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This article introduces researchers in the science concerned with developing and studying research 
methods, measurement, and evaluation (RMME) to the educational data mining (EDM) 
community. It assumes that the audience is familiar with traditional priorities of statistical 
analyses, such as accurately estimating model parameters and inferences from those models. 
Instead, this article focuses on data mining’s adoption of statistics and machine learning to 
produce cutting-edge methods in educational contexts. It answers three questions: (1) What are 
the primary interests of EDM and RMME researchers? (2) What is their discipline-specific 
vocabulary? and (3) What are the similarities and differences in how the EDM and RMME 
communities analyze similar types of data? 
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Introduction 
 Until recently, students from colleges of education 
interested in data analysis took research methods, 
measurement, and evaluation (RMME) courses. These 
courses are no longer the “only game in town” 
(Friedman, 1998). Computer science courses, notably 
data mining, may be more attractive for developing a 
young researcher’s analytic talent. For example, 
educational data mining (EDM) and learning analytics 
are promising alternatives to making inference and 
drawing conclusions about a population based on a 
sample of educational data (R. S. Baker & Inventado, 
2014; Slater et al., 2017). RMME programs typically 
focus on three statistics-dependent subject areas (1) 
Educational Measurement, (2) Statistics, and (3) 
Program Evaluation (Randall et al., 2021). These 
programs go by different names, including but not 
limited to (1) Educational Statistics and Research 
Methods, (2) Research, Educational Measurement, and 

Psychometrics, and (3) Research and Evaluation 
Methodology. 

 Although RMME programs are typically housed in 
colleges of education, and most EDM instructors are 
computer scientists, both communities share a 
common use of advanced computational methods, 
statistical techniques, and machine learning algorithms 
to analyze large-scale educational datasets. Despite this 
shared interest, these communities often do not take 
courses together or attend the same conferences. 
However, advancements of EDM techniques are being 
supported by nationally recognized initiatives. For 
example, the Georgia Institute of Technology leads the 
National Artificial Intelligence (AI) Institute for Adult 
Learning and Online Education (Aialoe, 2024), with 
the goal of enhancing adult online education via AI. 
Furthermore, the National Science Foundation (NSF) 
supported CIRCLS, or the Center for Integrative 
Research in Computing and Learning Sciences, to 
support  the  community  and  explore  future learning  
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technologies. Within the CIRCLS community, the 
largest proportion of members contribute to ”AI 
Approaches and Technologies” out of all the expertise 
areas currently listed on their website (Center for 
Integrative Research in Computing and Learning 
Sciences, 2022). Potentially, these initiatives 
demonstrate the relevance and timeliness of RMME 
research and exemplify significant national interest in 
the growth and application of EDM, especially related 
to future learning tools available to students. 
Additionally, a policy report from the Office of 
Educational Technology further emphasizes the 
growing importance of AI tools in enhancing 
educational outcomes (Office of Educational 
Technology, 2023). Furthermore, recent NSF awards 
(e.g., AI Institute awards of 21126351 and 22296122) 
underscore the national investment and validation of 
research areas, not only highlighting the significance of 
AI in education, but also indicate a national trend 
toward data-driven educational strategies, which this 
article explores. 

Purpose 

 This article contributes to the field by providing a 
more nuanced and comprehensive understanding of 
the current state of educational data science. It goes 
beyond a simple summary of the literature and offers 
insights that can inform future research and practice in 
the field. Specifically, we identify gaps between RMME 
and EDM methodologies, as well as potential areas for 
innovation and improvement in methodological 
approaches. 

 The selection of topics covered in this article will 
be somewhat informal; rather than attempting to 
encompass every study ever conducted by EDM 
researchers, or every tool ever created and used by a 
single research group, we will focus on delineating the 
primary differences and similarities across the fields. 
Therefore, some niche areas of a community may be 
excluded. We nonetheless hope that this review will 
provide useful information to researchers new to EDM 
with a more nuanced and comprehensive 
understanding of the current state of the field.  

