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Measurement specialists strive to shorten assessment time without compromising precision of scores. 
Computerized Adaptive Testing (CAT) has rapidly gained ground over the past decades to fulfill this 
goal. However, parameters for implementation of CATs need to be explored in simulations before 
implementation so that it can be determined whether expectations can be met. CATs can become 
costly if trial-and-error strategies are followed and especially if constraints are included in the 
algorithms, simulations can save time and money. In this study it was found that for both a multiple-
choice question test and a rating scale questionnaire, simulations not only predicted outcomes for 
CATs very well, but also illustrated the efficiency of CATs when compared to fixed length tests. 

Obtaining precise scores efficiently is one of the 
main goals of assessment. Computerised Adaptive 
Testing (CAT) purports to be an optimal mode of 
assessment to achieve this goal. A computerized 
adaptive test (CAT) is a test administered by computer 
that dynamically adjusts itself to the trait level of each 
test taker as the test is being administered. By tailoring 
the testing through intelligent question selection, CATs 
can reduce test length by at least 50% without 
compromising measurement precision (Barnard, 2015; 
Wagner-Menghin & Masters, 2013; Weiss, 2011).  

Most CAT programs focus on achievement testing 
using dichotomously-scored multiple-choice questions 
(MCQs). Each question has one difficulty value 
(threshold) which is used to determine which question 
needs to be administered next. Since the ability of the 
respondent and the difficulty of each question are 
located on a common scale, the most appropriate 
question to administer next can be determined from the 
respondent’s current ability, estimated from previous 
responses (Van der Linden & Glas, 2003; Wang & 
Vispoel, 1998; Weiss, 1982). In contrast to dichotomous 
MCQs, questionnaires are usually polytomous with 
multiple thresholds as each question has a number of 
possible response categories. 

CATs are commonly based on Rasch measurement 
or Item Response Theory (IRT) which locates the 

measure of each score on a common interval scale. 
Whilst Rasch/IRT measures overcome the issue of 
ordinal scores, a questionnaire may still be time 
consuming to complete, especially if administered in 
paper-and-pencil format, due to the number of 
questions required to obtain robust measures (Bond & 
Fox, 2013; Andrich, 1988; Wright, 1977).  

Before a CAT program is implemented, it is 
recommended that simulations be undertaken to 
evaluate testing parameters prior to live testing to ensure 
that the CATs will function optimally with the calibrated 
item bank. Three main types of simulations can be done, 
namely Post-Hoc, Hybrid and Monte-Carlo. A Post-Hoc 
simulation requires an existing item response matrix of 
real test takers for which item parameters have been 
estimated. The simulation uses the item responses to 
simulate how that bank would function if the items (with 
known difficulties) had been administered as a CAT. 
Such simulations can also be used to explore by how 
much the test length of a conventional test can be 
reduced by administering a test as a CAT.  

One significant problem with Post-Hoc simulations 
is to have a data set in which all test takers have 
responded to all items in the bank. Banks are usually 
developed from different combinations of items 
included in different tests and all items in such banks are 
very seldom responded to by all test takers. To overcome 
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the limitation of a sparse item response matrix, Hybrid 
simulations can be used. A Hybrid simulation uses a 
calibrated item bank to estimate abilities for test takers 
with the available item responses which are then used to 
impute responses to un-administered items to generate a 
complete data matrix for implementation of Post-Hoc 
simulation. Monte-Carlo simulations can be used if little 
or no data is available. Monte-Carlo simulation is a 
computer simulation that allows the evaluation of 
various combinations of CAT options by using 
hypothetical model-generated test takers.  

Simulations can get complex when a large number 
of conditions and/or multiple criteria are analyzed. 
Furthermore, one set of randomly generated data can be 
idiosyncratic in especially Monte-Carlo simulations. A 
number of replications of each condition is therefore 
recommended. If a testing program has quadrature 
points that are used across different item pools, multiple 
simulations at given abilities (thetas) can be used. 

