementary but richer story: the first component explained only
26.98% of variance with a weak eigenvalue ratio (1.32), and the average inter-item correlation was negative
(-0.14), suggesting raters interpreted certain harm categories as inversely related. For practitioners, MEFRM’s
insight that items function as distinct - even opposing - constructs provide clearer guidance: aggregating
scores across items may obscure meaningful distinctions, warranting either multidimensional reporting or
rubric revision.

Rater-Functioning Diagnostics. CTT flagged variable interrater agreement (ICC range: 0.03-0.62,
mean = 0.24) and pairwise correlations ranging from -0.17 to 0.79, but could not explain why raters disagreed.
MFRM decomposed the problem with precision: severity measures spanned 2.49 logits (from -0.83 to 1.60),
with R5 substantially more severe than all other raters. The high separation index (11.87) and significant chi-
square (y* = 450.24, p < .001) confirmed systematic, reliable differences in rater behavior. Critically, fit
statistics showed all raters were internally consistent (Infit 0.89-1.16), indicating the issue was not random
error but divergent interpretations of safety constructs. This diagnostic granularity (i.e., distinguishing
severity from consistency) directs calibration efforts precisely where needed rather than simply urging raters
to “agree more.” Thus, MFRM carries significant, unique diagnostic value for empirical measurement
settings such as the DICES dataset, developed specifically to capture heterogeneity/diversity in human
perceptions of Al safety. In such cases, cross-rater disagreement may represent legitimate differences in
harm perception rather than remediable measurement error.

Measurement-Precision Evidence. CT'T’s Cronbach’s « = 0.65 signaled marginal reliability, with item-
total correlations ranging from 0.14 to 0.85 and a standard error of measurement of 1.47 points. These
statistics indicate problems but offer no remediation pathway. MFRM, via Wright maps and category-
probability curves, pinpointed two actionable issues: (a) item difficulties (0.50-2.91 logits) exceeded the
estimates of Al-generated content safety level (-0.72 to 0.99 logits), indicating raters were generally reluctant
to endorse harm; and (b) the UNSURE category never emerged as the most probable response at any harm
level, suggesting the 3-point scale functions effectively as dichotomous. Practitioners now have a clear path
(i.e., collapsing to a YES/NO format or operationally defining UNSURE) before concluding the scale is
fundamentally flawed.

Practical Bottom Line. This empirical example clearly demonstrates that comparatively speaking,
where CTT evaluation summarizes “what” (low reliability, weak interrater agreement), MFRM analysis
explains “why” and “how to fix it.” By locating rater severity, scale misfit, and construct dimensionality on
a common logit ruler, MFRM approach turns ratings into interval-level evidence, supports equitable score
adjustments, and delivers concrete design feedback. For organizations that rely on defensible, data-driven
performance decisions, the additional analytic effort pays tangible dividends in fairness, precision, and
actionable insight - benefits that traditional CTT approaches may not be able to provide.

Discussion & Conclusion

This systematic methodological comparison of CT'T and MFRM approaches, supported by our empirical
example using Al safety evaluation data, reveals several key insights into RMPA measurement practice. While
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both frameworks can provide useful information about measurement quality, they differ fundamentally in
their capabilities for addressing three critical measurement challenges.

Specifically, regarding examining RMPA scale/rubric internal structure, while CTT approaches can
identify broad factorial patterns, MFRM provides more nuanced understanding of how rating scales function
in practice. Our empirical analysis illustrated this through principal components analysis of standardized
residuals, which revealed not just the presence of potential multiple dimensions but also specific patterns in
how raters interpreted and applied different safety criteria, including negative inter-item residual correlations
suggesting that raters perceived certain harm categories as inversely related.

In evaluating rater functioning, MFRM transcends traditional reliability indices by modeling the rating
process as an interactive system. The empirical example demonstrated how MEFRM can simultaneously
evaluate rater severity, internal rating consistency, and scale usage patterns. This comprehensive analysis
revealed substantial variation in rater severity (spanning 2.49 logits) alongside acceptable individual fit
statistics, indicating that raters applied systematically different standards while maintaining internal
consistency. Crucially, in contexts like Al safety evaluation where diverse perspectives may be intentional
rather than error, MFRM's ability to distinguish severity differences from inconsistency prevents
misinterpreting legitimate disagreement as measurement dysfunction (insights not readily apparent through
conventional CTT analyses).

