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In institutional research, modern data mining approaches are seldom considered to address 
predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based 
machine learning algorithms over classic (logistic) regression methods for data-informed decision 
making in higher education problems, and stress the success of random forest in circumstances 
where the regression assumptions are often violated in big data applications. Random forest is a 
model averaging procedure where each tree is constructed based on a bootstrap sample of the  
data set. In particular, we emphasize the ease of application, low computational cost, high predictive 
accuracy, flexibility, and interpretability of random forest machinery. Our overall recommendation 
is that institutional researchers look beyond classical regression and single decision tree analytics 
tools, and consider random forest as the predominant method for prediction tasks.  The proposed 
points of view are detailed   and illustrated through a simulation experiment and analyses of data 
from real institutional research projects. 
 

As a wealth of data, with varying degrees of 
sophistication, is now available to institutional 
researchers, the data environment within higher 
education has rapidly transformed to support 
institutional leaders in data-driven decision making 
(Dahlstrom, 2016). Traditionally, analytics has been 
employed to predict enrollment patterns. Predictive 
analytics is now emerging as a strategy to inform 
various decisions with regards to programs, services, 
and interventions related to student progress and 
persistence towards a college degree (Burke, Parnell, 
Wesaw, & Kruger, 2017). Predictive analytics 
encompasses the suite of techniques for making 
predictions in statistical practice.  Institutional 
researchers appear to fall back   on classical statistical 
methods such as logistic regression for their predictive 
analytics tasks (e.g., Soria & Stebleton, 2012; Donhardt, 

2013; Flynn, 2014; Davidson & Holbrook, 2014; 
McKinney & Burridge, 2015; DeNicco, Harrington, & 
Fogg, 2015; Borgen & Borgen, 2016; Nadasen & List, 
2017; Huang, Roche, Kennedy, & Brocato, 2017). In 
fact, the recent informative Data Science in Higher 
Education text by Lawson (2015) focuses almost 
exclusively on regression methods, with only one brief 
chapter of an alternative, classical naive Bayes 
classification approach. 

Relatively few studies consider more modern data 
mining approaches for addressing predictive analytics 
problems in institutional research. To this end, decision 
trees seem to be the popular machine learning 
approach for predicting student success.  This leaning 
is due to the easy implementation and interpretation of 
decision trees in complex data settings (James, Witten, 
Hastie, & Tibshirani, 2013, Chapter 8). Herzog (2006), 
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Delen (2010), and Yu, DiGangi, Jannasch-Pennell, and 
Kaprolet (2010) compare a suite of data mining tools 
and note the success of decision trees in predicting 
student retention. Lin (2012) applies decision tree 
learning algorithms for student retention management 
prediction problems, and provides short-term accuracy 
for predicting which types of students would benefit 
the most from student retention programs. Ahadi, 
Lister, Haapala, and Vihavainen (2015) makes 
predictions and identifies important factors of 
computer programming in student academic 
performance via a decision tree classifier. Wang (2016) 
employs a decision tree mining algorithm to process 
complex transcript data for studying successful 
pathways of community college students progressing 
into STEM degree programs. Casey and Azcona (2017) 
identify decision trees as the best performer for a pass-
fail classifier to predict a student performance on a 
course final exam. 

Random forest (Breiman, 2001) is an ensemble 
learning algorithm aimed at improving prediction 
accuracy through a forest of decisions trees. We do not 
have the space in this paper to provide procedural 
details.   We refer the reader to an accessible exposition 
in     the statistical learning text by James et al.  (2013, 
Chapter 8; including labs and code in the R statistical 
software packages to provide readers a, as the authors 
put it, “valuable hands-on experience”). Random forest 
has been shown to be a consistent high-performer in 
machine learning applications (Caruana & Niculescu-
Mizil, 2006; Caruana, Karampatziakis, & Yessenalina, 
2008; Fernandez-Delgado, Cernadas, Barro, & 
Amorim, 2014). However, random forest has seen very 
few applications in institutional research prediction 
tasks. Hardman, Paucar-Caceres, and Fielding (2013) 
applies random forest to identify inputs that best 
predict student progress from a large amount of 
student information system records. Langan, Harris, 
Barrett, Hamshire, and Wibberley (2016) describes an 
approach using random forest to select benchmarking 
factors to predict completion rates in nursing courses. 
The authors state that the utility of the method is 
appropriate for many forms of data at multiple scales. 
None of these previous studies focus discussion on the 
useful attributes of the random forest method other 
than prediction. 

