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A decision consistency (DC) index is an estimate of the consistency of a classification decision on an exam. 
More specifically, DC estimates the percentage of examinees that would have the same classification 
decision on an exam if they were to retake the same or a parallel form of the exam again without memory 
of taking the exam the first time. This study compares three classical test theory DC estimates in the 
context of high stakes pass/fail exams. The three methods compared include those developed by 
Livingston and Lewis (1995), Peng and Subkoviak (1980), and Wolkowitz (2021). This study compares 
the computationally and conceptually simpler DC methods proposed by Peng-Subkoviak and Wolkowitz 
to the more widely used and accepted, but more complex, method proposed by Livingston and Lewis. 
Through a comparison of two simulated datasets and three operational datasets, the results suggest that 
the Livingston-Lewis and Wolkowitz methods produce relatively similar results for datasets with skewed 
distributions and all three methods produce reasonably similar results for normally distributed datasets. 
Following these results, this study provides guidelines for deciding which method to apply as well as 
industry guidelines for acceptable DC values. 
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Introduction 
 Decision consistency (DC) is a measure of 
reliability that estimates the proportion of examinees 
who are classified into the same category on two 
administrations of parallel forms of an exam. In 
professional credentialing, there are typically two 
classifications: pass or fail. The estimation of the true 
DC index requires two administrations of parallel 
forms of an exam. Because it is not possible to have 
examinees take an exam and then retake the same or 
parallel form of the exam under identical conditions 
without remembering the first experience, DC is often 
estimated using an observed distribution and a 
predicted or true distribution. 
DC is used in the industry to determine “the extent to 
which the observed classifications of examinees would 
be the same across replications of the testing 
procedure” (AERA, APA, & NCME, 2014, p. 40). 
Since the goal is to have as consistent of a pass/fail  

 
decision as possible in professional certification and 
licensing, the value of this statistic is important and 
should be evaluated on such exams. The guideline 
provided in the Standards for Educational and Psychological 
Testing (AERA, APA, & NCME, 2014) states: “When a 
test or combination of measures is used to make 
classification decisions, estimates should be provided 
of the percentage of test takers who would be classified 
in the same way on two replications of the procedure 
(Standard 2.16, p. 46).” The method used to estimate 
the DC index is one of choice. 
 Figure 1 illustrates the concept behind DC. Form 
A is the form of the exam that examinees complete. 
Form A´ is a hypothetical equated, parallel form of the 
same exam that all examinees “complete”. The black 
box represents a consistent pass decision. The grey box 
represents a consistent fail decision. The “X” boxes 
represent inconsistent decisions. DC is the sum of the 
probabilities of the consistent decisions. 
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Figure 1. Probability of Passing and Failing Two Attempts at a Parallel Set of Exam Forms 

 
 

 DC can be more formally defined as the probability 
that examinee i will obtain the same classification 
decision on equated, parallel Forms A and A´. As 
illustrated in Figure 1, there are two ways in which an 
examinee may obtain a consistent decision on a 
pass/fail exam: pass on both forms or fail on both 
forms. This can be written as follows, where X = 
scores on Form A, X´ = scores on Form A´, and C = 
criterion score (or passing/cut score): 

Probability of examinee i passing both forms =  

P(Xi ≥ C) ∙ P(X´i ≥ C)  

Probability of examinee i failing both forms =  

P(Xi < C) ∙ P(X´i < C)  

Probability of examinee i having a consistent decision: 
Po(i) = P(Xi ≥ C) ∙ P(X´i ≥ C)  + P(Xi < C) ∙ P(X´i < C) (1) 

As stated above, the probability of a consistent 
decision is the sum of the consistent decisions for all 
examinees:  

𝑃! =
∑ #!(#)%
#&'
$

            (2) 

It may sometimes be useful to think of the probability 
of a consistent decision as the inverse of an 
inconsistent decision, Px, or simply Po = 1 – Px. 

 Cohen (1960) introduced an adjustment to the DC 
estimate provided in Equation 2 to account for chance. 
This is shown in Equation 3, where Pe is the expected 
agreement of the pass/fail decision that would occur 
by chance.  

κ = #!%#(
&%#(

,             (3) 

Cohen’s kappa was intended to provide a coefficient of  

nominal scale agreement between two judges, i.e., an 
interrater reliability. On pass/fail written exams, the 
agreement estimate is not about the consistency of two 
judges rating an examinee, but about the consistency 
of the pass/fail decision for one examinee on two 
different exam administrations.  

 Aside from the difference in the intended 
application of the statistic, Cohen’s kappa also has an 
associated paradox that high levels of agreement may 
lead to low values for kappa. This paradox stems from 
the use of marginal sums in the computation (Feinstein 
& Cicchetti, 1990; Cicchetti & Feinstein, 1990; Gwet, 
2002). For example, consider 100 examinees who 
complete two attempts at the same form of an exam 
and the second attempt is completed without memory 
of the first attempt. Of those 100, assume 90 have the 
same pass decision on both attempts, five have the 
same fail decision on both attempts, two passed on the 
first attempt but failed on the second attempt, and 
three passed on the second attempt but failed on the 
first attempt. The observed agreement in this situation 
is 95%. The expected agreement is 86%, i.e., P(passing 
1st attempt)∙P(passing on 2nd attempt) + P(failing on 1st 
attempt)∙P(failing on 2nd attempt) = 0.92∙0.93 + 
0.08∙0.07 = 0.8612. Cohen’s κ yields a consistency 
statistic of 0.64, i.e., much lower than one may 
expected given the known agreement. This paradox is 
a reason that Cohen’s kappa is not commonly used (if 
at all) to calculate DC on a high stakes pass/fail exam, 
such as a licensure exam. It is also why other methods 
that have expanded on Cohen’s kappa to make it 
possible to estimate DC using a single test 
administration instead of two (e.g., Cohen, 1968; 
Huynh, 1976, Subkoviak, 1976, Marshall & Haertel, 
1975)  have received criticism (Mellenbergh & van der 
Linden, 1979).  
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 While Cohen’s kappa may not be ideal for 
estimating DC for pass/fail exams, others have 
developed estimation methods for this purpose. These 
methods also introduce ways to estimate the DC index 
using a single test administration. For example, 
Subkoviak (1976) presented a method in which a DC 
value is estimated for each examinee by applying the 
binomial distribution to an examinee’s true probability 
of a correct item response and then averaging the 
estimated DC values across all examinees. While this 
method is not commonly used, it is one of the earliest 
publications offering a way to accurately measure DC 
on a pass/fail exam with just one administration of the 
exam.  

 While there have been many methods since the 
1970s that have provided ways to estimate DC, the 
Livingston and Lewis (1995) method is one of the most 
widely used and accepted methods and often 
referenced in research comparing different DC 
estimate methods (e.g., Young & Yoon, 1998; Li, 2006; 
Wan, Brennan, & Lee, 2007; Deng, 2011; Alger, 2016). 
The normal approximation method (Huynh, 1976) that 
was improved upon by Peng and Subkoviak (1980) is a 
computationally simpler method than Livingston and 
Lewis that is also used in the industry. More recently, 
Wolkowitz (2021) introduced an even more 
computationally simple method for estimating DC 
with just one administration of the exam.  

