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Historically, organizational researchers have fully embraced frequentist statistics and null hypothesis 
significance testing (NHST). Bayesian statistics is an underused alternative paradigm offering numerous 
benefits for organizational researchers and practitioners: e.g., accumulating direct evidence for the null 
hypothesis (vs. ‘fail to reject the null’), capturing uncertainty across a distribution of population parameters 
(vs. a 95% confidence interval on a single point estimate) – and through these benefits, communicating 
statistical findings more clearly. Although organizational methodologists in the past have promoted 
Bayesian methods, only now is easy-to-use JASP statistical software available for more widespread 
implementation. Moreover, the software is free to download and use, is menu-driven, and is supported by 
an active multidisciplinary user community. Using JASP, our tutorial compares and contrasts frequentist 
and Bayesian approaches for two analyses: a multiple linear regression analysis and a linear mixed 
regression analysis. 
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Introduction 
 Statistics can often be frustrating for people before 
they become illuminating. First-year organizational 
science graduate students and organizational 
researchers are often taught null hypothesis 
significance testing (NHST) in the frequentist 
paradigm as a primary tool for conducting and 
publishing their research. For instance, under NHST, 
we learn how we cannot “accept the null” under 
nonsignificant findings; instead, we must simply “fail 
to reject the null.” What if there were a different way 
of conducting statistics, where one can: 

● provide the most probable parameter estimates 
for a variable in a given model (versus a single 
observed point estimates and its 95% 
confidence interval [CI]); 

● accumulate evidence in direct support of the 
null hypothesis (versus indirectly by “failing to 
reject the null” in NHST); 

● accumulate evidence to compare any two 
models against one another; 

● communicate the probability of obtaining 
statistical findings in a simple and 
straightforward manner (versus relying on 
awkward interpretations of p values and 95% 
CI); 

Indeed, we can do all of this and more with Bayesian 
analyses. The current paper focuses specifically on 
Bayesian methods because although they have been 
introduced and demonstrated in previously published 
organizational science papers (e.g., Jebb & Woo, 2015; 
Kruschke et al., 2012; Zyphur & Oswald, 2015), they 
are  still  rarely  adopted,  compared  to  other  fields of  
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research, such as in the physical sciences and life 
sciences (van de Schoot et al., 2017). However, an 
increased appreciation for Bayesian analyses in 
organizational research is a promising development, 
coupled with the availability of conducting Bayesian 
analyses in JASP1, a user-friendly and freely available 
software package. JASP was intentionally designed to 
make Bayesian methods more accessible to a wider 
audience of researchers, and several scientific fields are 
already starting to embrace the use of the JASP 
platform, such as numerical cognition (Faulkenberry et 
al., 2020), psychiatry (Quintana & Williams, 2018), and 
biomedicine (Kelter, 2020). 

 By virtue of JASP software being free to download 
and actively updated, with a large-and-expanding user 
community, JASP makes it much easier for academics 
and practitioners alike to conduct basic Bayesian 
analyses (JASP Team, 2023; Love et al., 2019; Marsman 
& Wagenmakers, 2017) such as for linear regression 
(van den Bergh et al., 2021) and ANOVA (van den 
Bergh et al., 2019). Moreover, JASP can also conduct 
traditional frequentist (NHST) statistical analyses, 
which allows for an easy side-to-side comparison with 
Bayesian results, as we will demonstrate here. This way, 
organizational researchers can learn basic Bayesian 
analysis with the comfort that comes with greater 
understanding.  

 It is also important to note how JASP software also 
promotes various aspects of transparency and 
reproducibility, in support of open science (JASP 
Team, 2023). First, JASP is free to download and use 
on any operating system (at https://jasp-stats.org/), 
which helps remove financial and technical barriers to 
cultivating a more inclusive and diverse research 
community. Second, JASP also promotes data 
accessibility by including direct downloading and 
uploading to the Open Science Framework (OSF; 
https://osf.io/; Wagenmakers et al., 2018), which is 
increasingly used by organizational researchers. Third, 
data and analyses can both be saved within one 
integrated JASP file, which documents and 
consolidates one’s analysis workflow. And fourth, 
tables and figures can be copied and pasted directly 
into the desired document in near-APA format, which 
avoids transcription errors.  

 
 
1 JASP stands for Jeffreys’s Amazing Statistics Program, a humorous homage to Sir Harold Jeffreys, author of the Theory of Probability (1939) 
and one historically credited for helping to revive Bayesian inference. 

Many of the capabilities of JASP sound similar to those 
of R (R Core Team, 2023). R is also an open-source 
and platform-friendly computer software program, 
where users can choose among literally thousands of R 
packages dedicated to data wrangling, statistical 
analysis, and data visualization. Often, packages are 
installed from the Comprehensive R Archive Network 
(CRAN), which vets packages before they are posted 
to a set of volunteer mirrored distribution sites, but 
other packages are also available from GitHub and 
personal websites. Although R has a steeper learning 
curve than JASP by requiring users to learn a coding 
language to perform analyses and packages, R provides 
greater flexibility and control in building Bayesian 
models as a result. Conversely, JASP is easier for 
learning basic Bayesian analyses via drop-down menus 
and an accessible user interface, which provides more 
users easier access to obtaining a basic understanding 
of Bayesian analyses and their frequentist counterparts: 
e.g., t-tests, ANOVAs, mixed models, regressions, and 
frequencies (JASP Team, 2023). Importantly, the basic 
understanding from JASP provides a smoother 
transition into using R for conducting more thorough 
and complex Bayesian analyses. Also, as of January 
2023, JASP (version 0.17) now includes syntax mode 
which allows users to export R code of their JASP 
analysis, much like jamovi, another open-source 
statistical software program (JASP, 2023; The jamovi 
project, 2023). 

 Supplementing these default menus, the Bayesian 
capabilities of JASP can be extended: e.g., by importing 
a Learn Bayes module, and by entering popular JAGS 
(Just Another Gibbs Sampler) code to run, evaluate, 
and plot customized analyses. These Bayesian options 
available to users of JASP continue to be expanded and 
refined over time by the JASP software team, as 
informed by the aforementioned JASP user 
community (e.g., https://github.com/jasp-stats/jasp-
issues/issues). With this being said, JASP is still actively 
developed, which means that it is still lacking some 
features (e.g., effect size for Bayesian ANOVA, prior 
specification for Bayesian linear mixed models).  

 Although fitting much more complex models to 
data is a key benefit of adopting Bayesian analysis (Best 
et al., 1996), our primary goal for this paper is to 

https://jasp-stats.org/
https://github.com/jasp-stats/jasp-issues/issues
https://github.com/jasp-stats/jasp-issues/issues
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present the mechanics and benefits of basic Bayesian 
modeling to an organizational research audience, 
thereby providing a solid conceptual and practical 
foundation from which the reader can then seek out 
and understand more complex Bayesian modeling 
more confidently.  

