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Effect sizes are important because they are an accessible way to indicate the practical importance of 
observed associations or differences. Standardized mean difference (SMD) effect sizes, such as Cohen’s 
d, are widely used in education and the social sciences – in part because they are relatively easy to calculate. 
However, SMD effect sizes assume normally distributed data, whereas most data in these fields are ordinal 
and/or non-normal. In these situations, SMD effect sizes can be biased, and a non-parametric measure 
such as Cliff’s delta (δ) is more appropriate. This paper provides a practical guide on how to calculate 
Cliff’s δ. First, we present a conceptual overview and a worked example. Then we present two methods 
of calculating Cliff’s δ: (1) a web-based Shiny application developed to accompany this paper 
(https://cliffdelta.shinyapps.io/calculator; suitable for all users), and (2) an R tutorial (suitable for R users). 
This is intended to provide researchers and practitioners with an appropriate and accessible effect size 
measure for non-normal data. 
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Introduction 
 Effect sizes quantify the magnitude of difference 
between two groups or time points, and indicate 
whether a relationship is of practical importance 
(Balkin & Lenz, 2021; Ferguson, 2009; Grissom & 
Kim, 2012). They are accessible to the wider 
educational community, and are often required or 
strongly suggested by large research organisations and 
publication outlets, especially when statistical 
significance is misleading, for example when sample 
sizes are small or very large (American Educational 
Research Association, 2006; American Psychological 
Association, 2020; Peng et al., 2013). Effect size 
metrics fall into three main families: odds ratios, 
correlations, and standardized mean difference 
measures (Hedges, 2008). In educational research and 
evaluation, effect sizes are most commonly based on 
standardised mean difference (SMD), such as Cohen’s  

(1988) d, arguably due to ease of calculation (Farmus et 
al., 2022; Ferguson, 2009; Fritz et al., 2012; Peng et al., 
2013). SMD effect sizes are calculated by dividing the 
difference in means between two groups by the 
standard deviation (with some small variations in terms 
of which standard deviation and/or how to combine 
these). However, unbiased SMD effect sizes require 
several assumptions to be met, including the data to be 
measured on a metric scale, be normally distributed, 
and have homogeneity of variance (Cohen, 1988; 
Grissom & Kim, 2012; Hedges & Olkin, 1985). These 
assumptions are rarely satisfied in data in education and 
the social sciences (Grissom & Kim, 2012; Micceri, 
1989; Romano et al., 2006). Therefore, means and 
standard deviations are frequently a poor 
representation of the distributional properties of the 
data, and can lead to inaccurate and unstable effect size 
results (Algina et al., 2005; Hess & Kromrey, 2004; 
Marfo & Okyere, 2019).  

https://cliffdelta.shinyapps.io/calculator
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 In cases where the aforementioned assumptions 
are not met, non-parametric effect sizes, such as Cliff’s 
(1993, 1996) delta (δ), produce substantially more 
robust and reliable results (Grissom & Kim, 2012; Hess 
& Kromrey, 2004; Romano et al., 2006). This is 
because non-parametric effect sizes are suitable for 
ordinal data, and do not make assumptions about 
underlying distributional properties. There are no 
drawbacks to using non-parametric effect sizes even 
when normality assumptions are met, other than 
traditionally having been more complex to calculate 
(Cliff, 1993, 1996). Non-parametric effect sizes are 
thus rarely used, presumably because there is less 
information about these effect sizes and how to 
calculate them, coupled with the inability of most 
major statistical packages to compute it for users 
(Grissom & Kim, 2012; Ledesma et al., 2009; Romano 
et al., 2006). The major motivation for this paper is to 
make Cliff’s δ more accessible, via a practical guide for 
researchers and practitioners. As Cliff’s δ remains 
relatively rarely used, an introduction to the metric as a 
viable non-parametric effect size measure is provided 
first, followed by presentation of a novel web-based 
Shiny application developed by the authors 
(https://cliffdelta.shinyapps.io/calculator; suitable for 
all users) and an R tutorial (suitable for users of the R 
statistical software).  