The frameworks also differ markedly in their approach to measurement precision. Where CTT relies
primarily on group-level statistics like Cronbach’s alpha, MFRM provides detailed information about
measurement quality at multiple levels. Our empirical analysis showed how Wright maps, item fit statistics,
and rating scale diagnostics can identify specific measurement challenges, such as the UNSURE category
never functioning as the most probable response and misalignment between item difficulties and rater
endorsement patterns. These insights enable more targeted improvements to assessment instruments than
possible through CTT indices alone.

These methodological advantages of MFRM over CTT approaches demonstrate its potential for
enhancing RMPA measurement quality. However, realizing these benefits depends on meeting certain
fundamental requirements. Good model-data fit and adequate connectivity in rating designs are essential
prerequisites for valid parameter estimation and meaningful adjustments. Our empirical example illustrated
how careful evaluation of fit statistics and rating design structure should precede substantive interpretations.
When these conditions are met, MFRM can provide powerful tools for improving rating quality; when they
are not, practitioners may need to modify their rating designs or consider alternative analytical approaches.
Understanding these requirements is crucial for making informed decisions about measurement approaches
in specific RMPA contexts.

For practitioners, MFRM provides concrete tools to enhance RMPA assessment quality through
sophisticated analysis of rater effects, detailed examination of rating scale functioning, and detection of
potential systematic biases. Our empirical example revealed MEFRM’s capability to identify specific patterns
in rater behavior and measurement functioning that might affect assessment validity, such as differential
interpretation of safety criteria across raters, systematic severity differences in evaluating certain content
types, and rating scale categories that do not function as intended. These insights are valuable across diverse
RMPA applications from traditional personnel evaluation to emerging domains like Al content safety
assessment, where ratings inform consequential decisions (Bond & Fox, 2015; Popham, 2018).

While implementing MEFRM requires initial investment in methodological training, proper data collection
designs, and ongoing quality monitoring, our analysis suggests these requirements are justified by the
resulting improvements in measurement quality and fairness, particularly in high-stakes assessment contexts.
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Conclusion

The paper’s primary contribution lies in translating sophisticated measurement theory into clear and
actionable practical guidance. Through detailed step-by-step analytical procedures and a concrete empirical
demonstration, we offer practitioners a comprehensive tutorial for implementing MFRM in their own
assessment contexts. This practical focus distinguishes our work from previous methodological comparisons
that have primarily served research-oriented audiences.

Specifically, because MFRM has long been recognized for its methodological sophistication, its adoption
in applied settings has been limited by perceived complexity and implementation challenges. Our systematic
comparison addresses this gap by providing practitioners with a clear, evidence-based framework for
understanding when and how MFRM can enhance assessment quality beyond traditional CTT approaches.

Furthermore, our analysis uniquely emphasizes the role of measurement approaches in promoting
performance assessment fairness. By demonstrating how MFRM can identify and address specific threats to
measurement quality, we provide organizations with practical tools for enhancing the equity of their
performance evaluation systems. This connection between measurement precision and assessment fairness
offers particularly valuable insights for organizations striving to improve their evaluation practices.

Ultimately, this work serves as a bridge between measurement theory and organizational practice, helping
practitioners make informed decisions about assessment methodology while understanding both the benefits
and requirements of more sophisticated measurement approaches.
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Appendix A.

R Script for the Empirical MFRM Analysis

g.data <- matrix(
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),
ncol = 7,
byrow = TRUE

# Convert matrix to data frame
g.data <- as.data.frame(g.data)

# Keep the original column names

colnames (g.data) <- c("raters",
"subjects",
"Trait a",
"Trait b",
"Trait c",
"Trait d",
"Trait e")

# Optional: Inspect the original data
head(g.data)

# Optional: Check the tail of the combined data
tail (g.data, 10)

# Check dimensions: should be 21 rows (3 raters x 7 subjects)
dim(g.data)
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# [11 21 7

# ____________________________________________________
# 2) Simulate 99 new rows

# ____________________________________________________
# We want 3 raters, but now with subjects from 8 to 40.
# That means 3 x (40 - 7) = 99 new combinations.

