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This computer simulation study evaluates the robustness of the nonparametric Levene test of equal 
variances (Nordstokke & Zumbo, 2010) when sampling from populations with unequal (and 
unknown) means. Testing for population mean differences when population variances are unknown 
and possibly unequal is often referred to as the Behrens-Fisher problem when the populations are 
normally distributed, and the generalized Behrens-Fisher problem when the populations are non-
normal. The nonparametric Levene test was developed to overcome reductions in power of the 
original Levene test of equal variances in the case of the generalized Behrens-Fisher problem. We use 
a Monte Carlo computer simulation to demonstrate that sampling from populations with unequal and 
unknown means can lead to incorrect (either inflated or decreased) Type I error rates of the 
nonparametric Levene test. Centering samples using either sample means or medians does not correct 
the Type I error rates. This note is intended to make applied researchers aware of this problem when 
testing for the equality of population variances with the NPL test and in general. 

The main objective of this simulation study is to 
demonstrate how differences in population means can 
impact the accuracy of the nonparametric Levene test of 
equal variances1. Nordstokke and Zumbo (2010) 
introduced the nonparametric Levene (NPL) test for 
equality of population variances (or scale) that can be 
used when samples exhibit non-normality, for example 
when sampling from skewed distributions. The NPL test 
involves ranking observed scores and then conducting 
the original, mean-based Levene test (Levene, 1960) for 
equal variances on the ranked data. The test has been 
shown to have good Type I error and power properties 
when sampling from skewed populations, with both 

                                                 
1 In the statistical literature, statistics such as the mean or 

median are referred to as measures of “location” of a random 
variable, while statistics such as the variance (and standard 
deviation) or interquartile range are measures of “scale” used 
to describe the variability or spread of a random variable. As 
such, one will encounter either terms like “tests of equal 
variance” or “tests of scale” in the statistical research 

simulated and real data (Nordstokke & Zumbo, 2010; 
Nordstokke, Zumbo, Cairns, & Saklofske, 2011). 

This paper uses a computer simulation to 
demonstrate an important aspect of the NPL test that 
was implicitly assumed in the studies by Nordstokke and 
his colleagues; that is, it is explicit in the earlier studies 
but not stated in the description of the computational 
steps of the nonparametric Levene test. The assumption 
states that samples have been drawn from populations 
with equal means, although not necessarily equal 
variances. In the case of comparing variances across two 

literature. While the former is often used to describe 
parametric and the latter nonparametric statistical tests, tests 
of equal variance are a subset of the more general category of 
tests of equal scale. Because the statistical literature is not 
standard or consistent in its usage, we will use the two terms 
interchangeably. 
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groups, Nordstokke and Zumbo (2010) describe the 
computational steps for the NPL test as: 

1. Pool observed data together and rank all scores, 
giving the lowest score the rank of 1. 

2. Separate the ranked data back into their original 
groups. 

3. Conduct the original mean-based Levene test of 
equal variances (described below) on the ranked 
data. 

The original mean-based Levene test for equal 
variances proceeds by conducting an analysis of variance 
(ANOVA) on the absolute deviations of the observed 
scores from their respective group-specific means. That 
is, the original Levene’s test is computed as an ANOVA 
on the absolute values of the deviations  𝑒௜௝ ൌ 𝑋௜௝ െ
𝑋ത•௝ , where 𝑋௜௝ is the score for observation i in group j 
and 𝑋ത•௝ is the mean of group j. In the original Levene 
test, the 𝑋௜௝ are the observed scores, whereas in the NPL 
test the 𝑋௜௝ are the pooled ranks described above. The 
resulting F-statistic from this test is used to evaluate the 
null hypothesis that the samples are drawn from 
populations with equal variances.  

The NPL test assumes that the samples are drawn 
from populations with equal means, so that the sample 
means are also equal in expectation. In Nordstokke and 
Zumbo (2010), for example, this assumption was 
satisfied because the simulated data came from 
populations with equal means. In Nordstokke et al. 
(2011) mean-centering was described as part of the 
simulation methodology in order to manipulate group 
variance ratios, but was not described as part of the steps 
in computing the NPL test. In this paper, we 
demonstrate how unequal (and unknown) population 
means can adversely affect the Type I error rates of the 
NPL test, and discuss the implications for use of the test. 
As we discuss in more detail below, this problem arises 
only when population means are both unequal and 
unknown; if population means differ by a known 
amount, the difference can be adequately adjusted and 
the NPL test used as if population means were equal. As 
a reminder, a Type I error in this context would be one 
in which the researcher falsely concludes there is a 
difference in the population variances when in fact there 
is not. 