 

The Bayesian Basics Using JASP 
 In this section, we will use JASP to conduct a 
multiple linear regression and a linear mixed model. 
For each method, we will first apply the traditional 
frequentist (NHST) approach with which readers are 
familiar, using that for a useful comparison when next 
demonstrating a Bayesian analysis as its counterpart. 
For each of these Bayesian analyses in JASP, we will 
provide organizational examples, so that reporting and 
interpreting results are domain-relevant, and we will 
supply straightforward procedures for translating key 
elements of JASP output into the writeup of Bayesian 
organizational research results for publication. 

Bayes Theorem 

 Before describing the tutorial examples, it is 
important to first discuss what underlies a Bayesian 
analysis: Bayes Theorem. Bayes Theorem has three 
essential components that support the process of 
updating beliefs: the prior, the likelihood, and the 
posterior (see Table 1 for some definitions of some 
common Bayesian terms). Given that H = a 
hypothesized model and E = the evidence (observed 
data), Bayes Theorem mathematically combines these 
three aforementioned elements: 

𝑃(𝐻|𝐸) = 	
𝑃(𝐻) ∗ 𝑃(𝐸|𝐻)

𝑃(𝐸)  

 The prior distribution, or P(H) in the numerator, is a 
probability distribution that operationalizes what we 
know about possible values of the parameter of interest 
before ever observing and modeling data. Once the 
data are observed, the likelihood, expressed 
mathematically as P(E | H) in the numerator, describes 
how likely it is that we observed the data, given our 
hypothesized model. As you can see, the likelihood is 
multiplied by the prior in the numerator of Bayes 
Theorem, meaning that the likelihood of observing our 
data is weighted by our prior assumptions going into 
the analysis.  

 This numerator is simply divided by P(E) in the 
denominator, which simply reflects all possibilities of 
the hypothesized model [where P(E) = P(H) * P(E | 
H) + P(¬H) * P(E | ¬H), and ¬ means ‘not’]. This 
division normalizes the result to yield the posterior 
distribution, a probability distribution that tells us how 
likely our hypothesized model is based on the data, or 
P(H | E). Note that the posterior distribution will 
always be situated between the prior distribution and 
the likelihood, such that the more data one has, the 
closer the posterior will be located to the likelihood 
than to the prior. On the other hand, the less data one 
has, the posterior distribution will be shifted closer to 
the prior, because the data (likelihood) will have less 
influence. Bayes Theorem ensures that this calibration 
of the posterior distribution toward the data versus 
toward prior is mathematically principled. 

 In addition to covering the fundamentals of Bayes 
Theorem here, we also need to introduce the concept 
of the Bayes factor before turning to our organizational 
examples. The Bayes factor (BF) provides the relative 
weight of the data (evidence) supporting one model 
versus another, such as the null versus alternative 
hypothesis, using Bayes Theorem. Using JASP, the 
“Bayes Factor” option asks the user to select between 
“BF10,” “BF01,” and “Log(BF10).” Regarding these 
subscripts, note that (a) 0 and 1 refer to the null and 
alternative hypotheses respectively, and (b) the number 
listed first is in the numerator, with the second number 
in the denominator. For example, a BF10 of 5 would 
mean that the data are 5 times more likely under the 
alternative hypothesis than the null hypothesis. Or 
conversely, a BF01 of 5 would mean that the data are 5 
times more likely under the null hypothesis than the 
alternative. Note that BF10 and BF01 are inverses. For 
example, the BF10 of 5 is equivalent to a BF01 of ⅕; 
these values would have the same interpretation. Note 
that if BF10 = 1, then also BF01 = 1, meaning that both 
hypotheses are equally likely. 

 The Bayes factor departs from the frequentist 
(NHST) approach because we are comparing two 
models; we are not simply rejecting or failing to reject 
the null hypothesis. Generally speaking, an 
organizational researcher might be more likely to 
report a BF10 value, given that the alternative 
hypothesis is usually the research hypothesis of 
interest. The Log(BF10) metric can also be useful when 
plotting and comparing BF values, because the natural 
log of the Bayes factor makes values symmetric 
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Table 1. Definitions of Common Bayesian Terminology 

 Definition 

Prior A probability distribution that operationalizes what we know about 
possible values of the parameter of interest before ever observing and 
modeling data 

Likelihood A probability distribution that describes how likely it is that we observed 
the data given our hypothesized model 

Posterior A probability distribution that updates our prior distribution, based on the 
likelihood; it tells us what we know about possible values of the parameter 
of interest after observing and modeling the data 

Bayes factor The relative weight of the data (evidence) supporting one model versus 
another 

Credible interval An interval that contains a specific percentage of the most probable 
parameter values (usually this is 95%) 

 

around zero: e.g., we noted that a BF10 of 5 is 
equivalent to a BF01 of ⅕; however, if you take the 
natural log of both, they become equidistant from zero, 
at 1.61 and -1.61, respectively. 

 In the frequentist (NHST) paradigm, we typically 
consider p values being statistically significant if they 
are less than a predetermined alpha level (e.g., .05 or 
.01), and they are not statistically significant otherwise. 
Within the Bayesian paradigm, the terminology for the 
size of the BF is attached to multiple cutoffs, to 
operationalize how the weight of evidence for one 
hypothesis versus another lies along a continuum 
(versus dichotomous language significance/non-
significance attached to p values). One reasonable set 
of cutoffs provided by Jeffreys (1961), and later revised 
by Lee and Wagenmakers (2013), proposed the 
following system of labels for determining the strength 
of BF10: a range of 0-3 provides anecdotal evidence, 3-
10 provides moderate evidence, 10-30 provides strong 
evidence, 30-100 provides very strong evidence, and > 
100 provides extreme evidence (see Table 2). However, 
just like the phrase statistical significance used in the 
frequentist (NHST) paradigm, we acknowledge that 
this language for Bayesian testing may still contribute 
to the habit of applying labels mechanically without a 
closer consideration of practical significance (such as 

examining the size of d-values or correlations in 
frequentist statistics). Practical significance is an issue 
that informs statistical findings, but also lies outside of 
them by considering the nature of the research 
question, the appropriateness of the models being 
compared, the meaning of the descriptive statistics 
from which inferences are made, and so on. 