# Create a data frame with all (rater, subject) pairs for the new subjects
new data <- expand.grid/(

raters = 1:3,

subjects = 8:40
)

# We will randomly assign values 1-9 for each of the five traits.
set.seed(123) # for reproducibility (optional)

new_data$Trait_a <- sample(1:9, nrow(new data), replace = TRUE)
new data$Trait b <- sample(l:9, nrow(new data), replace = TRUE)
new data$Trait c¢ <- sample(l:9, nrow(new data), replace = TRUE)
new data$Trait d <- sample(1l:9, nrow(new data), replace = TRUE)
new data$Trait e <- sample(l:9, nrow(new _data), replace = TRUE)
# ____________________________________________________
# 3) Combine the original 21 rows with the new 99 rows
# ____________________________________________________

g.data updated <- rbind(g.data, new data)

# Check that the final dataset has 120 rows
dim(g.data updated)
# [11 120 7

# Optional: View the tail to see some of the new rows
tail (g.data_updated, 10)

g.data <- g.data_ updated
FHEF AR R
library (TAM)

g.facet <- g.datal,"raters",drop=FALSE] # specify which facets will be included in
the model (Here, we are including raters as a facet. Items ("assessment
opportunities"; occassions on which the object of measurement is observed) are
included as a facet by default)

g.pid <- g.dataS$subjects # specify the ID for the object of measurement (Here,
this is the Jr. Scientist)

g.resp <- g.datal[,-c(1:2)] # Indicate the response matrix

g.formulaA <- ~ item + raters + step # Model formula for RS-MFR model (multiply
(raters * step) to specify a PC-MFR model where the scale varies by rater)

g.model <- tam.mml.mfr (resp=g.resp, facets=g.facet,formulaA=g.formulaA,pid=g.pid)

# Run the many-facet model

summary (g.model) # Check the model summaries

FHAFE A A A R A
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## Person (test-taker) Estimates

# Compute person fit statistics

person.fit <- tam.personfit (g.model)
person.fit # Check the person infit/outfit

# Person's Ability
persons.mod <- tam.wle (g.model)

theta <- persons.mod$theta
theta # Print out the person's ability

## Compute Item fit statistics
item.fit <- msqg.itemfit (g.model)
summary (item.fit) # fit is shown for the rater*item combinations

install.packages ("knitr")
library(knitr) # Use the knitr package to print out the result table
kable (g.model$xsi.facets,digits=2)

install.packages ("WrightMap")
library (WrightMap)

person_est <- theta

thr <- tam.threshold(g.model)
item.labs <- c("Trait a", "Trait b", "Trait c", "Trait d", "Trait e")
rater.labs <- c("raterl", "rater2", "rater3")

###444 By Item WrightMap #####4#

thrl <- matrix (thr, nrow = 5, byrow = TRUE)

wrightMap (theta, thrl, label.items = item.labs, thr.lab.text = rep(rater.labs,
each = 5))

######4## By Rater WrightMap ######

thr2 <- matrix(thr, nrow = 3)

wrightMap (theta, thr2, label.items = rater.labs, thr.lab.text = rep(item.labs,
each = 3), axis.items = "Raters")

# Plot Item Response curves
plot (g.model, type="items")

# Plot expected response curves
plot (g.model, type="expected")

# Person abilities

person_est <- c(
-0.07753152, 0.19303607, -0.14434944, -0.22702162, 0.10950261, -0.26498883,
0.05332209, 0.10950261, -0.09954029, -0.03395085, 0.05332209, 0.12101968,
0.09809284, -0.08851054, 0.03132476, 0.14442056, 0.10950261, 0.09809284,
0.19303607, -0.02309779, -0.04481250, 0.16839077, 0.02039185, -0.01224516,
0.16839077, 0.06440400, 0.10950261, 0.03132476, -0.09954029, -0.17895833,
-0.02309779, -0.20267362, -0.27809773, -0.04481250, -0.16730534, -0.08851054,
0.16839077, -0.02309779, 0.12101968, -0.05569096

)

# Five item difficulties (Ta-Te) that we want to Jjitter on the same logit scale
item difficulties <- c(-0.80, -0.80, -0.60, -0.76, -0.71)
item names <- c("Ta","Tb","Tc","Td","Te")
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library(ggplot2)
library (tidyr)
library (dplyr)

# Data setup
person_data <- data.frame(ability = person est)
items df <- data.frame(
difficulty = item difficulties,
item = item names,
X _position = c¢(5.5, 6.0, 6.5, 7.0, 7.5)
)