It is important to specify the aim(s) of the 
simulations beforehand to guide the decisions to be 
made about the number of items (whether fixed or 
variable), the termination rule, flexibility in content 
constraints, the maximum acceptable standard error of 
measurement, and so on.   

In this study the efficiency of CATs is explored 
through simulations for a multiple-choice test and a five-
category item questionnaire. 

Case study 1: Multiple-choice question 
test 

The purpose of the first case study was to 
investigate whether CATs can be used to reduce the test 
length of 60-item fixed-length tests without 
compromising measurement precision. An item bank 
with 260 four-choice dichotomously scored items from 
which 60-item fixed-length tests are compiled was 
available for the study. Following Rasch calibration and 
linking, the item difficulties were fixed with a minimum 
item difficulty of -4.857 logits, a maximum item 
difficulty of 3.143 logits and a mean item difficulty of -
0.377 logits. The tests have been administered to test 
takers and normal distributions of ability estimates were 
generally observed. These tests had classical (Kuder-
Richardson 20) reliabilities (Crocker & Algina, 1986) in 
the order of 0.70. 

Method 

Monte-Carlo simulations were based on the bank of 
260 items with known item difficulties and 1 000 
simulated test takers. Since practical considerations had 
to be borne in mind, the parameters in the simulations 
were gradually changed, taking the measurement error 
(SEM) into consideration. The intention of investigating 
the range of results was to allow for a viable balance 
between precision and the number of items required. 
Although the highest precision is desirable, it may not be 
a significant improvement in the number of items 
required when compared to the 60-item fixed length 
tests. 

Abilities of the hypothetical test takers were initially 
assumed to be normally distributed (N ~ (0, 1)) in the 
range [-3; 3] logits. Alpha and beta values were used to 
control the beta distribution to mimic the actual 
distribution of abilities observed for the 60-item fixed 
length tests as closely as possible with the model 
constant set at 1.0 as the pure logistic model. The initial 
ability estimate was set in the range [-1; 1] logits. Ability 
(theta) was set to be estimated by maximum likelihood 
as implemented in the CAT algorithms and subsequent 
items were selected by maximum (Fisher) information at 
the current ability estimate.  

To minimize idiosyncrasies in the simulations, 
different random seeding was used in a number of 
replications of the same and different requirements, no 
constraints were specified and uni-dimensionality was 
assumed. 

In the first eight simulations the measurement 
precision was increased in three sets of simulations from 
a SEM of 0.40 through 0.35 to 0.30 assuming a normal 
distribution of abilities between -3 and 3 logits to 
determine the minimum and maximum number of items 
that would be required to achieve the precision. In the 
first three simulations no restriction was placed on the 
number of items to achieve the three specified SEMs; in 
simulations 4 to 6 the minimum and maximum number 
of items were specified as 15 and 35 respectively and 
based on these results the minimum and maximum 
number of items was increased to 20 and 40 in 
simulations 6 to 8. The purpose of running these sets 
was to find out how many items are required to achieve 
the three specified SEMs from the given pool of items. 
Table 1 summarizes the termination options for these 
simulations. 
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Table 1. Termination options for the first eight 
simulations 
Simulation SEM Min # 

items 
Max # 
items 

1 ≤ 0.40 - - 
2 ≤ 0.35 - - 
3 ≤ 0.30 - - 
4 ≤ 0.40 15 35 
5 ≤ 0.35 15 35 
6 ≤ 0.40 20 40 
7 ≤ 0.35 20 40 
8 ≤ 0.30 20 40 

 

This information is shown graphically in Figure 1. 

Figure 1. Plot of the range of items required to achieve 
three SEMs for eight simulation runs. 