 Many of the methods used to estimate DC have 
been computationally tedious (Breyer & Lewis, 1994). 
For example, Subkoviak (1988) noted that while 
methods proposed by Livingston and Lewis (1995) and 
Subkoviak (1976) estimate the DC index, they require 
knowledge of specific software and background in test 
theory to fully understand how the method works. 
Simpler methods, such as those proposed by Peng and 
Subkoviak (1980) and Huynh (1976) are simpler than 
earlier methods, but still require the use of bivariate 
and univariate normal distributions. For non-
measurement professionals, such as classroom 
educators, these distributions may be less familiar to 
them and difficult to understand the underlying theory. 
The Wolkowitz (2021) method is a much simpler 
method both computationally and conceptually; 
however, it lacks a strong theoretical background like 
earlier methods.  

 The purpose of this study is twofold. First, this 
study aims to compare the DC estimates of three 

classical test theory (CTT) methods: Livingston and 
Lewis (LL-DC), Peng and Subkoviak’s Normal 
Approximation (PS-DC), and Wolkowitz (W-DC). 
The goal is to determine if the simpler and less 
complex methods of the PS-DC and W-DC methods 
produce estimates comparable to that of the more 
computationally and conceptually complex LL-DC 
method. While there are many CTT methods that 
could be used for comparison, including item response 
theory methods, the authors chose to focus on the LL-
DC method because it is widely used and accepted and 
selected two computationally simpler CTT methods, 
i.e., PS-DC and W-DC. The reason the authors did not 
include IRT methods in the comparison is because the 
goal was to determine if simpler, less computationally 
and conceptually complex methods produced similar 
methods to the estimates produced by the LL-DC 
method. Unless non-measurement professionals, such 
as classroom educators or program directors, have had 
some measurement courses, IRT methods would not 
be simpler than CTT methods.  

 The second purpose of this study aims to provide 
guidance for acceptable DC values. It is noteworthy 
that it is not a purpose of this study to determine which 
DC method is the most accurate under different 
circumstances since one cannot measure “true” DC. 
This is akin to reliability measures of internal 
consistency [e.g., Cronbach’s (1951) alpha or 
McDonald’s omega (1999)] in that there is neither one 
method that produces a “true” measure of reliability 
nor one that produces a “true” measure of DC. 
Instead, users must consider the assumptions of the 
different methods and apply the one that seems most 
appropriate for their data. 

Livingston and Lewis (1995) Method 

 The LL-DC method is one of the most widely used 
methods to estimate the DC index. The LL-DC 
method has four inputs:  

1) distribution of the scores on one form of the 
test,  

2) the reliability coefficient of the scores,  

3) the minimum and maximum possible scores for 
the test, and  

4) the cut score.  
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This method applies the notion of an effective test 
length. As defined by Livingston and Lewis (1995), the 
effective test length “is the number of discrete, 
dichotomously scored, locally independent, equally 
difficult test items necessary to produce total scores 
having the same precision as the scores being used to 
classify the test takers” (p. 180). This definition allows 
this method to be applied to both dichotomously and 
polytomously scored exams. This flexibility is one of 
the reasons why this method is applied in practice. 

 Livingston and Lewis (1995) describe seven steps 
for implementing their method. The first step is to 
estimate the effective test length (see p. 187). Next, 
estimate the distribution of the proportional true 
scores from the observed score distribution (see 
Livingston & Lewis, 1995, pp.182, 188). As originally 
implemented by Livingston and Lewis, this step 
assumes that the distribution of the proportional true 
scores has the form of a four-parameter beta 
distribution (LL-DC-4); however, it may also be 
implemented under the assumption that the 
distribution has the form of a two-parameter 
distribution (LL-DC-2). Then, estimate the conditional 
distribution of classifications on a parallel form of the 
exam for examinees at each true-score level using a 
binomial distribution with parameters n and p, where n 
is the number of items and pi is the probability of 
examinee i correctly responding to that item (see 
Livingston & Lewis, 1995, pp. 182-4). The last several 
steps involve estimating the joint distribution of 
classifications to determine decision accuracy as well as 
consistency (see Livingston & Lewis, 1995, pp. 184-
186).  

 As just described, the LL-DC method is a 
computationally complex method and requires 
software, such as BB-CLASS (Brennan, 2004) or the R 
package betafunctions (Haakstad, 2022). Livingston and 
Lewis suggest that the LL-DC method will work with 
different score distributions including extremely 
skewed data. However, this method has been found to 
be more sensitive to reliability estimates and score 
distributions compared to other DC estimates (Wan, 
Brennan, & Lee, 2007; Deng, 2011) and has larger 
biases for exams with a small number of items (Li, 
2006; Deng, 2011). 

 For purposes of this study, it is important to note 
that the binomial distribution assumption is part of the 
LL-DC method. This distribution assumes that the 

number of observations is fixed, the observations are 
independent of one another, each observation is binary 
(i.e., success of failure), and the probability of success 
is the same for all items for examinee i. The first three 
assumptions are reasonable assumptions for most 
professional credentialing exams in which there are no 
testlets or dependencies within the exam. However, the 
last assumption is technically violated when analyzing 
exam data because an examinee does not have an equal 
chance of correctly responding to each item on an 
exam. While there is some agreement to the robustness 
with respect to violations of this assumption in DC 
estimation methods (Subkoviak, 1976; Wan, Brennan, 
& Lee, 2007), it is a violation worth noting. 

Peng-Subkoviak’s (1980) Simple Normal 
Approximation Method 

 Peng and Subkoviak’s (1980) simple normal 
approximation method is an extension of Huynh’s 
normal approximation procedure (Huynh, 1976). 
Similar to the underlying assumption in Livingston and 
Lewis’s method, this method assumes that an examinee 
has an equal chance of responding to each item on an 
exam. The extent to which this method is robust to the 
violation of this assumption impacts the strength of the 
DC estimate. 

 The first step in the simple normal approximation 
procedure is to compute the probability P1 that a 
standardized normal variate is less than z, where z = (c 
– 0.5 – μ)/σ and c = criterion score, 0.5 is a correction 
factor (see Hays, 1973, p. 309), μ = mean of the score 
distribution, and σ = standard deviation of the score 
distribution. Next, a bivariate normal distribution table 
is used to compute the probability P2 that two 
standardized normal variates with reliability α (or 
KR21) are less than z. Then, substitute P1 and P2 into 
Equation 4: 

PS-DC = 1 - 2(P1 – P2)           (4) 

Since this procedure uses a normal distribution to 
estimate probabilities, the effectiveness of the DC 
estimate may be negatively impacted when the 
distributions of the data are non-normal. 

 PS-DC method works well with normally 
distributed data and, like the LL-DC method, is 
sensitive to reliability estimates (Wan, Brennan, & Lee, 
2007). Thus, while the PS-DC method is 
computationally simpler than LL-DC method, the 
potential for more error in non-normal data is a 
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possible reason that it is applied less frequently in the 
industry. 

