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The procedures of carrying out factorial invariance to validate a construct were well developed to ensure 
the reliability of the construct that can be used across groups for comparison and analysis, yet mainly 
restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian 
approach for carrying out the Bayesian factorial invariance, as well as the frequentist approach, using the 
recent add-on R packages to show the procedures systematically for testing measurement equivalence via 
multigroup confirmatory factor analysis. The practical procedure and guidelines for carrying out factorial 
invariance under MCFA using a classic empirical example are demonstrated. Comparison between the 
frequentist and the Bayesian procedures and demonstration using priors are another two nuclei of the 
paper. 
 
Keywords: Measurement invariance, Multigroup confirmatory factor analysis, Frequentist factorial 
invariance, Bayesian factorial invariance, R package 

 

Introduction 
 Self-reported measurement instruments through 
surveys and questionnaires are often used in research 
and practice to obtain a latent construct or a group of 
constructs when the construct cannot be directly 
observed and measured. Many examples, such as self-
esteem and self-efficacy, are usually approximated by a 
scale using observed items to derive the construct. The 
main concern of this approach of deriving a latent 
construct to form a scale is that it needs a process of 
validation to ensure its reliability and validity which can 
be used across groups for comparison and analysis. 
When a measurement instrument can sufficiently 
maintain its measurement structure across groups, it is 
referred to as factorial invariant (FI) or measurement 
invariant. The lack of it indicates the latent construct 
cannot be interpreted in the same way across groups. 
Factorial invariance is thus the condition setting for an 
instrument measure to indicate the level of validity that 
could be used across population subgroups.  

 Validation of factorial invariance becomes a 
common procedure, a pre-requisite practice, and a 

requirement to be carried out before using the 
instrument to conduct further analyses. For instance, 
Tan & Feng (2022) carried out the FI validation 
process for a medical assessment. Bagheri et al., (2022) 
validated an instrument concerning life enjoyment & 
satisfaction instruments using FI. However, not all 
researchers treat it as a mandatory step. One plausible 
explanation is that there is a lack of requisite technical 
skills of the researchers to carry out the procedure and 
perhaps more importantly the lack of software that 
directly aims to carry out the procedure using simple 
syntax specification. The current paper fills this gap by 
introducing the R packages, using recently developed 
functions, presenting both the frequentist & Bayesian 
frameworks, and providing the procedure with 
straightforward syntax for carrying out FI. 

 A common analytical method to attain the FI of an 
instrument is to carry out the multigroup confirmatory 
factor analysis (MCFA) to ensure comparable 
differences across groups are achievable. MCFA has 
been applied in many areas of research and studies such 
as criminology, cross-cultural psychology, 
developmental psychology, education, gerontology, 
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medical examination, sports psychology, marketing, 
and organizational sciences, among others (An et al., 
2017; Feldt et al., 2014; Huansuriya et al., 2020; Lau & 
Yuen, 2015; Moreira et al., 2019; Oppzda-Suder et al., 
2021; Scheffers et al., 2017; Tan & Feng, 2022; Yu et 
al., 2019). The procedures of carrying out FI via MCFA 
to validate a construct were well developed, yet mainly 
restricted to the frequentist approach. This motivates 
an update to incorporate the growing Bayesian 
approach for carrying out the Bayesian factorial 
invariance, using the recent add-on R packages to show 
the procedures systematically for testing measurement 
equivalence. More importantly, the differences 
between the Bayesian and frequentist approaches for 
carrying out FI are seldom discussed in the literature 
concerning their practical considerations and 
providing direct help with codes, syntaxes, and 
references. Also, using priors is seldom discussed. This 
paper elaborates with an example to show how 
Bayesian factorial invariance can be effectively applied 
to determine whether cross-loadings are necessary to 
confirm the structural form of a CFA model. The main 
intended readers for this paper are those with little idea 
of carrying out FI, shown systematically to 
demonstrate how to carry out FI nonetheless with an 
understanding of CFA (e.g. Bollen, 1989) is presumed. 
Another focus of the paper is to update readers that 
are not familiar with Bayesian FI. Even so, both the 

frequentist and Bayesian approaches are described. 
Discussion on the benefits and limitations of the two 
approaches will be given at the end of the paper. Basic 
R knowledge is assumed for readers to benefit from 
the paper.  

 The main goals of the paper are to (a) formally state 
the multiple group confirmatory factor analysis to 
introduce the concept of factorial invariance under this 
analytical framework; (b) discuss the state-of-the-
practice of factorial invariance under the frequentist 
and Bayesian framework; (c) provide practical 
procedures and guidelines for carrying out factorial 
invariance under MCFA with a roadmap of R 
functions stated at the beginning of the paper to give 
an overall R functions route, and (d) present an 
empirical example of factorial invariance using recently 
developed R packages.  

 An overall representation that summarizes the R 
functions for carrying out FI is given in Figure 1. The 
first set of syntaxes on the left of the roadmap shows 
the specification of generating the four FI models, 
namely configural, metric, scalar, and strict models for 
both the frequentist and Bayesian approaches using the 
two packages lavaan and blavaan respectively (Merkle 
et al., 2021; Rosseel, 2012) together with their purposes 
and hypotheses stated on their right. The syntaxes of 
graphing of these four models via the package  

Figure 1. Factorial Invariance Road Map – R Function 

 
 



Practical Assessment, Research & Evaluation, Vol 29 No 8 Page 3 
Tan, Frequentist and Bayesian Factorial Invariance using R 
 
semPlot follow (Epskamp, 2022). The fit functions for 
both approaches are stated on the utmost right of the 
roadmap (Jorgensen et al., 2022). The main R package 
is semTools. The details of these functions will be 
illustrated in the paper. 

Multigroup Confirmatory Factor Analysis 

 The multigroup confirmatory factor analysis 
(MCFA) specification for carrying out factorial 
invariance (FI) is briefly described here. Equation 1 
states the formal formula for FI under MCFA for g 
subpopulation groups. For subject 𝑗 in group 𝑔, 𝑦!" 
represent the observed scores, 𝜂!" represents the latent 
factor scores, 𝜏"  represents the item intercepts, Λ" 
represents the loadings, and 𝛿!" represents the error 
terms,  

𝑦!" = 𝜏" + Λ"𝜂!" + 𝛿!"           (1) 

 The implied variance and covariance among the 
items in the 𝑔th subpopulation group, Σ", is stated in 
Equation 2 where the measurement errors of the latent 
variances and covariances are denoted as Θ", and Φ" 
respectively. 