 

 
 
1 https://www.nsf.gov/awardsearch/showAward?AWD ID=2112635&HistoricalAwards=false 
2 https://www.nsf.gov/awardsearch/showAward?AWD ID=2229612&HistoricalAwards=false 

Areas of Educational Data Science 

 Figure 1 is an original illustration developed by the 
authors to display the overlap of different disciplines in 
educational data science. Sweeping over an extensive 
area, educational data science “is an umbrella for a fleet 
of new computational techniques being used to identify 
new forms of data, measures, descriptives, predictions, 
and experiments in education” (McFarland et al., 2021). 
Our manuscript extends from existing research, refining 
the definition of educational data science as a 
specialized application of data science within education 
fields (e.g., RMME and EDM). This entails working 
with data collected from educational 
environments/settings to effectively address and solve 
pertinent educational challenges. 

 While previous research considers educational data 
science as a fusion of four to seven fields (Piety et al., 
2014), Figure 1 illustrates our expanded 
conceptualization, encompassing a combination of 10 
communities within educational data science: 

• Education: Education is a broad field 
encompassing various disciplines, theories, and 
practices aimed at facilitating learning and 
development in individuals and communities 
(Brady et al., 2023). It includes educational 
psychology, curriculum development, 
pedagogy, instructional design, and educational 
leadership, among others. Education seeks to 
understand how people learn, develop effective 
teaching strategies, and create supportive 
learning environments. It plays a critical role in 
shaping individuals’ knowledge, skills, attitudes, 
and behaviors, contributing to personal growth 
and societal progress. 

• Statistics: In Figure 1, statistics is shown as a 
stand-alone field, blended into other areas of 
data science, such as RMME and data mining. 
There is overlap in that there is a shared use of 
statistics in all data science fields; the difference 
is how these concepts are applied and the 
overall goal of the research within that field. The 
field of statistics itself dates back hundreds of  

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112635&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2229612&HistoricalAwards=false
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Figure 1. Diagram of Fields that Support Educational Data Science 

 
Abbreviations: AI (Artificial Intelligence), ML (Machine Learning), RMME (Research Methods, Measurement, and 
Evaluation), EDM (Educational Data Mining), LA (Learning Analytics), LS (Learning Science). 

Note: The main emphasis is on the overlapping regions, emphasizing that the circle sizes do not accurately depict the 
boundaries or significance of respected disciplines. 

 

years and studying “statistics” can be seen as 
establishing a wide breadth of knowledge in its 
broad range of theories and tests (Stigler, 1986). 

• Learning Analytics: Learning Analytics involves 
considering and analyzing data at the micro or 
’learning’ level to uncover insights into teaching 
methods and academic interventions that are 
most likely to enhance the learning of specific 
content for individual learners (Romero &
 Ventura, 2020; Romero & Ventura, 2010, 
2017). It focuses on leveraging data to 
understand and improve the learning process, 
often in real-time, to make informed decisions 
that benefit learners and educators (Rodrigues 
et al., 2018). Learning analytics applies various 
data analytic techniques from other disciplines, 
including RMME and EDM. 

• Learning Science: Learning science is dedicated to 
the systematic investigation of learning and 
teaching, encompassing human development 
and educational technology (Sommerhoff et al, 
2018). It involves applying research findings to 
design innovative educational interventions. 
Drawing on expertise from developmental 
psychology, educational psychology, cognitive 
science, educational technology, and special 
education, this field scrutinizes significant 
educational and developmental challenges 
(Packer & Maddox, 2016). 

• Cognitive Science: Cognitive science represents an 
interdisciplinary exploration of the mind and 
intelligence, encompassing philosophy, 
psychology, artificial intelligence, neuroscience, 
linguistics, and anthropology (Thagard, 2013). 
At its core, cognitive science posits that 
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understanding thinking processes is most 
effectively achieved by examining the 
representational structures within the mind and 
the computational procedures that manipulate 
these structures. 