Wolkowitz (2021) Method 

 The W-DC method (Wolkowitz, 2021) is a 
computationally simple method for estimating DC. 
This method makes no assumptions about normality 
nor does it use the binomial distribution. Instead, it 
uses the 95% confidence intervals about observed 
scores and calculates probabilities of a consistent 
decision for each observable score.  Specifically, the 
first step to estimating W-DC is to construct a 
frequency distribution of the total scores, X. Then, 
calculate a 95% confidence interval around each 
observed score x in X. Within each confidence interval 
centered at score x, determine the probability that an 
examinee with score x will have a consistent pass/fail 
decision. Multiply this probability by the observed 
number of examinees scoring x. This is the estimated 
number of examinees in the sample who would have 
the same pass/fail decision on a second administration 
of the same or parallel form of the exam. Finally, the 
W-DC index equals the sum of the number of 
estimated consistent decisions across all possible total 
scores divided by the total number of examinees in the 
sample. While this method lacks a theoretical basis of 
using a 95% confidence interval specifically, the results 
from Wolkowitz (2021) show that the confidence 
interval works well from a practical standpoint and 
produces reasonable results. 

Comparison of Methods 

 The LL-DC and PS-DC methods have been 
compared in the literature. The W-DC method is new 
and there is very limited research comparing this 
method to more established methods. In a study by 
Wan, Brennan, and Lee (2007), the authors noted that 
the LL-DC and PS-DC methods have shown to 
perform similarly when the data is normally 
distributed. When the data is not normally distributed, 
the LL-DC method performs better due to its 
assumption of a beta-binomial distribution versus PS-
DC’s normality assumption. The authors also noted a 
disadvantage of the LL-DC method is that it does not 
consider examinees’ original pass/fail status; instead, it 
only uses marginal distributions of the exam scores. 
They also stated that both the LL-DC and PS-DC 
methods have been shown to be sensitive to reliability 
estimates. In a study by Wolkowitz (2021) in which real 
and simulated datasets investigated the similarity and 

accuracy of the W-DC and LL-DC methods across 
multiple different scenarios (i.e., different score 
distributions, sample sizes, and different reliabilities of 
the exam scores), the results indicated that the two 
methods produced similar results regardless of the 
situation.  

 Table 1 compares the LL-DC, PS-DC, and W-DC 
methods. All three methods require total scores, 
reliability, and the cut score as input. The LL-DC 
method has the additional required input of the 
minimum and maximum possible scores on the exam. 
The LL-DC method assumes a beta-binomial 
distribution and makes assumptions regarding the 
calculation of the conditional error variance and the 
constant of proportionality used in calculating errors 
of measurement. Livingston and Lewis (1995) note 
that this latter assumption is a weakness to the model 
because the estimates of the conditional standard of 
error measurement are sensitive to the score range. 
However, they indicate that the model is fairly robust 
to violations of this assumption. The main assumption 
of the PS-DC method is bivariate normality. Thus, this 
method is likely to perform less well with skewed data. 
The W-DC method does not make any assumptions 
about the data but makes a practical, but non-
theoretical assumption that a 95% confidence interval 
is the best interval to use in the application of this 
method. 

Examples 

 An example dataset is used below to help illustrate 
the similarities and differences in the three methods. 
This example contains a hypothetical 10-item exam 
completed by 100 examinees with an alpha reliability 
of 0.60 and cut score of 5. Table 2 displays the 
frequency distribution of this hypothetical exam. 

 All three methods require the following inputs: 
total score distribution (only the mean and standard 
deviation of the total scores is needed for PS-DC 
method), reliability, and passing score. The simple 
normal approximation method requires a way to 
estimate values on the bivariate normal distribution 
table. 
 Tables 3-5 display the LL-DC, PS-DC, and W-DC 
estimates, respectively. The LL-DC estimate was 
computed using BB-CLASS (Brennan, 2004). The 
intermediate PS-DC values include z = 0.471, P1 = 
0.681, and P2 = 0.550. The W-DC estimate was  
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Table 1.  Comparison of Three DC Methods 

 LL-DC PS-DC W-DC 

Inputs Total scores, reliability, cut score, 
minimum and maximum possible scores 

Total scores, reliability, 
cut score 

Total scores, reliability, 
cut score 

Use of 
hypothetical 
datasets? 

Yes, generates hypothetical exam scores 
using the beta-binomial model 

Yes, generates 
hypothetical exam 
scores using a normal 
distribution 

No, uses observed 
score data only 

Assumptions 

1. Beta-binomial distribution 
2. The conditional error variance of 

scores on an n-item exam for 
examinees with a given proportional 
true score equals the variance of a 
binomial distribution based on  n 
observations with a success 
probability equal to the proportional 
true score (Livingston & Lewis, 
1995, p. 187) 

3. “Errors of measurement are 
proportional to those that would be 
generated by a binomial distribution. 
The constant of proportionality 
depends on the relationship between 
the possible score range of the test 
and its estimated effective test 
length” (Livingston & Lewis, 1995, 
p. 189) 

Bivariate normality 

95% confidence 
interval around a given 
cut score is an accurate 
interval for estimating 
DC 
 

Impact of 
violating 
assumptions 

Limited research on this topic, but 
Livingston-Lewis (1995) indicate the 
method is robust against violating #3 

If observed data is 
non-normal, DC 
estimates may be less 
accurate near the mode 
of the data 

Limited research on 
this topic, but using 
intervals other than 
95% may affect the 
accuracy of the DC 
estimates 

Computer 
program 
requirements 

Software programs, such as BB-CLASS 
or R 

Bivariate normal 
distribution table; 
software programs very 
helpful 

None 

Potential 
implementation 
errors 

If cut score lands in a region where there 
are no examinees, programs such as BB-
CLASS and R (betafunctions) fail to run 

None observed None observed 

Complexity of 
understanding 
how the method 
works 

High Medium Low 
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Table 2. Data from a Hypothetical 10-Item Exam 

Score Freq 
0 2 
1 4 
2 5 
3 7 
4 11 
5 15 
6 22 
7 12 
8 13 
9 5 
10 4 
Total 100 

 
Table 3. LL-DC Results Using Hypothetical 10-Item Exam and a 4-parameter beta distribution 

  Pass A Fail A TOTAL  
Pass A´ 0.55 0.13 0.68  
Fail A´ 0.13 0.20 0.33 LL-DC = 0.55 + 0.20 = 0.75 
TOTAL 0.68 0.33 1.00  

 
Table 4. PS-DC Results Using Hypothetical 10-Item Exam 
 

  Pass A Fail A TOTAL  
Pass A´ 0.54 0.13 0.68*  
Fail A´ 0.13 0.19 0.32 PS-DC = 0.54 + 0.19 = 0.73 
TOTAL 0.68* 0.32 1.00  

               *Total does not appear to equal sum of 0.54 and 0.13 due to rounding. 

Table 5. W-DC Results Using Hypothetical 10-Item Exam 

  Pass A Fail A TOTAL  
Pass A´ 0.61 0.13 0.73  
Fail A´ 0.10 0.16 0.27 W-DC = 0.61 + 0.16 = 0.77 
TOTAL 0.71 0.29 1.00  

 

computed by hand, but replicated using the R-code 
provided in the appendix. 