Σ" = Λ"Φ"Λ"# + Θ"           (2) 

 The classic example of Holzinger & Swineford 
(1939) is used for demonstration of how to perform a 
multigroup three-factor CFA under both frequentist 
and Bayesian approaches. This widely used dataset 
consists of mental ability test scores of seventh- and  

eighth-grade children from two different schools 
(Pasteur and Grant-White) and is one best example to 
show the stability of a CFA solution that is invariant 
across the two schools under the multigroup analysis. 
Figure 2 displays the path diagram of this 3-factor 
MCFA model with 3 constructs: Visual, Textural, and 
Speed, each with three indicators. These 9 indicators 
are visual perception (x1),  cubes (x2), lozenges (x3), 
paragraph comprehension (x4), sentence completion 
(x5), word meaning (x6), speeded addition (x7), 
speeded counting of dots (x8), speeded discrimination 
straight and curved capitals (x9), for the first three 
indicators load to Visual, the next three into Textural 
and the last three into Speed. The ovals represent latent 
factors, rectangles represent manifest items, triangles 
with 𝑥 and 1 inserted represent the means and the 
intercepts respectively, while the single-headed arrows 
represent the values of the regression parameters or 
intercept, and double-headed arrows represent the 
common factor variances and covariances. The 
parameters 𝜆$$, … , 𝜆%$ represent factor loadings, 
𝜏$$, … , 𝜏%$ represent item intercepts, 𝜃$$, … , 𝜃%$ 
represent item residual variances, 𝜙$$, … , 𝜙&$ 
represent factor variances and covariances, and 
𝜅$$, … , 𝜅&$ represents factor means. 

Reading, Visualizing, and Exploring Data 

 The first step of analysis is to read the data. The 
dataset used in the current paper is originally from 
Holzinger and Swineford (1939). In the original 
dataset, there were scores for 26 tests. For illustration 

 

Figure 2. Multigroup Three-Factor CFA Path Diagram 
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purposes, a smaller subset with 9 variables was used 
with 301 subjects, out of which 145 students from 
Grant-White and 156 students from Pasteur. The 
dataset is available in package lavaan, named 

HolzingerSwineford1939, and renamed here as H. It is 
restricted to the 9 indicators and the group variable 
school. The R syntax and file structure are printed 
below.

Library(lavaan) 
H <- HolzingerSwineford1939 
H <- H[,c(5,7:15)] 
str(H) 

 

 Before carrying out confirmatory factor modeling 
and factorial invariance, exploring and visualizing the 
data by graphing a heatmap helps to examine its 
dimensions. This facilitates the determination of 
whether the model specified in Figure 2 is in line with 
the theoretical structural framing. The functions 
corrplot.mixed, and corrplot from the package corrplot 
(Wei & Simko, 2021) provide visualization of a 
correlation heatmap for the former, and with 
hierarchical clustering inserted it into the heatmap for 
the latter. By default, the corrplot.mixed function 
produces a heatmap with printed correlation 
coefficients on the lower diagonal and circles with 
colors on the upper diagonal. The color and the size of 
the circle as well as the magnitude of the estimated 
coefficient, are associated with the extent of the 
correlation being the darker the color, the larger the 
circle, and the higher the printed size of the coefficient, 
the higher the coefficient of the correlation, and vice 
versa. The first graph of Figure 3 indicates the 
correlation coefficients are highest among the 
indicators x4, x5, and x6 (0.70 to 0.73), moderately high 
among x7, x8, and x9 (0.34 to 0.49) as well as among 
x1, x2, and x3 (0.30 to 0.44). The rest of the correlation 
coefficients are relatively low in magnitude. The 
corrplot function produces the hierarchical clustering 
solutions with thicker lines enclosing the variables that 
belonged to the cluster. The arguments 
order=”hclust” indicates hierarchical clustering  

to be carried out and addrect=3 states to produce 
a three-cluster solution. The second graph of Figure 3 
indicates a clear three-cluster solution. 

 Exploratory graph analysis, a network 
psychometrics method, is another useful analytical tool 
to find out the number of dimensions and display the 
degree of association of indicators by the line thickness 
and colors to demonstrate the number of dimensions. 
The ECGnet package (Golino & Christensen, 2022), 
function ECG, employs the walktrap algorithm 
(Golino & Epskamp, 2017; Pons & Latapy, 2006) to 
generate the expolatory graph plot. The third graph, on 
the right of Figure 3, produces this exploratory graph 
showing a clear three-clustered classification 
differentiated by three sets of colors. The strong 
relationship among x4, x5, and x6 is indicated by the 
three thick lines enclosing and linking these three 
indicators. The distance of these three indicators is 
away from the rest of the indicators with thinner lines 
showing the strong association of these 3 indicators as 
a dimension, and they are distanced from the rest. 
However, the thinner line between x7 and x9 and the 
thicker line between x1 and x9, show a lower 
association between x7 and x9, and a moderately 
higher association between x1 and x9, indicating the 
two worries about the possible disturbance from the 
stated structure. Nevertheless, a three-cluster solution 
is suggested by exploratory graph analysis. In 
conclusion, the three graphs in Figure 3 indicate a  
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Figure 3. Heatmap and Exploratory Graph Analysis 

library(corrplot) 
Corr <- round(cor©,2) 
library(corrplot) 
corrplot.mixed(Corr) 

library(corrplot) 
corrplot(Corr,  
 order   = "hclust", 
 tl.col  = 'black', 
 addrect = 3) 

Library(ECGnet) 
EGA(data) 
 

  
 

 

clear three-factor solution for the 9 indicators, in line 
with the Figure 2 three-factor CFA specifications. 

 
Factorial Invariance 
 While many FI procedures were suggested, 
reported, and used in validity studies, the current paper 
concentrates on one of the common measurement 
equivalence practices that arrange an ordered sequence 
starting from the least restricted configural factorial 
invariance, moving on to metric invariance, scalar 
invariance, and ending at the most restrictive strict 
factorial invariance. Table 1 exhibits the hypotheses for 
these four invariant tests. The first hypothesis 𝐻' 
states the factorial forms of group g are all the same, 
Σ",)*+, = Σ)*+,. The hypothesis 𝐻'- sets the 
equality of factor loadings for groups 𝑔, Λ" = Λ, adds 
to the equality of the structural form of the configural, 
named metric invariance. The next hypothesis 𝐻'-., 
the scalar invariance, further qualifies the equality of 
thresholds/intercepts equality, 𝜏" = 𝜏. The strict 
invariance hypothesis 𝐻'-./ includes the specification 
of equal residual across groups hypothesis, Θ" = Θ, 
ended with 4 equality settings. 