In this paper, we detail and illustrate the 
advantages of decision-tree based methods over more 
commonly applied (logistic) regression methods and 

the advantages of random forest over single decision 
trees for data-informed decision-making in higher 
education problems. We highlight the success of 
random forest in situations where regression 
assumptions are often violated in big data applications: 
large number of predictors relative to sample size (the 
so-called p >> n problem), potentially large number of 
correlated inputs (multicollinearity), nonlinearity, and 
higher-order interactions between inputs. Relative to 
these challenges, we also highlight tree-based machine 
learning tools as affording flexibility and 
interpretability. We illustrate each point through either 
a simulation experiment or analysis of data from an 
institutional research problem. As part of the 
discussion, we emphasize the ease in applying and 
interpreting the random forest machinery within the R 
statistical software environment (R Core Team, 2017). 
The paper concludes with summary remarks, 
extensions of regression and random forest algorithms, 
and alternative computing environments for predictive 
analytics projects in higher education. 

Making Predictions 

Random forest 

In a random forest, the observations (students in 
our examples) are randomly sampled with replacement 
to create a so-called bootstrap sample the same size as 
the original data set. The observations are then 
repeatedly partitioned using binary decision rules. 
These decision rules are characterized by a cut-point on 
a specific predictor in the data set. The predictor and 
predictor cut-point are chosen to split the observations 
into two groups. In our applications we use a standard 
classification and regression tree (CART) growing 
algorithm that minimizes within-node impurity. That is, 
over all possible binary decision rules at a given node in 
the decision tree, we proceed as follows: for regression 
problems (continuous response) we choose the split 
that minimizes the mean squared error; for a 
classification problem (categorical response) we choose 
the split that minimizes the misclassification rate. The 
tree growing procedure continues until a stopping rule 
is achieved.  Typical stopping rules set the minimum 
number of observations or identify completely 
homogeneous groups relative to the predictors and/or 
outcome of interest. For example, in our applications, 
we specify stopping rules of the minimum number of 
observations required to attempt a split (20 in our 
applications), minimum number of observations 
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required in a node (7 in our applications), maximum 
tree depth (30 levels in our applications), and amount 
of reduction required in the tree splitting criterion to 
keep that split (0.01 in our applications). 

In CART, a single “best” tree is identified typically 
by pruning back “weak splits” in the decision tree, 
namely splits that provide little gain in the objective 
criterion. This pruning procedure may be performed to 
create a set of optimal trees of different sizes over 
which a final best tree may be chosen. In random 
forest, no pruning is performed. Each tree in the forest 
is potentially sub-optimal. However, aggregating 
predictions over a collection of such trees may improve 
prediction accuracy and allow for a ranking of 
important variables for prediction. Furthermore, in the 
random forest procedure growing procedures, decision 
rules are selected over a random subset of predictors. 
Liaw and Wiener (2002) recommends a subset of size 
√p as the default, where p is the number of predictors. 
This option allows for variation in the trees of a forest 
and also decreases the computational expense of 
growing many trees. We refer the reader to James et al. 
(2013; Chapter 8) for details. 

Random forest determines variable importance by 
randomly permuting (shuffling) a given variable. In this 
way, the variable should have no relationship with the 
response. A statistic measuring the difference in the 
random forest prediction accuracies using the original 
data and that of random forest predictions using the 
shuffled variable is then calculated. A single variable 
importance measure is computed as the average of 
these differences across every tree in the forest.   The 
process is repeated for each variable.   The variables 
may be ranked according to this difference measure, 
the largest difference indicating a variable furthest from 
a random shuffling and thus most important (Breiman, 
2001). 

CART-based methods have an advantage over 
regression methods as they are not restricted by 
assumptions of linearity, can handle correlated 
predictors (less susceptible to multicollinearity), and 
implicitly address interactions. Regression methods 
require a rather tedious, iterative model building and 
selection procedure to ensure appropriate 
transformations are made on predictors and 
interactions among predictors are considered. 
However, given the potential combinatorial explosion 
in model space when considering higher order 

polynomial terms, three-way and larger interactions, 
and non-linear relationships beyond log and 
exponential functions, regression methods potentially 
suffer in prediction accuracy in complex, big data 
applications. That said, even a scan of this restricted 
model space over simple transformations and only two-
way interaction terms requires potentially involved and 
subjective decision processes. One such choice is the 
model selection objective criterion. In our applications, 
we choose the Akaike information criterion (AIC). We 
refer the reader to James et al. (2013, Chapters 3 and 4) 
for further discussion on regression modeling pitfalls 
and model selection. 