 

Cliff’s Delta as a Non-Parametric 
Effect Size 
 Cliff’s (1993, 1996) delta (δ) is a robust and 
intuitive non-parametric alternative to SMD effect 
sizes such as Cohen’s d. It is especially useful when data 
are non-normal, or are ordinal and hence have reduced 
variance (e.g., Likert scale responses from surveys). 
Cliff’s δ was originally conceptualised as a dominance 
statistic, and is obtained by calculating the non-
overlapping area of two distributions (e.g., School 1 vs. 
School 2; Time 1 vs. Time 2) at the individual case 
level. The statistic ranges from −1 to +1, with the 
extremes indicating no overlap between the two 
distributions, and 0 indicating complete overlap. One 
major advantage of δ is that it measures the magnitude 
of an effect across the entire distributions of both 
groups, rather than simply the effect for those in the 
centre of the distribution, which is a common criticism 
of SMD effect sizes (Grissom & Kim, 2012).  

 While conceptually simple, measuring the 
proportion of distributional non-overlap for Cliff’s δ is 
a relatively involved task requiring matrix statistics. In 
short, a matrix is constructed to determine the 
proportion of instances where values from one group 
are larger than values from another (i.e., the ratio of 
“dominance” of one group over the other). The 
calculation of Cliff’s δ is formalised as: 

Cliff’s delta (δ) = 
#(#!"	%	##$)	'	#(#!"	(	##$)

)")$
         (1) 

In this equation, the number of instances (#) where a 
case in Group 1 (𝑥*+) is larger than Group 2 (𝑥,-) is 
subtracted by the number of instances (#) where a case 
in Group 1 (𝑥*+) is smaller than Group 2 (𝑥,-). The 
difference is then divided by the product of the sample 
sizes of Group 1 (𝑛+) and Group 2 (𝑛-). All possible 
comparisons are made, meaning that the entire 
distribution (i.e., all individuals from both groups) is 
represented by the statistic. The choice of which group 
is subtracted from the other affects whether the 
statistic is positive or negative, but will not affect the 
absolute value of the result. 

 For example, consider a small fictitious dataset 
with two dependent groups (Time 1 and Time 2). The 
scores for Time 1 (n = 6) are 1, 2, 2, 3, 3, and 4; and 
the scores for Time 2 (n = 5) are 2, 3, 3, 4, and 4. Table 
1 shows the dominance matrix for the data, where each 
score from Time 1 is compared to each score from 
Time 2. The value 1 is assigned when the score in Time 
1 is larger than Time 2; 0 is assigned when the scores 
are equal; and –1 is assigned when the score in Time 1 
is smaller than Time 2. The sum of these values (–12) 
divided by the product of the group sizes (6 × 5 = 30) 
results in a Cliff’s δ effect size of –0.40. The result is 
negative, meaning the distribution of Time 1 is smaller 
than the distribution of Time 2.  

 In our view, this directionality is somewhat 
unintuitive because it treats Time 2 as the reference 
group rather than Time 1. To resolve this, we can 
simply reverse the order of the groups so that Time 1 
is treated as the reference group. This reverses the signs 
in the dominance matrix, resulting in a sum of 12 and 
a Cliff’s δ of 0.40. The result is positive, meaning the 
distribution of Time 2 is larger than the distribution of 
Time 1. We believe this directionality is more intuitive 
to most researchers and practitioners, so we will treat 
Time 1 – or Group 1 for independent groups – as the 
reference group in the tutorial section of this paper.   

https://cliffdelta.shinyapps.io/calculator
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Interpreting Cliff’s Delta 