 In comparing Tables 3-5, there are a few notable 
observations. First, the LL-DC and PS-DC methods 
produce similar tables. This is not a surprising result 
since this data is approximately normally distributed, 
both methods use the binomial distribution, and other 
studies (e.g., Wan, Brenna, & Lee) have found that 
these two methods produce similar results. Another 

observation is that the observed pass rate on this exam 
is 71%. Since the W-DC method is based only on 
observed data, Table 3 displays this pass rate in the 
marginal sum representing the percent passing Form 
A. The other two methods display approximations of 
this pass rate. Another observation is that the 
estimated proportion of examinees who pass Form A 
but fail Form A´ equals the proportion of examinees 
who fail Form A, but pass Form A´ in the PS-DC and 
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LL-DC methods. This happens because the PS-DC 
method uses a normal distribution to estimate the 
percent of examinees below the standardized score z 
and this approximation is the same for both forms of 
the exam. The LL-DC method also makes use of 
symmetry in the distribution. The W-DC method does 
not show equal proportions because this method only 
uses observed data which does not guarantee 
symmetry in the two inconsistent decisions. This lack 
of symmetry may be an advantage of the W-DC 
method for distributions that are not normal, however, 
it may be potentially increase error in the DC estimate 
because it will reflect anomalies in the frequency 
distribution of the observed data that may not be 
present if another random sample of examinees from 
the same population.  

 
Method 
 This study used data sets from two simulated and 
three different operational exams to compare the 
similarity of the DC estimates produced by the LL-DC, 
PS-DC, and W-DC methods. Table 6 lists the 
characteristics of the five datasets, which includes an 
education, professional credentialing (PC), and 
healthcare exam. Dataset Sim1 was simulated to have 
a normal distribution of scores while Dataset Sim 2 was 
simulated to have a negatively skewed distribution. The 
operational datasets have some skewness, but Dataset 
B is the most skewed. In addition, Dataset A does not 
have a preset cut score since it is an admissions exam  

in which individual schools set their own standards. 
Datasets B and C are pass/fail exams. The reliabilities 
of the exam scores for the simulated datasets are 0.898 
for the normally distributed scores and 0.841 for the 
skewed data distribution. The reliabilities of the scores 
for Datasets A-C range from 0.786 to 0.944. All 
datasets have sample sizes of at least 557 examinees. 

 For each dataset, the LL-DC, PS-DC, and W-DC 
methods are used to estimate the DC for every possible 
integer cut score. The results are compared to each 
other to observe similarities and differences in the 
results across the score distributions, in particular 
between LL-DC and the other two methods, and to 
make practical recommendations.  

 
Results 
Dataset Sim 1 – Normal Distribution 

 Figure 2 displays the results from the dataset 
simulated to have the exam scores normally 
distributed. Table 7 provides an excerpt from the 
results. Overall, all three methods produce DC 
estimates similar to each other across the score 
distribution. As seen in Table 7, the greatest difference 
in the DC estimates occurs when the cut score is set at 
95 or 96. At these scores, the maximum difference in 
the DC estimate between the three methods is 0.020. 
Near the peak of this distribution, the PS-DC method 
has a slightly higher DC estimate compared to the LL-
DC and W-DC methods. However, the lowest DC  

 

Table 6. Description of Datasets 
 

Dataset Sim 1 Sim 2 A B C 
Domain Normal Skewed Education PC Healthcare 
Exam Purpose N/A N/A Admissions License License 
Use of a pass/fail cut score N/A N/A No Yes Yes 
N examinees 1,000 1,000 6,785 1,509 557 
N Scored Items 135 31 50 80 350 
Mean 99.75 27.81 26.01 56.73 277.45 
SD 9.83 2.89 10.41 7.86 29.12 
Median 100 29 25 57 280 
Mode 100 30 20 59 275 
Excess Kurtosis -0.02 -0.19 -0.66 1.55 -0.14 
Skewness -0.03 -0.93 0.35 -0.85 -0.46 
Reliability 0.898 0.841 0.925 0.786 0.944 
St. Error of Measurement 3.11 0.92 2.85 3.64 6.88 
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estimate for all three methods occurs at the mode of 
the dataset, i.e., a cut score of 100. This is an expected 
result since the DC values tend to be the lowest at the 
peak of a score distribution because this is the location 
of the highest chance of an inconsistent decision. 
Despite these small differences, all methods produce 
very similar DC estimates. 

Dataset Sim 2 – Skewed Distribution 

 Figure 3 displays the results from the dataset 
simulated to have the exam scores negatively 
distributed. Table 8 provides an excerpt from the 
results. As seen in Table 8, the greatest difference in 
the three DC estimates across all possible scores value 
is 0.101. This occurs when the cut score is set at 30. 
The next greatest difference occurs at a cut score of 27. 
Here, the maximum difference occurs between the PS-
DC and W-DC estimates and the magnitude of the DC 
difference was 0.069. For all other cut scores, the three 
methods produce DC estimates that are within 0.045 
of each other. When comparing just W-DC and LL-
DC, the greatest difference occurs at a cut score of 30 
(difference = 0.082). All other differences are within  

0.029 of each other. When comparing just PS-DC and 
LL-DC, the greatest difference occurs at a cut score of 
27 (difference = 0.440). All other differences are within 
0.037 of each other. 

 In general, one would expect the lowest DC 
estimate when the cut score is set near peak of the 
distribution, For Dataset Sim 2, the peak of the score 
distribution is at a score of 30 and only the W-DC 
method has the lowest DC estimate of all cut scores at 
this value. The lowest DC estimate for the LL-DC 
method occurs at the neighboring score of 29 and the 
lowest estimated by the PS-DC method occurs at a cut 
score of 28. These results suggest that the magnitude 
of the DC estimates by the LL-DC and PS-DC 
methods may be affected by the skewness of the 
dataset; however, the differences are small. In addition, 
the PS-DC estimates appear to be more affected by the 
skewness than the LL-DC method. As shown in Figure 
3, the LL-DC and W-DC methods may be the better 
estimate with skewed because both of these methods 
attempt to adjust for this non-normality and these two 
methods do not include a normality assumption as 
does the PS-DC method. 

Figure 2. DC estimates for each Possible Integer Cut Score and Frequency Distribution for Sim 1  
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Table 7. Excerpt of the DC estimates Across the Score Distribution for Dataset Sim 1 
 

Scores N LL-DC PS-DC W-DC Max. Difference 
0-91 197 0.909 to 1 0.909 to 1 0.905 to 1 0.013 
92 35 0.901 0.900 0.890 0.011 
93 34 0.892 0.892 0.877 0.016 
94 40 0.886 0.884 0.867 0.019 
95 34 0.879 0.876 0.859 0.020 
96 29 0.873 0.870 0.853 0.020 
97 44 0.867 0.865 0.851 0.016 
98 35 0.862 0.861 0.847 0.016 
99 37 0.860 0.858 0.847 0.013 
100 51 0.857 0.857 0.844 0.013 
101 37 0.857 0.857 0.844 0.013 
102-135 427 0.858-1.000 0.859-1.000 0.847-1.000 0.012 

          *Shaded rows indicate the scores with the greatest value in the “Max. Difference” column. 