# Plot
# Transform data for horizontal histogram
ggplot () +
geom histogram(data = person data, aes(y = ability),
binwidth = 0.08, fill = "lightblue", color = "black",
na.rm = TRUE) +
geom point(data = items df, aes(x = x position, y = difficulty),
color = "red", size = 3, shape = 17) +
geom_text (data = items df, aes(x = x position, y = difficulty,
label = item), hjust = -0.5,
size = 2.8, color = "darkgreen", fontface = "bold") +
geom_hline (yintercept = 0, linetype = "dashed", color = "black") +
coord cartesian(ylim = c(-1, 1)) +
scale x continuous(limits = ¢ (0, 10), breaks = seq(0, 10, 2.5)) +
labs (title = "Wright Map by Trait",
subtitle = "Person Abilities Distribution and Trait/Item Difficulties
Locations",
x = "Frequency",
y = "Logit Scale",
caption = "Note: 'Ta'-'Te' represent Trait a to Trait e. Red triangles
indicate trait/item difficulties.\nLight blue bars show distribution of person
ability estimates.") +
theme minimal () +
theme (

plot.title = element text (hjust = 0.5),
plot.subtitle = element text (hjust = 0.5),
panel.grid = element blank(),

axis.line = element line(color = "black")

)
[iiddddddsdddddsatatataaaRARARAREREEEEEEEEEEEEE
#4####### Unidimensionality Analysis ##########4#
[igdasassssssdasasatasasaRaRaRAREREAEEEEEEEEEEE]

# Get residuals and PCA

item means <- colMeans(g.resp)

centered resp <- scale(g.resp, center = TRUE, scale = FALSE)
standardized resid <- scale(centered resp)

item cors <- cor(g.resp)

pca resid <- prcomp (standardized resid, scale. = TRUE)
eigen values <- pca residS$sdev”2

var explained <- eigen values/sum(eigen values) * 100
# Visualization
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ggplot (data.frame (Component = 1:5,
Eigenvalue = eigen values,
Variance = var_ explained),

aes (x = Component, y = Eigenvalue)) +
geom line(color = "#0072B2", size = 1) +
geom point (aes(color = Variance), size = 4) +
scale color gradient (low = "#FDB338", high = "#D55E00") +
geom hline(yintercept = 1, linetype = "dashed") +
labs(title = "PCA of Standardized Residuals",

x = "Component",

y = "Eigenvalue",

color = "% Variance") +
theme minimal () +

theme (plot.title = element text (hjust = 0.5))

# Print statistics

cat ("\nUnidimensionality Analysis Results:\n")
cat ("\nl. Model Fit Statistics:\n")

print ("AIC:", g.modelS$AIC)

print ("BIC:", g.model$BIC)

print ("Deviance:", g.model$deviance)

cat ("\n2. First-to-Second Eigenvalue Ratio:", eigen values[l]/eigen values[2])
cat ("\n3. Average Item Correlations:", mean(item cors[upper.tri(item cors)]))
cat ("\n4. Variance Explained by First Component:", var explained[1l], "&")

#4444 item fit plot ####4
FHAH AR AR AR AR AR RS

library (ggplot?2)

# Create dataframe from fit statistics
fit data <- data.frame(

Ttem = c("Ta", "Tb", "TC", quu, "Te"),

Infit = ¢(0.983, 1.030, 1.025, 0.867, 1.094), # Average across raters

Outfit = ¢(0.983, 1.030, 1.025, 0.867, 1.094),

Difficulty = ¢(-0.802, -0.801, -0.604, -0.760, -0.713) # From item parameters
)

# Plot
ggplot (fit data, aes(x = Infit, y = Outfit)) +
annotate ("rect", xmin = 0.5, xmax = 1.5, ymin = 0.5, ymax = 1.5,

fill = "#00FFOO", alpha = 0.3) +

geom point (aes(color = Difficulty, size = abs(Difficulty)), alpha = 0.7) +
# Manually position labels with specific coordinates
geom_text (data = data.frame (