 

Although the 60-item fixed length tests yielded 
normally distributed abilities, the robustness of the 
intended CATs was investigated. In the ninth and tenth 
simulations rectangular ability distributions between -3 
and 3 logits and between -2 and 2 logits respectively were 
generated. For the ninth simulation the SEM was 
retained at a maximum of 0.35 within 20 to 40 items and 
an ability range of -3 to 3 logits. However, the Alpha and 
Beta values were both changed to 1 to create a uniform 

                                                 
1 This can be interpreted as a classical reliability in the 

order of 0.84. 

distribution rather than a normal distribution. This was 
repeated in the tenth simulation except for changing the 
ability range to [-2; 2] logits in which the majority of 
ability estimates are located. 

To further explore the robustness of the CATs, the 
SEM was retained at a maximum of 0.35 within 20 to 40 
items and an ability range of -3 to 3 logits in the 11th and 
the 12th simulations. However, the Alpha and Beta 
values were altered to simulate skewed distributions – 
positively in simulation 11 and negatively in simulation 
12.  

Although fixed item difficulties were used in the 
simulations and no constraints were imposed, ability 
measures for hypothetical test takers were simulated 
using Monte-Carlo and therefore idiosyncratic 
information can be contained in the simulations. Some 
replications for the same conditions were thus deemed 
necessary. Based on the initial results, it was decided to 
focus on an SEM ≤ 0.40 in normally distributed 
simulations with abilities in the range [-3; 3] logits. A 
series of five simulations was run. For each simulation a 
different ability distribution was generated. 

Results 

The results of the first set of eight simulations is 
shown in Table 2. In the first three simulations the 
number of items to be administered was unbounded. To 
achieve measures with SEMs ≤ 0.401 it was found that 
a maximum of 37 item was required for all test takers. 
This level of precision could be achieved with 30 or less 
items for 95.4% of the test takers. Simulation two 
required higher precision at SEM ≤ 0.352  which was 
achieved with 52 or less items for all test takers. Note 
that with 40 items this precision can be achieved for 
97.1% of the test takers and with 36 items for 80% of 
the test takers. Simulation 3 further increased precision 
to SEM ≤ 0.303  which was achieved with 62 items for 
all test takers. Note that this precision can be achieved 
with 50 items for 92.9% of the test takers and with 48 
items for 78.6% of the test takers. 

In summary, with a maximum of 37 items 
reliabilities of measures for all test takers can exceed 0.8 
and with a maximum of 62 items reliabilities above 0.9 
can be expected for all test takers. The fixed-length tests 
comprise of 60 items each. The simulations suggest that 

2 Classical reliability in the order of 0.87. 

3 Classical reliability in the order of 0.90. 
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with 62 items SEMs ≤ 0.400 can be achieved for all test 
takers. For 30 items this level of precision can be 
achieved for 95.4% of the test takers. 

In the fourth and fifth simulations the number of 
items were bounded to a minimum of 15 and a 
maximum of 354  items. The minimum number of items 
had no effect. In accordance with simulation one, SEMs 
≤ 0.40 could be achieved with a maximum of 35 items 
for 99.5% of the test takers. Simulation five increased 
precision to SEMs ≤ 0.35. In accordance with simulation 
two, this precision could only be achieved for 33.1% of 
the test takers with 35 items. Increasing precision from 
a SEM of 0.40 to 0.35 thus had a significant effect if a 
maximum of 35 items is specified. 

Simulations six, seven and eight retained the 
precisions specified in simulations one, two and three, 
but the number of items were bounded to a minimum 
of 20 and a maximum of 40. Again, the minimum 
number of items had no effect. The results for 
simulation six, as expected, were almost identical to the 
results of simulation four. If simulations five and seven 
are compared it is observed that increasing the 
maximum number of items from 35 to 40 makes a very 
significant difference – almost tripling the number of 
test takers with SEMs at or below the specified 0.35. 

Simulation eight explored higher precision at SEMs 
≤ 0.30 with an upper limit of 40 items. Simulation three 
indicated that a minimum of 45 items is required to 
achieve this implying that this precision is not possible 
for 40 or less items as the maximum number of items is 
reached before the precision is achieved. 

