
 

          A peer-reviewed electronic journal. 

Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission 
is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the 
right to authorize third party reproduction of this article in print, electronic and database forms. 

Volume 23 Number 9, May 2018                                              ISSN 1531-7714  

Contrast Analysis: A Tutorial 

Antal Haans, Eindhoven University of Technology 
 

Contrast analysis is a relatively simple but effective statistical method for testing theoretical 
predictions about differences between group means against the empirical data. Despite its advantages, 
contrast analysis is hardly used to date, perhaps because it is not implemented in a convenient manner 
in many statistical software packages. This tutorial demonstrates how to conduct contrast analysis 
through the specification of the so-called L (the contrast or test matrix) and M matrix (the 
transformation matrix) as implemented in many statistical software packages, including SPSS and 
Stata. Through a series of carefully chosen examples, the main principles and applications of contrast 
analysis are explained for data obtained with between- and within-subject designs, and for designs 
that involve a combination of between- and within-subject factors (i.e., mixed designs). SPSS and 
Stata syntaxes as well as simple manual calculations are provided for both significance testing and 
contrast-relevant effect sizes (e.g., η2

alerting). Taken together, the reader is provided with a 
comprehensive and powerful toolbox to test all kinds of theoretical predictions about cell means 
against the empirical data. 

The statistical analysis of empirical data serves a 
single function: to answer research questions about a 
population on the basis of observations from a sample. 
In experimental psychology, these questions usually 
involve specific theoretical predictions about differences 
between group or cell means. Researchers, however, do 
not always transform their research question into the 
proper statistical question, which, among other things, 
involves the application of the correct statistical method 
(Hand, 1994). Since any statistical test answers a specific 
question (also Haans, 2008), conducting an incorrect test 
results in what Hand (1994) called an error of the third 
kind: “giving the right answer to the wrong question” (p. 317).  

To illustrate the prevalence of such Type III errors, 
consider the following example. A group of researchers 
wants to test a specific theory-driven explanation for the 
observation that student retention of the discussed 
materials decreases more or less linearly with the 
distance between the student and the teacher in the 
lecturing hall. This effect of seating location, the 
researchers theorized, could be explained by the 
decreasing frequency of eye contact over distance. To 
test this theoretical explanation, they conducted a 2 

(teacher wearing sunglasses or not) by 4 (student sitting 
in first, second, third, or fourth row of the lecturing hall) 
between-subject experiment with performance on a 
subsequent retention test as the dependent variable. 
Their theoretical prediction is that seating location has a 
negative linear relation with retention, but only in the 
condition in which the teacher did not wear sunglasses. 
The rationale is that wearing sunglasses effectively 
decreases any effect of eye contact regardless of where 
in the classroom the student is located, so that no effect 
of seating location on retention is expected for these 
groups. The research questions thus are: Is their specific 
theory-based prediction supported by the data? And if 
so, how much of the empirical or observed variance 
associated with the experimental manipulations can be 
explained by the theory?  

Assume that the researchers in our example 
consulted a standard textbook to determine how they 
should analyze their empirical data. Their textbook 
would most likely insist on using a factorial ANOVA in 
which differences between observed cell means are 
explained by two main effects and an interaction effect. 
Doing so, the researchers, as expected, found a 
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statistically significant interaction between the seating 
location and sunglasses factors. This interaction effect 
signifies that the effect of seating location was indeed 
different with as compared to without the teacher 
wearing sunglasses. However, one should not be lured 
into making a Type III error: Neither the significant 
interaction effect, nor any of the main effects provide an 
answer to the researchers’ question of interest. The 
interaction effect in a 2 by 4 design has three degrees of 
freedom in the numerator of the F-test, and thus is an 
omnibus test. In contrast to focused tests (with a single 
degree of freedom in the numerator), omnibus tests are 
not directly informative regarding the observed pattern 
of the effect. There are multitudes of ways in which the 
effect of seating location may be different between the 
different levels of the Sunglasses factor. Yet, only one is 
predicted by our researchers’ theory. As a result, 
eyeballing a graph depicting observed group means in 
combination with conducting a series of post-hoc 
comparisons will be needed to validate whether the 
significant interaction is consistent with their 
expectations. None of these post-hoc analyses will 
answer directly the researchers’ question of interest, let 
alone be informative about the extent to which their 
theory was able to explain the observed or empirical 
differences between group means (i.e., as reflected in an 
effect size). Would it not be more fruitful if one could 
test theoretical expectations directly against the observed 
or empirical data? 

One such method that allows researchers to test 
theory-driven expectations directly against empirically 
derived group or cells means is contrast analysis. Despite 
its clear advantages, contrast analysis is hardly used to 
date, not even when strong a priori hypotheses are 
available. Instead, researchers typically rely on factorial 
ANOVA as the conventional method for analyzing 
experimental designs—as if the technique is “some ‘Mt 
Everest’ that must be scaled just because ‘it is there’ “(Rosnow 
& Rosenthal, 1996; p. 254). The unpopularity of contrast 
analysis cannot be explained by it being a novel or 
complicated technique (Rosenthal, Rosnow, & Rubin, 
2000). In fact, the mathematics behind are 
understandable even to researchers with a minimal 
background in statistics. According to Abelson (1964; 
cited in Rosenthal et al., 2000), the unpopularity of 
contrast analysis may well be explained by its simplicity: 
“One compelling line of explanation is that the statisticians do not 
regard the idea as mathematically very interesting (it is based on 
quite elementary statistical concepts) …” (p. ix). Simple 

statistical techniques, however, often produce the most 
meaningful and robust results (Cohen, 1990).  