• Research Methods, Measurement, and Evaluation: 
RMME involves the development, evaluation, 
and application of methods and tools for 
assessing knowledge, skills, abilities, and other 
educational outcomes. It encompasses a range 
of techniques such as testing, assessment design, 
psychometrics, and data analysis to inform 
educational practices, policy decisions, and 
improve the effectiveness of teaching and 
learning processes. (Randall et al., 2021). 

• Educational Data Mining: EDM encompasses 
various techniques for mining largescale 
educational data, including the discovery of 
patterns and trends in educational contexts. By 
using computational methods to analyze 
educational data, EDM can provide insights 
into how different factors, such as student 
background, learning styles, and instructional 
methods can influence learning outcomes 
(Rodrigues et al., 2018). These insights can then 
be used to develop more personalized and 
effective learning experiences for students. 

• Artificial Intelligence/Machine Learning/Data 
Mining: Within the broader domain of AI, 
machine learning (ML) is a subfield that has 
garnered significant attention. In EDM, ML 
plays a crucial role as it enables computers to 
learn and produce behaviors not explicitly 
programmed. While AI encompasses general 
problem-solving capabilities, ML, in the 
educational context, focuses on tasks such as 
understanding student behavior and predicting 
learning outcomes. It is important to note the 
distinction between ML and data mining; while 
often used interchangeably, they serve different 
purposes. Data mining, being broader, involves 
both data management and analyses, aiming to 
discover patterns and relationships (Shu & Ye, 
2023). ML, on the other hand, is directed at 
developing predictive models for making 
accurate predictions on new educational data 
(Sarker, 2021). 

 

What are the Primary Interests of EDM 
and RMME Researchers? 
 The primary interests for RMME researchers 
typically entail (1) testing the relationships between 
independent and dependent variables (e.g., linear) and 
testing the significance of those relationships, 2) 
measuring learning and related constructs, 3) 
evaluating the effectiveness of an educational program 
or intervention, and 4) developing and refining 
assessment techniques and designing robust evaluation 
frameworks. In contrast, EDM researchers primarily 
focus on the development and application of 
prediction, clustering, and relationship mining 
methods (Baker et al., 2010).  

 RMME goals benefit the EDM community, and 
vice versa, fostering mutual enrichment and progress. 
For instance, program evaluation is an important 
aspect of the RMME field that employs diverse 
qualitative and quantitative data collection methods, 
such as surveys, focus groups, and interviews, to assess 
the effectiveness of educational programs. By drawing 
upon the expertise of program evaluators, EDM 
researchers can ensure that their insights obtained 
from large datasets are relevant and applicable to real-
world educational contexts. In turn, program 
evaluators can utilize EDM techniques to analyze data 
from large-scale programs and uncover patterns that 
may not be immediately evident through traditional 
RMME methods. The integration of program 
evaluation and EDM methods can lead to a more 
comprehensive understanding of educational 
outcomes and the effectiveness of educational 
programs, benefiting both communities. 

 

What are their Approaches to Data 
Analysis? 
Hypothesis Testing 

 Data mining and statistics are two fields that 
involve analyzing data, but they differ in their 
approaches and goals. Traditional statistical methods, 
such as regression analysis, have been used by both 
data miners and statisticians for decades. However, 
data mining algorithms often link variables and 
determine the model’s functional form, which can help 
researchers determine distributions and discover 
patterns. In contrast, statisticians typically start with 
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models based on hypotheses and assumptions about 
the data distribution. They may also use non-
parametric (distribution free) approaches, such as X2, 
to analyze correlations among observed events. 

 Data miners utilize various tools such as 
association mining and cluster analysis to uncover 
patterns and relationships within datasets. While 
association mining doesn’t adhere to traditional 
hypothesis testing, it remains a pivotal tool for 
exploratory data analysis. For instance, it can shed light 
on educational data patterns like the correlation 
between student absences and academic performance. 
Researchers might employ association rule mining 
techniques to establish rules capturing the connection 
between student attendance patterns and academic 
achievements, such as the indication that “students 
with frequent absences are more likely to have lower 
grades.” Subsequently, they evaluate the confidence3 
and lift for each rule to gauge its strength and 
significance, with higher confidence values indicating 
stronger predictive power, while lift measures the 
degree of dependence beyond random chance. To 
refine the analysis, thresholds are applied to filter out 
rules with low confidence or lift values, prioritizing 
those most relevant for further exploration. By 
interpreting these association rules, researchers gain 
valuable insights into the relationship between student 
absences and academic performance, potentially 
formulating hypotheses that can be subjected to 
traditional statistical testing methods. 