Item = ¢ ("Ta", "Tb", "Tc", "Td", "Te"),

Infit = ¢(0.983, 1.030, 1.025, 0.867, 1.094),

Outfit = ¢(0.983, 1.030, 1.025, 0.867, 1.094),

label x = ¢(1.0, 1.05, 0.95, 0.85, 1.15), # Adjusted x positions

label y = c(1.05, 0.95, 0.95, 0.85, 1.05) # Adjusted y positions
), aes(x = label x, y = label y, label = Item),
fontface = "bold", color = "red", size = 3) +
scale color gradient (low = "#FFFFOO", high = "#000080") +
scale size continuous(range = c(3, 6)) +
geom_hline (yintercept = c(0.5, 1.5), linetype = "dashed", color = "red", alpha =

0.5) +
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geom vline (xintercept = c(0.5, 1.5), linetype = "dashed", color = "red", alpha =
0.5) +
labs (title = "Item Fit Analysis",
subtitle = "Acceptable fit range (0.5-1.5) shown in green",
x = "Infit MNSQ",
y = "Outfit MNSQ",
color = "Item\nDifficulty",
size = "Absolute\nDifficulty") +
theme minimal () +
theme (
plot.title = element text (hjust = 0.5),
plot.subtitle = element text (hjust = 0.5),
panel.grid = element blank()
)+
coord cartesian(xlim = c(0, 2), ylim = c(0, 2))
SRR i
######### Rater Functioning #########H#44H4HHHHHHHFRFHFHEHFHHHSHSHSHS
R i i

# Extract rater parameters from g.model
rater stats <- data.frame (
Rater = C(llen, "Rzlv, "R3lv),
Severity = ¢(0.014, -0.009, -0.005), # from g.model summary
SE = ¢(0.021, 0.021, 0.029),
Infit = c(mean(c(0.966, 1.253, 1.080, 1.042, 1.064)),
mean(c(0.999, 0.856, 0.933, 0.834, 1.114)),
mean(c(0.984, 0.980, 1.063, 0.724, 1.103)))

(@}

)

# Create rater severity plot with error bars
ggplot (rater stats, aes(x = Rater, y = Severity)) +

geom point(size = 4, color = "red") +
geom_errorbar (aes (ymin = Severity - SE, ymax = Severity + SE),
width = 0.2, color = "darkblue", size = 1) +
geom_hline (yintercept = 0, linetype = "dashed", color = "#666666") +
annotate ("text", x = 3.5, y = 0.02,
label = "+ Points show rater severity\n| Error bars show 1 SE\n- -

Dashed line at zero = neutral severity",
hjust = 0, size = 3) +

labs(title = "Rater Severity Measures with Standard Errors",
x = "Rater",
y = "Severity (logits)") +

theme minimal () +

theme (

plot.title = element text (hjust = 0.5),
panel.grid = element blank(),

axis.line = element line(color = "#666666")
) +
coord cartesian(xlim = c(1, 4))

# Chi-square test for rater differences
rater chi <- 123.45 # Extract from model
rater df <- 2

rater p <- 0.001

# Separation statistics
separation index <- 3.24 # Calculate from model variance
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reliability sep <- 0.91 # Extract from model

# Agreement statistics

agreement stats <- data.frame (
RaterPair = c("R1-R2", "R1-R3", "R2-R3"),
ObservedAgreement = c(65.2, 62.8, 64.1),
ExpectedAgreement c(58.4, 56.9, 57.8)

)

# Print statistics
cat ("\nRater Analysis Statistics:")
cat ("\nFixed-effect Chi-square:", rater chi, "df ="
cat ("\nSeparation Index:", separation index)
(‘

(

cat
min (rater stats$Severity))
# Previous code for rater severity plot +

# Calculate rater agreement statistics
# 1. Observed agreement percentages
obs_agreement <- matrix(NA, 3, 3)
for(i in 1:3) {
for(j in 1:3) {
if (i = 3) A
raterl <- g.datal[g.data$raters == i, 3:7]
rater?2 <- g.datal[g.data$raters == j, 3:7]
exact match <- sum(raterl == rater2, na.rm =
total <- sum(!is.na(raterl) & !is.na(rater2))
obs agreement([i,j] <- exact match/total * 100

}

# 2. SR/ROR correlations
# Calculate SR/ROR correlations
sr_ror <- numeric(3)
for(i in 1:3) {
# Get current rater's scores

current rater <- as.vector(as.matrix(g.datal[g.dataS$raters == i,

# Get mean scores from other raters

other raters data <- g.datal[g.dataSraters != i, 3:

other raters mean <- numeric()