Additionally, institutional research applications 
typically include many multi-category variables. For 
example, ethnicity may include levels of Caucasian, 
Asian, Southeast Asian, Pacific Islander, Filipino, Black 
or African American, Mexican American, non-Mexican 
American Hispanic, Native American, multiple 
ethnicities, international, other/not stated. In a 
regression setting, each of these levels is fit using an 
indicator function (e.g., a variable that determines if a 
student is Native American or not). Thus, this one 
categorical ethnicity predictor with 12 levels requires 11 
variables in the regression procedure (baseline level is 
not included).  Even for problems with large sample 
sizes n, the number of predictor variables   p in a 
learner can thus grow quickly. Regression methods 
require that p < n (so-called full rank models). Even 
when p is close to n, iterative algorithms used to 
develop regression-based learners may have difficulties 
converging. By selecting decision rules on individual 
predictors, CART and the random forest procedure 
have no issues when p > n. 

The applications and simulation experiments 
presented in Section 3 aim to illustrate these advantages 
of CART and random forest over regression modeling. 
We will compare CART, random forest, and regression 
through a series of prediction performance measures. 
Evaluations will be made through routine ten-fold 
cross-validation. In particular, the data set will be 
randomly divided into ten equal parts. Stratified 
sampling is used to ensure balanced outcome variable 
in each fold.  In a sequential procedure, one of the 
parts will be removed from the data set. The methods 
will be implemented on the remaining nine parts, this is 
called the training phase.  These trained procedures will 
then be used to predict observations in the one left out 
part, this is called the testing phase. We will compute 
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prediction accuracy, sensitivity (probability of correctly 
identifying a positive case), specificity (probability of 
correctly identifying a negative case), and area under an 
ROC curve (a plot of true positive rate against false 
positive rate across all possible cut probabilities for the 
outcome) in this test set. The cross-validation process 
is repeated by leaving out each of the ten parts of the 
data set in turn. We refer the reader to James et al. 
(2013) and Knowles (2015) for further details. 

R packages 

All analyses in this paper are performed in the R 
statistical software environment (R Core Team, 2017). 
Logistic regression models are fit using the glm 
function. Model selection via an AIC criterion is 
performed using the stepaic function. CART is 
performed using the ctree function in the party 
package (Hothorn, Hornik, Strobl, Zeileis, & Hothorn, 
2015) except in Section 3.3. In that section, the 
packages rpart (Therneau, Atkinson, Ripley, & Ripley, 
2017) and rattle (Williams, 2009) are used for tree 
visualization purposes. Random forest is performed 
using the randomForest function in the identically 
named randomForest package (Liaw & Wiener, 2002; 
Breiman, Cutler, Liaw, & Weiner, 2015).  Raw sample R 
code is made available at 
https://github.com/ralstatman/PARE. 

Random Forest as a Predictive 
Analytics Tool 

 In this section, we consider predictive 
performance of random forest and logistic regression 
when regression assumptions are violated. In the first 
subsection, we consider the situation of a large number 
of correlated inputs (multicollinearity, p > n problem).  
In the second sub-section, we consider model selection 
and variable importance rankings in the presence of 
nonlinear relationships and input interactions. In the 
third sub-section, we argue that a decision tree 
constructed with CART is not only flexible, but 
reasonable to interpret. The perceived tradeoff in ease 
of interpretation with complexity in method 
implementation and predictive performance thus favors 
tree-based learners over regression-based learners. In 
the fourth sub-section, we consider methods for 
handling imbalanced data in larger data sets. In each 
subsection, we motivate and illustrate our discussion 
points within the context of a student success study 
application or simulation experiment.  

Large p 

Though sample sizes are seemingly large in 
institutional research problems, we are often con- 
fronted with a relatively large number of predictors, p, 
that create difficulties for regression procedures. Two 
common scenarios illustrate this phenomenon. 

Scenario 1, p > n: The data set consists of many 
categorical variables and/or categorical variables with 
many levels. Since each level of these categorical 
variables must be modeled with an indicator function 
(James et al., 2013, Section 3.3), we may easily find 
ourselves in a situation where the number of predictors 
is greater than the sample size. As discussed earlier, 
regression methods cannot be implemented in this so-
called p > n situation (specifically, the design matrix is 
not full-rank). In order to apply the regression method, 
variables must be removed from the data set and/or 
categorical variables collapsed into fewer levels. This 
removal of potentially valuable data may result in 
reduced prediction accuracy. 

Scenario 2, correlated predictors: The data set consists 
of a large number of predictors, p, but not necessarily 
large relative to sample size n. However, sets of 
predictors are highly correlated. In order to apply a 
regression method, a substantial amount of variable 
pre-processing is required to identify the correlated 
predictors and narrow down the set of predictors in a 
tedious model selection routine. 

Scenario 1 includes subgroup analyses. Such 
analyses include predictive analytics for at-risk groups 
or the study of interventions where a relatively small 
number of students participate. 