 For decades, RMME researchers, particularly 
psychometricians, have applied clustering algorithms 
to detect test collusion, which is cheating on tests 
(Sinharay, 2017). Clustering groups based on shared 
characteristics or patterns, allow for meaningful 
insights to be drawn from the data without the need 
for a pre-defined hypothesis. Typically, EDM and 
RMME researchers use clustering algorithms for 
exploratory/unsupervised data analysis. Exploratory 
data analysis is a method that is employed to discover 
patterns, relationships, and potential hypotheses about 
the data, while confirmatory data analysis is focused on 
validating a specific hypothesis by testing it against 
empirical data (Marcoulides, 1993). Clustering can be 
employed in both contexts. For EDM researchers, 

 
 
3 In the context of association mining and association rule learning, “confidence” refers to a measure of the reliability or strength of an 
association rule. It is not the same as “confidence intervals” in traditional statistical analysis. 

clustering is as a data-driven approach to gain insights 
from the data without drawing any causal or 
correlational conclusions. Clustering is also one of the 
core topics in a multivariate statistics course, taught by 
RMME and statistics professors. 

Predictive Modeling 

 Predictive modeling encompasses a spectrum of 
approaches, ranging from interpretable models to 
“black box” models, a concept of interest to both 
EDM and RMME researchers. While black box 
models pose challenges by obscuring the 
understanding of variable interactions, they are not the 
sole representation of predictive modeling. Specifically, 
black box models employ complex functions that 
exceed human comprehension regarding variable 
relationships. RMME researchers, often collaborating 
with education researchers, prioritize transparency in 
understanding variable relationships to develop new 
methodologies and insights into learning (Sawyer, 
2005). Hence, many RMME researchers prefer models 
that offer clear explanations of how variables are 
interconnected. For instance, linear models, where a 
few variables are weighted and combined, are 
commonly used. In contrast, EDM researchers tend to 
explore models that may offer higher accuracy but are 
not inherently interpretable in a straightforward 
manner. For example, weights in deep neural networks 
(DNNs) represent the parameters learned during the 
training process, which adjust the strength of 
connections between neurons in different layers of the 
network to optimize the model’s performance on a 
given task (Collier & Leite, 2020; Collier et al., 2022). 
Despite the challenges in interpreting individual 
weights, EDM has developed various techniques and 
tools to improve the interpretability of DNNs. These 
include visualization methods, feature attribution 
techniques, and model explanation frameworks 
designed to shed light on the inner workings of DNNs 
and enhance our understanding of their decision-
making processes (Adadi & Berrada, 2018). 

 In the realm of model interpretability, both 
communities share a vested interest, prompting a 
burgeoning field known as explainable AI or “XAI”. 
XAI constitutes a subset of AI dedicated to crafting 
machine learning models capable of offering 
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transparent and interpretable explanations for their 
decision-making processes. This is particularly relevant 
when considering algorithms such as neural networks-
based or deep learning-based models, which often 
result in black box models. These models, 
characterized by their complex and opaque decision-
making mechanisms, underscore the need for XAI to 
shed light on the inner workings of AI systems. In 
essence, XAI strives to cultivate AI systems that 
provide clear and understandable reasons for the 
predictions or decisions they make. 