 
Multiple Linear Regression Analysis 
 For the multiple linear regression analyses, we used 
modified and anonymized data we received from an 
organization. This dataset has a total of 271 
participants that were assessed on various skills and 
performance standards. Our research question is: Do 
employee computer skills and the ability to meet 
performance goals predict overall performance? Our 
null hypothesis is that these variables, when modeled 
together in a linear regression, do not predict overall 
performance, and our alternative hypothesis is that 
together they predict overall performance. We checked 
that the assumptions of a multiple linear regression 
analysis were generally met (e.g., based on standards 
for assessing linearity, independence of observations, 
homoscedasticity,  and  normal  distribution  of  the 
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Table 2. Evidence Provided by the Bayes Factor 

BF01 ranges Evidencea BF10 ranges 

!
	#	
	- 1 Anecdotal 1-3 

!
	#	

 - !
!$

 Moderate 3-10 

!
!$

 - !
	#$	

 Strong 10-30 

!
	#$	

 - !
	!$$	

 Very Strong 30-100 

< !
	!$$	

 Extreme > 100+ 

Note. BF01 is the reciprocal of BF10, such that BF01 (leftmost column) indicates the amount of evidence supporting the 
null over the alternative hypothesis explaining the data, and conversely, BF10 indicates the amount of evidence 
supporting the alternative hypothesis over the null hypothesis explaining the data. As can be seen, values that depart 
from BF = 1 indicate stronger support for one model over another. 
a Adapted from Lee and Wagenmakers's (2013) revision of Jeffreys’s (1961) classification. 

 
Table 3. Descriptive Statistics and Correlations: Computer Skills, Meet Performance Goals, & Overall Performance 

Variables N Mean (SD) 1. 2. 3. 

1. Computer Skills 270 3.77 (0.91) -   

2. Meets Performance Goals 271 3.15 (0.79) .51a -  

3. Overall Performance 271 3.73 (0.85) .58a .75a - 

Note. a BF10 > 100 

 

residuals). We also chose not to remove any statistical 
outliers in this dataset (10 were identified in univariate 
outlier analysis by being outside 1.5 interquartile ranges 
from the 25th and 75th quartiles), because they 
represent natural variations in the data (e.g., employees 
who were rated a 1 out of 5 on Meets Performance 
Goals). But as a side note, the parameter estimates 
remained relatively unchanged when these outliers 
were removed. Table 3 provides descriptive statistics 
for the variables included in the model. All JASP files 
used in analysis can be found on OSF 
(https://osf.io/3jhx6/). 

Frequentist (NHST) Analysis 

 Set-up. To compute a classical regression, we select 
“Regression” – “Classical” – “Linear Regression.” Our 
dependent variable is overall performance, and our 
covariates are computer skills and ability to meet 
performance goals. We dragged and dropped “Overall 
Performance” to the “Dependent Variable” box and 
moved “Computer Skills” and “Meets Performance 
Goals” to the “Covariates” box. JASP automatically 
computes the model and outputs a “Model Summary” 
table, an “ANOVA” table, and a “Coefficients” table. 
To check for multicollinearity, a user can select 

https://osf.io/3jhx6/
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“Statistics” – “Collinearity diagnostics” to add 
“Tolerance” and “VIF” measures to the “Coefficients” 
table. 

 Analysis. Figure 1 shows the JASP output. The 
“Model Summary” as shown in Table 4 contains two 
models: the null and the alternative. For our purposes, 
we will focus on the alternative model. The table 
contains three columns: R2, R2 Adjusted, and RMSE. 

 We observed an adjusted R2 of .61, meaning that 
61% of the variation in overall performance is 
accounted for by computer skills and meeting 
performance goals taken together. R2 adjusted is the 
value that is typically reported; it applies a statistical 
penalty to the R2 value for the number of predictors in 
the model, in an attempt to adjust for overfitting that 
can happen when too many predictors are entered into 
the model, relative to the sample size. 

 RMSE (root mean squared error) tells us how far 
the predicted values are from the observed values. For 
example, we observe H1 having a RMSE of 0.53, which 
is the average deviation of the model’s predicted value 
of overall performance from the observed value. 

Lower RMSE values indicate a better model fit. Table 
5 contains the test of the model against the null 
hypothesis. The first column contains the alternative 
“Model,” which is summarized in column two as the 
regression, residuals, and total. The third column 
contains the “Sum of the Squares,” which is a function 
of the deviation of observed values from the mean. 
The third column contains the model degrees of 
freedom. The fourth column contains the “Mean 
Square,” which is the sum of the squares divided by its 
corresponding degrees of freedom. The fifth and sixth 
columns contain the “F” statistic and “p” value, 
respectively. Of course, the p value is based on the 
obtained F statistic to determine whether the null 
hypothesis is statistically significant and can therefore 
be rejected in support of the alternative hypothesis. 

 The “Coefficients” table, as shown in Table 6, 
contains the “Model” specification, “Unstandardized” 
coefficient, “Standard Error,” “Standardized” 
coefficient, “t,” and “p” of the coefficients, “Computer 
Skills” and “Meets Performance Goals.” This table is 
common to any frequentist regression analysis.  

 

 

Figure 1. Screenshot of JASP Output for a Frequentist Multiple Linear Regression 

 
 

Table 4. Model Summary for Multiple Linear Regression: Overall Performance 

Model                       R² Adjusted R² RMSE 

H₀      .00  .00  0.85 

H₁      .61  .61  0.53 

Note. Total N = 271.  

 



Practical Assessment, Research & Evaluation, Vol 29 No 1 Page 7 
Courey et al., Bayesian Guide 
 
Table 5. Test of the Frequentist Multiple Linear Regression Model: Overall Performance 

Model   Sum of Squares df Mean Square F p 
H₁  Regression  118.71  2  59.36  211.29  < .001  
   Residual  75.01  267  0.28       
   Total  193.72  269         
Note. Total N = 271. df = Degrees of freedom. 

  Interpretation. A template for reporting these 
frequentist findings might be: “We conducted a linear 
regression to examine if overall performance is 
predicted by computer skills and meeting performance 
goals. We observed that computer skills and meeting 
performance goals together explained a statistically and 
practically significant portion of the variance of overall 
performance, R2 = .61, F(2, 267) = 211.29, p < .001. 
The slope coefficient for computer skills, β1 = 0.25, 
t(267) = 6.07, p < .001, and the slope coefficient for 
meeting performance goals, β2  = 0.65, t(267) = 13.77, 
p < .001, are both positive and statistically significant, 
indicating that they each uniquely and positively 
predict overall job performance.” Note that the 
intercept is arbitrary and should be tabled, but it is only 
interpreted if the value of 0 for all predictors is 
meaningful (and here it is not). 

Bayesian Analysis 

 Set-up. We selected “Regression” – “Bayesian” – 
“Linear Regression.” As before, we dragged and 
dropped overall performance, computer skills, and 
meeting performance goals to the appropriate boxes. 
We used the default prior on the models, a beta-
binomial prior with (𝛼 = 𝛽 = 1), denoted as (a = b = 
1) in JASP, which specifies priors on models by the 
number of predictors included (for more information 
on priors in linear regressions, see Consonni et al., 
2018; Liang et al., 2008). To compare our models to 
the null model, be sure to select “Compare to null” 
under “Order.” Finally, we selected “Output” – 
“Posterior Summary” – and “Plot of coefficients.”  