Figure 3. DC estimates for each Possible Integer Cut Score and Frequency Distribution for Sim 2  

 
 

Dataset A – Education 

 Figure 4 displays the results from Dataset A, which 
has a slight positive skewness and slight negative 
kurtosis. Table 9 provides an excerpt from the results. 
As seen in Table 9, the greatest difference in the three 

DC estimates across all possible scores value is 0.044. 
This occurs when the cut score is set at 14. For all cut 
scores set at 18 or higher (where most cut scores would 
likely be set), the three methods produce DC estimates 
that are within 0.028 of each other.  
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Table 8. Excerpt of the DC estimates Across the Score Distribution for Dataset Sim 2 
 

Scores N LL-DC PS-DC W-DC Max. Difference 
0-25 226 0.912-1.000 0.896-1.000 0.906-1.000 0.031 
26 73 0.886 0.852 0.897 0.045 
27 67 0.859 0.815 0.884 0.069 
28 84 0.833 0.796 0.839 0.043 
29 123 0.817 0.804 0.788 0.029 
30 307 0.825 0.844 0.743 0.101 
31 120 0.894 0.912 0.916 0.022 

          *Shaded row indicates the score with the greatest value in the “Max. Difference” column. 

Figure 4. DC Estimates for each Possible Integer Cut Score and Frequency Distribution for Dataset A 

 
 

 The W-DC and LL-DCs method produce the 
lowest DC estimates near the mode of the score 
distribution, i.e., at a score of 22 for W-DC and a score 
of 19 for LL-DC. The PS-DC method has the lowest 
DC estimate at a score of 26, which is near the mean 
of the dataset. These results all seem reasonable 
because a high density of scores at or near the cut score 
increases the number of examinees that may have an 
inconsistent decision. On the other hand, if the cut 
score are in a sparser area of the score distribution, 
then the probability of an inconsistent decision  

decreases and the DC estimate is expected to be higher.  

 Overall, the W-DC and LL-DC methods produce 
DC estimates similar to each other across the score 
distribution. The PS-DC method tends to produce 
slightly higher DC estimates when the cut score is set 
at values between 11 and 21 as well as between 41 and 
50. As shown in Figure 4, the skewness of the dataset 
suggests that either the W-DC or the LL-DC method 
may be the better estimate in this situation because 
their methods both attempt to adjust for this non-
normality. 
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Dataset B – Licensure Exam 

 Figure 5 displays the results from Dataset B, which 
has a negatively skewed and positively kurtotic score 
distribution. Table 10 provides an excerpt from the 
results. As seen in this table, the greatest difference in 
the DC estimates across the three methods is 0.063. 
This occurs when the cut score is set at 63, which is 
near the mode of the dataset. At this score point, the 
LL-DC, PS-DC, and W-DC methods estimate the DC 
to be 0.78, 0.84, and 0.80, respectively. Cut scores near 
this peak in the distribution (e.g., 58 through 65) also 
have greater differences in the DC estimates across the 
methods compared to those scores earned with less 
frequency. The differences in the DC estimates of cut 
scores ranging from 58 to 65 is greater than 0.04, with 
the PS-DC method consistently producing the highest 
DC estimates across the three methods. The W-DC 
method has the lowest DC estimate from cut scores of 
58 to 61 and LL-DC has the lowest DC estimate from 
cut scores of 62 to 65. The differences in the DC 
estimates for cut scores set at less than 58 are within 
approximately 0.038 of each other and those above 65 

are within 0.032 of each other. As with Dataset A, the 
PS-DC method is influenced more by the skewness in 
the dataset than the other methods. However, the three 
DC methods produced similar DC estimates for most 
of the possible cut scores.  

Dataset C – Healthcare 

 Figure 6 displays the results from Dataset C. In this 
dataset, the score distribution is slightly negatively 
skewed with kurtosis similar to that of a normal 
distribution. Table 11 provides an excerpt from the 
results. As seen in this table, the greatest difference in 
the three DC estimates across all possible score values 
is 0.025. This value occurs when the cut score is set at 
307, 308, 316, 317, or 318. At all five of these scores, 
the LL-DC method produces the lowest DC estimate 
and the PS-DC produces the highest. However, the 
methods all produce relatively similar DC estimates. 

 With Dataset C having a distribution close to that 
of a normal distribution, it is not surprising that the 
three methods show similar DC estimates across all 
possible cut scores. However, this dataset illustrates  

Table 9. Excerpt of the DC Estimates Across the Score Distribution for Dataset A 
 

Scores n LL-DC PS-DC W-DC Max. Difference 
1-9 0-203 per score 0.972-1.000 0.970-1.000 0.978-1.000 0.014 
10 94 0.956 0.965 0.968 0.011 
11 125 0.938 0.959 0.955 0.021 
12 138 0.920 0.953 0.942 0.033 
13 178 0.906 0.946 0.929 0.040 
14 190 0.895 0.939 0.916 0.044 
15 186 0.889 0.932 0.905 0.043 
16 235 0.887 0.925 0.896 0.038 
17 233 0.885 0.917 0.888 0.032 
18 245 0.884 0.910 0.882 0.028 
19 239 0.883 0.903 0.879 0.024 
20 266 0.884 0.896 0.876 0.020 
21 240 0.885 0.890 0.875 0.016 
22 261 0.886 0.885 0.874 0.012 
23 247 0.887 0.881 0.874 0.013 
24 243 0.889 0.877 0.878 0.012 
25 250 0.891 0.875 0.882 0.016 
26 236 0.894 0.874 0.886 0.021 
27 222 0.897 0.874 0.892 0.023 
28 197 0.899 0.875 0.898 0.025 
29 191 0.903 0.877 0.903 0.026 
30 179 0.907 0.881 0.908 0.028 
31-50 46-195 per score 0.910-0.993 0.885-0.997 0.913-0.990 0.028 

             *Shaded row indicates the score with the greatest value in the “Max. Difference” column. 
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Figure 5. DC Estimates for each Possible Integer Cut Score and Frequency Distribution for Dataset B (Licensure 
Exam) 

 
 
 
Table 10. Excerpt of the DC Estimates Across the Score Distribution for Dataset B 
 

Scores n LL-DC PS-DC W-DC Max. Difference 
1-55 0-78 per score 0.823-1.000 0.797-1.000 0.791-1.000 0.037 
56 84 0.808 0.791 0.770 0.038 
57 83 0.793 0.788 0.755 0.038 
58 67 0.780 0.789 0.747 0.042 
59 88 0.770 0.793 0.745 0.049 
60 84 0.763 0.801 0.746 0.055 
61 85 0.761 0.812 0.756 0.056 
62 71 0.766 0.825 0.775 0.059 
63 84 0.777 0.840 0.796 0.063 
64 59 0.800 0.856 0.828 0.056 
65 45 0.827 0.872 0.856 0.045 
66 42 0.857 0.889 0.881 0.032 
67 41 0.890 0.905 0.907 0.016 
68 18 0.925 0.920 0.935 0.015 
69 22 0.946 0.934 0.948 0.014 
70-80 0-16 per score 0.966-1.000 0.946-0.999 0.965-1.000 0.024 

                  *Shaded row indicates the score with the greatest value in the “Max. Difference” column. 
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Figure 6. DC Estimates for each Possible Integer Cut Score and Frequency Distribution for Dataset C (Licensure 
Exam - Healthcare) 

 
 

the effect of using only the observed data to estimate 
the DC, as is done in the W-DC method. Seen in 
Figure 6, the wiggly DC estimates at the high frequency 
score range is not ideal and depends on the observed 
score distribution. In these cases, either a smoothed 
version of the W-DC estimate or an estimate based on 
theoretically distributed data (such as the LL-DC or 
PS-DC methods) may be a better DC estimate. 