 Cliff’s δ can be interpreted as the degree of 
distributional non-overlap between two distributions 
(Cliff, 1993, 1996). For instance, using the previous 
example, δ = 0.40 indicates a 40% non-overlap (or 
60% overlap) between Time 1 and Time 2. Cliff’s δ can 
also be interpreted by converting it to the more 
common Cohen’s d metric, since Cohen’s d can also be 
expressed as a measure of distributional non-overlap 
(provided the data are normally distributed; Cohen, 
1988). For example, a 33% non-overlap is equivalent 
to a Cohen’s d of 0.50 (for a conversion table, see Table 
2.2.1 in Cohen, 1988). Therefore, using the degree of 
non-overlap (33%) as a “bridge”, a Cliff’s δ of 0.33 is 
equivalent to a Cohen’s d of 0.50. Since Cliff’s δ does 
not make distributional assumptions, this bridge allows 
conversion of δ into an unbiased estimate of Cohen’s 
d for non-normal data (Romano et al., 2006). The 
discrepancy between Cohen’s d derived from Cliff’s δ  
(via the bridge), and Cohen’s d calculated from raw data  

(mean difference divided by standard deviation), 
demonstrates the level of bias attributable to using raw 
Cohen’s d for non-normal data.  

 It is also common to interpret effect sizes as 
“negligible”, “small”, “medium”, or “large”. Table 2 
shows the benchmarks for interpreting Cohen’s d as 
suggested by Cohen (1988), as well as the equivalent 
interpretation for Cliff’s δ (calculated via the bridge). 
Note that these are only conventional rules of thumb. 
It is best to interpret effect sizes in light of previous 
research in the relevant field of investigation wherever 
possible (Balkin & Lenz, 2021; Ferguson, 2009; 
Grissom & Kim, 2012). 

Missing Data and Dependency Issues 

 Cliff’s δ compares each case in Group 1 to each 
case in Group 2, so missing data are not an issue for 
independent groups (e.g., control vs. intervention; 
male vs. female)—the corresponding comparisons are 
simply not made. However, care is needed when 
calculating Cliff’s δ from dependent, or paired, data  

 

Table 1. Example Dominance Matrix 

 Time 2 scores 

Time 1 scores 2 3 3 4 4 

1 –1 –1 –1 –1 –1 

2 0 –1 –1 –1 –1 

2 0 –1 –1 –1 –1 

3 1 0 0 –1 –1 

3 1 0 0 –1 –1 

4 1 1 1 0 0 

 

Table 2. Effect Size Interpretation  

Interpretation Cohen’s d Cliff’s delta (δ) 

Negligible <0.20 <0.15 

Small 0.20 0.15 

Medium 0.50 0.33 

Large 0.80 0.47 

Note. Cliff’s delta (δ) was converted from Cohen’s d using the degree of non-overlap between two distributions as a 
bridge.  
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(e.g., pre-intervention vs. post-intervention; beginning-
of-year vs. end-of-year). When working with 
dependent data, it is helpful to consider what type of 
change is of interest (e.g., overall change, within-
person change, or between-person change), as well as 
which participants are of interest (e.g., should 
participants without Time 2 data be included or 
excluded?).  

 Previous research notes that researchers frequently 
fail to indicate whether dependency has been 
accounted for, so there is a considerable threat to the 
validity of meta-analyses that combine effect sizes 
derived from different research designs since the 
various approaches have the potential to produce large 
differences in the apparent effect size magnitude (Ahn 
et al., 2013; Morris & DeShon, 2002).  In general, those 
based on within-person change (i.e., matched 
comparisons) produce larger effect sizes (Dunlap et al., 
1996). In alignment with Dunlap et al., (1996), our 
position is that while there is increased reliability in the 
statistical estimates associated with matched 
comparisons, there is generally no justification for 
adjusting the magnitude of the effect, unless 
specifically appropriate for the research question (e.g., 
special education with a small number of individuals; 
Morris & DeShon, 2002). For those who need to do 
so, calculation of within-person Cliff’s δ is relatively 
straight-forward, and a description is included in the 
footnote below.1  