As a concrete example, consider a study of four-
year graduation success (binary outcome) for equal 
opportunity program (EOP) students in an Electrical 
and Computer Engineering degree program over a ten-
year period (dates removed to preserve anonymity).  In 
this study, we have 229 students and 256 predictors. 
This example derives from a larger study looking to 
identify course grade thresholds above which students 
ultimately succeed in the given program of study (He, 
Levine, Bohonak, Fan, & Stronach, 2017).  The 
predictors thus include grade threshold indicators 
(grade better than A-, grade better than B+, grade 
better than B, etc.) in addition to demographics. This 
leads to a large number of correlated predictors, the 
analysis falling into both scenarios 1 and 2 above. 
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CART and random forest have no difficulty fitting 
this data; we use 500 trees in the random forest routine. 
The predictor set must be reduced prior to fitting a 
logistic regression model on four-year graduation 
success. However, we found straightforward stepwise 
selection routines fail in two respects.  First, the 
iterative algorithm for estimating regression coefficients 
fail to converge. Second, the estimation routine suffers 
from the Hauck-Donner phenomenon (Hauck & 
Donner, 1977) with estimated probabilities of 
graduation success nearly zero or one for every student. 
In order to fit a logistic regression model appropriately 
to the data, we performed the following steps: 

 Compute the correlations amongst the 
quantitative predictors and drop the ones that 
were highly correlated to the others (r > 0.7). 

 Apply the logistic regression fitting procedure 
allowing for a sufficient number of iterations 
(30 in this case) to ensure convergence. A list of 
linearly dependent predictors was extracted 
from this step of the logistic regression 
implementation. 

 Drop the alias predictors from the previous 
step and perform a logistic regression model 
selection routine based on an AIC goodness-of-
fit criterion. 

 We note that the computational time is 
recorded to capture this entire process. 

As discussed earlier, predictive performance is 
compared via a ten-fold cross validation routine. Table 
1 presents predictive accuracy, sensitivity, specificity, 
and computing time. Figure 1 presents the ROC curves 
and areas under each ROC curve. Random forest out-
performs CART and logistic regression, logistic 
regression a distant third and computationally 
expensive. 

Variable importance  

Prediction accuracy may suffer when regression-
based learners incorrectly specify the relationship 
between output and inputs. In particular, unless 
nonlinear relationships and/or interactions are 
expected a priori, say based on the science, we typically 
limit ourselves to   a small suite of transformations 
(e.g., square-root, log, and reciprocal) and only two-way 
interactions to ease the model selection task. We refer 

the reader to James et al. (2013, Chapters 3 and 4) for 
details and discussion. 

In this section, we investigate model selection 
performance, comparing random forest and logistic 
regression with respect to variable importance rankings. 
The evaluation is conducted through a simulation study 

Figure 1. ROC curve comparison of classification and 
regression tree (CART), logistic regression (LR), and 
random forest (RF) for predicting four-year graduation 
success. Graphic presents the area under each ROC curve 
(AUC). Data set considers a subgroup analysis of 
Electrical and Computer Engineering equal opportunity 
students (EOP) from a larger STEM success study. 

 

 

Table 1. Comparison of performance and computing 
time for predicting four-year graduation success using 
classification and regression tree (CART), logistic 
regression (LR), and random forest (RF). Data set 
considers a subgroup analysis of Electrical and 
Computer Engineering equal opportunity students 
(EOP) from a larger STEM success study. 

  Predictive 
Accuracy 

Sensitivity  Specificity  Computational 
time (seconds) 

CART  0.87  0.95  0.65  0.42 

LR  0.82  0.87  0.69  451.88 

RF  0.93  0.96  0.84  0.19 
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where the variable importance rankings are known, but 
the underlying model may involve nonlinear and higher 
order interaction terms. Without knowledge otherwise 
in these scenarios, we consider regression model 
selection where only two-way interactions are 
considered. CART (single best tree) is not considered 
in this comparative simulation experiment. 

Three models are used to generate the data: 

Model A: gሺpሻ	ൌ	െ2	൅	logሺ1ሻZ1	൅	logሺ2ሻZ2
൅	logሺ3ሻZ3	൅	logሺ4ሻZ4	൅	logሺ5ሻZ5

	

Model B: gሺpሻ	ൌ	െ2	൅	logሺ1.2ሻሺZ1Z2Z3ሻ൅	
logሺ3ሻZ4൅	logሺ4ሻZ5.01		൅	logሺ5ሻZ6

	

Model B: gሺpሻ	ൌ	െ2.5	൅	logሺ1.2ሻሺZ1Z2Z3ሻ൅	
logሺ3ሻ√Z4൅	logሺ4ሻZ5		൅	logሺ5ሻZ63

	

where g(p) = log {p/(1 - p)} providing for logistic 
regression models and the covariates Z1, . . . , Z6 are 
independently generated from uniform distributions on 
the unit interval (0, 1). 