 These four basic factorial models and hypotheses 
express the level of factorial invariance. Configural 
invariance model is the most basic factorial invariance 
that specifies the CFA structures are the same across 
all the groups, ensuring that the subpopulations are not 
disjointed, and indicating the same subsets of items 
within the same construct, often used as the baseline 

for equivalence testing (Vandenberg & Lance 2000). 
The metric invariance (Widaman & Reise, 1997), 
generally referred to as a test of a weak factorial null 
hypothesis (Horn & McArdle, 1992), is considered an 
assessment of scaling unit equality (Riordan & 
Vandenberg, 1994), indicating that the latent factor has 
the same influence on items across groups. The scalar 
invariance (Steenkamp & Baumgartner, 1998), also 
referred to as strong invariance (Meredith, 1993), 
indicates that the latent factor differences account for 
mean differences in items across groups (Ghosh et al., 
2021). The strict invariance is a test for equality of 
random errors across groups to address the reliability 
issue of inconsistent scoring and the validity issue of 
scalar equivalence. In conclusion, the hierarchy of the 
four invariance tests reflects the level of factorial 
invariance from the less restrictive of the configural to 
the more stringent strict invariance CFA model. In a 
nutshell, Table 1 summarizes these four factorial 
invariance tests. 

Fit Modeling and Graphing Multigroup 
Confirmatory Factor Model 

 The factorial structure of the 3-factor CFA model 
has to be specified before carrying out the factorial 
invariance tests. The R syntax of this structural form is 
stored as a character named HS.Model, as stated below. 
For instance, variables x1, x2, and x3 are loaded to the 
latent factor visual (visual=~x1+x2+x3), and 
variables x7, x8, and x9 are loaded to the latent factor 
speed (speed=~x7+x8+x9). The name of the latent 
construct is specified before the symbol “=~” and the 
names of the indicators after it. 
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HS.Model <- ' visual  =~ x1 + x2 + x3 
              textual =~ x4 + x5 + x6 
              speed   =~ x7 + x8 + x9 ' 
 The functions cfa and bcfa respectively from the 
package lavaan (Rosseel, 2012) and blavaan (Merkle et 
al., 2018; Merkle et al., 2021) are the two main 
functions for generating the frequentist and Bayesian 
CFA factorial invariances models respectively. Since 
the syntaxes are the same for these two functions 
except for the name of the function, only a single 
description of the syntax is given unless there are 
differences that need to be highlighted.  

 The first argument of the function cfa states the 
name of the structural form of CFA, HS.Model, and 
the dataset to be read in by specifying “data=H”. The 
group argument specifies the name of the group 
variable (group=school). Without specifying the 
group.equal argument, it indicates all the parameters 

are freely estimated. As such, the configural invariance 
CFA is specified. The output of CFA is stored in an R 
object named CFA.Configural, a lavaan class R object 
which is fundamentally a list structure R output that 
stores all the frequentist estimates. For generating the 
output of the Bayesian configural invariance CFA, the 
output from the function bcfa is a blavaan class, stored 
in an R object named CFA.Configural.B which is also 
a list that stores the estimates of Bayesian estimates. 
For the rest of the specifications of factorial invariance 
models, the syntax is similar to that of the configural 
invariance model by adding on the relevant reserved 
words to state the models. Including the additional text 
“loadings” in the group.equal argument 
specifies the metric model, further adding 
“intercepts”,  and “residuals” specifying the 
scalar and strict invariance models respectively.

 
# Frequentist Approach 
library(lavaan) 
CFA.Configural <- cfa(HS.Model, data=H, 
    group       = "school") 
CFA.Metric <- cfa(HS.Model, data=H, 
    group       = "school", 
    group.equal = c("loadings")) 
CFA.Scalar <- cfa(HS.Model, data=H, 
    group       = "school", 
    group.equal = c("loadings","intercepts")) 
CFA.Strict <- cfa(HS.Model, data=H, 
    group       = "school", 
group.equal = c("loadings","intercepts","residuals")) 
 
# Bayesian Approach 
library(blavaan)  
CFA.Configural.B <- bcfa(HS.Model, data=H, 
    group       = "school") 
CFA.Metric.B <- bcfa(HS.Model, data=H, 
    group       = "school", 
    group.equal = "loadings") 
CFA.Scalar.B <- bcfa(HS.Model, data=H, 
    group       = "school", 
    group.equal = c(“loadings","intercepts")) 
CFA.Strict.B <- bcfa(HS.Model, data=H, 
    group       = "school", 
    group.equal = c("loadings","intercepts","residuals")) 
 

 Examining Frequentist Approach Results. The four 
sections of Figure 4 print the frequentist outputs of 
configural, metric, scalar, and strict invariance models. 
The estimated factor loadings, intercepts, and residuals 
of these models clearly show the differences of these 
four sets of CFA outputs. For the configural invariance 
model, all these estimates for the two groups varied 

since this model specifies identical structural forms but 
their loading, intercept, and residual parameters differ. 
For instance, the factor loading of x5 is 1.183 under 
Group 1 Pasteur differs and is higher than x5 of 0.990 
under Group 2 Grant-White. The intercept of x6 for 
Group 1 (1.922) and Group 2 (2.469) also differs 
substantially. Similarly, the variances of x1 for Group 
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Table 1. Invariance Test – Configural, Metric, Scalar, and Strict Invariance 

Invariance Hypothesis 

Configural 𝐻': 𝚺",)*+, = 𝚺)*+, 

Metric 𝐻'-: 𝚺",)*+, = 𝚺)*+, , 𝚲" = 𝚲 

Scalar 𝐻'-𝝉: 𝚺",)*+, = 𝚺)*+, , 𝚲" = 𝚲, 𝝉" = 𝝉 

Strict 𝐻'-𝝉/: 𝚺",)*+, = 𝚺)*+, , , 𝚲" = 𝚲, 𝝉" = 𝝉,𝚯" = 𝚯 

 

1 (0.298) and Group 2 (0.715) also have a large 
discrepancy in their estimates. For the metric factorial 
invariance model that puts the equality of the factor 
loadings for both groups, the factor loadings for 
Group 1 and Group 2 now have the same value for x5 
of 1.083, however, the estimates of intercept and 
variance differ. The scalar invariance model further 
restricts the equality of the intercepts. For instance, this 
model produces the same intercept value for x6 of 
1.926. Under the strict invariance model, the further 
equality restriction produces the residuals with the 
same value. For instance, the residual of x1 for the two 
groups is with the same value of 0.635.  