 Researchers and practitioners analysing dependent 
data in education and the social sciences interested in 
the effect of time (e.g., the effect of an intervention on 
achievement) need to calculate Cliff’s δ for the overall 
distribution, or in other words, the overall direction and 
extent to which participants have shifted over time. To 
examine how an overall distribution has changed over 
time, Cliff’s δ is calculated in the same way as 
independent data (i.e., all comparisons in the 
dominance matrix are included). When using this 
method for dependent data, users still need to consider 
whether to include or exclude participants who had 
data at Time 1 but not at Time 2 (e.g., due to attrition, 

 
 
1 To calculate within-person change (δw), simply calculate the proportion of cases where matched Time 2 scores are 
higher than Time 1 scores, minus the proportion of cases where matched Time 1 scores are higher than Time 2 scores 
(Cliff, 1996). For example, in a case with five participants where three have higher scores at Time 2 (3/5 = .6), one 
has a lower score (1/5 = .2) and one has the same score (not included in the calculation), the within-person change is 
.6 - .2 = .4. 

unavailability, etc.). Cliff’s δ can be calculated with 
missing data, so the decision depends on the 
substantive question(s) of interest. When interpreting 
results where the sample is only partially matched, it is 
important to acknowledge that the effect size reflects a 
more descriptive evaluation of any difference in 
classroom performance at the two time points rather 
than the change over time for individual students – this 
is exacerbated by the extent of missingness in the 
sample. In contrast, if the substantive question is about 
the effectiveness of an intervention or the change for 
individual students, consideration of the overall 
distributional change of the matched sample is usually 
more appropriate, though the retention rate and any 
attrition bias needs to be considered (Rosenbaum & 
Rubin, 1985). 

 

Example Dataset and Results 
 To illustrate how to calculate Cliff’s δ, we will 
utilise an example dataset of overall teacher judgments 
(OTJs) of student achievement (see Figure 1 in the next 
section for the first ten rows of data; full dataset 
available in Supplementary Materials). The dataset 
contains two columns of data corresponding to School 
1 and School 2, but the principles and steps described 
apply to any two independent or dependent groups. 
The OTJs are rated on a four-point ordinal scale in 
relation to curriculum expectations for the student’s 
year level (1 = well below standard, 2 = below standard, 3 = 
at standard, and 4 = above standard). The ordinal nature 
of the data means Cliff’s δ is a more suitable effect size 
measure than Cohen’s d.  

 Table 3 shows the effect size results and related 
statistics for the example dataset. The first two rows 
show the number of cases from each school (note 
School 1 had more cases than School 2). The next three 
rows show the probability that a case in School 1 
scored higher than, equal to, and lower than School 2. 
The probability that a case in School 1 scored higher 
than School 2 (0.27) is smaller than the probability that 
a case in School 1 scored lower than School 2 (0.40). 
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In addition, 33% of the scores were equal between the 
two schools. Overall, this indicates that OTJs in School 
2 are generally higher than School 1, but it is hard to 
evaluate the magnitude of this difference. The 
following row shows the calculated Cliff’s δ effect size 
difference between the two schools (0.12) is 
approaching small in magnitude. The final two rows 
show the discrepancy between using a non-parametric 
effect size measure (Cohen’s d converted from Cliff’s 
δ using the proportion of non-overlap as a bridge = 
0.16) and a SMD effect size measure (Cohen’s d 
calculated from raw data, with Hedges’ bias correction2 
= 0.31) for a dataset that violates parametric 
assumptions. In this case, the SMD measure 
overestimates the effect size by d = 0.15. The exact 
level of discrepancy will differ depending on the 
dataset analysed, indicating the importance of using a 
non-parametric effect size such as Cliff’s δ if 
parametric assumptions are not met. 