Overall Comparison 

 One of the purposes of this study was to compare 
how well the computationally and conceptually simpler 
PS-DC and W-DC estimates compared to the LL-DC 
estimates. For the dataset simulated to have a normal 
distribution of total scores, the W-DC estimates are 
within 0.020 of the LL-DC estimates and the PS-DC 
estimates are within 0.009.  For the dataset simulated 
to have a skewed distribution of total scores, the W-
DC estimates are within 0.082 of the LL-DC estimates 
and the PS-DC estimates are within 0.044. For Dataset 
A, B, and C, the W-DC estimates are within 0.023, 
0.039, and 0.019 of the LL-DC estimates, respectively, 
and the PS-DC estimates are within 0.044, 0.063, and 
0.025, respectively. 

 The greatest differences observed in the above 
results tended to occur when the cut score was set at 
the score with the highest frequency. While the 
differences are more noticeable at these score points, 
these differences from the LL-DC estimate is simply 
an indication that the given method deviates from the 
estimates calculated by the LL-DC method. It is 
possible that the DC estimates computed via the PS-
DC or the W-DC method be more accurate at these 
score points. In particular, the W-DC method 
produced the expected results of having the lowest DC 
across the score distribution at the peak of the 
distribution. The PS-DC and LL-DC methods had the 
lowest DC near the peak of the distribution, but not 
necessarily at the score associated with the peak. 

 

Discussion 
 This study compared the DC estimates for all 
possible cut scores of two simulated exams and three 
operational exams using three different DC methods: 
LL-DC, PS-DC, and W-DC. Overall, the DC estimates 
across all datasets ranged from 0.745 to 1.000. A DC 
estimate of 0.745 practically means that if examinees  
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Table 11. Excerpt of the DC Estimates Across the Score Distribution for Dataset C 
 

Scores n LL-DC PS-DC W-DC Max. Difference 
1-306 0-13 per score 0.898-1.000 0.892-1.000 0.904-1.000 0.023 
307 10 0.910 0.935 0.913 0.025 
308 9 0.912 0.937 0.915 0.025 
309 12 0.916 0.939 0.917 0.023 
310 5 0.919 0.942 0.925 0.023 
311 2 0.924 0.944 0.929 0.020 
312 4 0.926 0.946 0.931 0.020 
313 3 0.927 0.948 0.934 0.021 
314 2 0.929 0.950 0.936 0.022 
315 4 0.931 0.952 0.937 0.024 
316 5 0.931 0.955 0.940 0.025 
317 4 0.934 0.957 0.944 0.025 
318 3 0.937 0.959 0.948 0.025 
319 4 0.941 0.961 0.950 0.024 
320 3 0.943 0.962 0.955 0.024 
321 7 0.947 0.964 0.958 0.024 
322 6 0.951 0.966 0.967 0.022 
323 1 0.959 0.968 0.977 0.018 
324 1 0.967 0.970 0.979 0.011 
325 1 0.970 0.971 0.980 0.010 
326 2 0.972 0.973 0.981 0.009 
327 3 0.975 0.974 0.984 0.010 
328-350 0-1 per score 0.979-1.000 0.976-1.000 0.989-1.000 0.013 
      

                *Shaded rows indicate the scores with the greatest value in the “Max. Difference” column. 

 

were to retake a parallel form of the exam with no 
memory of their first attempt and under identical 
conditions to their first attempt, then 25.5% would not 
have the same pass/fail decision as in their first 
attempt. 

 One of the purposes of this study was to determine 
if the less complex methods of PS-DC and W-DC 
produced results similar to the more widely used and 
accepted, yet more complex, LL-DC method. In 
comparing the W-DC and PS-DC methods to LL-DC, 
the PS-DC estimates were closer to the LL-DC 
estimates for the simulated datasets, but the W-DC 
estimates were closer to the LL-DC estimates for the 
operational datasets. In particular, the PS-DC estimates 
were closer to the LL-DC estimates for 65-71% of the 
scores in the simulated datasets and the W-DC 
estimates were closer to the LL-DC estimates for 61-
74% of the scores in the operational datasets.  

 The greatest difference in the DC estimates of the 
simulated datasets was 0.101 and occurred in the 
skewed dataset at the mode of the distribution. At this 
score of 30 out of 31, the LL-DC method estimated 
the DC index to be 0.825, while the PS-DC and W-DC 
methods estimated the index to be 0.844 and 0.743, 
respectively. All other DC estimates for the skewed 
datasets were within 0.029 of each other. This result 
highlights the effect of datasets with skewed score 
distributions as well as differences in the DC estimate 
based on the location of the cut score. Theoretically, 
the lowest DC index would occur at the mode of the 
distribution. This happened when the W-DC method 
was applied to this dataset, but not during the 
application of the PS-DC and LL-DC methods.  

 In the operational datasets, the greatest difference 
in the DC estimates occurred in Dataset B, which was 
also the most skewed operational dataset. This 
difference occurred at a score with high frequency, i.e., 
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score of 63 out of 80. At this score, the LL-DC method 
estimated the DC index to be 0.777 while the PS-DC 
and W-DC methods estimated the index to be 0.839 
and 0.796, respectively.  Due to the assumptions of 
normality in the PS-DC method, it is not unexpected 
that the PS-DC tended to be less aligned with the other 
two methods at the scores with highest frequency. 
However, the PS-DC method seemed reasonably well 
aligned with the W-DC and LL-DC estimates at the 
scores earned with less frequency. 

 The three DC methods produced similar DC 
estimates across the score distribution for the normally 
(or close to normally) distributed simulated dataset and 
two operational datasets, i.e. all had values within 0.044 
of each other. The W-DC method showed small 
fluctuations in the DC estimates across the score 
distributions when the cut score was set at scores 
earned with higher frequency. These fluctuations 
mirror those found in the observed data. The PS-DC 
and LL-DC had smoother distributions of the DC 
estimate for cut scores set across the score distribution. 
A smoothing adjustment could be applied to the W-
DC method. This may make it more aligned with the 
other methods, but may not necessarily make it a more 
accurate estimate. More research would be needed to 
determine the effects of applying a smoothing 
technique to this calculation. If such research indicated 
an improvement in the W-DC estimates, then the 
tradeoff for adding complexity to the model in 
exchange for a magnitude of improved accuracy would 
need to be evaluated.  

 Table 12 summarizes recommendations based on 
the results from this study. As evidenced by both the 
simulated and operational datasets and of the three 
methods compared, the W-DC and LL-DC methods 
are recommended for skewed data. The PS-DC 
method may be used for skewed data but will likely 
overestimate the DC value if the cut score is set at a 
score frequently earned by examinees. All methods are 
recommended for normally distributed data; however, 
the W-DC method is sensitive to small deviations in 
the frequency distribution of scores in the observed 
data.  