 While these outputs print the estimates, they do 
not evaluate which model fits best. Having said that, 
the difference between the two groups could be 
compared to obtain an overall inkling of which model 
fits better. For instance, the factor loadings under the 
configural model do not differ much for the two 
groups, giving a sense that it is probably wise to 
proceed from the configural model to the metric 
invariance model as the latter model that specifies 
equality of loadings is a better invariance model than 
the configural model. 

 Graphing Frequentist CFA. Graphing the path 
diagram after fixing a CFA model is a beneficial step to 
take a look at the model pictorially in understanding 
and examining the relationship of all the estimated 
parameters.  Function semPaths from the package 
semTools (Epskamp, 2022) provide the plotting 
facility. The syntaxes of configural and strict CFA 
models are printed on top of Figure 5 and Figure 6 
respectively and the path diagrams below them. The 
first argument of the function semPaths specifies the 
fitted CFA model. The second argument, what, states  

the estimated coefficients to be printed. The color 
and edge.color arguments specify the colors of 
the path diagram and its edges. The word size of the 
latent and manifest are specified under the argument 
sizeLat and sizeMan respectively, and the 
edge.label.cex argument specifies the word size 
of the label.  

 Figure 5 produces the path diagrams for both 
Group 1 and 2 of the configural invariance model 
showing all the estimated coefficients differ. For 
instance, by comparing the estimated factor loading 
coefficients of x2, with an estimated value of 0.39 for 
Group 1, it is much lower than 0.74 for Group 2.  
Figure 6 graphs the path diagrams for the strict 
invariance model showing the factor loading of the x2 
now having the same values of 0.59 as well as the 
intercept of x2 also having the same values of 6.13, and 
variance value of 1.13. Those coefficients printed in 
blue are significant estimates and those shown in light 
grey are non-significant estimates. 

 Examining Bayesian Output. The syntax of generating 
the factorial invariance models for the Bayesian is 
almost the same as that of the frequentist and the 
output format is also similar in layout but the output 
contents differ. While the package lavaan uses 
maximum likelihood estimation to produce point 
estimates, the package blavaan generates the posterior 
values producing a set of estimates for each parameter. 
The default output from the Bayesian using the 
summary function, as stated below, prints the posterior 
mean values, standard deviation, lower-density interval 
value, upper-density interval value, Rhat, and prior 
specification.  
Summary(CFA.Configural.B) 
summary(CFA.Metric.B) 
summary(CFA.Scalar.B) 
summary(CFA.Strict.B) 
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Figure 4. Frequentist Output – Configural, Metric, Scalar, and Strict Invariance  

Invariance Group 1 – Pasteur Group 2 – Grant-White 

Configural 
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Invariance Group 1 – Pasteur Group 2 – Grant-White 

 
 

 

Metric  
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Invariance Group 1 – Pasteur Group 2 – Grant-White 

 
 

 

Scalar 
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Invariance Group 1 – Pasteur Group 2 – Grant-White 

  

Strict 
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Figure 5. Path Diagram – Configural Invariance Model 

semPaths(CFA.Configural, what="est",  
          color="yellow", edge.color="blue", 
          sizeLat = 8, sizeMan = 8, edge.label.cex = 1.25) 

Group 1 

 
Group 2 

 
 

 For a detailed output, the blavInspect function 
from the package blavaan extracts information from a 
fitted blavaan object to generate the posterior mean 
estimates, SE of mean, 2.5%, 25%, 50%, 75%, and 
97.5% of the posterior estimates. The syntaxes are 
printed below.  

Conf.Per  <- 
blavInspect(CFA.Configural.B) 
Metric.Per <- blavInspect(CFA.Metric.B) 
Scalar.Per <- blavInspect(CFA.Scalar.B) 
Strict.Per <- blavInspect(CFA.Strict.B) 
Conf.Per 
Metric.Per 
Scalar.Per 
Strict.Per
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Figure 6. Path Diagram – Strict Invariance Model 
 

semPaths(CFA.Strict, what="est",  
    color="pink", edge.color="blue", 
    sizeLat = 8, sizeMan = 8, edge.label.cex = 1.25) 

Group 1 

 
Group 2 

 
 
 Figure 7 prints the Bayesian CFA output of the 
strict invariance model. Similar to the frequentist 
output, the factor loadings, intercepts, and variances 
are set to equality across the two groups under the 
strict invariance model. Under the Estimate 
column, the posterior average is printed. The 

Post.SD column prints the posterior standard 
deviation, pi.lower and pi.upper columns 
represent 2.5% and 97.5% of the posterior percentile 
density interval values respectively, Rhat stands for 
the potential scale reduction factor for assessing chain 
convergence which values that near 1.00 indicates 
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convergence, Prior column specifies the prior 
specification. For instance, the posterior factor loading 
of x2 is 0.869, the posterior SD is 0.159, and the 2.5% 
and 97.5% density values are 0.385 and 0.851 
respectively showing 95% of the range of the factor 
loadings. The Rhat of 1 indicates convergence and the  

prior is specified as N(0,10). The output also prints 
MargLogLik which represents the Laplace 
approximation of the marginal log-likelihood, and PPP 
represents the posterior predictive p-value. The value 
of PPP 0.000 indicates a poor fit of the model. 

 

Figure 7. Bayesian Output – Strict Invariance  

Group 1 - Pasteur 
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Group 2 – Grant-White 
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 The object Strict.Per prints 8 posterior 
statistics and 3 sets of variables. The statistics include 
the posterior mean (mean), posterior mean se 
(se_mean), posterior sd (sd), 2.5%. 25%, 50%, 75%, 
and 97.5% of the posterior estimates. The variables 
whose names start with ly_sign are the posterior 
factor loadings, Nu_free are the posterior intercepts, 
and Thera_var are the posterior variances. The first 
six rows print the factor loadings of x2, x3, x5, x6, x8, 
and x9 under the names initial ly_sign followed by 
a bracket [ ] that within it starts from 1 to 6. Since the 
factor loadings of x1, x4, and x7 are by default set to 
one, only 6 factor loadings are printed. For instance, 
the mean factor loading of x2 (ly_sign[1]) is 0.61, 
with sd 0.12, factor loading estimates range from 0.39 
at 2.5% to 0.85 at 97.5%. An examination of these 
estimated posterior values gives a sense of the spread 
of these parameters. For instance, a comparison of the 
posterior loadings of x2 and x6 gives the contrast of 
their loading distributions. X2 has a wider spread for 
the percentile posterior loadings ranging from 0.39 

(2.5%) to 0.85 (97.5%) while the narrower spread of x6 
ranges from 0.83 (2.5%) to 1.06 (97.5%). The posterior 
intercepts and variances have the same interpretation. 
For instance, the mean value of the posterior intercept 
of x1 (Nu-free[1]) is 5.01 with estimates ranging 
from 4.83 at 2.5% to 5.19 at 97.5%, the mean value of 
the posterior variance of x2 (Theta_var[2]) is 1.15 
with estimates ranging from 0.11 at 2.5% to 1.37 at 
97.5%. 