 
Calculating Cliff’s Delta 
 The following tutorial demonstrates two methods 
to calculate Cliff’s (1993, 1996) δ and the 
accompanying statistics shown in Table 3. The first 

method is via a freely accessible web-based Shiny 
application developed to accompany this paper 
(https://cliffdelta.shinyapps.io/calculator). To obtain 
results, users simply need to upload an appropriate 
dataset to the app. This method is suitable for all users. 
The second method is via the R open-source statistical 
software (R Core Team, 2022). This involves entering 
code into the command line, and is primarily targeted 
at users with basic working knowledge of R. The 
tutorial will first outline how to format a dataset for 
analysis. The same data format is required for both the 
Shiny app and R. 

Data Preparation 

 To calculate Cliff’s δ in the Shiny app or R, the 
dataset needs to be structured as two columns in a 
spreadsheet (e.g., Microsoft Excel), with Column 1 
containing numeric data for Group 1 (or Time 1), and 
Column 2 containing numeric data for Group 2 (or 
Time 2). The first row of the spreadsheet should 
indicate the name of the group corresponding to each 
column. The names should begin with a letter but can 
contain numbers (e.g., School1, School2); no spaces or 
special characters are allowed. The actual data begins 
from the second row. Cells with missing data should 
be left blank. If you are working with dependent data 

 

Table 3. Effect Size Results for Example Dataset 

Statistic Value Lower 95% CI Upper 95% CI 

Number of cases in School 1 30.00 - - 

Number of cases in School 2 25.00 - - 

Probability that School 1 > School 2 0.27 - - 

Probability that School 1 = School 2 0.33 - - 

Probability that School 1 < School 2 0.40 - - 

Cliff’s δ (calculated from raw data) 0.12 -0.17 0.39 

Cohen’s d (converted from Cliff’s δ) 0.16 -0.20 0.62 

Cohen’s d a (calculated from raw data) 0.31 -0.23 0.85 

Note. CI = confidence interval (see e.g., Hess & Kromrey, 2004, for details on how the CI is calculated). 
a With Hedges’ correction; pooled standard deviation used.  

 
 
2 Also known as Hedges’ g. Hedges’ g corrects the positive bias in Cohen’s d. It is calculated by multiplying Cohen’s 
d with a correction factor of 𝐽 = 	1 − .

/()"0)$)'1
 (Hedges & Olkin, 1985).   

https://cliffdelta.shinyapps.io/calculator
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and wish to exclude participants with missing data at 
either time point (see Missing Data and Dependency 
Issues),the available data for these participants need to 
be deleted (this typically involves removing the entire 
row of data corresponding to the relevant participants). 
The prepared dataset needs to be saved as a comma-
separated values (CSV) file.3 Figure 1 shows the first 
ten rows of the example dataset (see Example Dataset 
and Results) as prepared for analysis (the complete 
prepared dataset is downloadable from Supplementary 
Materials). If using the Shiny web app, the dataset 
should not exceed 5000 rows. 

Using the Shiny Web App 

 A novel Shiny app was developed for this paper as 
a freely accessible web-based tool to calculate Cliff’s δ 
and associated statistics.4 A screenshot of the app’s 
input panel is shown in Figure 2. To use the app, 
simply navigate to 
https://cliffdelta.shinyapps.io/calculator (an Internet 
connection is required) and upload the prepared CSV 

file (see Data Preparation) by selecting “Browse…” in 
the input panel. Alternatively, users can tick the box 
next to “Use example data” to calculate the results for 
the example dataset previously described in this paper. 
The column names provided in the CSV file are used 
by default in the outputted results. If needed, users can 
rename the two columns via the input panel (letters, 
numbers, spaces, and special characters are all allowed).  