The ninth simulation suggested that a SEM ≤ 0.35 
can be achieved for 83.9% of the test takers and the 
tenth simulation found that this could be achieved for 

                                                 
4 The rationale for the lower limit is to investigate rapid 

convergence and non‐convergence for the upper limit. 

95.7% of the test takers. For the normal distribution, see 
simulation seven, it was found that this could be 
achieved for 96.7% of the test takers. The results are thus 
very comparable if test takers with “extreme” (outside 
the ability range [-2; 2] logits) is excluded – which makes 
the two distributions much more comparable. 

For the positively skewed distribution of simulation 
11, it was found that SEM ≤ 0.35 can be achieved for 
96.1% of the test takers and for the negatively skewed 
distribution of simulation 12 for 88.7% of the test takers. 
The results of simulations 7, 9, 10, 11 and 12 were 
compared since the parameters were the same except for 
the shape of the distribution and the range. 

Table 3. Comparing the results of simulations 7, 9, 
10, 11 and 12 
Simulation 7 9 10 11 12 

Mean # 
items admin 

35.34 36.39 35.58 35.60 36.02 

Min # items 
admin 

34 34 34 34 34 

Max # items 
admin 

40 40 40 40 40 

% with SE ≤ 
0.35 

96.7 83.9 95.7 96.1 88.7 

 

A normal distribution (simulation 7) in the ability 
range [-3; 3] logits yields results equivalent to a 
rectangular distribution (simulation 10) in the ability 
range [-2; 2] logits. If the rectangular distribution’s ability 
range is widened (simulation 9) to [-3; 3] logits a SEM ≤ 
0.35 is achieved for more than 10% less test takers, i.e. 
the test takers at the extremes. A positively skewed 
distribution of abilities (simulation 11) had little effect 
on the result whilst a negatively skewed distribution 
(simulation 12) yielded marginally poorer results. 

Table 2. Summary results of the first eight simulations 

Simulation 1 2 3 4 5 6 7 8 
Mean # items admin 27.54 35.52 47.63 27.58 34.67 27.61 35.34 40 
Min # items admin 26 34 45 26 34 26 34 40 
Max # items admin 37 52 62 35 35 40 40 40 
% with SE ≤ 0.400 100 - - 99.5 - 99.6 - - 
% with SE ≤ 0.350 - 100 - - 33.1 - 96.7 - 
% with SE ≤ 0.300 - - 100 - - - - 0 
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Table 4 summarizes the results obtained from the 
series of five replicated simulations for SEM ≤ 0.40 in 
normally distributed simulations with abilities in the 
range [-3; 3] logits. For each simulation a different ability 
distribution was generated. 

This information is shown graphically in Figure 2. 

The results from Table 4 suggest that the 
parameters are robust and stable and the mean values 
indicate that SEM ≤ 0.40 can be achieved with 37 or less 
items for all test takers. This is in the order of classical 
reliabilities around 0.84. Simulations 9 and 10 clearly 
demonstrated that much less items was needed if the 
ability range [-2; 2] logits instead of [-3; 3] logits is used. 
Simulations 11 and 12 suggested that some skewed 
distributions had little effect on the results. 

A further simulation was run under the same 
conditions with SEM ≤ 0.50 (approximately 
corresponding to a classical reliability of 0.75). To 
achieve this, an average of 18.16 items was required with 
a minimum of 17 items and a maximum of 28 items. For 
94.5% of the test takers this precision could be achieved 
with 20 items. 

Case study 2: Rating scale 

The purpose of the second case study was to investigate 
to what extent CATs can be used to reduce the test 

length of a questionnaire consisting of 84 rating scale 
Likert-type questions. Test takers have to select one of 
five options “Not at all”; “A little”; “Quite a bit”; “A lot” 
and “Extremely” to statements. 