` Similar to producing the frequentist CFA model 
graphically, function semPaths could also be used to 
graph the path diagram of the Bayesian CFA model. 
The Bayesian scalar CFA invariance is printed in Figure 
8 with the syntaxes given on top of the path diagrams. 

 Varying Priors Settings of Factor Loadings – An 
Example. Setting priors is one crucial procedure for 
carrying out Bayesian factorial invariance analysis as 
specifying prior information can lead to quite different 
estimation outcomes (Van de Schoot et al., 2014). The 
default priors settings in blavaan (Merkle & Rosseel, 
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Figure 8. Path Diagram – Bayesian Scalar Invariance Model 

semPaths(CFA.Scalar.B, what="est", 
   color="orange", edge.color="blue", 
   sizeLat = 8, sizeMan = 8, edge.label.cex = 1.25) 

Group 1 

 
Group 2 
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2018) for a Bayesian model places 𝑁(0, 10) as priors 
for factor loadings & indicators; N(0, 32) for the 
intercepts; and gamma(1, 0.5) for indicator residual 
standard deviations. These default prior settings can be 

printed using the dpriors function as shown below. 
The abbreviations of the function dpriors are listed in 
Appendix C, Table C1.  

 

 
 

 An example is illustrated by changing the prior 
setting of factor loadings from the default specified in 
package blavaan to examine whether the factorial 
invariance model is misspecified. Muthén and 
Asparouhov (2012) suggested estimating all possible 
cross-loadings using priors by relaxing their estimates 
serves as a means as if it is another way to carry out 
“model modification” via the Bayesian approach. 
While the main aim of model modification is to 
improve model fit if there are parameters omitted by 
adding them (MacCallum et al., 1992), creating all 
possible cross-loadings using Bayesian confirmatory 
factor analysis with the specification of small variance 
priors with mean zero is another way to examine 
whether there are possible significant and high cross- 

loadings that differ from the theoretical specification 
(Jorgensen et al., 2019). For instance, while the 
indicators x4 to x9 do not expect to load to the visual 
construct, by specifying restrictive low values for these 
factor loadings with the specification of 𝑁(0, 𝜎 =
0.06), the estimated Bayesian loadings serve as a check 
for possible misspecification if any of the indicators x4 
to x9 are heavily loaded to the construct visual. The 
same argument goes for the textual and speed 
constructs. The syntax of specifying all possible cross-
factor loadings to the visual, textual, and speed 
constructs is stated below. The prior function states the 
priors to use are from a normal distribution with zero 
mean and a low standard deviation of 0.06. Figure 9 
prints the output of the specified model. 

HS.Model.CL <-' visual  =~ x1 + x2 + x3 
                textual =~ x4 + x5 + x6 
                speed   =~ x7 + x8 + x9  
  # Specify Prior Cross-loadings 
visual  =~ prior("normal(0,.06)")*x4 + 
           prior("normal(0,.06)")*x5 +  
           prior("normal(0,.06)")*x6 +  
           prior("normal(0,.06)")*x7 + 
           prior("normal(0,.06)")*x8 +  
           prior("normal(0,.06)")*x9 
textual =~ prior("normal(0,.06)")*x1 +  
           prior("normal(0,.06)")*x2 +  
           prior("normal(0,.06)")*x3 + 
           prior("normal(0,.06)")*x7 + 
           prior("normal(0,.06)")*x8 + 
           prior("normal(0,.06)")*x9  
speed   =~ prior("normal(0,.06)")*x1 + 
           prior("normal(0,.06)")*x2 +  
           prior("normal(0,.06)")*x3 + 
           prior("normal(0,.06)")*x4 +  
           prior("normal(0,.06)")*x5 + 
           prior("normal(0,.06)")*x6’ 
CFA.Configural.B.CL <- bcfa(HS.Model.CL, data=H, 
                            group = "school") 
summary(CFA.Configural.B.CL) 
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Figure 9. Bayesian Output – Metric Invariance with All Cross Loadings  

  

Group 1 – Pasteur 
 

 
 

Group 2 – Grant-White 
 

 
 

 

 Compared to the default model without the cross-
loadings with a PPP value of 0.000, the HS.model.CL 
model for the cross-loading model with a PPP value of 
0.036 (Figure 9) indicating it is a better-fit model. 
However, this is an overfitted model due to the 
inclusion of 18 nuisance cross-loading parameters 

which are purposely inserted to exhibit their triviality. 
As such, the fit should not lead to the conclusion of 
using the cross-loading model. The outcomes indicate 
the estimates of these cross-loadings are relatively 
small, the values of pi.lower are all negative, and the 
values of pi.upper are all positive. These outcomes 
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demonstrate the irrelevancy of these loadings that 
cross the zero estimates from negative to positive, 
signifying their inappropriateness of including these 
loadings. In short, this example shows the benefit of 
using the Bayesian CFA for examining the factor 
loading with the specification of priors for exploring 
model misspecification.  