 Once a CSV file is uploaded (or the example data 
option is ticked), the results will be shown in a table 
under the Results heading. The statistics calculated are 
the same as those shown in Table 3 (for a written 
explanation of these statistics, see the Example Dataset 
and Results section in this paper). We strongly 
recommend checking that the number of cases 
displayed in the outputted table is consistent with the 
uploaded dataset. Under the table, there is a button that 
can be used to download the results as a CSV file. A 
written interpretation of the results is available under 

 

 

Figure 1. First Ten Rows of Example Dataset 

 

 
 
3 To save a Microsoft Excel file in CSV format, open the relevant Excel file, then click “File” followed by “Save As”. 
In the popup window, click the dropdown list next to “Save as type”, then select “CSV UTF-8 (Comma-delimited) 
(.csv)”. For more detailed instructions, see https://support.microsoft.com/en-us/office/save-a-workbook-to-text-
format-txt-or-csv-3e9a9d6c-70da-4255-aa28-fcacf1f081e6.  
4 The Shiny app was built using the Shiny package (version 1.7.1; Chang et al., 2020) in R (version 4.1.3; R Core Team, 
2022), and depends on the effsize package (version 0.8.1; Torchiano, 2020) to compute raw Cliff’s δ and Cohen’s d. 
The app’s underlying code is identical to that shown in the R tutorial section (all modifications are purely aesthetic 
and to broaden accessibility).  

https://cliffdelta.shinyapps.io/calculator
https://support.microsoft.com/en-us/office/save-a-workbook-to-text-format-txt-or-csv-3e9a9d6c-70da-4255-aa28-fcacf1f081e6
https://support.microsoft.com/en-us/office/save-a-workbook-to-text-format-txt-or-csv-3e9a9d6c-70da-4255-aa28-fcacf1f081e6
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Figure 2. Screenshot of Input Panel in the Shiny App 

 
 

 

the Interpretation heading. An error message in the 
results and/or interpretation section usually suggests 
that the uploaded dataset is incorrectly formatted. 
Please follow the instructions in this paper’s Data 
Preparation section to resolve the issue. 

Using R Statistical Software 

 Users with working knowledge of the R statistical 
software (R Core Team, 2022) can also calculate Cliff’s 
δ using the effsize package (Torchiano, 2020). Those 
who do not wish to calculate Cliff’s δ using R can skip 
this section. Effsize contains functions to calculate both 
Cliff’s δ and SMD effect sizes (e.g., Cohen’s d). The 
tutorial below provides a step-by-step guide to using R 
to calculate Cliff’s δ and the associated statistics shown 
in Table 3. It assumes that users have R (and RStudio 
if desired) installed on their computer.5 A 
downloadable version of the R code used below is 
available in Supplementary Materials.  

 
 
5 R can be downloaded for free from https://cran.r-project.org/. We recommend using R within RStudio, an 
integrated development environment that makes working with R easier. RStudio can be downloaded for free from 
https://posit.co/download/rstudio-desktop/.  

 Step 1: Install and Load the effsize Package. To 
begin, the effsize package (Torchiano, 2020) needs to be 
installed (if it has not already been installed previously). 
To do this, call: 

install.packages(“effsize”) 

Then, use the library() function to load the effsize 
package into the current R session (note this needs to 
be loaded every time a new session is started): 

library(effsize) 

An overview of the effsize package is available via the 
command help(effsize). This tutorial is based 
on effsize version 0.8.1, the current version at the time 
of writing.  

 Step 2: Load the Prepared Dataset. Next, the 
dataset prepared according to the instructions in Data 
Preparation needs to be loaded into the R environment. 
This should be a CSV file with two columns of data, 
and should contain a header row. Load the dataset as 

https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/
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follows (change the file path to where your CSV file is 
located):  

df <- 
read.csv("C:/Users/UserName/Docume
nts/Data/example-data.csv",  

    fileEncoding = "UTF-8-BOM") 

You can view the first six rows of the loaded dataset 
by calling head(df):  

> head(df) 