 

Table 4. Five simulations for SEM ≤ 0.40 
Simulation 1 2 3 4 5 Mean 

Mean ability 0.003 -0.011 0.028 0.030 0.000 0.010 
SD ability 0.893 0.904 0.943 0.928 0.873 0.908 
Min ability -2.381 -2.422 -2.605 -2.323 -2.495 -2.445 
Max ability 2.421 2.218 2.526 2.587 2.524 2.455 
% achieved 100 100 99.80 99.9 100 99.94 
Mean # items admin 27.47 27.46 27.59 27.53 27.58 27.53 
Min # items admin 26 26 26 26 26 26 
Max # items admin 36 34 40 40 39 37.8 
% after 36 items 100 100 99.6 99.9 99.9 99.9 
% after 35 items 99.7 100 99.5 99.8 99.8 99.8 
% after 34 items 99.5 100 99.2 99.5 99.5 99.5 
% after 33 items 99.4 99.6 99.0 99.2 99.1 99.3 
% after 32 items 99.2 99.2 98.2 98.5 98.3 98.7 
% after 31 items 98.3 98.1 97.4 97.6 97.1 97.7 
% after 30 items 96.2 95.2 95.0 95.2 94.1 95.1 
% after 29 items 92.2 92.0 90.0 89.8 90.6 90.9 
% after 28 items 81.9 82.8 81.1 80.9 81.2 81.6 
% after 27 items 63.8 64.5 61.0 63.4 61.3 62.8 
% after 26 items 22.8 22.4 22.0 23.2 21.7 22.4 

Figure 2. Plot of the number of items required 
against the percentage of test takers achieving SEM 
< 0.40. 
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Method 

Following a Rasch rating scale calibration using data 
from paper-and-pencil administration of the 
questionnaire, difficulties for each category within each 
question were derived and located on a common scale. 
These difficulties were then used in a Monte-Carlo 
simulation to generate abilities for 1 000 hypothetical 
test takers with no constraints such as exposure or 
content. It was assumed that the pool of questions was 
uni-dimensional with locally independent questions. To 
minimize idiosyncrasies in the simulations, different 
random seeding was used in a number of replications of 
the same and different requirements. An initial 
simulation was based on normal (N ~ (0, 1)) distribution 
with abilities in the range [-3; 3] logits. No restrictions 
on the number of items were initially set and the 
precision in terms of the standard error (SE) was 
stepwise increased as SEM ≤ 0.50; SEM ≤ 0.40; SEM 
≤ 0.35; SEM ≤ 0.30 and SEM ≤ 0.25 which can be 
approximately related to classical reliabilities of 0.75; 
0.84; 0.88; 0.91 and 0.94 respectively. Robustness was 
explored through positively and negatively skewed 
distributions. 

Results 

The simulations suggested that only five questions 
were required to achieve a SEM ≤ 0.35 for 96% of the 
test takers in a normal distribution, and that between 11 
and 18 questions were required in skewed distributions 
– instead of all 84 questions. 

In order to investigate the predicted outcomes, 
CATs were administered to 113 people with ability 
estimates between -2.080 logits and 0.845 logits (mean 
of -1.182 logits) and the results are shown in Table 5. 

Table 5. Results obtained for 113 people. 

Minimum SEM 0.168 logits 
Maximum SEM 0.573 logits 
Mean SEM 0.329 logits 

 

Discussion and Conclusions 

In the first case study the viability of administering 
CATs was investigated for compiling tests from an item 
bank of 260 MCQs with known difficulties to improve 
on the 60-item fixed tests with reliabilities around 0.7.  

Using the item difficulties, Monte-Carlo simulations 
were used to generate abilities for cohorts of 1 000 

hypothetical test takers. The initial simulations were 
based on N ~ (0, 1) distributions with abilities in the 
interval [-3; 3]. No restrictions on the number of items 
were set and the precision was stepwise reduced as SEM 
≤ 0.40; SEM ≤ 0.35 and SEM ≤ 0.30 which can be 
approximately related to classical reliabilities of 0.84; 
0.87 and 0.91 respectively. It was found that these 
precisions could be achieved for all test takers with a 
maximum of 37; 52 and 62 items in each case. On 
average 27.52; 35.52 and 47.63 items were needed in 
each scenario. 