Evaluation of Factorial Invariance Results – 
Model Fit and Comparison 

 Fit Indices. The factorial invariance models specify 
the level of factorial invariance that could be attained. 
Examining at which level that could have been 
achieved, model fit indices and comparison methods 
are often used for evaluation. This section 
recommends five frequentist fit indices and their 
corresponding Bayesian fit indices together with the 
more recently developed Bayesian fit indices. The 
frequentist fit indices include the Root Mean Square 
Error of Approximation (RMSEA; Steiger and Lind, 
1980), Comparative Fit Index (CFI; Bentler, 1990), 
Tuker-Lewis Index (TLI; Bentler & Bonett, 1980; 
Tuker & Lewis, 1973), Akaike Information Criteria 
(AIC; Akaike, 1974), and Bayesian Information Criteria 
(BIC; Schwarz, 1978). The equivalent in Bayesian 
indices include Bayesian RMSEA (BRMSEA; Hoofs et 
al., 2018; Garnier-Villarreal & Jorgensen, 2020), 
Bayesian TLI (BTLI), and Bayesian CFI (BCFI), and 
Deviance Information Criterion (DIC; Spiegelhalter, 
Best, Carlin, & Linde, 2014; Spiegelhalter, Best, Carlin, 
& Van Der Linde, 2002) which are conceptually related 
to their frequentist counterparts. The fit indices from 
the Bayesian framework include the Widely Applicable 
Information Criterion (WAIC, Watanabe, 2010), 
Leave-one-out cross-validation (LOO, Gelfand, 1996), 
and the prior posterior predictive p-value (PPP; 
Gelman, Carlin, Stern, & Rubin, 2014). For examining 
between two CFA factorial models, the frequentist 
approaches include five comparative fit indices (∆𝐶𝐼), 
∆𝐶𝐹𝐼, namely the ∆RMSEA, ∆CFI, ∆TLI, ∆AIC, and 
∆BIC. 

 Practical Guidelines. To evaluate the fit of a CFA 
model, the literature generally recommended using a 
cutoff to provide a dichotomous indicator of model fit 
or a series of cutoffs to signal the acceptable level of 
model fit. Common interpretations of cutoffs for 
RMSEA are less than 0.05 for a good fit, 0.05 indicates 
a close fit, more than 0.10 indicates a poor fit, and 
various proposal cutoff intervals not far away from this 
(e.g. Browne & Cudeck, 1993; Hu & Bentler, 1999; 
MacCallum, Browne, & Sugawara, 1996). For the CFI 
and TLI, values between .95 and .97 suggest a good fit 
and a value above .97 suggests an excellent fit.  

 For changes in comparative fit indices (ΔCI), Chen 
(2007) suggested that the value of ΔCFI equal to or 
greater than −.010 supplemented by RMSEA less than 
or equal to .05 are indicative of non-invariance when 
sample sizes are equal across groups and larger than 
300 in each group. Cheung & Rensvold (2002) 
suggested ΔCFI ≤ .01 of non-invariance across 
models. Meade et al., (2008) suggested a smaller ΔCFI 
≤ .002 is more appropriate for assessing invariance. 

 Similar to the principle of providing the cutoff 
guideline under the frequentist approach, Bayesian 
cutoffs also aim to provide the outcomes of model fit. 
The simulation study of Hoofs et al., (2018) 
recommended the guideline for BRMSEA with cutoff 
values for the lower and upper limits <0.05 and <0.08 
respectively. A low PPP (< 0.05) indicates poor model 
fit and PPP values of around 0.50 indicate very good 
fit (Muthén & Asparouhov, 2012). 

 Evaluation of Factorial Invariance using R Packages. 
Function compareFit from the package semTools 
(Epskamp, 2022) provides model fit indices and 
comparative fit indices. Specifying the name of the four 
factorial-invariance CFA models in this function 
produces the model fit of the models. The summary 
function with the specification of the fit.measures 
argument states the fit indices to be outputted. The 
syntax below specifies ten fit statistics to be generated. 

 
CompareAll <- compareFit(CFA.Configural, 
                         CFA.Metric, 
                         CFA.Scalar, 
                         CFA.Strict) 
summary(CompareAll, 
  fit.measures = c("chisq","df","pvalue", 
                   "rmsea","rmsea.ci.lower","rmsea.ci.upper", 
                   "cfi","tli","aic","bic") 
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 Figure 10 prints the outputs of the model fit indices 
and the difference in fit indices separately into two 
portions. In the first section, the symbol “†” inserted 
after the values of the fit index indicates the best CFA 
factorial invariance model. The lowest values of 
RMSEA (0.097), & AIC (7480.587), and the highest 
value of TLI (0.895) indicate the best model is the 
metric CFA model. The configural CFA is suggested 

as the best model with the highest CFI (0.923) whereas 
strict CFA is indicated by the results of the lowest BIC 
value (7652.632). According to Cheung & Rensvold's 
(2002) criterion of ΔCFI value of .01 criterion, the 
configural model is suggested as the ∆CI for both CFI 
and TLI met this criterion. Overall, counting the 
number of fit statistics, the metric model is the 
preferred choice. 

Figure 10. Model Comparison and Differences in Fit Indices - Frequentist 

 
 

 While the function compareFit provides the results 
with the specification of the CFA invariance models, it 
is worth mentioning a more recent package 
equaltestMI (Jiang & Mai, 2021) provides functions for 
carrying out measurement invariance with a 
comprehensive 11 CFA models without specifying the 
CFA models (see Appendix B Table B1). This function 
is useful for readers already familiar with the process 
of FI to produce a thorough list. 

 Similar to the frequentist approach, the function 
fitMeasures from the package lavaan provides four 
Bayesian fit indices PPP, DIC, WAIC, and LOOIC.  

The syntax is similar to that of the frequentist in that 
the name of the model has to be specified, followed by 
the list of the names of the fit indices. The results for 
these four factorial invariance models are tabulated in 
Table 2. All the PPP values are less than 0.05 showing 
all the fits are poor which is in line with the results of 
the frequentist fit value such as the value of TLI for the 
metric model is 0.895, less than the threshold of 0.95. 
The DIC shows the configural model fits best while 
WAIC and LOOIC prefer the metric model with the 
lowest values. Similar to the frequentist, the Bayesian 
counterpart also suggests the metric invariance model. 

 
 
fitmeasures(CFA.Configural.B,c("ppp","dic","waic","looic")) 
fitmeasures(CFA.Metric.B,c("ppp","dic","waic","looic")) 
fitmeasures(CFA.Scalar.B,c("ppp","dic","waic","looic")) 
fitmeasures(CFA.Strict.B,c("ppp","dic","waic","looic")) 
 

Table 2. Bayesian Fit Statistics 

Factorial Invariance PPP DIC WAIC LOOIC 

Configural 0.00000 7020 7540 7538 

Metric 0.00033 7481 7488 7489 

Scalar  0.00000 7509 7516 7516 

Strict 0.00000 7507 7512 7513 
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 The posterior frequentist fit indices are often 
generated and analyzed under the Bayesian framework 
as this is the core benefit of using this approach in that 
the parameter is a distribution, not a fixed estimate. 
The function blavFitIndices from the package blavaan 
provides this facility to store the fit indices into an R 

object. The first argument of this function states the 
names of the fitted Bayesian model. The second rescale 
argument states the option MCMC to use the Markov 
chain based on the model-implied moments to output 
the posterior values of the five fit indices, RMSEA, 
CFI, TLI, AIC, and BIC.  