Background 

In education and social science-based research 
contexts it is often important to determine whether two 
or more groups being studied have statistically equal 
variances. Nordstokke et al. (2011) discuss two reasons 
why testing for differences in scale might be important. 
First, the nominal Type I error rate (and other 
characteristics) of many statistical procedures for 
comparing group means, such as the t-test or ANOVA, 
may be biased if population variances are unequal, and 
this problem can be especially relevant when group 
sample sizes are unequal. Many nonparametric statistical 
tests of location (i.e., means or medians) are subject to 
these same problems (Nordstokke & Colp, 2018; 
Nordstokke et al., 2011). Therefore, a test of equal 
variances may be used as a preliminary test before 
comparing population means or medians. As a second 
case, one may be interested in comparing variances 
directly as an outcome of a study. One may be interested 
in studying how a particular treatment affects variability 
rather than the average outcome, for example, or may be 
studying a treatment with heterogeneous effects that 
impacts both the variance and mean of an outcome. In 
these latter cases, the variability of scores may actually be 
the outcome of interest. 

The use of effect sizes is a third reason that 
researchers may be concerned about testing for equality 
of variances across groups. The interpretation of many 
standardized effect sizes (e.g. Cohen’s d) can be 
impacted when variances are unequal because the 
standardizer for these effect sizes is based on the 
variance (Grissom & Kim, 2005). Given 
recommendations to report and interpret standardized 
effect sizes (e.g., Wilkinson & Task Force on Statistical 
Inference, 1999), this implies that researchers need to 
address issues of variance (in)equality across groups to 
meaningfully report and interpret effect sizes. The next 
section describes how sampling from populations with 
unequal and unknown means can adversely affect 
nonparametric tests of scale such as the NPL test when 
used in these contexts. The subsequent section discusses 
cases where the population means differ by a known 
amount. 

Nonparametric Levene Test and Unequal Means 

Many early tests for equality of scale were 
dependent upon the assumption that populations were 
normally distributed. In order to overcome problems 
caused by non-normality, Levene (1960) proposed a new 
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test in which an ANOVA is conducted on the absolute 
value of the residuals within each group, as described 
above. Subsequent studies have shown that an 
alternative version of the Levene test proposed by 
Brown and Forsythe (1974), using the sample medians 
instead of the sample means to calculate the deviations, 
maintains correct Type I error rates under a wider range 
of conditions, including when sampling from non-
normal populations with potentially unequal sample 
sizes and unequal population means (Boos & Brownie, 
2004; Conover, Johnson, & Johnson, 1981; Lim & Loh, 
1996). We refer to this version of the Levene test as the 
LevMED test. Unfortunately, the LevMED test has also 
been shown to have low power under certain conditions, 
particularly when sampling from asymmetric non-
normal populations (Lim & Loh, 1996; Nordstokke & 
Zumbo, 2010). 

To address this problem, Nordstokke and Zumbo 
(2010) developed a nonparametric version of the Levene 
test based upon ranks rather than raw scores. As 
described above, this test conducts the original mean-
based Levene test, but using ranks instead of raw scores. 
Simulation studies of the small (i.e., finite) sample 
properties of the NPL test have shown that it has correct 
Type I error rates under a variety of different sample-
sizes and sample size ratios when sampling from both 
symmetric and skewed populations. In addition, it has 
been shown to have higher power values than the 
LevMED under many of these conditions, hence 
addressing an important limitation of the LevMED test 
(Nordstokke & Colp, 2014; Nordstokke & Zumbo, 
2010). 

To date, all simulation studies evaluating the NPL 
test have assumed population means are equal. That is, 
they have generally been situated in the (generalized) 
Behrens-Fisher case described below, where it makes 
sense to assume equal population means. However, 
prior studies have shown that sampling from 
populations with unequal means can cause problems for 
other nonparametric rank-based tests of scale. Olejnik 
and Algina (1987), for example, included two 
nonparametric tests based on ranks that required an 
assumption of equal population means in their 
simulation study. They found that when sampling from 
symmetric distributions with unequal means, these tests 
tended to become conservative (i.e., had lower than 
anticipated Type I error rates), while they were liberal 
(i.e., had inflated Type I error rates) when sampling from 
asymmetric populations with unequal means. 

To gain intuition about how unequal population 
means could adversely affect nonparametric tests of 
scale such as the NPL test, consider the following 
examples. First, imagine one is sampling from two 
populations with extremely unequal variances, as could 
be the case in many non-experimental settings. Further, 
assume that the means of these two populations are also 
very unequal, and that the two population distributions 
do not overlap. If we draw two equally-sized samples 
𝑛ଵ ൌ 𝑛ଶ, with total sample size 𝑛ଵ ൅ 𝑛ଶ ൌ 𝑁, and 
conduct the NPL test, the group with the smaller mean 
will take on the first 𝑁/2 ranks, while the group with 
larger mean will take on the remaining 𝑁/2 ranks. These 
sets of ranks will now have exactly equal variances, the 
NPL test conducted using the ranks will yield a 
statistically non-significant result, and the researcher will 
incorrectly fail to reject the null hypothesis. Hence the 
power of the NPL test (and other rank-based tests) can 
be drastically reduced when population means are 
unequal. 