 In deciding which method to apply, a user should 
consider their own ability as well the intended 
audience. If the goal is to for a measurement 
professional to report the DC estimate based on the 
scores on an exam without having to explain how the  

method works to a client or other non-measurement 
professional, then the LL-DC method is a widely used 
and accepted method that would suffice for this 
purpose. Most measurement professionals have the 
background knowledge to compute this value with an 
available computer program. The W-DC method could 
also be used, but it is a new method that has not yet 
been widely applied in the field. The PS-DC method 
could also be used, but this method would be better 
suited for data following a normal distribution. 

 If the goal is for a measurement professional to 
report the DC estimate and explain in layman terms 
how the method works to a client or other non-
measurement professional, then a user may opt for the 
simpler W-DC or PS-DC methods. The user could 
check the similarity of these values against the LL-DC 
estimate, if desired. However, a comparison would 
only inform the user if the values are similar and not 
which value is more accurate. Again, the PS-DC 
method would not be recommended for skewed 
datasets. 

 Finally, if the goal is for a non-measurement 
professional to compute the DC estimate for a set of 
exam scores, then the W-DC method is recommended. 
This method is simple to compute, does not require a 
computer program, and is less complex conceptually. 
If the user has some measurement or statistical 
background and the data is normally distributed, the 
PS-DC method is also an option. 

Overall, the results of this study show that the 
three DC methods provide similar DC estimates for 
normally distributed datasets. The W-DC and LL-DC 
methods produce similar results for skewed datasets. 
While the results of this study did not evaluate the 
accuracy of the methods, it is important to remember 
that these values are estimates of the decision 
consistency. The similarity of the methods suggest that 
they produce reasonable estimates. If desired, a user 
could compute and report multiple DC estimates 
(including methods using IRT) to have more 
confidence in the value. 

 

Guidance on an Acceptable DC Index 
 The industry provides little guidance on what 
constitutes an acceptable value for decision 
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Table 12. Recommended Method for Estimating DC from a Representative Sample of Data 

       « = Recommended; ü = Recommended with reservations; Í = Not recommended 

 PS-DC LL-DC W-DC 

Skewed Í « « 

Normal « « ü1 
         1May have small dips and peaks in the DC estimates to reflect any dips and peaks in the observed score distribution 

This, in part, is due to the value being influenced by the 
reliability of the exam scores on the form as well as the 
frequency distribution of scores near the cut score. In 
particular, if there is a high frequency of examinees 
scoring at or near the cut score, then there is a greater 
chance of error in the pass/fail decision. Therefore, the 
DC estimate would be lower at the cut score than if the 
cut score were located at a score in which fewer 
examinees scored. However, since credentialing 
programs are often trying to write items to separate 
those that are and are not minimally qualified, there are 
often many items written to target the ability of a 
minimally qualified examinee. This is also the target 
ability of the cut score. This, in turn, creates a higher 
frequency of examinees scoring at the cut score and 
causes a decrease in the magnitude of the DC index. 
This result does not imply a poor exam. However, 
increasing the reliability of the exam scores will help 
the magnitude of the DC estimate be as high as 
possible. 

 Of the little guidance that is offered on an 
acceptable value for the DC estimate, Subkoviak 
(1988) provided the following general rule: “Tests used 
to make serious decisions should be sufficiently long to 
guarantee an agreement coefficient exceeding 0.85. 
Higher values can be expected as the relative 
proportions of masters and nonmasters become more 
dissimilar. . . A full-period classroom test should 
guarantee an agreement coefficient of at least 0.75” (p. 
52). In general, the authors agree with this guidance, 
but believe it is not always realistic in professional 
credentialing exams. The determination of an 
acceptable DC estimate should be a programmatic 
policy decision that answers the question:  What is an 
acceptable percentage of agreement of observed 
pass/fail decisions with pass/fail decision that would 
be obtained from going back in time and having the 
examinee take the exam again without memory of 
taking it the first time? The answer to this question 
should be informed by data related to the exam 

program, sample size, the reliability of the exam scores, 
and the frequency distribution of the data.  

 Many exam programs will likely desire to select one 
DC method and apply it to all situations (much like 
how Cronbach’s alpha is commonly applied). This 
study illustrates that each DC method has its strengths, 
weaknesses, and limitations, and that one method does 
not work for all situations. However, the “true” DC is 
an unknown quantity and this study shows that the LL-
DC, PS-DC, and W-DC methods produce very similar 
estimates most of the time. While the authors agree 
with Subkoviak’s guidelines suggested above, the 
authors believe that users of the DC estimate should 
acknowledge and emphasize that the DC value is an 
estimate of the “true” DC value and is influenced by 
multiple factors, including the sample size, reliability of 
the exam scores, location of the cut score, and the 
score frequency distribution. Thus, while a DC 
estimate of at least 0.85 is a goal, there could be an 
empirical reason for the value to be lower. For 
example, if the peak of the score distribution is at the 
cut score, then the DC value may be lower than 
desired. This is potentially a justifiable result if the peak 
is due to a large number of items on the exam focused 
at the ability level of the minimally qualified candidate. 
If the cut score were set in a sparser area of the score 
distribution, then a higher DC may be expected. The 
DC is also affected by the reliability of the exam scores. 
Lower (or higher) reliability values will lead to lower 
(or higher) DC values. Since reliability is often a 
function of the distribution of examinees, very 
homogeneous populations will have exam scores with 
lower reliabilities, and therefore likely lower DC, than 
very heterogeneous populations. So while low 
reliabilities are not desired, it may explain a lower DC 
estimate. Related to reliability and as suggested by 
Subkoviak (1988), the DC guidelines assume that an 
exam has a sufficiently large number of items. The 
above guidelines may need to be adjusted for shorter 
exams and for the relative heterogeneity of the test 
taking population. 
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Limitations and Opportunities for 
Further Research 
 This study compared three different methods for 
estimating DC using two simulated datasets and three 
operational datasets. Additional simulation studies 
comparing the different methods would be beneficial 
and may provide further insight into the effects of 
sample size, skewness, and kurtosis on the different 
methods. In addition, simulation studies comparing 
these methods to “true” DC indices would help 
determine in what situations one method is more 
accurate than another. 

 This study also limited itself to three classical test 
theory methods for estimating DC: LL-DC, PS-DC, 
and W-DC. There are other methods for estimating 
DC, including item response theory methods, that 
could be compared. Such comparisons  (e.g., Stoeger 
& Skorupski, 2023) allow for more recommendations 
on when to use or not use a certain method, the 
comparability of different methods, and may also 
provide additional guidance on acceptable DC values 
given a score distribution, sample size, location of cut 
score, and the reliability of the exam scores. 

 

Conclusion 
 This study compared LL-DC, PS-DC, and W-DC 
methods for estimating DC. The results indicated that 
the W-DC and LL-DC methods produce the most 
reasonable results for skewed data. While all methods 
produce reasonable results for normally distributed 
data, the W-DC method noticeably reflects the peaks 
and valleys in the observed.  