Differences in Classification Frameworks 

 Table 1 lists some analytic methods and then 
classifies them as being either “unsupervised” or 
“supervised” learning approaches. It is important to 
note these distinctions because both EDM and RMME 
communities use these methods. However, the 
classification of “unsupervised” or “supervised” 
learning is mainly emphasized in EDM journals (e.g., 
Journal of Educational Data Mining) but not as 
frequently in RMME journals (e.g., Journal of  
Education and Behavioral Statistics). Supervised  
learning has clear labels and bases its results off a 
predetermined attribute, and the algorithm stops once 
an acceptable level of performance is achieved (Berry 
et al., 2019). An example of a supervised learning 
approach is linear regression because there is a 
dependent variable of interest that is based on the 
results of predetermined independent variables. The 
stopping point for linear regression is when the model 
finds the relationship between the independent and 
dependent variables. On the other hand, unsupervised 
learning operates in the absence of a target attribute, 

involves pattern recognition, and inherent groupings 
are identified via the algorithm which can then be used 
for supervised learning processes (Berry et al., 2019). 

 An example of an unsupervised learning technique 
used by both RMME and EDM researchers is principal 
component analysis or PCA. PCA is used primarily as 
a data reduction technique to take a large multi-
dimensional data space and reduce it down to 
something that is of a smaller dimension that still 
captures most of the relevant variability. There is no 
dependent variable of interest when conducting the 
PCA. The results can be fed into a supervised statistical 
procedure such as multivariate regression, but the PCA 
itself has no dependent variable. 

 Most similar to “supervised” and “unsupervised” 
learning distinctions, RMME published works 
primarily focus on “parametric” and “non-parametric” 
distinctions. Non-parametric statistical models have no 
assumptions about the shape or parameters of the 
sample’s population distribution, whereas parametric 
models make assumptions about the sample’s 
population distribution. Supervised learning models 
are not, by default, parametric models. For example, 
PCA is an unsupervised learning technique that does 
not require normality for the extraction of 
components. A PCA only seeks to optimally describe 
data by using (sparse) data points in a (high-
dimensional) space. Therefore, PCA is both an 
unsupervised learning approach and a non-parametric 
model. 

 Software. As the two communities evolve, both 
EDM and RMME researchers increasingly employ

 

Table 1. Methods and Examples of Supervised & Unsupervised Learning 

Unsupervised Learning 
Method Example 
Clustering K-Means Clustering 
Dimensionality  
Reduction Principal Components 

Analysis 
Unsupervised Learning 

Method Example 
Regression Linear Regression 
Classification Logistic Regression 
Deep Learning Neural Networks 
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statistical methods like PCA, Random Forest, and 
Bayes Network Classifiers. Nonetheless, the specific 
tools they utilize to implement these methods often 
vary. For instance, Hussain et al. (2018) utilized Weka, 
a widely used suite of machine learning software tools 
known as the “Waikato Environment for Knowledge 
Analysis.” Conversely, Suk and Han (2023) employed 
R to conduct PCA. R is a programming language and 
open-source software environment specifically 
designed for statistical computing and data analysis (R 
Core Team, 2022). This variability in software4 choice 
may reflect differences in preferences, expertise, and 
specific requirements of each research community. 

 EDM tools are closely integrated with educational 
research and practice, aiming to inform instructional 
design, student assessment, and learning interventions 
(Slater et al., 2017).RMME tools contribute to the 
methodological aspects of educational research, 
helping researchers design rigorous studies, select 
appropriate measurement instruments, and analyze 
data effectively. It is important to note that there is 
some overlap in the types of analyses conducted by 
EDM and RMME researchers. However, the tools 
they use differ in terms of purpose, functionality, 
specialization, and integration with educational 
research. For a comprehensive overview of software 
commonly utilized by EDM researchers, refer to Slater 
et al. (2017), which provides a review of 40 tools 
frequently employed for data mining and analytics in 
the field of education. 

Assessments and Skill Mastery 

 Psychometrics. Within the field of RMME, 
researchers delve into measurement theory courses 
that underpin their understanding of latent variables 
influencing observable variables. In these courses, 
RMME researchers explore classical test theory, item 
response theory, and generalizability theory. 