Conversely, imagine a scenario in which one is 
sampling from populations with equal variances but 
unequal means. If the samples are of very different sizes 
(i.e., 𝑛ଵ is much larger than 𝑛ଶ) and the samples again do 
not overlap (or overlap very little), the larger sample will 
have ranks spanning a larger range. This could lead to a 
statistically significant NPL test result, leading to a false 
rejection of the null hypothesis and, in general, inflated 
Type I error rates. These scenarios illustrate that 
population mean differences may interact with other 
factors (such as the relative sample sizes and degree of 
asymmetry in the population) in complex ways. 

Nuisance Parameters  

A key aspect of these problems is that the 
population means are both unequal and unknown. If the 
population means were unequal but known (or if the 
difference in population means were known), one could 
simply adjust for the difference in means by subtracting 
an appropriate value from each sample. When the 
population means are unknown, however, relying on 
sample means or medians to make adjustments may not 
be an adequate solution. Olejnik and Aligna (1987), for 
example, included two alternative versions of their 
nonparametric tests of scale, using scores that had been 
centered to the sample means or medians, in an attempt 
to correct for unknown population mean differences. 
These alternative versions generally maintained the 
correct Type I error rates when sampling from 
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symmetric populations with unequal means, but tended 
to have inflated Type I error rates when sampling from 
asymmetric populations with either equal or unequal 
means. 

This problem is referred to more generally in the 
statistical literature as one of nuisance parameters. Nuisance 
parameters are parameters of a distribution that are not of 
direct interest, but that must be accounted for when 
comparing the parameters of direct interest. In general, 
the variances are nuisance parameters when testing for 
differences in means, while the means are nuisance 
parameters when testing for differences in variances. 
Accurately testing for mean differences when the 
population variances (or their ratios) are unknown is 
referred to as the Behrens-Fisher problem when 
populations are normally distributed (Scheffé, 1970), and 
the generalized Behrens-Fisher problem when 
populations are non-normally distributed (Zumbo & 
Coulombe, 1997). One must either make an assumption 
about the variances (e.g., that they are equal) or 
appropriately adjust test procedures to account for 
unequal variances. Alternatively, using the NPL test to 
compare population variances when population means 
are unknown results in the opposite problem; in this 
case, the unknown population means are nuisance 
parameters that either must be assumed equal or 
accounted for. 

When using the NPL test as a preliminary step 
towards testing hypotheses about population means in 
the (generalized) Behrens-Fisher case, the concern is 
often with maintaining correct Type I error rates. In 
other words, the concern is with ensuring an accurate 
test when the null hypothesis about means is true and 
the population means are equal. Hence it may be 
reasonable to resolve the nuisance parameter problem by 
assuming that the population means are equal for the 
purposes of using the NPL test as a preliminary step 
prior to the formal test of equal population means. 

The second and third contexts for testing variances 
noted above, however, move beyond the traditional case 
in which a test of variances is used as a preliminary step 
towards testing hypotheses about locations, to one in 
which the variances are of direct interest. In these cases, 
assuming population means are equal may not be a 
satisfactory approach. Even in the Behrens-Fisher 
context, using tests of scale in experimental versus non-
experimental research contexts is also a relevant 
concern. While it may be plausible to assume equal 
population means in an experimental context where 

participants are sampled from a single population and 
randomly assigned to experimental conditions, it may 
not be a plausible assumption in non-experimental 
research contexts with pre-existing groups. The nuisance 
parameter problem re-emerges in these contexts. In this 
study, we investigate how the nuisance parameter of mean 
differences can affect the NPL test for equality of 
variances.  

Purpose 

There appear to be adequate solutions to test for 
equality of variances when populations are normally 
distributed (or symmetric), in both the Behrens-Fisher 
case and more generally when the population means 
differ. In the generalized Behrens-Fisher case, when 
population means are unknown but can be assumed 
equal, tests such as the NPL may provide a good 
approach. However, when the population means cannot 
be assumed equal and are unknown, as is the case in 
many non-experimental settings, there are less clear 
solutions. Widely recommended tests, such as the 
LevMED test, which is robust across many conditions, 
may suffer from such low power that the possibility of 
Type II errors becomes a concern. 

The NPL test was developed to help address this 
problem by providing a robust test of scale when 
sampling from non-normal, asymmetric populations, 
but its operating characteristics (i.e., Type I error rate 
and power) have not been studied when moving beyond 
the generalized Behrens-Fisher case to conditions in 
which population means are both unknown and 
potentially unequal. Because it is necessary to ensure 
correct Type I error rates before evaluating the power of 
a test, this study explores whether the NPL test 
maintains correct Type I error rates under a variety of 
conditions when the population means differ. 
Specifically, this study addresses two research questions: 
a) is the NPL test robust when population means are 
unequal? and b) are versions of the NPL test that center 
scores using sample means or medians prior to ranking 
robust when population means are unequal? 