set.seed(1234567) 

Conf.B.FitIndex <- blavFitIndices(CFA.Configural.B, 

    Rescale      = "MCMC", 

fit.measures = c("rmsea","cfi","tli","aic","bic")) 

Metric.B.FitIndex <- blavFitIndices(CFA.Metric.B, 

    Rescale      = "MCMC", 

    fit.measures = c("rmsea","cfi","tli","aic","bic")) 

Scalar.B.FitIndex   <- blavFitIndices(CFA.Scalar.B, 

    rescale      = "MCMC", 

    fit.measures = c("rmsea","cfi","tli","aic","bic")) 

Strict.B.FitIndex   <- blavFitIndices(CFA.Strict.B, 

    rescale      = "MCMC", 

    fit.measures = c("rmsea","cfi","tli","aic","bic")) 

 

 Figure 11 plots the posterior distributions of the 
four sets of Bayesian factorial invariance models for 
the five fit indices: CFI, TLI, RMSEA, AIC, and BIC. 
As each of the posterior parameters contains 3,000 
observations, it is useful to examine these posterior 
distributions using a histogram. The mean, median, 
and standard deviation of these five statistics are 
tabulated in Table 3.  

 The histograms indicate the characteristics of the 
fit indices. The distribution of CFI is positioned at a 
higher value range with a narrow distribution for the 
metric invariance model (Figure 11), indicating this 
model is a better fit, in comparison to other invariance 
models. A low standard deviation with the highest 
mean and median values (Table 3) also shows similar 
findings.  In contrast, the same set of indicators for 
TLI, RMSEA, and BIC show in favor of the strict 
invariance model while the results of AIC and BIC do 
not indicate a clear solution. 

 
Summary and Conclusion 
 The procedure of carrying out factorial invariance 
using multigroup confirmatory factor analysis is 

systematically described in the current paper by first 
introducing the concepts of factorial invariance, 
presenting the commonly adopted four steps of the 
factorial procedure (configural, weak, strong, and strict 
invariance), recapitulating the various frequentist and 
Bayesian fit indices and working on a classical example 
using more recently developed R packages and 
functions to show the steps and interpreting the 
results.  

 While the frequentist approach was intensively 
discussed in the factorial invariance literature and there 
were many reviews and practical applications, a short 
discussion is useful for researchers who intend to 
proceed with the Bayesian factorial invariance 
framework. The Bayesian framework generally 
complements the frequentist approach in validation 
and reporting, shifting from a point estimate to a 
posterior distribution. The main advantage of using 
this framework is that it provides an alternative range 
of informative tests of the CFA invariance model. 
Although the application of Bayesian CFA is on the 
rise, and many issues still warrant further research, 
noting the usage needs careful attention. For instance, 
while DIC is a generalization of AIC being it tries to 
find the simplest model that fits the data well



Practical Assessment, Research & Evaluation, Vol 29 No 8 Page 23 
Tan, Frequentist and Bayesian Factorial Invariance using R 
 
Figure 11. Posterior Distribution: CFI, TLI, RMSEA, AIC, and BIC 

 

 

 

 

 

(Plummer, 2006), and the simulation on BRMSEA fit 
indices by Hoofs et al., (2018) provide the practical 
guidelines, more research still needed to be carried out 
on other Bayesian fit indices to provide more evidence 
to stipulate practical and useful guidelines.  

 Since the prior setting is one crucial factor for 
Bayesian CFA, and an example is demonstrated to 
show how to specify the syntax and demonstrate its 
application for examining misspecification, a short 
discussion on the prior specification for carrying out 
Bayesian factorial invariance is helpful to readers not 
familiar with the consequences of prior settings. While 
the current paper uses the default prior setting of 
function bcfa to carry out Bayesian factorial invariance, 
researchers can specify prior information (e.g., Van de 

Schoot et al., 2014) to produce expected estimations. 
In frequentist CFA, the correlation matrix Ω needs to 
be a sparse matrix to ensure identifiability. While it is 
typically difficult to foresee the correlation of the 
residuals, Bayesian CFA provides a neat solution to this 
problem by specifying a very large value of η using the 
LKJ prior (Lewandowski et al., 2009) on Ω, forces all 
residual correlations to be low, the default 
specifications of package lavaan. However, specifying 
the prior should be carried out carefully when the data 
set is small. The main reason is that the prior of 
intercepts assumes univariate normal priors and prior 
factor loading could be considered too informative 
when a given item does not load on a given factor 
leading to assigning a small standard deviation prior.  
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Table 3. Mean, and Median – RMSEA, CFI, TLI, AIC, and BIC: Bayesian 

Factorial 
Invariance 

Mean 
CFI TLI RMSEA AIC BIC 

Configural 0.8256 0.7384 0.1458 7571 7793 
Metric 0.8583 0.8111 0.1242 7536 7736 
Scalar  0.8271 0.7925 0.1302 7558 7736 
Strict 0.8284 0.8209 0.1209 7548 7692 
Factorial 
Invariance 

Median 
CFI TLI RMSEA AIC BIC 

Configural 0.8248 0.7371 0.1466 7572 7794 
Metric 0.8587 0.8115 0.1241 7536 7736 
Scalar  0.8280 0.7936 0.1299 7557 7735 
Strict 0.8292 0.8217 0.1207 7547 7691 
Factorial 
Invariance 

Standard Deviation 
CFI TLI RMSEA AIC BIC 

Configural 0.0251 0.0376 0.0106 22.20 22.20 
Metric 0.0116 0.0155 0.0051 10.29 10.29 
Scalar  0.0113 0.0136 0.0042 10.03 10.03 
Strict 0.0101 0.0105 0.0035 8.95 8.95 

 

 When the prior knowledge is available and known, 
informative priors can be chosen, however, it can also 
turn to biased results in certain directions. Thus, all 
informative priors need to have a clear justification. 
The recommendation for reporting Bayesian 
invariance results is the disclosure of the specification 
of priors when using the informative priors and the 
reason and justification are clearly stated such that 
readers read the results with the consideration of the 
informed prior information. For instance, stating the 
reason for restricting the use of uniform priors when 
the parameter is restricted, using weak priors with 
normal distribution specified for exploratory factorial 
invariance and diagnosing purposes, and using a 
student’s t distribution to replace normal distribution 
to solve fat tails distribution. In summary, the cost of 
uninformative priors is that you are putting too much 
weight on your actual data; the cost of too strong a 
prior is that you are letting assumptions rather than 
data do most of the work. The researcher may have to 
decide how to take a balance.  