  School1 School2 

1       3       4 

2       1       2 

3       4       4 

4      NA       4 

5       3       3 

6       3      NA 

 Step 3: Calculate Cliff’s Delta. To calculate the 
Cliff’s δ effect size difference between the dataset’s two 
columns, use the cliff.delta() function 
provided by the effsize package, and replace the column 
names shown in parentheses below with your column 
names: 

cliff.delta(df$Column2, df$Column1) 

The first column specified is treated as the comparison 
group, and the second column as the reference group. 
We have specified Column 2 first because, in our view, 
treating Column 2 as the comparison group provides 
more intuitive results. Note that, as explained earlier, 
the order of the columns affects whether the result is 
positive or negative, but does not affect the absolute 
Cliff’s δ result.  

 We can obtain the Cliff’s δ estimate and 95% CI 
for the example dataset as follows: 

> cliff.delta(df$School2, 
df$School1) 

Cliff's Delta 

delta estimate: 0.1213333 
(negligible) 

95 percent confidence interval: 

     lower      upper  

-0.1694430  0.3926771 

Here, the result is positive. Because School 2 was 
specified as the comparison group, this indicates the 
distribution of School 2 is larger than that of School 1 
(if School 1 was specified as the comparison group, the 
results would be δ = –0.12, 95% CI [–0.39, 0.17]). The 
output also provides a written interpretation (i.e., 
negligible). The interpretation is based on the 
same benchmarks as those shown in Table 2.  

 Step 4: Calculate Additional Statistics (Optional). 
In some cases, users may like to obtain the additional 
statistics shown in Table 3. We provide instructions for 
this below.  

 Number of Cases. To calculate the number of valid 
cases in a column, call: 

length(na.omit(df$ColumnName)) 

This counts the number of cases with a non-missing 
value in the specified column. For example, the 
respective number of non-missing cases for School 1 
and School 2 in the example dataset is: 

> length(na.omit(df$School1)) 

[1] 30 

> length(na.omit(df$School2)) 

[1] 25 

 Probability of Superiority. To calculate the 
probabilities that a case in Column 1 is larger than, 
equal to, and smaller than Column 2, we need to 
compute the dominance matrix. This is done via the 
previously introduced cliff.delta() function. 
To aid interpretability, we again specify Column 2 as 
the first argument (treated as the comparison group), 
and Column 1 as the second argument (treated as the 
reference group). However, this time, we also need to 
specify return.dm = TRUE to obtain the 
dominance matrix, and save the result as an object: 

result <- cliff.delta(df$Column2, 
df$Column1, return.dm = TRUE)  

The dominance matrix can be accessed via 
result$dm. We will use this below. 

 To calculate the probability that a value in Column 
1 is larger than Column 2 (given that Column 2 was 
specified as the first argument), call: 
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sum(result$dm < 
0)/length(result$dm) 

This sums the number of times that a value in Column 
1 is larger than Column 2, and divides it by the number 
of comparisons made (i.e., size of the dominance 
matrix). Using the same logic, the probability that a 
value in Column 1 equals Column 2 is calculated via: 

sum(result$dm == 
0)/length(result$dm) 

The probability that a value in Column 1 is smaller than 
Column 2 calculated via: 

sum(result$dm > 
0)/length(result$dm) 

 Cohen’s d Converted from Cliff’s Delta. To 
convert Cliff’s δ (and its 95% CI) to Cohen’s d metric 
using the proportion of non-overlap as a bridge, we 
need to use the formula 2*qnorm(-1/(δ-2)), where 
qnorm() is a function that returns the inverse of the 
cumulative density function, and δ is the Cliff’s δ value 
we are wanting to convert from (Cohen, 1988; 
Rogmann, 2013). To do so in a replicable way, first 
save the Cliff’s δ results as an object: 

result <- cliff.delta(df$Column2, 
df$Column1)  

Then, convert the saved Cliff’s δ value (accessed via 
result$estimate), as well as its lower 95% CI 
(accessed via result$conf.int[[1]]) and 
upper 95% CI (accessed via 
result$conf.int[[2]]), to Cohen’s d using 
the stated formula.  