Methods 

A Monte Carlo computer simulation was used to explore 
how the Type I error rates of the NPL test are affected 
by unequal population means. A computer simulation 
allows us to evaluate how well a statistical test works 
under known conditions, and provide insight about 
whether the test is likely to work well in applied contexts. 



Practical Assessment, Research & Evaluation, Vol 23 No 13 Page 5 
Shear, Nordstokke, & Zumbo, Centering Nonparametric Levene  
              
The simulation compares the performance of four tests 
of scale: the parametric LevMED test, the original 
(uncentered) NPL test, a mean-centered version of the 
NPL test (NPL-MEAN) and a median-centered version 
of the NPL test (NPL-MED). To conduct the NPL-
MEAN and NPL-MED tests, we added an initial step 
prior to those described above for the NPL test. For the 
NPL-MEAN test, all scores were centered to their 
respective group sample means prior to pooling and 
ranking. For the NPL-MED test, scores were centered 
using their respective group sample medians prior to 
ranking. 

To investigate performance of the various tests, 
four factors were varied: (1) total sample size (𝑁=96, 48, 
24), (2) sample size ratio (𝑛ଵ/𝑛ଶ =1/3, 1/2, 1/1, 2/1, 
3/1), (3) standardized mean difference between 
populations (D=0, 1, 2), and (4) population skewness 
(skewness=0, 1, 2, 3). In all conditions the true 
population variances were equal, so that simulation 
results document the Type I error rates of the tests. The 
mean differences were standardized by the (common) 
population standard deviation. A fully crossed computer 
simulation design with 3x5x3x4=180 conditions was 
utilized. Conditions were chosen to cover a range of 
contexts and to match those considered in prior studies 
(e.g., Nordstokke & Zumbo, 2010), with the only 
difference being that mean differences were also 
included as an experimental factor. For each condition 
we generated 5,000 pairs of random samples, where each 
sample was drawn from a population with the indicated 
parameters. We then conducted the four tests for the 
equality of variances on each pair of samples and 
recorded whether the result was statistically significant at 
the 0.05 level. Although the true population means are 
known in this simulation study, we applied the tests as if 
the population means were unknown, as would be done 
in practice. Following Bradley’s (1978) liberal criterion, 
we considered any test that maintained a Type I error 
rate below 0.075 (for a nominal rate of 0.05) to be robust. 
Bradley also suggests that a test should maintain a Type 
I error rate of at least 0.025 (again for a nominal rate of 
0.05) to be considered accurate. Although a hypothesis 
test is considered conservative and could have reduced 
power when Type I error rates fall below the nominal 

                                                 
2 A chi‐square distribution with 𝑘 degrees of freedom has 

a mean of 𝑘, a variance of 2𝑘 and skewness of ඥ8/𝑘. These 
properties are used as described below in order to sample from 
standardized populations that maintain the shape and 

level, the test is not invalid per se. Hence, we focus only 
on whether each test has inflated Type I error rates, and 
would be considered invalid. All simulations and data 
analyses were conducted using the software package R 
(R Core Team, 2017). Custom functions were written to 
carry out the various NPL tests. 

The following procedure was used to generate 
samples from populations with the desired 
characteristics. For each condition, we generated two 
independent samples, of size 𝑛ଵ and 𝑛ଶ. Each sample 
was generated as a random draw from an approximate 
chi-squared distribution using the “rchisq()” function in 
R, with the degrees of freedom (𝑑𝑓) adjusted to achieve 
the desired skewness. The 𝑑𝑓 values used were 1000, 7.4, 
2.2, and 0.83, to simulate population skewness levels of 
approximately 0, 1, 2, and 3, respectively, and for 
consistency with prior simulation studies using the NPL 
test (e.g., Nordstokke & Zumbo, 2010)2.  Next, we 
subtracted 𝑑𝑓 from each sampled value and divided all 

skewness of a chi‐squared distribution. In a true chi‐squared 
distribution 𝑘 is a positive integer greater than 0, and hence 
the distributions used here are approximate chi‐squared 
distributions. 

Figure 1. Density plots of parent population 
distributions for different levels of skewness and 
mean differences. Densities are estimated based on 
random samples of size N=100,000 from the data 
generation procedure described in the text. 
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sampled values by ඥ2 ∗ 𝑑𝑓. This resulted in two 
samples from populations with the desired level of 
skewness, each with a population mean of zero and 
variance of 1. A constant (either 0, 1, or 2) was then 
added to all observations from the second sample to 
achieve the desired difference in population means. The 
skewness of both populations being compared was equal 
within each condition.  