 Analysis. JASP automatically outputs a table with 
the model in the right panel as shown in Figure 2. Table 
7 contains the model comparison and Table 8 contains 
the posterior summary statistics. We can use the first 
table to determine which model best explains the data 
and the second table to understand the relative ability 
of each model to explain the data. JASP automatically 
orders the models from best to worst in terms of 

predicting the observed outcome. The default setting 
for regression analysis in JASP uses the same algorithm 
as the Bayesian Adaptive Sampling (BAS) package in R 
which applies an adaptive sampling algorithm that is 
more appropriate and efficient for sampling a larger 
model space (see Clyde et al., 2011; Clyde, 2018). 

 Starting the first column of Table 7, P(M) is the 
prior on the models. The P(M) value for the two-
variable model equals .33. The P(M) for the one-
variable models also equals .33, but then gets split 
equally across the two models, receiving P(M) values 
of .17 each. This type of weighting based on the 
number of predictors in the model (rather than just 
weighting all individual models equally) can be done 
with a beta-binomial prior (e.g., van den Bergh et al., 
2021) which corrects for multiplicity (Scott & Berger, 
2010). The prior settings in JASP allow users to modify 
the prior probabilities of the models or change the 
prior applied to the parameters (i.e., the regression 
coefficients) themselves. In the present case, the 
default prior on the regression coefficients is a Jeffreys-
Zellner-Siow (JZS) prior, which applies a Cauchy 
distribution to the effect size (𝜇/𝜎) and Jeffreys’s prior 
(Jeffreys, 1961) to the variance (Rouder et al., 2009; 
Rouder & Morey, 2012; Wetzels et al., 2009). A Cauchy 
distribution is equivalent to a Student’s t distribution 
with one degree of freedom and looks similar to a 
normal distribution, but has thicker tails. Rouder and 
Morey (2012) call the JZS prior a default prior because 
of the three favorable properties of the resulting Bayes 
factor: location-scale invariance (e.g., changing units of 
measurement should not change the analysis), 
consistency (i.e., the BF should favor models that are 
actually better explained by the data), and information-
consistency (i.e., as R2 approaches one, the BF in 
support of the alternative hypothesis approaches 
infinity).  

 Other prior options in JASP include: AIC, BIC, 
EB-Global, EB-Local, g-prior, hyper-g, hyper-g- 
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laplace, and hyper-g-n (see Liang et al., 2008). This 
paper does not cover prior selection in detail because  

we are assuming that we do not have any prior 
knowledge about the parameter space, and therefore  

 

Table 6. Multiple Linear Regression Model Coefficients: Overall Performance 

Model   Unstandardized Standard 
Error 

Standardized t p 

H₀  (Intercept)  3.73  0.05    72.15  < .001 

H₁  (Intercept)  0.72  0.15    4.68  < .001 
   Meet Performance Goals  0.65  0.05  0.61  13.77  < .001 
   Computer Skills  0.25  0.04  0.27  6.07  < .001   
Note. Total N = 271. Unstandardized = Unstandardized mean coefficient. Standardized = Standardized mean 
coefficient.  
 

Figure 2. Screenshot of JASP Output for a Bayesian Multiple Linear Regression 

 
 
Table 7. Bayesian Model Comparison: Overall Performance 

Models P(M) P(M|data) BFM BF10 R² 

Null model  .33  6.25e -53  1.25e -52  1.00  0  

Computer Skills + 
Meet Performance 
Goals .33  1.00  6.82e +6  1.60e +52  .61 

 

Meet Performance 
Goals .17  2.93e -7  1.47e -6  9.39e +45  .56 

 

Computer Skills .17  1.03e -30  5.15e -30  3.30e +22  .34  

Note. Total N = 271. P(M) = Prior. P(M|Data) = Posterior probabilities. BFM = Bayes factor of model odds. BF10 = 
Bayes factor of model relative to null. R² = Proportion of explained variance in the outcome.  
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Table 8. Bayesian Posterior Summaries of Coefficients: Overall Performance 

Coefficient P(incl) P(excl) P(incl|data) P(excl|data) BF inclusion Mean 
Coeff. 

 SD 

Intercept 1.00  0  1.00  0  1.00  3.73  0.03  

Meet 
Performance 
Goals 

.50  .50  1.00  0  9.70e+29  0.65  0.05  

Computer 
Skills 

.50  .50  1.00  2.93e -7  3.41e+6  0.25  0.04  

 

Note. Total N = 271. P(incl) = Prior probability of inclusion in the model. P(excl) = Prior probability of leaving out 
of the model. P(incl|data) = Posterior probability. P(excl|data) = Posterior probability. BFinclusion = Bayes factor 
relative to null. Mean Coeff = Mean coefficient estimate. SD = Standard deviation.  

 

using default priors are adequate for our purposes. 
More generally, the guardrails provided by JASP guide 
users in making reasonable and practical decisions 
within the software. For users who want to use 
informative priors (e.g., as informed by other empirical 
findings or by expert judgements), we encourage them 
to use R and the rich array of available Bayesian 
resources (e.g., Gelman et al., 2015; Gronau et al., 
2020; Kruschke, 2014; McElreath, 2020; Stefan et al., 
2019; van de Schoot et al., 2018). We did however 
examine sensitivity to the prior by running the same 
model while varying the scale of the JZS prior (select 
“Advanced Options” - “JZS” - “r scale”) to a wider 
scale (i.e., increasing r); the best performing model and 
pattern of BFinclusion probabilities remained the same. 
Checking prior sensitivity is essential for examining the 
impact of the prior on posterior inference (e.g., 
Depaoli, 2020; van Erp et al., 2017). 

 The notation P(M|data) indicates posterior 
probabilities, in other words, the probability of the 
models after observing data. These are ordered from 
greatest to least, with the top model “Computer Skills 
+ Meets Performance Goals” having a posterior 
probability that is nearly 1. The column of P(M|data) 
values should add to 1 because they are probabilities, 
so this model is much better at explaining the data than 
the others. Between these first two columns, we can 
see how the priors change once data is observed to 
output a posterior probability. To recap the process 
presented in this table, we can think of this as (1) 
believing that the size of the models is equally likely, 
(2) applying default priors to the regression 

coefficients, (3) viewing the data, (4) updating our 
beliefs to understand that the “Computer Skills + 
Meets Performance Goals” model fits the data the 
best.  

 In the third column, BF(M) is the Bayes factor of 
the model odds after observing data. The odds of the 
“Computer Skills + Meets Performance Goals” before 
observing the data were .33 / (.33 + .17 + .17) = .50. 
Looking at the P(M|data) column, we can see that after 
observing the data we updated our prior from .5 to 
nearly 1 (the probability is so large that it rounds to 1), 
indicating that the probability increased after observing 
data. To get the BFM, we divide the posterior odds by 
the prior odds. The BF10 column has the Bayes factors 
of each model relative to the null model. For example, 
the “Computer Skills + Meets Performance Goals” 
model provides the most evidence and is 1.60e+52 
times better at explaining the data, relative to the null 
model (this number is enormous, compared with BF 
typically found and reflected in Table 2). 