Model A has five predictors, Models B and C have 
six predictors, each presenting different relationships 
with the response. All predictors are generated 
independently from a uniform distribution on the unit 
interval. The variable coefficients define variable 
importance. The coefficients in Model A range from 
log(1) to log(5), which defines the true variable 
importance ranking in order from Z1 to Z5, with Z1 
having no relationship with the response (log(1) = 0) 
and Z5 being the most important. Model B incorporates 
a nonlinear transformation and a three-way interaction.  
The true variable importance ranking has the three-way 
interaction of Z1, Z2, and Z3 as the least important, 
followed by the variables Z4, Z5 and Z6 in order of 
importance. Model C incorporates two nonlinear 
transformations and a three-   way interaction of the 
predictors. The true variable importance ranking has 
the three-way interaction of Z1, Z2, and Z3 as least 
important, followed by the variables Z4, then Z5, and Z6 
in order of importance. 

We generate 500 data sets from each model, each 
data set with n = 1000 observations. The random forest 
procedure constructs 500 trees. A stepwise model 
selection routine was employed to assess the ability of 

the logistic regression method to identify the true 
variable importance rankings. In particular, all six 
predictors and all two-way interactions of these 
predictors were included in the initial fitting stage. A 
backward elimination approach was adopted to refine 
the fit, statistical significance gauged at the p < 0.05 
level. Variable importance ranking was based on the 
magnitude of the effect of each predictor on the 
response, as determined by the estimated regression 
coefficients.  For a predictor that appeared in one or 
more interactions in the final fit, the effect of this 
predictor was computed using its estimated regression 
coefficient times the median of the other predictor in 
the interaction term. 

Model A presents as a logistic regression model 
where the predictors are linearly related to the log odds. 
Therefore, a logistic regression model fit should have 
no difficulty identifying the true variable importance 
rankings. The purpose of this model is to determine 
whether random forest can provide comparable 
variable importance rankings to the logistic regression 
model fit to data generated from a logistic regression 
model. Models B and C contain nonlinear relationships 
between the predictors and the response, and a three-
way interaction term in the predictors. While random 
forest should have no difficulty handling these complex 
scenarios, logistic regression variable importance 
rankings are expected to suffer. 

Figure 2 suggests that both logistic regression and 
random forest capture the true variable importance 
ranking of the predictors for Model A. The logistic 
regression method presents the weakest effects 
(estimated coefficients) for both Z1 (with a coefficient 
of 0) and Z6 (not in the model). The logistic regression 
method correctly ranks the importance of the 
remaining covariates (Z2 to Z5) based on the magnitude 
of the estimated regression coefficients. However, the 
logistic regression method failed to rank the 
importance of Z3, Z4, and Z5 in selection frequencies 
(top-left graphic of Figure 2). Random forest accurately 
established the importance of the predictor variables in 
both selection frequencies and importance score 
(bottom graphics of Figure 2). Random forest shows 
nearly zero importance for both Z1 and Z6, and the 
variance of the importance scores for these two 
variables were much smaller as compared to the logistic 
regression method. Interestingly then, though Model A 
generates data from a logistic regression model with 
linear effects   in the predictors and no interactions, 
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random forest performs comparably to a logistic 
regression method in ranking variable importance. 

Figure 3 shows that random forest outperformed 
logistic regression in the Model B simulation 
experiment, which contained a nonlinear term (in Z4) 
and a three-way interaction term. The logistic 
regression method ranks Z5 as less important than Z4 in 

both estimated effects and selection frequencies 
(incorrect since the coefficient of Z5 was larger than 
Z4). Also note that the spread of the estimated effects 
of Z1, Z2 and Z3 (top-right graphic of Figure 3) are 
large. On the other hand, random forest correctly 
ranked the variables in both importance scores and 
selection frequencies. 

 

 

Figure 2. Variable importance ranking from logistic regression and random forest fits of data 
generated from Model A. Simulation study included 500 data sets of 1000 observations each. The bar 
charts in the left column and box-plots in the right column present the distribution over these 500 
simulated data sets. 
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Figure 4 shows that random forest outperformed 
logistic regression in the Model C simulation 
experiment, which contained two nonlinear terms and a 
three-way inter- action term. Random forest correctly 
ranked the variables in both importance scores and 
selection frequencies. The logistic regression method 
found Z6 not to be statistically significantly more 

important than Z5 (overlap in the boxes in the top-right 
graphic of Figure 4).  