To better illustrate the nature of the populations 
being sampled, Figure 1 shows estimated density plots 
for the conditions included. Each row of plots 
represents a different level of skewness, while each 
column shows a different magnitude of population mean 
differences. For example, the top right panel shows the 
populations sampled from in the condition for which 
skewness = 0 and the mean difference = 2. These density 
plots were estimated by generating samples of size 
N=100,000 from the relevant populations following the 
procedure described above. 

Results 

The simulation results are presented in Tables 1 
through 4. Each table presents observed Type I error 
rates for one of the four tests described above. Observed 
Type I error rates exceeding the 0.075 criterion are 
indicated in bold. Table 1, for example, presents the 
observed Type I error rates for the LevMED test. The 
results indicated that, as anticipated, the LevMED test-
maintained Type I error rates at or near the 0.05 level for 
all conditions, and never exceeded the 0.075 criterion. 
Hence the LevMED test would be considered robust 
across all conditions studied, consistent with prior 
research. 

Table 2 presents Type I error rates for the original 
NPL test with no centering. The first three columns, for 
conditions in which the population means are equal, 
show that the NPL test is robust to varying sample size 
ratios and levels of skewness in the population 
distributions. Type I error rates when there were no 

Table 1. Type I Error Rates for the Median-based Levene Test (LevMED) 
    Mean Diff. = 0  Mean Diff. = 1  Mean Diff. = 2 

Skew  n1/n2  N=24  N=48  N=96  N=24  N=48  N=96  N=24  N=48  N=96 

0  0.33  0.038  0.040  0.044  0.040  0.041  0.042  0.034  0.042  0.044 
  0.5  0.041  0.045  0.049  0.038  0.042  0.050  0.037  0.040  0.047 
  1  0.035  0.039  0.042  0.033  0.039  0.046  0.039  0.046  0.046 
  2  0.041  0.041  0.045  0.035  0.041  0.048  0.037  0.048  0.051 
  3  0.041  0.044  0.043  0.040  0.045  0.045  0.037  0.042  0.044 

1  0.33  0.041  0.047  0.044  0.044  0.043  0.053  0.041  0.042  0.045 
  0.5  0.044  0.042  0.041  0.044  0.047  0.045  0.038  0.042  0.049 
  1  0.041  0.045  0.047  0.050  0.048  0.050  0.036  0.045  0.049 
  2  0.042  0.046  0.049  0.042  0.044  0.048  0.043  0.051  0.047 
  3  0.045  0.042  0.038  0.040  0.042  0.043  0.040  0.045  0.048 

2  0.33  0.048  0.044  0.046  0.044  0.052  0.045  0.050  0.046  0.048 
  0.5  0.047  0.041  0.050  0.047  0.050  0.046  0.052  0.047  0.052 
  1  0.046  0.046  0.047  0.048  0.046  0.051  0.045  0.046  0.050 
  2  0.049  0.047  0.046  0.048  0.047  0.043  0.045  0.050  0.047 
  3  0.046  0.047  0.040  0.046  0.046  0.046  0.045  0.050  0.051 

3  0.33  0.049  0.036  0.043  0.048  0.049  0.045  0.054  0.044  0.042 
  0.5  0.047  0.048  0.042  0.046  0.042  0.050  0.048  0.042  0.044 
  1  0.047  0.047  0.052  0.048  0.050  0.056  0.047  0.043  0.054 
  2  0.051  0.044  0.050  0.045  0.044  0.045  0.050  0.047  0.050 
  3  0.051  0.042  0.043  0.045  0.046  0.043  0.054  0.041  0.041 

Note:  skew denotes the skewness of the population distributions; n1/n2 indicates the ratio of sample sizes; N denotes the total 
sample size of both samples combined; Mean Diff.=standardized mean difference between population distributions. 
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population mean differences remained at or near the 
0.05 level and never were above the 0.075 criterion for 
these conditions. As the population mean differences 
increased, Type I error rates became inflated above the 
nominal 0.05 level as the difference in population means 
increased, the level of skewness increased, and sample 
size increased. In some cases, the false positive rate (i.e., 
Type I error rate) became 100% in the conditions with 
the largest total sample size (N=96), most unequal 
sample size ratios, largest mean differences, and largest 
skewness. Even in conditions with more modest mean 
differences (mean difference of 1) and skewness 
(skewness of 1), the Type I error rate was 0.717 when 
the total sample size was N=96 and the sample size ratio 
was 𝑛ଵ/𝑛ଶ ൌ 3 (i.e., 𝑛ଵ ൌ 24 and 𝑛ଶ ൌ 72). These 
results suggest the NPL test is not robust to differences 
in population means, and the inflation in Type I error 

rates can increase as the population distributions 
become less symmetric. 