 The posterior summary in Table 8, contains the 
model’s coefficients. Starting with the seventh column, 
we can find our estimates for the values of the intercept 
and slopes and the eighth column contains the 
standard deviation of the mean estimates. Going back 
to the first column, we can find the name of the 
coefficient. The second and third columns are 
“P(inclu),” which is the prior probability of including 
the coefficient in the model, and “P(exclu)” is the prior 
probability of excluding the coefficient, since we used 
a beta-binomial prior (𝛼 = 𝛽 = 1), on the models, each 
coefficient is initially presumed to be equally likely to 
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be included. Again, the prior on the regression 
coefficients themselves is a default, JZS prior. The 
fourth column, “P(inclu|data),” is the posterior 
probability, that is the probability of including the 
coefficient after observing the data and the fifth 
column “P(exclu|data),” is the posterior probability of 
excluding the coefficient after observing the data. 
Finally, the sixth column “BFinclusion” tells us the Bayes 
factor of including the coefficient in the model. Figure 
2 also shows the 95% credible intervals (CrIs) of the 
mean posterior coefficients which tells us the location 
of the most probable posterior coefficients.   

 Interpretation. For guidance regarding what to 
report, see Depaoli and van de Schoot (2017), 
Kruschke (2021), van Doorn et al., (2021), and van de 
Schoot et al. (2021). To report our findings, we could 
state the following: “We conducted a Bayesian linear 
regression to examine if computer skills and meeting 
performance goals predicted overall performance. We 
used a beta-binomial prior (𝛼 = 𝛽 = 1) on the models, 
which assumes all model sizes are equally likely to 
explain the data, and we applied JASP’s default prior, a 
JZS prior (r = .354), on the regression coefficients. 
JASP sampled the model space using the Bayesian 
Adaptive Sampling (BAS) package from R (Clyde, 
2022), which can be more appropriate than MCMC 
methods when engaging in larger-scale variable 
selection. We observed that the model composed of 
both computer skills and meeting performance goals 
explained a large amount of the variance in overall 
performance, R2 = .61 (BF10 > 100). The data are in 
extreme favor of the alternative model (BF10 > 100) 
compared to the null model. Furthermore, the data 
extremely support including both computer skills 
(BFinclusion > 100) and meeting performance goals 
(BFinclusion > 100) when predicting overall 
performance.” If we are interested in what the 
probable parameter values are for each parameter in 
the model, we can also report the mean and the 
corresponding 95% CrI for each coefficient. 

 

Linear Mixed Models (Multilevel 
Modeling) 
 This second more advanced example follows the 
frequentist multilevel modeling example provided by 
Bliese (2022, data from Bliese & Halverson, 1996). 
This multilevel model is also called a linear mixed 
regression, where here we are examining whether soldier 

well-being across different work groups (i.e., 99 Army 
companies with an average of about 75 soldiers) are 
predicted by both individual-level work demands (i.e., 
average individual work hours in a day, our level-one 
variable) and group-level work demands (i.e., average 
work hours at the group level; our level-two variable). 
This model is conceptually useful because we can 
determine the extent to which soldier well-being is 
influenced by (a) work at the overall group level (i.e., 
generally, the more the group works, the lower the 
individual well-being), (b) independent of the group, 
the time that each soldier works (i.e., generally, soldiers 
who work more than the group average have lower 
well-being). We first estimate the parameters of a 
multilevel model that allows the intercept for the 
relationship between work demands and well-being to 
vary across groups (i.e., estimating random intercepts 
variance), while estimating the slope as a single 
constant value across groups. Next, we extend this 
multilevel model by allowing both intercepts and 
slopes to vary across groups (i.e., estimating random 
intercepts variance, random slopes variance, and 
random intercept-slope covariance). In checking 
model assumptions, we observed a linear relationship 
between the predictors and well-being, observed 
homoscedasticity of variances, and the residuals 
appeared to be normally distributed.  

 The dataset contains the two main variables that 
address the research question above: Well-Being 
(WBEING) as our dependent variable, with Group 
Hours (G.HRS) reflecting the average daily work hours 
for each group, and Work Hours (W.HRS) reflecting 
the average daily work hours for each soldier. Note that 
W.HRS is expressed as a deviation of soldiers’ work 
hours above or below their respective group mean 
(e.g., if a soldier works 7 hours, and G.HRS = 5, then 
W.HRS = 2). This makes between-group and within-
group effects of work hours completely independent, 
and thus they are interpreted independently below. In 
our program code, note that set the random number 
seed to 1 in both examples for reproducibility 
purposes. 

Frequentist – Varying Intercepts 

 Setup. To compute a frequentist linear mixed 
model in JASP, we start by selecting “Mixed Models” 
– “Classical” – “Linear Mixed Models” from the 
dropdown menu. We then dragged and dropped 
“WBEING” to the dependent variables box, “G.HRS” 
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and “W.HRS” to the fixed variables box, and “GRP” 
to the random effects grouping variables box. Next, 
under “Random effects,” we only checked the box 
next to “Intercept” because we are interested in how 
the intercept varies by each group, keeping the slopes 
for W.HRS constant across groups (and G.HRS has a 
single slope across all groups), see Figure 3. Note that 
JASP defaults to a varying intercepts and slopes model, 
but in this first model, we only want to vary the 
intercepts. We can also select “Options” – 
“Differences from intercept,” “Model summary,” 
“Fixed effects estimates,” and “Variance/correlation 
estimates” to examine model fit further. 

 Analysis. JASP automatically populates a table in 
the right pane with ANOVA summary statistics and 
under the “Options” tab, we can also select “Model 
summary,” “Fixed effects estimates,” and 
“Variance/correlation Estimates” which populates 
additional tables with fit statistics for each predictor, 
fixed effects estimates (intercept and slope coefficients; 
see Table 9), group variance estimates, group 
correlation estimates, and residual variance estimates. 
The intercepts for W.HRS have an estimated standard 
deviation of 0.12 and the residual (unexplained) 
standard deviation of the overall model is 0.88. 

Figure 3. Screenshot of JASP Output for a Frequentist Linear Mixed Model 

 



Practical Assessment, Research & Evaluation, Vol 29 No 1 Page 12 
Courey et al., Bayesian Guide 
 
 Interpretation. We can interpret the results as: 
“We observed a negative and statistically significant 
between-group effect of work hours on well-being, β2 
= -0.17, t(86.43) = -9.23, p < .001, indicating that the 
total group effect is reliably different from zero (see 
Table 9). Moreover, for every hour increase at the 
group level, well-being is predicted to decrease by -0.17 
points. Additionally, we observed a negative and 
statistically significant within-group effect of work 
hours on well-being, β1 = -0.05, t(7293.09) = -9.51, p < 
.001. Thus, within each group, for every one-hour 
increase in individual working hours, predicted well-
being ratings decrease by .05 points. Finally, the 
intercepts for within-group work hours have an 
estimated standard deviation of 0.12 (see Table 10).” 
Note that we group-mean centered work hours and 
reintroduced the means as a between-group variable. 
Therefore, the between-group coefficient and within-
group coefficient for work hours are uncorrelated, and  

there are no other predictors in the model. In this 
special case, the between- and within-group variables 
capture distinct sources of variation in the outcome 
and can be interpreted independently. 