 RMME professionals specializing in psychometrics 
employ a systematic approach to assess whether a test 
taker has mastered a particular skill. The utilization of 
assessments and tests tailored for this purpose involves 
the following key components (Crocker & Algina, 
1986): 

 
 
4 In the field of EDM, R and Python are extensively utilized. Weka, on the other hand, may be perceived as an older and less potent tool in 
comparison to R and Python 

• Test Development: Psychometricians engage in 
developing tests meticulously crafted to 
accurately measure the specific skill under 
consideration. This process entails creating 
questions or tasks aligned with the content and 
objectives of the skill being assessed. 

• Reliability: Psychometric assessments strive for 
reliability, ensuring consistent results over 
time. Achieving this requires rigorous testing 
and statistical analysis to validate that the test 
reliably measures the intended skill. 

• Validity: Validity holds paramount importance 
in psychometrics. A test is considered valid if it 
accurately measures the targeted skill. Various 
validity types, including content, construct, and 
criterion-related, undergo examination to 
ensure the test’s appropriateness. 

• Scoring: Psychometricians develop scoring 
methods to precisely quantify a test taker’s 
performance. This may involve assigning 
numerical scores or categorizing performance 
levels based on predefined criteria. 

• Norms and Benchmarking: Test results are 
compared to established norms or 
benchmarks, aiding in understanding a test 
taker’s performance relative to a broader group 
that has undergone the same assessment. 

• Item Analysis: Individual test items undergo 
meticulous analysis to gauge their effectiveness 
in measuring the targeted skill. This iterative 
process contributes to refining and improving 
the overall test over time. 

• Feedback and Reporting: Test results, coupled 
with constructive feedback on strengths and 
weaknesses, are provided to test takers. 

 By adhering to these psychometric principles, 
practitioners in RMME strive to ensure that 
assessments are not only rigorous but also fair, 
accurate, and meaningful in determining whether a test  
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taker has genuinely mastered a specific skill. This 
comprehensive exploration contributes to the ongoing 
discourse on robust skill assessment methodologies 
within the realm of RMME. 

 Bayesian Knowledge Tracing. Bayesian 
Knowledge Tracing or BKT (see Figure 2) is an AI 
algorithm that lets EDM researchers infer a student’s 
current knowledge state to predict if they have learned 
a skill (student skill acquisition) (Slater & Baker, 2018). 
In a recent article (Bulut et al., 2023), the authors 
highlight several similarities between IRT and BKT. 
Both approaches aim to understand and predict 
learners’ knowledge and performance based on their 
responses to educational tasks. Additionally, both 
involve estimating parameters that describe learners’ 
abilities and item characteristics. 

 There are four key parameters of BKT, each in the 
[0-1] range: 

• Pr(known) or p(L0): the probability that the 
student already knew a skill 

• Pr(will learn) or p(T): the probability that the 
student will learn a skill on the next practice 
opportunity 

• Pr(slip) or p(S): the probability that the student 
will answer incorrectly despite knowing a skill 

• Pr(guess) or p(G): the probability that the 
student will answer correctly despite not 
knowing a skill. 

 After each student response, the BKT algorithm 
calculates the probability of the student having learned 
a particular skill, denoted as P(learned), based on the 
current values of its parameters. The formula for 
calculating P(learned) varies depending on whether the 
student’s answer was correct or incorrect. In this way, 
the BKT algorithm updates the student’s knowledge 
state over time, allowing for personalized and adaptive 
learning experiences.  

 While both psychometric approaches and Bayesian 
Knowledge Tracing offer valuable insights into 
modeling student learning and assessing their mastery 
of skills, they each come with their own set of strengths 
and limitations. 