There was one important exception to this pattern 
of increased Type I error rates for the NPL test. When 
the sample sizes were equal (sample size ratio of 1), 
larger mean differences and skewness could lead to Type 
I error rates either much higher or much lower than the 
nominal 0.05 level. We anticipated that equal sample 
sizes would lead to decreased Type I error rates, and 
when mean differences were very large (mean difference 
of 2) the Type I error rates for the equal sample size 
conditions were well below the nominal 0.05 level. 
However, when the population mean difference was 1 
standard deviation, Type I error rates were inflated 
above the 0.075 criterion in some cases when skewness 
was 1, and in all cases when skewness was greater than 
1. We hypothesize that this result is due to the 

Table 2. Type I Error Rates for the Nonparametric Levene Test (NPL) 
    Mean Diff. = 0  Mean Diff. = 1  Mean Diff. = 2 

Skew  n1/n2  N=24  N=48  N=96 N=24 N=48 N=96 N=24  N=48 N=96

0  0.33  0.049  0.051  0.054  0.038  0.072  0.122  0.302  0.622  0.876 
  0.5  0.049  0.053  0.052  0.014  0.025  0.038  0.070  0.295  0.668 
  1  0.047  0.044  0.043  0.013  0.012  0.008  0.000  0.000  0.000 
  2  0.049  0.047  0.047  0.015  0.032  0.070  0.064  0.308  0.767 
  3  0.047  0.052  0.046  0.037  0.092  0.162  0.290  0.654  0.921 

1  0.33  0.047  0.053  0.050  0.068  0.071  0.079  0.430  0.499  0.669 
  0.5  0.048  0.045  0.048  0.037  0.044  0.066  0.157  0.300  0.470 
  1  0.047  0.047  0.049  0.043  0.074  0.183  0.003  0.003  0.002 
  2  0.048  0.048  0.048  0.048  0.199  0.595  0.066  0.643  1.000 
  3  0.047  0.054  0.043  0.083  0.313  0.717  0.347  0.953  1.000 

2  0.33  0.053  0.055  0.055  0.178  0.183  0.208  0.522  0.497  0.650 
  0.5  0.049  0.050  0.054  0.109  0.152  0.251  0.337  0.323  0.438 
  1  0.045  0.047  0.046  0.098  0.253  0.597  0.011  0.010  0.012 
  2  0.053  0.052  0.053  0.132  0.627  0.997  0.130  0.905  1.000 
  3  0.060  0.055  0.054  0.182  0.807  1.000  0.511  0.997  1.000 

3  0.33  0.048  0.053  0.049  0.372  0.301  0.310  0.630  0.496  0.673 
  0.5  0.044  0.045  0.044  0.267  0.233  0.266  0.512  0.354  0.451 
  1  0.043  0.046  0.048  0.132  0.238  0.500  0.014  0.013  0.029 
  2  0.053  0.042  0.045  0.173  0.908  1.000  0.261  0.989  1.000 
  3  0.054  0.053  0.054  0.392  0.985  1.000  0.746  1.000  1.000 

Note:  skew denotes the skewness of the population distributions; n1/n2 indicates the ratio of sample sizes; N denotes the 
total sample size of both samples combined; Mean Diff.=standardized mean difference between population distributions. 
Observed Type I error rates greater than 0.075 are indicated in bold. 
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proportion of overlap between the two populations. 
This result highlights that although Type I error rates 
tend to increase as differences in population means and 
skewness increase, there can be a complex interplay 
between the magnitude of the mean differences, 
skewness and relative sample sizes. 

Tables 3 and 4 show results for the NPL test 
combined with either mean (NPL-MEAN) or median 
(NPL-MED) centering. The results indicate that 
although the NPL-MEAN and NPL-MED test were 
robust to population mean differences when the 
populations were symmetric (the first six rows of each 
table), Type I error rates became inflated as the 
populations became more skewed. When there was no 
difference in the population means, using mean or 
median centering with the NPL test could lead to 
inflated Type I error rates if the populations were 
skewed. Hence, although the mean and median 
centering improved Type I error rates for symmetric 
populations, they lead to worse results when sampling 

from skewed populations. The NPL-MED test generally 
had lower Type I error rates than the NPL-MEAN test, 
and observed rates were only slightly above the 0.075 
criterion when skewness was less than or equal to 1. 