In the second set of simulations these precisions 
were accompanied by restrictions to the number of 
items. A minimum of 15 and a maximum of 35 items 
was set. It was found that the minimum was not 
applicable since at least 26 items were needed to achieve 
the less precise measures, i.e. SEM ≤ 0.40. It was found 
that for SEM ≤ 0.40 the upper limit wasn’t necessary 
since all test takers could be assessed with this precision. 
However, increasing the precision to SEM ≤ 0.35 had a 
significant impact – only around 33% of the test takers 
achieved this with 35 or less items. It was not meaningful 
to further increase the precision to SEM ≤ 0.30. 

A third set of simulations repeated the second set 
but increasing the lower limit of the number of items to 
20 and the upper limit to 40. Again the lower limit had 
no impact. The SEM ≤ 0.40 was achieved for all test 
takers and the SEM ≤ 0.35 by almost all test takers. 
However, changing SEM ≤ 0.30 had a significant impact 
and this precision could not be achieved by any test taker 
in 40 or less items. The third simulation where no limits 
on the number of items was specified indicated that a 
minimum of 45 items is required. 

A fourth set of simulations investigated the shape 
of the distribution of ability measures. Whereas the 
previous simulations were based on normal 
distributions, uniform distributions were simulated. For 
the ability interval [-2; 2] logits the difference between 
the results obtained for the normal and the uniform 
distributions were negligible. However, if the same 
ability distribution [-3; 3] logits is used, the difference in 
results is significant with a difference of more than 10%. 
This can be interpreted that the bank does not have 
sufficient items at the lower and the upper difficulties to 
obtain measures at the specified precisions for test takers 
with abilities below -2 and above 2 logits for the uniform 
distribution. 
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The fifth set of simulations investigated skewed 
distributions, one negative and one positive. It was 
found that the former yielded similar results than the 
normal distribution whilst the latter had slightly worse 
results. This is due to more items at the bottom end of 
the difficulty continuum than at the top. 

Settling on SEM ≤ 0.40 a series of simulations was 
done for N ~ (0, 1) in the ability interval [-3; 3] logits to 
inspect the robustness of the results. It was found that 
the results were stable and it can be concluded that at 
least 26 items and at most 37 items are needed to achieve 
this precision. Furthermore, this precision can be 
achieved for around 95% of the test takers with 30 or 
less items. In other words with half the number of items 
in the fixed-length tests reliabilities in the order of 0.84 
can be achieved. A final simulation was done with SEM 
≤ 0.50, i.e. reliability in the order of 0.75. It was found 
that an average of 18 items (a minimum of 17 and a 
maximum of 27 items) is required. This precision can be 
achieved for about 94% test takers with 20 items, i.e. a 
third of the number of items included in the 60-item 
fixed tests. 

For the questionnaire the simulations suggested that 
only five questions were required to obtain SEMs ≤ 0.35 
in a normal distribution and between 11 and 18 
questions were required to achieve this precision in 
skewed distributions. Administration of seven questions 
yielded a mean SEM of 0.329 with the highest SEM at 
0.573. Some 61 of the 113 people (54%) had SEMs less 
than 0.35 and 98 of the 113 people (86.7%) had SEMs 
less than 0.40. 

Participants took 364.62 seconds (6.08 minutes) on 
average to respond to the seven questions. Some 78 of 
the 113 people (69.03%) took less than 7 minutes (one 
minute per question) and 104 of the 113 people 
(92.04%) took less than 14 minutes (2 minutes per 
question) to respond to the seven questions. If all 84 
questions were administered, it would have taken the 
participants 12 times longer to complete the 
questionnaire. 

The results from these two case studies firstly 
showed that simulations can predict what can be 
expected for CAT administrations and secondly that 
CATs significantly increase the efficiency of assessment 
without compromising measurement precision. 
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