Interpretation 

Linear regression is a classic method that is often 
cited as a superior analytics option due to ease of 
interpretation. However, such a statement holds only 
when the linear relationship between output and inputs 

Figure 3. Variable importance ranking from logistic regression and random forest fits of data generated from 
Model B. Simulation study included 500 data sets of 1000 observations each. The bar charts in the left column 
and box-plots in the right column present the distribution over these 500 simulated data sets. 
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is appropriate. Once we start considering variable 
transformations for nonlinear relationships and higher 
order interaction terms, both model selection and 
interpretation become quite challenging. In complex, 
so-called “big data” tasks, these scenarios often present 
themselves. Tree-based algorithms provide for better 
handling of transformations and interactions. If 
interpretation is required, we may fall back on the one 
best tree from a CART fit and the binary decision 

branches therein.  We refer the reader    to James et al.  
(2013, Chapters 3 and 4) for more details and 
discussion.  In this section, we will illustrate 
interpretation of a CART fit through a STEM student 
graduation success study. 

Consider predicting four-year graduation success 
among 1252 first-time freshman with Electrical and 
Computer Engineering (ECE) as their program of entry 

Figure 4. Variable importance ranking from logistic regression and random forest fits of data generated from 
Model C. Simulation study included 500 data sets of 1000 observations each. The bar charts in the left 
column and box-plots in the right column present the distribution over these 500 simulated data sets. 
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from 2001 to 2010. The data set contains 85 inputs 
including demographic information (e.g., gender, URM 
indicator, first-generation college indicator), academic 
preparation (e.g., SAT score, math proficiency entering 
SDSU, high school GPA), academic progress (e.g., 
term GPA/units, probationary status), and academic 
performance (grades in pre-requisite courses for the 
major, as identified by the ECE program adviser). Since 
a goal of such a learner is to predict graduation success 
and trigger early intervention for at risk students, we 
use four semesters of data for each student. The four-
year graduation rate in this data set is 27%. 

Table 2 and Figure 5 compare random forest, 
CART, and logistic regression with respect to 
predictive accuracy, sensitivity, specificity, AUC, and 
computing time. The logistic regression model is fit via 
an analogous routine to that presented earlier, scenario 
2. The take-home message for this section is that in this 
application random forest and CART are comparable 
and out perform logistic regression in all aspects. We 
are thus comfortable relying on the classification tree 
for interpretation purposes. 

Table 2. Comparison of performance and 
computing time for predicting four-year graduation 
success for 2001 to 2010 cohorts of ECE first-time 
freshman. Four semesters worth of inputs for each 
student are used in CART, logistic regression (LR), 
and random forest (RF). 
  Predictive 

accuracy 
Sensitivity  Specificity  Computational 

time (seconds) 
CART  0.92  0.98  0.75  0.42 
LR  0.87  0.90  0.77  1241.22 
RF  0.92  0.94  0.85  0.85 

 

Figure 6 presents the best classification tree. To 
interpret this tree, begin by reading from the top down, 
with the root node labeled as node number 1. This root 
node and each internal node in the tree are 
characterized by a decision rule that sends students 
down to either a left or right branch. The root node 
partitions the data into two subsets based on whether 
or not the student took EE330: Fundamentals of 
Engineering Electronics by the end of their third 
semester (binary split with answer of 0 = No, 1 = Yes).  

 

Figure 5. ROC curve comparison of CART, logistic 
regression, and random forest for predicting four-year 
graduation success of ECE first-time freshman 
entering from 2001 to 2010. The graphic presents the 
AUC for each ROC curve. 

Progressing down the right branch, node number 
3 splits the students on the basis of total units earned 
on campus (not including transferred units) by the end 
of the third semester. The decision rule not presented 
on the graphic is that students with at least 36 units by 
the end of their third semester are sent to the right 
branch. Following this right branch, node number 7 
splits students by admission basis, first-time-freshman 
from California going to the left branch, all other 
students to the right branch. At this point, the students 
are no longer split, collecting in a terminal node. 
Terminal node number 14 contains 1% of the 
observations (13 students) of which 33% successfully 
graduated with a STEM degree within four years. 
Terminal node 15 contains 20% of the total 
observations of which 95% successfully graduated with 
STEM degree within four years. 
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We can perform similar exercises, following 
students down the various branches of the tree and 
defining one of nine terminal nodes (tree “leaves” 
numbered 2, 48, 98, 198, 199, 25, 13, 14, and 15 in 
Figure 6). With true responses to node decision rules 
sending students down left branches, the terminal 
nodes can represent risk groups with increased 
probability of graduating with a STEM degree within 
four years from left to right. The terminal nodes 
present the percentage of students falling in that node 
and the predicted outcome. The R- generated graphic 
color codes the nodes as darker shades of blue 
signifying greater success in graduating with a STEM 
degree and darker shades of green signifying lower 

probabilities of graduating with a STEM degree. As 
three examples: 

 A first-time-freshman ECE major who did not 
take EE330 by their third semester has only a 
5% chance of graduating with a STEM degree. 