 

What is their discipline-specific 
vocabulary? 
 Table 2 presents some common terminology used 
in data mining. This list is not exhaustive but highlights 
terms that have slightly different and even completely 
different meanings than terms familiar to RMME 
researchers (presented in Table 3). For example, 
“generalizability” in RMME measures how well one’s 
experimental findings from a sample extend to the 
population. Additionally, “generalizability theory” is a 
framework for estimating measurement reliability and 
understanding the various sources of measurement 
errors (Marcoulides, 1993). In data mining, the 
understanding is similarly sample dependent, yet more  

 

Figure 2. Bayesian Knowledge Tracing (diagram reproduced from (Slater & Baker, 2018) 

 
Note: The BKT framework estimates a binary latent variable. That is, mastery of a skill or topic. 
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Table 2. Key Terminology for EDM Researchers 

Term Meaning 
Generalizability Model’s ability to adapt properly to new, previously unseen data 
Recursive Model A neural network that processes the variables in a hierarchical structure 
Learning Training models (estimating their parameters) based on existing data 
Test Error The difference between the predictions and the observed values on a test data set 
Regressor Algorithm that predicts a continuous outcome based on the value of predictor variables 
Classifier Algorithm used to assign a class label to a data input 
Knowledge Discovery Process of identifying novel pattern or knowledge in data 
Supervised Learning Model with clear labels and bases its results off a predetermined attribute 
Unsupervised Learning Model operates in the absence of a target attribute 
Sampling Methods Probabilistic methods seeking to avoid selection bias in training data 

Note. The terminology in the table above was acquired from several sources (Collier et al., 2022; Fayyad et al., 1996; 
Kushwah et al., 2021) 

Table 3. Key Terminology for RMME Researchers 

Term Meaning 
Generalizability Measures how well one’s experimental findings from a sample extend to the population 
Measurement The process of assessing an individual’s ability, trait, or attribute through the use of tests 

or assessments 
Test Error The difference between a test score and a student’s actual knowledge and ability 
Regression A set of statistical procedures relating independent variables to a dependent variable 
Non-parametric 
Models  

Models with no assumptions about the shape of the population distribution 

Parametric Models Models that make assumptions about the distribution of the population 
Quasi-experimental Intervention seeking to estimate causal effects without randomization of participants 
Experimental Intervention where participants are randomly assigned 
Reliability The degree to which a test or measurement procedure produces consistent and stable 

results over repeated administrations or under different conditions 
Validity The extent to which a test or assessment measures what it is intended to measure 

Note. The terminology in the table above was acquired from several sources (Grimm et al., 2016; Marcoulides, 1993; 
Mueller & Hancock, 2018) 

 

focus is on the model’s ability to adapt (or generalize) 
to new data (Glavatskikh et al., 2019). 

 

What are the similarities and 
differences in how the EDM and 
RMME communities analyze similar 
types of data? 
 Disclaimer: Finding two separate studies from 
distinct communities that are chronologically and 
systematically comparable is a challenging task. 
Following extensive research, we have selected 
McArdle et al. (2013) and Yanagiura et al. (2023) as our 
reference points. This comparison underscores the 

broader educational endeavor of leveraging data 
analysis to support student success, albeit through 
distinct analytical frameworks. 

 The comparison between the RMME (McArdle et 
al., 2013) and EDM (Yanagiura et al., 2023) studies 
sheds light on how the EDM and RMME communities 
approach similar research goals with varying 
methodologies and objectives. McArdle et al. (2013) 
employ multilevel multivariate analysis to predict GPA 
for first-year college students, focusing on hierarchical 
data structures and variable relationships across 
different levels. In contrast, Yanagiura et al. (2023) 
utilize machine learning algorithms to forecast first-
term college GPA, emphasizing algorithmic fairness 
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and the relevance of non-academic skills in predictive 
analytics. While McArdle et al. (2013) delve into 
statistical models such as multilevel analysis, Yanagiura 
et al. (2023) address algorithmic fairness and predictive 
analytics, highlighting the diverse approaches within 
the educational research landscape. 

 Both studies utilize empirical datasets but pursue 
distinct methodological objectives. McArdle et al. 
(2013) aim to demonstrate the practical utility and 
limitations of multilevel models in standard validation 
studies, offering insights for future research directions. 
Conversely, Yanagiura et al. (2023) seek to provide 
insights into developing more equitable early warning 
systems in higher education. 