Frequentist – Varying Intercepts and Varying 
Slopes 

 Setup. To compute a frequentist linear mixed 
effects model with varying intercepts and slopes, we 
follow the same setup as for the varying intercepts 
models, but instead under “Random effects,” we now 
check the boxes next to “Intercept,” “G.HRS,” and 
“W.HRS” to examine a model where the between-
group slope for group hours is modeled, and the slopes 
for individual hours of work well-being are allowed to 
vary within each group.  

 Analysis. JASP automatically populates similar 
tables as we observed in the varying intercepts model. 
The coefficients are highly comparable to the

Table 9.  Predicting Soldier Well-Being:  
Frequentist Fixed Effects Estimates for the Varying Intercepts Model 

Term Estimate SE df t  p 

Intercept 4.74 .21 86.04 22.19 < .001 

W.HRS -0.05 .01 7293.09 -9.51 < .001 

G.HRS -0.17 .02 86.43 -9.23 < .001 

Note. Total N = 7,382. W.HRS = group-mean centered hours (level one variable). G.HRS = group hours (level two 
variable). 
 

Table 10. Predicting Soldier Well-Being:  
Frequentist Random Effects Estimates for the Varying Intercepts Model 

Level Estimate 

Level 2 (between)  

 Intercept 0.12 

Level 1 (within)  

 Residual 0.88 

Note. Total N = 7,382. Estimates are standard deviations. 
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varying intercepts model (see Table 11). The estimated 
standard deviation of the intercept of group work 
demands is 0.12 and the standard deviation of the 
slopes is 0.02. The correlation between the intercepts 
and slopes is -.29 (see Table 12). The unexplained 
standard deviation of within group work hours is 0.88. 
 It is useful to explain briefly the fit statistics 
provided by JASP (i.e., Deviance REML, Log 
Likelihood, AIC, and BIC) for comparing each model. 
These criteria generally weigh model prediction versus 
model complexity to select the “best” model. The 
Deviance REML index accounts for fixed effects to 
give an unbiased estimate of the random-effects 
variances, but we cannot use the index to compare 
across  models  with  differing  fixed  effects.  The  Log 

Likelihood index does not penalize more complex 
models, where values closer to zero indicate better 
model fit. The Akaike Information Criterion (AIC; 
Akaike, 1974) and Bayesian Information Criterion 
(BIC; Schwarz, 1978) penalize more complex models, 
and smaller values indicate better model fit. The 
primary difference between AIC and BIC lies in their 
underlying assumptions about models; AIC estimates 
the Kullback–Leibler (K-L) divergence between the 
unknown, true model and the model being examined, 
whereas BIC is based on BFs and assumes that as N 
increases the true model is chosen with increasing 
probability (see Vrieze, 2012). We choose to use AIC, 
given one cannot justify a ‘true’ model among the 
candidates being compared. The AIC values for the 

 
Table 11. Predicting Soldier Well-Being:  
Frequentist Fixed Effects Estimates for the Varying Intercepts + Slopes Model 

Term Estimate SE df t p 

Intercept 4.73 0.21 86.19 22.21 < .001 

W.HRS -0.05 0.01 87.69 -8.36 < .001 

G.HRS -0.17 0.02 86.59 -9.20 < .001 

Note. Total N = 7,382. W.HRS = group-mean centered hours (level one variable). G.HRS = group hours (level two 
variable).  

 

Table 12. Predicting Soldier Well-Being:  
Frequentist Random Effects Estimates for the Varying Intercepts + Slopes Model 

Level Estimate Intercept W.HRS 

Level 2 (between)    

 Intercept 0.12 –  

 W.HRS 0.02 -.29 – 

Level 1 (within)    

 Residual 0.88   

Note. Total N = 7,382. Estimates are standard deviations, and a correlation in the square matrix. 
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varying intercepts is 19222.3 and the varying intercept 
and slopes model is 19220.9. 

 Interpretation. The results in Table 11 and Table 
12 can be interpreted similarly to the varying intercepts 
model. The main difference is that we can now assess 
if a model that lets both the intercepts and slopes vary 
for each group improves model fit over the model with 
varying intercepts but a fixed slope. We can interpret 
the results as: “We observed a negative and statistically 
significant between-group effect of work hours on 
well-being, β2 = -0.17, t(86.59) = -9.20, p < .001, 
indicating that the total group effect is reliably different 
from zero (see Table 11). Moreover, for every hour 
increase at the group level, well-being is predicted to 
decrease by -.17 points. Additionally, we observed a 
negative and statistically significant within-group effect 
of work hours on well-being, β1 = -0.05, t(87.69) =  
-8.36, p < .001. Thus, for every one-hour increase in 
individual average working hours, predicted well-being 
ratings decrease by .05 points. The random effect of 
within-person work hours is small (SD = 0.02), which 
suggests that there is little variation between soldiers 
(see Table 12). The AIC is 2 lower for the varying 
intercepts and slopes model, which means that this 
model is favored. Changes greater or equal to 2 (but 
less than 4) are considered to reflect substantial 
support of a model (Burnham & Anderson, 2004).” 

Bayesian – Varying Intercepts 

 Set up. To compute a Bayesian linear mixed model 
in JASP, we started by selecting “Mixed Models” – 
“Bayesian” – “Linear Mixed Models” from the 
dropdown menu. We then dragged and dropped the 
same variables as in the frequentist example (i.e., 
“WBEING” to the dependent variables box, 
“W.HRS” and “G.HRS” to the fixed variables box, and 
“GRP” to the random effects grouping variables box, 
see Figure 4). We used JASP’s default settings, which 
is 2,000 posterior samples as burn-in (the number of 
warmup samples that are discarded), 4,000 actual 
posterior samples for each chain (samples used in 
analysis), 3 chains (the number of chains that 
completed the posterior sampling), .8 adapt delta (the 
average target acceptance rate for whether a proposed 
value goes into the chain), and 10 maximum tree depth 
(the greatest number of evaluations per sample; if this 
is ever exceeded, then the sampling steps are too 
small). These default settings can be modified if the 

chains do not ‘mix’ or converge adequately (this can be 
assessed by examining plots of the MCMC chains, see 
Appendix A and via the R-hat statistic, see Figure 4). 
For example, if there are divergent transitions after the 
warmup (i.e., the Hamiltonian Monte Carlo sampler 
goes off course from the expected path, see Stan 
Development Team, 2022a), a user is recommended to 
try increasing the adapt delta value to .90 or .95, and if 
there are warnings about R-hat and effective sample 
size (ESS) values (the number of samples in different 
parts of the posterior distribution) the user is 
recommended to try increasing the number of burn-in 
samples or sampling iterations (see Stan Development 
Team, 2022b for more ways to diagnose convergence 
issues).  