 Overall, the DC method selected by a user depends 
on their own measurement knowledge and ability as 
well as the intended audience. On one extreme, if the 
complexity of the model is not of concern and it is not 
necessary to explain how the model works to a non-
measurement audience, then the LL-DC method may 
be the preferred choice. On the other extreme, if a 
simpler method that is more straightforward to explain 
is desired, then the W-DC method may be the 
preferred choice.  

 The authors support the recommendation of 
having a DC estimate of at least 0.85 for high stakes 
exams, but also believe there are reasonable 
explanations as to why the DC estimate may be lower. 

If a DC estimate is lower than the recommended 
guideline, then it is recommended that one look closer 
at the dataset, the nature of the exam, and the nature 
of the testing population to determine reasons for the 
lower value. 
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Appendix A. 

Code for implementing W-DC in R (R Core Team, 2022) 

#********************************************************************************** 
#Purpose: This program computes W-DC 
#Required Inputs:  
#   1. Total score file (with header row) 
#   2. Reliability of exam. 
#   3. Maximum possible score on exam. 
#   4. Cut score 
#Output: W-DC for given cut score 
#Last updated: 01/24/2022 
#********************************************************************************** 
 
#*************Functions******************* 
#Define function for first half of DC  - Values less than cutscore 
below_cut_function <- function(score) { 
   
  # If score < cut score AND  within lower bound (LB) and upper bound (UB) then count number of failing examinees with scores 
between score - 95%CI (inclusive) and cut score (exclusive) 
  a_LBindex <- max(which(mydata_df$Score == 0), which(mydata_df$Score == score - plusminusCI)) 
  a_UBindex <- min(which(mydata_df$Score == score + plusminusCI), which(mydata_df$Score == cutscore - 1)) 
  a <- sum(mydata_df$Freq[a_LBindex:a_UBindex]) 
   
  #Count total number of examinees scoring between score +/- SEM (inclusive) 
  CI_UBindex <- min(which(mydata_df$Score == score + plusminusCI), which(mydata_df$Score == maxpossible)) 
  a_total <- sum(mydata_df$Freq[a_LBindex:CI_UBindex]) 
   
  # Divide a by a_total 
  if(a_total == 0) { 
    pFail <- 1 
  } else { 
    pFail <- a/a_total 
  } 
   
  # Multiply by number of examinees scoring that score to determine number of examinees with  consistent fail 
  c <- mydata_df$Freq[which(mydata_df$Score == score)] 
  nFail <- pFail * c 
   
  #Add number of consistent fail decisions to score table 
  DC[score+1] <-nFail 
} 
 
#Define function for second half of DC  - Values greater than cutscore 
above_cut_function <- function(score) { 
 
  # If score >= cut score AND  within LB and UB then Count number of passing examinees with scores between cut score and score + 
SEM (inclusive) 
  b_LBindex <- max(which(mydata_df$Score == score - plusminusCI), which(mydata_df$Score == cutscore)) 
  b_UBindex <- min(which(mydata_df$Score == maxpossible), which(mydata_df$Score == score + plusminusCI)) 
  b <- sum(mydata_df$Freq[b_LBindex:b_UBindex]) 
   
  #Count total number of examinees scoring between score +/- SEM (inclusive) 
  CI_LBindex <- max(0, which(mydata_df$Score == score - plusminusCI )) 
  b_total <- sum(mydata_df$Freq[CI_LBindex:b_UBindex]) 
   
  # Divide b by b_total 
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  if(b_total == 0) { 
    pPass <- 1 
  } else { 
    pPass <- b/b_total 
  } 
   
  # Multiply by number of examinees scoring that score to determine number of examinees with  consistent pass 
  c <- mydata_df$Freq[which(mydata_df$Score == score)] 
  nPass <- pPass * c 
   
  #Add probability of consistent decision to score table 
  DC[score+1] <- nPass 
   
} 
#************END FUNCTIONS****************** 
 
#Open data 
library(readxl) 
mydata <- read_excel("LOCATION OF DATA", sheet = "SHEET NAME") 
 
#order total scores in decreasing order 
mydata <-mydata$COLUMN_HEADER 
 
#Get input from user for reliability, max possible score, and cut score 
myrel <- readline(prompt="Enter reliability: ") 
maxpossible <- as.numeric(readline(prompt="Enter maximum possible score: ")) 
cutscore <- as.numeric(readline(prompt="Enter cut score as positive integer: ")) 
 
#Create table for DC values 
WDCtable <-vector(mode = "double", length = maxpossible) 
 
#Error message if cut score out of bounds of possible scores 
if(cutscore <= 0) { 
  stop("Entered cut score is less than or equal to zero. This program requires a cut score between 0 and the maximum possible score.") 
} else if (cutscore > maxpossible) { 
  stop("You entered a cut score greater than the maximum possible score.") 
} 
 
#Convert user input to numeric 
myrel <- as.numeric(myrel) 
maxpossible <- as.numeric(maxpossible) 
cutscore <- as.numeric(cutscore) 
 
#Compute SEM 
SEM <- sd(mydata, na.rm = TRUE)*sqrt(1-myrel) 
 
#Compute +\-95% CI of SEM and round result up 
plusminusCI <- SEM * qnorm(0.975, mean = 0, sd = 1) 
plusminusCI <- ceiling(plusminusCI) 
 
#Lower and upper bounds for CI. Max needed in LB to avoid negative LB and min needed in UB to avoid UB being greater than max 
possible score 
LB <- max(cutscore - plusminusCI, 0) 
UB <- min(cutscore + plusminusCI, maxpossible) 
 
#Create frequency table from 0 to possible scores. 
mydata_table <- table(factor(mydata, levels = c(0:maxpossible))) 
mydata_df <- as.data.frame(t(mydata_table)) #transpose 
colnames(mydata_df)= c("A", "Score", "Freq") 
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as.numeric(mydata_df$Score) 
as.numeric(mydata_df$Freq) 
 
#Identify location in vector for LB and UB value 
LBindex <- min(which(mydata_df$Score == LB)) 
UBindex <- max(which(mydata_df$Score == UB))  
 
#Count frequency below and below 95%CI 
BelowCI <- sum(mydata_df$Freq[0:(LBindex-1)]) #index 0 to one below LBindex 
AboveCI <- sum(mydata_df$Freq[(UBindex+1):(maxpossible+1)]) #one above UBindex to index of max possible score 
 
#Define DC vector 
DC <- vector(mode = "double", length = length(mydata_df$Score)) 
 
#Apply DC functions 
x <- seq(LB, cutscore - 1, 1) 
y <- seq(cutscore, UB, 1) 
 
DC[x+1] <- sapply(x, below_cut_function) 
DC[y+1] <- sapply(y, above_cut_function) 
 
 
#Above and below CI, DC = 1 so list frequency (100% of examinees will have consistent decision) 
DC[1:(LBindex-1)] <- mydata_df$Freq[1:(LBindex-1)] 
DC[(UBindex):length(mydata_df$Score)] <- mydata_df$Freq[(UBindex):length(mydata_df$Score)] 
 
#Compute W-DC (sum of the number of examinees with a consistent decision divided by the total number of examinees) 
WDC = sum(DC)/sum(mydata_df$Freq) 
 
#Display result 
cat("W-DC = ", WDC) 
 
 
 