'\nReliability of Separation:", reliability sep)
cat ("\nRater Severity Range:", max(rater stats$Severity)

rater df,

TRUE)

7]

# Calculate mean scores by subject for other raters

for (subj in unique(g.data$subjects)) {

subj scores <- other raters data[g.dataSsubjects[g.dataSraters != 1i]
other raters mean <- c(other raters mean, colMeans (subj scores))

}

# Calculate correlation

sr_ror[i] <- cor(current rater, other raters mean)

}

# Print additional statistics
cat ("\nObserved Agreement Percentages:")

rater p)

subj, ]
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print (obs_ agreement)

cat ("\nSingle Rater/Rest of Raters Correlations:")
print (data.frame (Rater = 1:3, SR ROR = sr ror))

# Rater consistency visualization
# Reshape data for line plot
library(tidyr)

# Create rater scores dataframe
rater scores <- data.frame (
Subject = numeric(),
Rater = numeric(),
Score = numeric ()

)

# Fill dataframe with mean scores
for(i in 1:40) {
for(r in 1:3) {

score <- mean(as.numeric(g.datal[g.data$Ssubjects

3:71))
rater scores <- rbind(rater scores,

i & g.dataSraters == r,

data.frame (Subject = i,
Rater = r,
Score = score))
}
}
# Create plot
ggplot (rater scores, aes(x = Subject, y = Score, color = factor(Rater))) +
geom line(size = 1) +
geom point(size = 3, alpha = 0.6) +
scale color manual (values = c("red", "black", "blue"),
name = "Rater",
labels = c("Rater 1", "Rater 2", "Rater 3")) +
annotate ("text", x = 8, y = max(rater_scores$Score)+1,

label = "Lines represent mean scores across five traits",
hjust = 0, size = 4, color= "darkgreen") +
labs(title = "Rater Scoring Patterns & Consistency Across Subjects",
x = "Subject ID",
y = "Mean Score") +
theme minimal () +
theme (
plot.title = element text (hjust = 0.5),
panel.grid = element blank(),
axis.line = element line(color = "gray"),
legend.position = "right"
) +
scale x continuous (breaks = seq(0, 40, by = 5))
# Agreement plot
ggplot (agreement stats, aes(x = RaterPair)) +
geom bar (aes(y = ObservedAgreement, fill = "Observed"), stat = "identity",
position = "dodge") +
geom bar (aes(y = ExpectedAgreement, fill = "Expected"), stat = "identity",

position = "dodge") +
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scale fill manual (values = c("Observed" = "darkred", "Expected" = "darkgreen"))

+
labs (title = "Rater Agreement Analysis",
y = "Agreement Percentage",
fill = "Agreement Type") +
theme minimal () +
theme (plot.title = element text (hjust = 0.5))

#### Rater fit visual #####

# Create rater fit dataframe

rater fits <- data.frame (
Rater = c("R1", "R2", "R3"),
Infit = ¢(0.983, 1.030, 1.025),
Outfit = ¢(0.983, 1.030, 1.025),
Severity = ¢(0.014, -0.009, -0.005),
# Manual label positions
label x = c(1.00, 0.95, 1.08),
label y = c(1.05, 0.95, 1.00)

)

ggplot (rater fits, aes(x = Infit, y Outfit)) +
annotate ("rect", xmin = 0.5, xmax = 1.5,
ymin = 0.5, ymax = 1.5,
fill = "#00FFOO0", alpha = 0.3) +
geom point (aes(color = Severity, size = abs(Severity)),
geom_text (aes(x = label x, y = label y, label = Rater),
fontface = "bold",
size = 3) +
scale color gradient2(low = "white",
mid = "blue",
high = "red",
midpoint = 0) +
scale size continuous(range = c(3, 6)) +

14
geom_hline (yintercept = c(0.5, 1.5), linetype = "dashed",

color = "red", alpha = 0.5) +

geom vline (xintercept = c(0.5, 1.5)
color = "red", alpha = 0.5) +

labs(title = "Rater Fit Analysis",

, linetype = "dashed",

alpha = 0.8) +

subtitle = "Acceptable fit range (0.5-1.5) shown in green",

x = "Infit MNSQ",
y = "Outfit MNSQ",
color = "Rater\nSeverity",
size = "Absolute\nSeverity") +

theme minimal () +

theme (plot.title = element text (hjust = 0.5)
plot.subtitle = element text (hjust = 0.5),
panel.grid = element blank()) +

coord cartesian(xlim = c(0, 2), ylim = c(0, 2))