 Finally, under “Options” – “Show” select 
“Differences from intercept,” “Model summary,” 
“Fixed effects estimates,” and “Variance/correlation 
estimates.” 

 Analysis. JASP automatically populates a table 
(Table 13) with the intercept and each of the slope 
coefficients. Standard error “SE”, “Lower” and 
“Upper” 95% CrI, “R-hat,” “ESS (bulk),” and “ESS 
(tail).” Focusing on these latter three new terms, an R-
hat (i.e., scale reduction factor; Gelman & Rubin, 1992) 
tells us if the algorithm has converged, values at 1 
indicate convergence of the MCMC chains, whereas 
values greater than 1.1 suggest that greater posterior 
distribution sampling is needed (e.g., increasing the 
number of iterations). ESS, effective sample size, 
(bulk) is the number of observations at the center of 
the distribution, where smaller numbers represent 
imprecision in the parameter, and the ESS (tail) 
specifies the number of observations in the tails of the  
distribution, where smaller  numbers  represent  
imprecision  in  the  CrI bounds (JASP, 2023). 
Generally, 1,000 samples in the bulk and tail of the 
distribution are sufficient (Zitzmann & Hecht, 2019). 
See Appendix A for the mixing of the two MCMC 
chains for both variables, and see Appendix B for 
autocorrelation plots, which suggest that MCMC 
estimates are sufficiently uncorrelated. There are 
currently no options for modifying the prior; JASP 
automatically applies the default, auto-scaled prior 
used in the rstanarm R package for linear mixed 
models, which applies an exponential distribution on 
the standard deviation of the random effect and an 
independent normal distribution centered at 0 and 
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Figure 4. Screenshot of JASP Output for a Bayesian Linear Mixed Model  

 
 

scaled to be weakly informative for fixed effects 
(Goodrich et al., 2020). JASP does not yet provide 
Bayes factors for linear mixed models, but this can be 
computed in R using the bayes_factor function in the 
brms package (Bürkner, 2017). JASP also provides 
variance and correlation estimates. The estimated 
standard deviation of the intercepts is 0.12, and the 
unexplained variance in work hours has a standard 
deviation of 0.88 (see Table 14). 

 Interpretation. Again, for guidance on what to 
report, see Depaoli and van de Schoot, 2017, Kruschke 

(2021), van Doorn et al., (2021), and van de Schoot et 
al. (2021). Note that JASP has some limitations when 
computing linear mixed models, because we cannot 
conduct some important components of Bayesian 
analysis, such as a posterior predictive check to 
examine the ability of the model to predict the 
observed data, or a sensitivity analysis to examine the 
influence of the prior on the posterior distribution. To 
report the results that we observed in JASP, we might 
say: “We conducted a linear mixed model with varying 
intercepts because we were interested in understanding  
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how individual-level work demands (i.e., deviations 
from soldiers’ respective group means) predict 
variance in soldier well-being, above and beyond 
independent group-level work demands. 

 We applied the default prior distribution in JASP 
software, which applies an exponential distribution on 
the standard deviation of the random effect and an 
independent normal distribution centered at 0 and 
scaled to be weakly informative for fixed effects. JASP 
automatically runs 2,000 burn-in samples, and 4,000 
samples on three chains are included in the analysis 
with an adapt delta of .80 and a maximum tree depth 
of 10. The posterior distribution was adequately 
sampled, based on the effective sample size (ESS), and 
the MCMC chains converged, given that all R-hat 
values were less than 1.01 (see Table 13, see Appendix 
A for the mixing of chains, and see Appendix B 
autocorrelation plots). We observed a within-group 
effect of individual average work hours on well-being 
(β1 = -0.05, 95% CrI [-0.06, -0.04]), such that for every 
one-hour increase, predicted well-being decreases by    
-0.05 points (see Table 13). We also observed a 
between-group effect of average group work hours on 
well-being (β2 = -0.17, 95% CrI [-0.21, -0.14]), such that 
for every one-hour increase in total group hours, 
predicted well-being decreases by -0.17 points. Finally, 
the intercepts for within-group work hours have an 
estimated standard deviation of 0.12 (see Table 14).” 

Bayesian – Varying Intercepts and Varying Slopes 

 Setup. We selected the same options as in the 
Bayesian varying intercepts model, but instead under  

“Random effects,” we now check the boxes next to 
“Intercept,” “W.HRS,” and “G.HRS” to examine the 
effect of work hours and group hours on wellbeing. 

 Analysis. As before, JASP automatically populates 
tables similar to the varying intercept model. The 
coefficients (fixed effects) are highly comparable to the 
varying intercepts model (Table 15). JASP also 
provides model comparison estimates; Table 17 shows 
the leave-one-out (LOO) model comparison outputs. 
LOO is a type of cross-validation that assesses the 
robustness of models. It also  relies  on  Pareto- 
smoothed importance sampling that helps identify 
points that have a bigger influence on the model. JASP 
also provides Watanabe-Akaike information criterion 
(WAIC), but the WAIC estimate for the varying 
intercepts and slopes model were unreliable in this 
case. JASP depends on the loo R package (Vehtari et 
al., 2023) to compute LOO and WAIC estimates.  

 Based on Table 17, we can see that the models 
perform the same for all practical purposes and so we 
favor the simpler, varying intercepts model. The 
estimated standard deviation of the intercept of group 
work demands is 0.12 and the standard deviation of the 
slope is 0.03. The correlation between the intercept and 
slope is -.24 and the unexplained variance of within 
group work hours has a standard deviation of 0.88 (see 
Table 16). 

 Interpretation. If we wanted to interpret the 
varying intercepts and slopes model, we could state: 
“We conducted a linear mixed model with varying 
intercepts and slopes to understand if individual level 

 

Table 13. Predicting Soldier Well-Being:  
Bayesian Fixed Effects Estimates for the Varying Intercepts Model 

   95% CrI   

Term Estimate SE Lower Upper ESS (bulk) ESS (tail) 

Intercept 4.74 .21 4.31 5.15 5704 4505 

W.HRS -0.05 .01 -.06 -0.04 9869 4027 

G.HRS -0.17 .02 -0.21 -0.14 5758 4531  

Note. Total N = 7,382. W.HRS = group-mean centered hours (level one variable). G.HRS = group hours (level two 
variable). All terms had R-hat values equal to one suggesting convergence.  
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Table 14. Predicting Soldier Well-Being: 
 Bayesian Random Effects Estimates for the Varying Intercepts + Slopes Model 

Level Estimate 

Level 2 (between)  

 Intercept 0.12 

Level 1 (within)  

 Residual 0.88 

Note. Total N = 7,382. Estimates are standard deviations.  
 