 In terminology and concepts, McArdle et al. (2013) 
introduce educational measurement terms such as 
predictive validity, multiple linear regression, multilevel 
models, variance components, and random 
coefficients. Predictive validity assesses a measure’s 
ability to predict future outcomes such as college 
grades. Multiple linear regression examines the 
relationship between one outcome variable and 
multiple predictors. Multilevel models account for 
hierarchical data structures, estimating individual and 
group effects and variances. Variance components 
explain the proportion of total variance in an outcome 
variable due to different sources, while random 
coefficients indicate variations in regression 
coefficients across groups or contexts. Conversely, 
Yanagiura et al. (2023) explore EDM terms including 
Early Warning Systems (EWS), algorithmic fairness, 
classification parity, and calibration. EWS predicts 
students’ college success risks and intervenes early. 
Algorithmic fairness ensures models do not 
discriminate against specific groups, with classification 
parity and calibration ensuring equal prediction 
accuracy and risk assessment across protected groups, 
respectively. 

 Despite methodological differences, both 
investigations highlight grade point average (GPA), 
student performance, and academic achievement, 
emphasizing their shared goal of enhancing 
educational outcomes. McArdle et al. (2013) seek to 
identify factors affecting academic performance 
through statistical analysis, while Yanagiura et al. 
(2023) examine the efficacy and fairness of AI models 
in GPA prediction, addressing the ethical implications 

of early warning systems and the potential insights 
from non-academic data. 

 In terms of variables and features, McArdle et al. 
(2013) analyze college students who are also National 
Collegiate Athletic Association (NCAA) student-
athletes, considering variables such as high school 
academic records, college characteristics, and student 
demographics. High school variables include core 
GPA, ACT or SAT scores and core units taken. 
College variables encompass freshman GPA, credits, 
quality points, graduation rate, cost, and public/private 
status, while student demographics cover gender and 
ethnicity. Conversely, Yanagiura et al. (2023) focus on 
different variables, including demographic and pre-
college academic data such as gender, age, department, 
entrance examination type, high school rank, GPA, 
and achievement test scores. They also examine non-
academic skills through the PROG test, which 
measures interpersonal, task execution, and self-
control skills. Their study aims to predict first-term 
GPA, classifying GPAs below 2.0 as low-performing. 

 

Conclusion 
 This article aims to introduce RMME researchers 
to the EDM community and to provide a synthesis of 
perspectives between them. It recognizes that each of 
these communities has its own unique language, 
practices, and perspectives on educational data, which 
makes bridging them a challenging task. While this 
article did not seek to (and cannot) cover all aspects of 
these fields, it provides a fundamental understanding 
of their concepts, methodologies, and terminologies. 

Future Research 

 Additionally, we propose several directions for 
future research in RMME and EDM. One potential 
avenue is the exploration of advanced modeling 
techniques, such as deep learning, to improve 
knowledge tracing models (Bulut et al., 2023). Another 
promising direction involves the integration of models, 
specifically combining BKT with IRT to enhance 
accuracy and interoperability. Additionally, it is crucial 
to study how educational context and teaching 
methods impact learners’ knowledge states and model 
performance. Personalized learning can be advanced 
by developing models that provide individualized 
interventions and support based on learner data. 
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 Furthermore, it is important to engage educators in 
the development, implementation, and decision-
making processes of AI in education. This 
collaboration will help ensure the models are practical 
and effective in real-world settings. Emphasis should 
also be placed on research and development focused 
on adapting AI models to diverse educational contexts 
and enhancing trust and safety (Fenu et al., 2022). 
Developing education-specific guidelines and 
guardrails for responsible AI use is another critical 
area. Finally, the application of automated machine 
learning should be further developed to reduce the 
computational burden of training deep learning models 
in educational research (Collier et al., 2022). 

 Through our investigation, we have identified key 
findings that highlight the potential benefits of 
connecting researchers in these fields to improve 
educational outcomes. EDM can provide valuable 
insights into large-scale data analysis, while RMME can 
contribute to the development and validation of 
assessments and measurement tools and ensure that 
the insights obtained from large datasets are relevant 
and applicable to real-world educational contexts. By 
exploring the intersection of these fields, we can work 
towards a more data-informed and effective 
educational system. 
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