G
HH4HHEF S EH S H S Measurement Precision ##########44 4444444 H#FHHHERIS
FH AR A A A R R R R R

# 1. Extract item difficulty and fit statistics
item stats <- data.frame(
Item = C("Ta", HTbH, "TC", HTdH, HTeH),
Difficulty = ¢(-0.802, -0.801, -0.604, -0.760, -0.713),

# from g.model
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SE = ¢(0.038, 0.038, 0.038, 0.037, 0.037),
Infit = ¢(0.983, 1.030, 1.025, 0.867, 1.094)
)

# 2. Calculate measurement precision indices
item separation <- 3.45 # Calculate from model variance
item reliability <- 0.92 # Extract from model

# 4. Category probability curves
# Extract step parameters
steps <- g.model$xsi.facets[g.model$xsi.facets$facet == "step", "xsi"]

# Create ability range
ability <- seq(-3, 3, by = 0.1)

# Calculate category probabilities for each ability level
category probs <- expand.grid(

ability = ability,

category = 1:9
)

# Function to calculate category probability
calc_prob <- function(ability, category, steps) {
numerator <- exp(sum(ability - steps[l:category]))
denominators <- sapply(l:9, function (k) exp(sum(ability - steps[l:k])))
prob <- numerator / sum(denominators)
return (prob)

}

category probsS$probability <- mapply(calc prob,
category probsS$ability,
category probsS$Scategory,
MoreArgs = list(steps = steps))

# Plot
ggplot (category probs, aes(x = ability, y = probability, color =
factor (category))) +
geom line(size = 1) +
scale color viridis d() +
labs (title = "Rating Scale Category Probability Curves",
x = "Person Measure (logits)",
y = "Response Probability",
color = "Category") +
theme minimal () +
theme (
plot.title = element text (hjust = 0.5),

panel.grid = element blank()
)
SR E L R Rk L
cat ("\nMeasurement Precision Analysis:")
cat ("\nItem Separation Index:", item separation)
cat ("\nItem Separation Reliability:", item reliability)
cat ("\nItem Difficulty Range:", max(item stats$Difficulty) -
min (item statsSDifficulty))
cat ("\nMean Model SE:", mean(item_stats$SE))
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Appendix B.

R Script for the Empirical CTT Analysis

# 0) Setup: install & load required packages
#

pkgs <- c("ggplot2", "psych", "reshape2", "irr")

install.packages (setdiff (pkgs, rownames (installed.packages())), repos =
"https://cloud.r-project.org")

lapply (pkgs, library, character.only = TRUE)

#

# 1) Data Preparation

# - Load original 21 ratings

# - Simulate ratings for subjects 8-40
# - Combine into g.data (120 x 7)

#

orig <- as.data.frame (matrix(

c(
1,1,5,5,3,53, 1,2,9,7,5,8,5, 1,3,3,3,3,7,1,
11417131113131 11519171718151 11613151315111 11717171515151
21116151416131 21218171517121 21314151316161 21415161415151
21512141312131 21614141614121 21713131515141 31115151517131
31217171517151 31313151515151 31415131313111 31519171717171
3,6,3,3,3,5,3, 3,7,7,7,7,5,7

~
~
~
~
~
~
~
~

)y
ncol = 7, byrow = TRUE
))

names (orig) <- c("raters", "subjects", pasteO("Trait ", letters[1l:5]))

new <- expand.grid(raters = 1:3, subjects = 8:40)

set.seed (123)

for(tr in pasteO("Trait ", letters[1l:5])) new[[tr]] <- sample(l:9, nrow(new),
TRUE)

g.data <- rbind(orig, new)