work demands (i.e., deviations from the respective 
group average) predict soldier wellbeing above and 
beyond group-level work demands. We applied the 
default prior distributions in JASP software: i.e., an 
exponential distribution on the standard deviation of 
the random effect, and an independent normal 
distribution centered at 0 and scaled to be weakly 
informative for the fixed effects. JASP automatically 
runs 2,000 burn-in samples and then 4,000 samples on 
3 chains with an adapt delta of .80 and a maximum tree 
depth of 10 that are included in the final analysis. The 
posterior distribution was adequately sampled, based 
on the effective sample size (ESS), and the model 
converged, where all R-hat values were less than 1.01 
(see Table 15, see Appendix A for the mixing of chains, 
and see Appendix B for autocorrelation plots). We 
observed a within-group effect of individual average 
work hours on well-being (β1 = -0.05, 95% CrI [-0.06, 
-0.04]), such that for every one-hour increase, 
predicted well-being decreases by -0.05 points (see 
Table 15). We also observed a between-group effect of 
average group work hours on well-being (β2 = -0.17, 
95% CrI [-0.21, -0.14]), such that for every one-hour 
increase in total group hours, well-being decreases by -
0.17 points. The random effect of within-person work 
hours is small (SD = 0.03) which suggests that there is 
little variation between soldiers (see Table 16). Based 
on leave-one-out model comparison, this varying 
intercepts and slopes model does not have better 
model performance than the varying intercepts only 
model (see Table 17). Thus, we favor the simpler, 
varying intercepts only model and conclude that 
individual work demands do not sufficiently vary based 
on group level work demands.” 

Comparing and Contrasting 
Frequentist and Bayesian Results 
 In summary, both sets of analyses have a similar 
set-up and yield similar conclusions because we used 
Bayesian software default priors and provide two 
examples with sizable samples, but the results still have 
different technical interpretations. In the linear 
regression example, the R2 values, intercept, and slope 
estimate are highly consistent in both the frequentist 
and Bayesian analyses. The important difference lies in 
how we can interpret the results. In the frequentist 
regression, we can reject the null hypothesis, that the 
intercept and slope estimates are equal to zero. In the 
Bayesian framework, the evidence provided by the data 
is in extreme favor of the alternative model (i.e., that 
the intercept and slope estimates are not equal to zero) 
relative to the null model. The general continuity 
between paradigm results is expected; Wetzels et al. 
(2011) reviewed 252 articles and found that generally, 
low p values corresponded to high BFs and high p 
values corresponded to low BFs – however, 70% of p 
values between .01 and .05 corresponded to “anecdotal 
evidence” under the Bayesian framework, suggesting 
that BFs provide more conservative estimates. 

 In the mixed linear model examples, we achieved 
highly comparable results; the intercept and main 
effects of individual hours and group hours were 
statistically significant in the frequentist analysis (which 
indicates that the 95% CIs did not contain 0), and had 
95% CrIs that did not contain zero in the Bayesian 
analysis. In fact, the point estimates within the  analysis. 
In fact, the point estimates within the frequentist 
framework are the same as the mean of the posterior
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Table 15. Predicting Soldier Well-Being:  
Bayesian Fixed Effects Estimates for the Varying Intercepts and Slopes Model 

   95% CrI   

Term Estimate SE Lower Upper ESS (bulk) ESS (tail) 

Intercept 4.73 .21 4.31 5.13 3078 3613 

W.HRS -0.05 .01 -0.06 -0.04 5040 4269 

G.HRS -0.17 .02 -0.21 -0.14 3115 4029 

Note. Total N = 7,382. W.HRS = group-mean centered hours (level one variable). G.HRS = group hours (level two 
variable). All terms had R-hat values equal to one suggesting convergence of the MCMC chains.  

 
Table 16. Predicting Soldier Well-Being:  
Bayesian Random Effects Estimates for the Varying Intercepts + Slopes Model 

Level Estimate Intercept W.HRS 

Level 2 (between)    

 Intercept 0.12 –  

 W.HRS 0.03 -.24 – 

Level 1 (within)    

 Residual 0.88   

Note. Total N = 7,382. Estimates are standard deviations, and a correlation in the square matrix.  

 
Table 17. Leave One Out (LOO) - Model Comparison  

Model LOO SE (LOO) 

Varying Intercepts 19174.5 117.0 

Varying Intercept + 
Slopes 

19175.0 117.0 

Note. LOO values and standard error for the varying intercept and varying intercept + slopes model. 

 

distributions in the Bayesian framework. The variance 
and correlation estimates were also nearly identical 
between statistical frameworks. Again, the key 
difference lies in how we can interpret the results. For 
instance, in the frequentist example, focusing on the 
fixed effect slope of group work demands on well-
being, if we were merely to reject the null hypothesis, 
we would simply state that the slope coefficient of 

group work demands is reliably different from zero. 
However, we usually also focus on the estimated value 
and the associated 95% CI, which together tells us that 
the estimate is the best estimate of the population 
value, and given uncertainty in the estimate there is a 
95% chance that the CI contains the parameter of 
interest. Comparably, in the Bayesian paradigm, the 
95% CrI of group hours did not contain zero, and it 
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tells us – in a much more straightforward manner – 
that 95% of the most probable parameters are 
contained in the interval.  

 The model comparison indices also differ between 
paradigms. Whereas AIC (based on Kullback–Leibler 
divergence) is a common index of model comparison 
the frequentist framework and evaluates model fit, the 
Bayesian LOO (a type of cross validation) is common 
in the Bayesian framework and examines the model’s 
out of sample prediction. Here, the frequentist AIC 
favors the more complex varying intercepts and slopes 
model, whereas the Bayesian LOO favors the simpler 
varying intercepts and fixed slope model. However, it 
is worth noting that the frequentist AIC difference 
value was 2, which is the smallest AIC value that 
suggests a meaningful difference between models 
(Burnham & Anderson, 2004), and the Bayesian LOO 
suggested that neither model outperformed the other, 
which led us to favor the simpler model. When 
considering these factors, the broader conclusions are 
not substantially different. As we said in the 
introduction, these statistical frameworks have 
different philosophical underpinnings and different 
methods of model comparison, which yield slightly 
different model comparison conclusions in this 
specific case, although the estimates for the fixed 
effects and random effects are nearly identical.  

 

Conclusion  
 For all disciplines, including our target audience of 
organizational researchers and graduate students, JASP 
provides a user-friendly platform to conduct basic 
Bayesian analyses and communicate Bayesian results 
without having to do any coding. JASP also helps 
researchers run Bayesian analysis by virtue of its 
thoughtful selection of default settings for the most 
common analyses conducted in organizational 
research. JASP then serves as a bridge to using R. More 
specifically, as researchers become more adept in their 
Bayesian knowledge and modeling abilities, there are 
great advantages to using R packages, such as brms 
and rstanarm, to build Bayesian models (Bürkner, 
2017; Goodrich et al., 2020). 
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MCMC Three Chain Mixing: Varying Intercepts Model 
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Appendix B 
 

MCMC Three Chain Autocorrelations: Varying Intercepts Model 
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MCMC Three Chain Autocorrelations: Varying Intercepts + Slopes Model 
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