 A first-time-freshman ECE major from outside 
California (non-resident) who took EE330 and 
earned at least 36 units by their third semester 
has a 95% chance of graduating with a STEM 
degree. 

 A first-time-freshman, local service area, low 
income ECE major over the age of 22 at entry 
who took EE330 but did not earn 36 units by 
their third semester and had a GPA below 2.7 

 

Figure 6: Decision tree on an outcome of four-year graduation success for entering Electrical and Computer 
Engineering obtaining a STEM degree. Each node presents the majority rule (Yes = graduate with a STEM 
degree; No = does not graduate with a STEM degree; blue color signifies ‘Yes’ majority rule and green color 
signifies ‘No’ majority rule), percentage of students graduating with and without a STEM degree in four years 
respectively, and percentage of the sample in that node. On top of each node is a white square box with the 
node number. The decision rule for the root and internal nodes is denoted underneath the node. ‘Yes’ 
decisions send a student down the left branch, ‘No’ decisions send students down the right branch from a 
given node.  The terminal nodes appear at the bottom line of the tree. 
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by second semester has a 30% chance of 
graduating with a STEM degree. 

We present this example to counter the argument 
that trees are far more complicated to interpret than 
regression-based learners. We find the interpretations 
comparably intuitive. CART-based approaches though, 
unlike regression approaches, are not challenged by 
non-linear relationships and correlated predictor 
variables. 

SMOTE for imbalanced outcome data. 

 Data is often imbalanced where one outcome 
represents a small minority portion of the observations. 
In many cases, it is the minority group for which we 
will want an accurate classification. For example, 
California State University has a graduation writing 
assessment requirement (GWAR) fulfilled by earning a 
grade of C or better in an upper division writing course 
or scoring “high” on a writing placement assessment 
(WPA). A student scoring low on the WPA must also 
complete a lower division writing course, RWS 280, 
prior to satisfying the GWAR with an upper division 
writing course. In a recent study, the University Senate 
wished to predict performance on the WPA based on 
student demographic inputs, writing competency prior 
to taking RWS 280 (advanced placement writing course 
credit; performance in courses such as RWS 100 and 
RWS 200 fulfilling writing competency), and writing 
course class size. In all, the data set has 45 predictors 
including gender, ethnicity, major, pre-major, STEM 
status, admission status, honors, disability, low income, 
first-generation college student indicator, high school 
GPA, ACT/SAT scores, and math proficiency. 

The WPA study includes 22,151 students from 
2001 to 2015.  Only 17% of students achieve the WPA 
threshold satisfying the GWAR creating an imbalanced 
distribution in the score. With imbalanced outcome 
data, predictive methods will be inclined to misclassify 
most of the minority cases (“high” WPA score) in 
order to achieve an overall optimal (low) 
misclassification rate. To overcome this difficulty, we 
applied the SMOTE algorithm (Chawla, Bowyer, Hall, 
& Kegelmeyer, 2002) to produce a 50/50 outcome 
balance by under-sampling low scores and 
oversampling the high scores for the ultimate analysis 
data set.  In    this section, we will compare the 
performance of logistic regression, CART, and random 
forest for the WPA prediction task. 

Correlation among predictors in this data set lead to a 
concern about multicollinearity   in the regression 
method. Analogous to that detailed earlier, we 
performed a series of model selection steps to in the 
logistic regression procedure. We first computed the 
variance inflation factor (VIF) values for each 
predictor. Predictors with VIF greater than 5 were 
extracted and collected into sets of correlated 
predictors. One predictor from each of these sets was 
removed from the data set at random. We then fit a 
logistic regression model on the reduced data and again 
checked the VIF values. We repeated this iterative 
process until there were no signs of multicollinearity 
relative to VIF. We finally performed AIC-based model 
selection to obtain a final regression-based learner. 
Computational time was recorded to capture the entire 
process. 

Table 3. Comparison of performance and computing 
time for predicting success on the writing placement 
assessment using classification and regression tree 
(CART), logistic regression (LR), and random forest 
(RF). 
  Predictive 

accuracy 
Sensitivity  Specificity  Computational 

time (seconds) 

CART  0.73  0.87  0.60  3.37 
LR  0.63  0.70  0.44  654.64 
RF  0.85  0.93  0.77  35.25 

 

Table 3 presents the predictive accuracy, 
sensitivity, specificity, and computing time. Figure 7 
presents the ROC curves for each fold of the ten-fold 
cross validation routine. The figure also presents the 
average AUC for the ROC curves for each approach. 
Random forest out-performs CART and logistic 
regression.  Random forest is an order of magnitude 
slower than CART due to the large sample size. 
However, logistic regression is an order of magnitude 
more computationally expensive than random forest.  