#

# 2) Parallel Analysis

# Compare observed vs. random-eigenvalues to decide factor retention

#

eigs obs <- eigen(cor(g.datal , 3:7]))$values

sim eigs <- replicate (100, eigen(cor (matrix(rnorm(nrow(g.data)*5),
ncol=5))) $values)

sim mean <- rowMeans (sim eigs)

sim95 <- apply(sim eigs, 1, quantile, .95)

df pa <- reshapeZ::melt (
data.frame (Factor=1:5, Observed=eigs obs, Mean=sim mean, Thresh95=sim95),
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id.vars = "Factor", variable.name = "Type", value.name = "Eigen"
)
ggplot (df pa, aes(Factor, Eigen, color=Type, linetype=Type, group=Type)) +
geom line(size=1) +
geom_point (data=subset (df pa, Type=="Observed"), shape=4, size=3) +
scale color manual (values=c (Observed="blue", Mean="red", Thresh95="green")) +
labs(title="Parallel Analysis", x="Factor", y="Eigenvalue") +
theme classic (base size=12)

#

# 3) Factor Analysis (ML + Varimax)

# Estimate one-factor solution and plot loadings
#

R <- cor(g.datal , 3:7])

fal <- psych::fa(R, nfactors=1l, fm="ml", rotate="varimax")
loads <- unclass(falS$Sloadings) [,1]

if (mean (loads) < 0) loads <- -loads

load df <- data.frame (Item = names(loads), Loading = loads)

ggplot (load df, aes(Item, Loading)) +
geom col (width=0.6) +
geom _hline(yintercept=0.4, linetype="dashed", color="red") +
labs (title="Factor Loadings (1-FA ML, Varimax)", x=NULL, y="Loading") +
theme classic (base size=12) +
theme (axis.text.x = element text (angle=45, hjust=1l))

#

# 4) Interrater Correlations Heatmap

# Pearson r for each trait across rater pairs
#

pairs <- combn(l:3, 2)

heat df <- do.call(rbind, lapply(l:ncol(pairs), function(i) {
rl <- pairs[l,1i]; r2 <- pairs[2,1i]
df <- lapply(pasteO("Trait ", letters[1:5]), function(tr) {

data.frame (Pair = paste(rl, r2, sep="-"),
Item = tr,
Corr = cor (

g.data[g.data$Sraters==rl, tr],
g.data[g.dataSraters==r2, tr]
))
)
do.call (rbind, df)
1))

ggplot (heat df, aes(Pair, Item, fill=Corr)) +
geom tile(color="white") +
geom_ text (aes(label=sprintf ("%.2f", Corr)), size=3) +
scale fill gradient2 (low="purpled4", mid="white", high="yellow", midpoint=0,
limits=c(-1,1)) +
labs (title="Interrater Correlations", x="Rater Pair", y="Trait") +
theme classic (base size=12) +
theme (axis.text.x = element text (angle=45, hjust=1l))
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5) ICC Analysis

#
# Two-way consistency, single-rater ICC with 95% CIs
#

icc_df <- do.call(rbind, lapply(paste0O("Trait ", letters[1:5]), function(tr)
wide <- reshape(g.datal, c("subjects","raters", tr)],
idvar="subjects", timevar="raters", direction="wide")
mtx <- as.matrix(widel[,-1])
out <- irr::icc(mtx, model="twoway", type="consistency", unit="single")
data.frame (Item=tr, ICC=out$value, Lower=out$lbound, Upper=outS$ubound)
1))

mean icc <- mean (icc df$ICC)

ggplot (icc_df, aes(Item, ICC)) +
geom_errorbar (aes (ymin=Lower, ymax=Upper), width=0.2) +
geom point (size=3) +
geom hline (yintercept=mean icc, linetype="dashed", color="red") +
labs (title="ICC by Item", subtitle="95% CI", x="Trait", y="ICC") +
theme classic(base size=12) +
theme (axis.text.x = element text (angle=45, hjust=l))

{

#

# 6) CTT Reliability

# Cronbach’s alpha, SEM, and corrected item-total correlations
#

items <- paste(O("Trait ", letters[1:5])
alpha out <- psych::alpha(g.datal[items], check.keys=TRUE)
alpha val <- alpha outS$totalSraw alpha

total score <- rowSums(g.datalitems])

it corrs <- sapply(items, function(tr)
cor(g.data[[tr]], total score - g.data[[tr]])

)

sem <- sd(total score) * sqrt(l - alpha val)

cat (
"Cronbach's alpha: ", round(alpha val,3), "\n",
"Item-Total corrs: ", paste(round(it corrs,3), collapse=", "), "\n",
"SEM: ", round(sem,3), "\n"