Summary and Take-Home Messages 

The primary findings and messages from this study are 
described in the points below. First, it is clear that 
population mean differences can create complications 
when testing for differences of scale using the NPL test. 
As anticipated, the simulations demonstrated that Type 
I error rates for the NPL test can become either too high 
or too low when there are population mean differences, 
depending upon whether populations are symmetric or 
asymmetric, and whether sample sizes are equal or 
unequal. In general, as the differences between 
population means and the level of skewness in the 
populations increased, the NPL test tended to have 
more inflated Type I error rates, meaning researchers 
would be more likely to incorrectly conclude that the 

Table 3. Type I Error Rates for the Nonparametric Levene Test with Mean-Centering (NPL-MEAN) 
    Mean Diff. = 0  Mean Diff. = 1  Mean Diff. = 2 

Skew  n1/n2  N=24  N=48  N=96  N=24  N=48  N=96  N=24  N=48  N=96 

0  0.33  0.051  0.056  0.060  0.054  0.051  0.060  0.055  0.052  0.051 
  0.5  0.059  0.056  0.060  0.053  0.055  0.060  0.054  0.051  0.059 
  1  0.050  0.047  0.054  0.054  0.053  0.059  0.059  0.056  0.050 
  2  0.050  0.051  0.058  0.054  0.054  0.061  0.059  0.056  0.050 
  3  0.060  0.050  0.062  0.056  0.052  0.062  0.057  0.053  0.060 

1  0.33  0.098  0.089  0.089  0.098  0.100  0.099  0.093  0.097  0.098 
  0.5  0.088  0.089  0.096  0.094  0.089  0.095  0.092  0.097  0.088 
  1  0.093  0.090  0.094  0.096  0.097  0.087  0.092  0.093  0.093 
  2  0.089  0.091  0.097  0.092  0.094  0.095  0.098  0.094  0.089 
  3  0.099  0.082  0.094  0.100  0.098  0.088  0.090  0.096  0.099 

2  0.33  0.251  0.274  0.205  0.249  0.289  0.212  0.242  0.270  0.251 
  0.5  0.248  0.280  0.212  0.259  0.274  0.218  0.261  0.284  0.248 
  1  0.251  0.284  0.213  0.255  0.297  0.223  0.260  0.281  0.251 
  2  0.258  0.281  0.220  0.247  0.277  0.209  0.256  0.285  0.258 
  3  0.250  0.267  0.203  0.245  0.279  0.209  0.252  0.275  0.250 

3  0.33  0.620  0.723  0.490  0.640  0.728  0.487  0.632  0.736  0.620 
  0.5  0.656  0.728  0.504  0.668  0.736  0.511  0.656  0.730  0.656 
  1  0.686  0.759  0.531  0.688  0.754  0.535  0.682  0.751  0.686 
  2  0.653  0.751  0.505  0.652  0.740  0.527  0.668  0.747  0.653 
  3  0.629  0.725  0.470  0.627  0.723  0.469  0.629  0.713  0.629 

Note:  skew denotes the skewness of the population distributions; n1/n2 indicates the ratio of sample sizes; N denotes the 
total sample size of both samples combined; Mean Diff.=standardized mean difference between population distributions. 
Observed Type I error rates greater than 0.075 are indicated in bold.
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population variances differ. An exception to this 
occurred when sample sizes were equal, in which case 
Type I error rates first increased and then decreased as 
mean differences increased. 

Centering scores using sample means or sample medians 
improved Type I error accuracy when populations were 
symmetric, but lead to additional incorrect (inflated) 
Type I error rates when the populations were skewed; 
when sampling from asymmetric populations with either 
equal or unequal population means, both the NPL-
MEAN and NPL-MED tests had inflated Type I error 
rates. The NPL-MED test appeared to have slightly 
lower (though still inflated) Type I error rates, suggesting 
this may be the more promising version to evaluate in 
future research. The LevMED test maintained correct 
Type I error rates for all conditions studied. These 
results are consistent with those found in earlier studies 

examining nonparametric tests of scale (e.g., Olejnik & 
Algina, 1987). 

As with any simulation study, the results cannot 
necessarily be generalized to conditions beyond those 
included in our experimental design. However, because 
the conditions represent scenarios that could be 
encountered in practice (i.e., unknown and unequal 
means and skewed distributions), and because the results 
indicated that the tests were not robust for many of these 
conditions, we urge caution when using the NPL test 
under similar conditions. Future studies could examine 
whether the same problems occur with additional types 
of distributions, and when comparing more than two 
populations. Lim and Loh (1996) found that using 
bootstrapped critical values improved the power of the 
LevMED test, and future research could explore 
whether bootstrapped critical values or other resampling 
techniques could be used to improve the Type I error 

Table 4. Type I Error Rates for the Nonparametric Levene Test with Median-Centering (NPL-MED) 
    Mean Diff. = 0  Mean Diff. = 1  Mean Diff. = 2 

Skew  n1/n2  N=24  N=48  N=96  N=24  N=48  N=96  N=24  N=48  N=96 

0  0.33  0.058  0.045  0.050  0.057  0.051  0.046  0.054  0.043  0.048 
  0.5  0.057  0.049  0.050  0.054  0.046  0.048  0.050  0.047  0.048 
  1  0.044  0.042  0.043  0.044  0.039  0.048  0.047  0.049  0.051 
  2  0.053  0.044  0.045  0.049  0.045  0.052  0.050  0.050  0.051 
  3  0.059  0.049  0.047  0.060  0.051  0.046  0.054  0.054  0.046 