 Here is the corresponding code and Cohen’s d 
results for the example dataset: 

> result <- cliff.delta(df$School2, 
df$School1)  

> 2*qnorm(-1/(result$estimate-2)) # 
Cohen's d estimate 

[1] 0.1620673 

> 2*qnorm(-1/(result$conf.int[[1]]- 

 
 
6 The formula used for pooled standard deviation is 𝑠 = 	+()"'+)2"$0()$'+)2$$

)"0)$'-
. 

2)) # Lower 95% CI for Cohen’s d 
estimate 

[1] -0.1960924 

> 2*qnorm(-1/(result$conf.int[[2]]-
2)) # Upper 95% CI for Cohen’s d 
estimate 

[1] 0.622278 

The text after the # character specifies what is 
computed in each line of code (R treats text after the 
# character as a comment and does not execute it). 
Hence, for our example, Cliff’s δ results converted to 
Cohen’s d metric is d = 0.16, 95% CI [-0.20, 0.62]. 

 Cohen’s d Calculated from Raw Data. To examine 
the discrepancy between using a non-parametric effect 
size measure (Cohen’s d converted from Cliff’s δ) and 
a SMD effect size measure (Cohen’s d calculated from 
raw data), users can calculate Cohen’s d from raw data 
using the cohen.d() function in the effsize package. 
The function is called in a similar way to the 
cliff.delta() function: 

cohen.d(df$Column2, df$Column1, 
pooled = TRUE, hedges = TRUE, 
na.rm = TRUE) 

Similarly, the output shows the Cohen’s d estimate, the 
95% CI, and a written interpretation (e.g., small).  

 As with previously, we have specified Column 2 as 
the first argument in the command, so that it is treated 
as the comparison group for interpretability reasons. 
Again, the order of the columns only affects whether 
the results are positive or negative; it does not affect 
the absolute Cohen’s d value. We have also specified 
pooled = TRUE so that the calculation uses the 
pooled standard deviation of the two columns,6 
hedges = TRUE to request Hedges’ bias correction 
(see Footnote 1), and na.rm = TRUE to remove 
missing values from the calculation. Users can change 
these settings to FALSE if needed. Note that if 
pooled = FALSE, the standard deviation of the 
column specified in the second argument (e.g., 
df$Column1) is used. More information about these 
options can be accessed by calling ?cohen.d in R.  
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Limitations 
 This paper presents Cliff’s δ as a non-parametric 
effect size measure that is more accurate and 
appropriate than SMD effect size measures (e.g., 
Cohen’s d) when data are ordinal, continuous but non-
normal, and/or have heterogeneity of variance. As 
discussed, it can be used in almost any case where the 
difference in two distributions is being assessed. 
Nevertheless, some limitations of this measure should 
be noted. Specifically, the measure is currently 
restricted to bivariate comparisons, meaning that 
researchers cannot easily include other covariates that 
might be influencing differences in the distributional 
overlap (e.g., socioeconomic status). In addition, due 
to the computational requirements inherent in 
calculating the dominance matrix, particularly large 
distributions (e.g., sample sizes above ~5000) remain 
slow to compute despite considerable improvements 
over the past decade. Nevertheless, in cases where 
parametric effect sizes are used despite violation of 
normality assumptions, Cliff’s δ provides a more 
accurate alternative. 

 

Conclusions 
 This paper provides a conceptual explanation and 
practical example, followed by a practical guide on how 
to calculate Cliff’s δ using a novel web-based Shiny app 
(suitable for all users) and using R (suitable for R users). 
The paper is intended to provide researchers and 
practitioners working with non-normal data with an 
accessible non-parametric alternative to SMD effect 
sizes. 
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