 In conclusion, the advantages of adopting the 
Bayesian framework in factorial invariance are that it 
offers a flexible approach that allows the incorporation 
of prior knowledge for the estimation of under-
identified models, that it is a natural means of 
constraining parameters, and better for small-sample 
performance (Scheines, Hoijtink, & Boomsma, 1999). 

Another main benefit lies in the Bayesian factorial 
invariance provides full posterior distributions for each 
parameter and latent variable so that researchers can 
learn about the model as a whole. Not forgetting that 
there is also the benefit of the frequentist of the ML 
point estimate, the current paper offers a start on the 
journey to Bayesian factorial invariance, providing the 
syntax of both the frequentist and Bayesian approaches 
and serves as a reference towards this journey. 
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Appendix A.  R Packages Functions and Syntax 
 

Table A1. Functions for Graphing EFA and CFA Model - Package EGAnet and semPlot 
 

Package EGAnet Description 
ega.HSQ <- EGA(DF, 
            uni.method = "LE", 
            corr       = "cor_auto", 
            model      = "glasso", 
            algorithm  = "walktrap", 
            plot.EGA   = TRUE, 
            plot.type  = "qgraph") 

Exploratory Graph Analysis 

Package semPlot  
semPaths(model,  
     what           = "est", 
     color          = "yellow", 
     edge.color     = "blue", 
     sizeLat        = 8, 
     sizeMan        = 8, 
     edge.label.cex = .75) 

Plot Path Diagram – Frequentist and Bayesian 
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Table A2. Functions for Fitting Confirmatory Factor Model and Factorial Invariance – Package lavaan and blavaan 

 
Package / Function Description 

Model Specification 
Model <- ' L1 =~ x1 + x2 + x3 
           L2 =~ x4 + x5 + x6 
           L3 =~ x7 + x8 + x9 ' 

Specify a CFA Model 

Package lavaan – Factorial Invariance  
Configural<-cfa(Model,data=DF,group="Gp") Configural Invariance 
Metric<-cfa(Model,data=DF,group="Gp", 
      group.equal="loadings") 

Metric Invariance 

Scalar<-cfa(Model,data=DF,group="Gp", 
      group.equal="loadings","intercepts") 

Scalar Invariance 

Strict<-cfa(Model,data=DF,group="Gp", 
      group.equal="loadings","intercepts","residuals") 

Strict Invariance 

Package blavaan – Factorial Invariance  
Configural.B<-bcfa(Model,data=DF,group="Gp") Bayesian Configural Invariance 
Metric.B<-bcfa(Model,data=DF,group="Gp", 
      group.equal="loadings") 

Bayesian Metric Invariance 

Scalar.B<-bcfa(Model,data=DF,group="Gp", 
      group.equal="loadings","intercepts") 

Bayesian Scalar Invariance 

Strict.B<-bcfa(Model,data=DF,group="Gp", 
      group.equal="loadings","intercepts","residuals") 

Bayesian Strict Invariance 
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Table A3. Functions for Generate Fit Statistics and Carry out Difference Test – Package lavaan, blavaan, semTools, 

and equaltestMI 
 

Fit Statistics and Difference Test Description 
Package lavaan – Global Fit Measures   
(1) Frequentist Fit Indices  
fitMeasures(Configural) Fit Measures - Configural Invariance 
fitMeasures(Metric) Fit Measures - Metric Invariance 
fitMeasures(Scalar) Fit Measures - Scalar Invariance 
fitMeasures(Strict) Fit Measures - Strict Invariance 
(2) Bayesian – PPP,DIC,WAIC, and LOOIC  
fitMeasures(Configural.B) Fit Measures - Bayesian Configural Invariance 
fitMeasures(Metric.B) Fit Measures - Bayesian Metric Invariance 
fitMeasures(Scalar.B) Fit Measures - Bayesian Scalar Invariance 
fitMeasures(Strict.B) Fit Measures - Bayesian Strict Invariance 
Package blavaan   
Bayesian – MCMC Posterior  
blavFitIndices(Configural.B,rescale="MCMC", 
fit.measures=c("rmsea","cfi","tli","aic","bic")) 

Posterior - Bayesian Configural Invariance 

blavFitIndices(Metric.B,rescale="MCMC", 
fit.measures=c("rmsea","cfi","tli","aic","bic")) 

Posterior - Bayesian Metric Invariance 

blavFitIndices(Scalar.B,rescale="MCMC", 
fit.measures=c("rmsea","cfi","tli","aic","bic")) 

Posterior - Bayesian Scalar Invariance 

blavFitIndices(Sgtrict.B,rescale="MCMC", 
fit.measures=c("rmsea","cfi","tli","aic","bic")) 

Posterior - Bayesian Strict Invariance 

Package semTools – Compare Model Fit  
Frequentist  
compareFit(Configural,Metric) Compare Fit between Configural and Metric 
compareFit(Metric,Scalar) Compare Fit between Metric and Scalar 
compareFit(Scalar,Strict) Compare Fit between Scalar and Strict 
compareFit(Configural,Metric,Scalar,Strict) Compare Fit for All 
compareFit(Configural,Metric,Scalar,Strict, 
 fit.measures =  
  c("rmsea","cfi","tli","aci","bci") 

Restrict to Selected Statistics 

Package equaltestMI 
Comprehensive Factorial Invariance 

 

library(equaltestMI) 
eqMI.main(model = Model, 
  data             = DF, 
  group            = "school", 
  meanstructure    = TRUE, 
  equivalence.test = TRUE, 
  adjRMSEA         = TRUE) 

Comprehensive Factorial Invariance 
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Appendix B.  Package equaltestMI, Function eqMI.main 
 

library(equaltestMI) 
MI_EQ <- eqMI.main(model = HS.Model, 
  data             = H, 
  group            = "Gp", 
  meanstructure    = TRUE, 
  equivalence.test = TRUE, 
  adjRMSEA         = TRUE) 
 
MI_EQ 
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Appendix C. Abbreviation Used in Function dpriors 
 

Table C1. Abbreviation Used in Function dpriors 
 

Abbreviation Description 
nu Observed variable intercept parameters 

alpha Latent variable intercept parameters 
lambda Loading parameters 

beta Regression parameters 
itheta Observed variable precision parameters 
ipsi Latent variable precision parameters 
rho Correlation parameters (associated with covariance parameters) 

 
 