1  0.33  0.077  0.074  0.070  0.070  0.072  0.079  0.080  0.075  0.078 
  0.5  0.072  0.063  0.078  0.071  0.071  0.071  0.075  0.074  0.083 
  1  0.068  0.067  0.076  0.074  0.074  0.076  0.063  0.068  0.077 
  2  0.075  0.065  0.071  0.076  0.066  0.077  0.072  0.073  0.073 
  3  0.076  0.067  0.064  0.072  0.075  0.077  0.073  0.072  0.077 

2  0.33  0.135  0.151  0.190  0.136  0.153  0.197  0.143  0.152  0.184 
  0.5  0.136  0.160  0.199  0.137  0.166  0.201  0.134  0.159  0.202 
  1  0.129  0.164  0.208  0.132  0.167  0.210  0.133  0.176  0.216 
  2  0.137  0.166  0.205  0.134  0.154  0.196  0.131  0.164  0.201 
  3  0.145  0.157  0.196  0.137  0.147  0.187  0.138  0.158  0.192 

3  0.33  0.333  0.399  0.540  0.316  0.412  0.538  0.323  0.404  0.542 
  0.5  0.333  0.448  0.563  0.331  0.466  0.570  0.332  0.451  0.569 
  1  0.345  0.477  0.587  0.325  0.474  0.603  0.337  0.486  0.597 
  2  0.335  0.455  0.577  0.326  0.454  0.582  0.348  0.458  0.574 
  3  0.317  0.410  0.546  0.305  0.412  0.548  0.318  0.406  0.539 

Note:  skew denotes the skewness of the population distributions; n1/n2 indicates the ratio of sample sizes; N denotes the 
total sample size of both samples combined; Mean Diff.=standardized mean difference between population distributions. 
Observed Type I error rates greater than 0.075 are indicated in bold 
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rates of the NPL tests when population means are 
unequal and unknown. To our knowledge, a bootstrap 
version of the NPL test has not been described or 
evaluated in prior studies. 

From a statistical perspective, this study highlights 
the fact that the NPL test can be sensitive both to 
differences in population means and to differences in 
population variances. The original NPL test was 
explicitly intended to test the null hypothesis that 
samples are drawn from populations with equal 
variances, but it implicitly assumes the populations have 
equal means. As a result, the NPL test is also sensitive to 
differences in population means. A similar issue is 
discussed by Nordstokke and Colp (2018), who note that 
many nonparametric tests of location make implicit 
assumptions about the relative shapes of the 
distributions being compared, and can be sensitive to 
differences in distributional shape as well as location. 
Differences between population means are a nuisance 
parameter when testing for the equality of population 
variances. As a result, many discussions about tests of 
scale do not address mean differences, and vice versa. In 
the (generalized) Behrens-Fisher case, when population 
means can be assumed equal, the nuisance parameter may 
not be a major concern. But when population means are 
unknown and cannot be assumed equal, the nuisance 
parameter can cause problems for the NPL test as 
demonstrated in this study. As noted above, there are 
some contexts in which it may be reasonable to assume 
that population means are equal, such as experimental 
settings where participants are drawn from a single 
population. If there is the possibility of heterogeneous 
treatment effects in these contexts, however, this could 
lead to a difference in means and variances for post-
treatment outcomes, and the problem may also be 
relevant in these experimental settings. 

What are the practical implications of these results? 
Unfortunately, researchers will rarely know ahead of 
time whether the means of the populations being 
compared truly differ or not. This is, after all, the primary 
reason for using statistical tests. We recommend that 
researchers and data analysts use graphical and 
descriptive summary statistics to evaluate the plausibility 
of the assumption that population means are equal prior 
to applying the NPL test. These preliminary analyses can 
also be used to gain information about the relative 
shapes of the distributions being compared (e.g., 
whether they are skewed or symmetric). If the 
population means appear potentially unequal, then 

greater attention to factors such as the relative sample 
sizes and shape of the distributions is necessary when 
using the NPL test. If the distributions appear largely 
symmetric (i.e., not skewed), using mean or median 
centering versions of the NPL test (the NPL-MEAN or 
NPL-MED tests) may provide a more accurate 
comparison of the variances. If the population means 
cannot safely be assumed equal and there is evidence that 
the distributions are asymmetric, it may be more 
appropriate to use the LevMED test. While the 
LevMED test was robust in all cases studied here, it has 
been previously shown to have lower power than the 
NPL test under conditions of non-normality. In sum, 
although none of the tests compared here appear to be 
optimal under all conditions, we hope the results will 
help researchers understand the relevant aspects of their 
data when determining the best approach for testing 
hypotheses about the equality of population variances. 
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