Discussion 

In this paper we argue that random forest is a 
valuable tool for institutional research predictive 
analytics tasks. We show that random forest is easy to 
apply, flexible, and computationally inexpensive, the 
decision-tree infrastructure providing an interpretable 
competitor to classic regression methods. Of note, 
random forest successfully ranks the importance of 
variables, even on data generated directly from a 
logistic regression model. Random forest also handles 



Practical Assessment, Research & Evaluation, Vol 23 No 1 Page 13 
He, Levine, Fan, Beemer & Stronach, Random Forest as a Predictive Analytics Alternative 
                          

correlated inputs, nonlinear relationships, effect 
modifiers, and imbalanced outcomes, complexities that 
create great difficulties for regression methods in terms 
of predictive accuracy and computational expense. The 
applications we confront in practice and consider in 
this paper have a binary response.  We thus focus here 
on the random forest and logistic regression methods 
for classification problems. However, a similar paper 
may be written to present analogous merits for random 
forest over multiple linear regression for a continuous 
response. We thus recommend institutional researchers 
consider random forest as a go-to data mining method. 

More generally, CART and random forest 
methods are particularly strong for making predictions, 
including with census-level data. Currently tools for 
drawing statistical inferences using random forest are 
lacking. We also note that random forest is able to 
handle a large number of inputs for prediction tasks. 
Random forest applications will often report variable 
importance rankings to aid the user assess the value of 
a smaller set of inputs. Random forest provides a 
natural means for quantifying variable importance. 
Section 3.2 aims to show the advantages of random 

forest, relative to regression methods, on this front. To 
this end we apply regression model selection 
procedures to assess variable importance for logistic 
regression. We believe these procedures are informative 
for the empirical evaluation of these methods in a 
simulation setting. We note though that there is debate 
in the literature on the value of the phrase “variable 
importance” in a regression setting and the drawbacks 
of stepwise regression methods in actual statistical 
analysis practice. We refer the reader to the text by 
Burnham and Anderson  (2003) for philosophies and 
strategies. 

A number of variations on regression and random 
forest are worthy of mention. Regularized regression 
(e.g., lasso) includes a penalty term in the least squares 
objective function, shrinking regression coefficient 
estimates towards zero (see James et al., 2013, Chapter 
6 for details). This approach has thus been shown to 
handle situations where the number of predictors p is 
large (e.g., the p >> n problem), and, in a sense, 
performs model selection within the estimation routine. 
However, with the regression model as a base, 
regularized regression is confronted with the same 
challenges discussed in this paper concerning non-
linear relationships (transformations) and interactions. 
Extremely randomized trees provide a computationally 
less expensive alternative to random forest by randomly 
choosing a single split rule, decision variable and cut 
point, in the tree growing process (Geurts, Ernst, & 
Wehenkel, 2006). We note that lasso and extremely 
randomized trees perform comparably to their 
respective counterparts in the examples of this paper. 
We thus merely mention these alternatives here as 
discussion items. Finally, ensemble learning provides a 
means of combining predictions across a suite of 
machine learners. If combined appropriately, the 
ensemble may out perform single learners by drawing 
from the benefits of each individual learner. We are 
currently exploring the potential of ensemble learning 
in higher education applications (as an initial study, see 
Beemer, Spoon, He, Fan, & Levine, 2017). 

Though not considered in the illustrations of this 
paper, the R random forest package can impute missing 
data using the proximity matrix. In a random forest 
procedure, the proximity between two observations is 
computed as the proportion of trees within which the 
pair fall in the same terminal node. It is thus a measure 
of distance or closeness between observations. The 
imputations are then based on a weighted average of 

Figure 7. ROC curve comparison of classification 
and regression tree (CART), logistic regression, and 
random forest for predicting success on the writing 
placement assessment. Ten ROC curves are 
presented for each approach from each fold of the 
ten-fold cross validation routine. Graphic presents 
the average area under the ROC curves (AUC). 
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the non-missing observations using the proximities. 
Alternatively, R classification and regression tree 
(CART) uses a surrogate split method where the “next 
best” decision rule is used at a node for an observation 
missing the value for the split rule. Feelders (1999) 
provides details and a comparison of these missing data 
mechanisms. 

Finally, on the software front, our expertise and 
preference is for the R statistical computing 
environment (R Core Team, 2017). Nonetheless, 
random forest is available for application in for 
example WEKA (Frank, Hall, & Witten, 2016), SPSS 
Modeler, and RapidMiner. We thus encourage IR 
practitioners to move beyond classical regression and 
single decision tree methods and apply random forest 
for predictive analytics projects. 
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