Yet another compelling explanation for the 
unpopularity of contrast analysis is that the method is 
not implemented, at least not in a convenient point-and-
click manner, in most statistical software packages. In 
for example SPSS, some contrasts (e.g., Helmert and 
linear contrasts) are implemented and accessible through 
the user interface of the various procedures, but these 
are generally of limited use when finding answers to 
theory-driven questions (i.e., only infrequently do these 
contrasts answer a researcher’s question of interest). 
Custom contrasts may be defined in the user interface 
window of the ONEWAY procedure, but they are not 
available for more complex designs (e.g., for designs that 
include a within-subject factor). To unleash the full 
power of contrast analysis, many statistical software 
packages require researchers to specify manually the so-
called contrast or test matrix L and / or the 
transformation matrix M. In SPSS, this is done through 
the LMATRIX and MMATRIX subcommands of the 
General Linear Model (GLM) procedure (IBM Corp., 
2013). In Stata, they can be specified in the 
MANOVATEST postestimation command of the 
MANOVA procedure (StataCorp LP, 2015). 

In the present paper, I will demonstrate how to 
specify the L and M matrices to test a wide variety of 
focused questions in a simple and time efficient manner. 
First, I will discuss contrast analysis for hypothesis 
testing and effect size estimation in between-subject 
factorial designs. After that, I will discuss factorial 
designs with within-subject factors, and designs with a 
combination of between and within-subject factors (so-
called mixed designs). The aim of the manuscript is to 
provide researchers with a toolbox to test a wide variety 
of theory-driven hypotheses on their own data. I will not 
discuss in detail the computations behind contrast 
analysis, and the interested reader is referred to, for 
example, Rosenthal and colleagues (2000) and Wiens 
and Nilsson (2017). The procedures and explanations 
provided are kept simple, and more advanced comments 
are provided in footnotes. In the examples below, I 
explain the procedure as it is implemented in SPSS. 
Explanations for Stata users are presented in annotated 
syntax or .do files. Stata and SPSS syntax files together 
with all example datasets are available to the reader as 
supplementary materials (see end note for download 
link). 
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Contrast analysis in between-subject 

designs 

Single factor between-subject designs 

In a single factor (or one-way) between-subject 
design each of n participants is assigned to one of the g 
levels of the single factor. Consider the following 
hypothetical example, which will be used throughout the 
subsequent sections: A group of environmental 
psychologists is interested in the relation between class 
room seating location and educational performance. As 
part of their investigations, the researchers conducted a 
between-subject experiment in which students of a 
particular course were randomly assigned to sit either on 
the first (i.e., closest to the teacher), second, third, or the 
fourth row of the lecturing hall throughout a course’s 
lectures. Students’ grades on the final exam were used as 
an indicator of their educational performance. The single 
factor is labeled Location, and consist of g = 4 levels: 
first row (coded with a 1), second row (coded with a 2), 
third row (coded with a 3), and the fourth row (coded 
with a 4). A total of n = 20 students participated in the 
experiment, each randomly assigned to one of the four 
conditions. Their exams grades are provided in Table 1; 
graded on a scale from 0 (poor) to 10 (perfect score).  

A conventional one-way ANOVA on the data in 
Table 1 will tell the researchers what amount of variance 
in the data can be attributed to differences in seating 
location. The outcome of this test is reported in  
Figure 1. The total amount of variance in educational 
performance, or sum of squares (SS), is called SStotal. This 
is labeled SScorrected total in the output of SPSS (see Figure 
1). Part of these individual differences in educational 
performance will be due to group membership, and thus 
the effect of the seating location manipulation. This 
variance is called SSmodel, and is labeled SScorrected model in 
the output of SPSS (see Figure 1). The variance not 

explained by group membership is SSresidual (labeled SSerror
 

in SPSS), and includes variance due to individual 
differences in for example general intelligence, or due to 
individuals responding differently to the experimental 
manipulations. SStotal can thus be decomposed into two 
parts:  

SStotal=SSmodel+SSresidual 
(1) 

 

We find that the total amount of variance in the data 
is SStotal = 125, of which SSmodel = 85 can be explained by 
group membership, and SSresidual = 40 cannot (see  
Figure 1). The SSlocation provides the amount of variance 
observed to be associated with the manipulation of 
seating locations. Since seating location completely 
defines group membership in our single factor design 
SSmodel = SSlocation = 85. 

The proportion of variance in educational 
performance that is observed to be associated with 
differential seating locations can be expressed in an 
effect size estimate called eta-squared or η2: 

η2 =
SSmodel

SStotal

 (2) 

 

Differential seating locations can explain  
η2 = 85/125 = 68% of the variance in the data. The 
corresponding F-test provides F(3,16) = 11.3 and  
p < .001. In other words, the probability of finding the 
observed, or even larger differences between the groups, 
is smaller than 0.1% when no effect of seating location 
is present in the population of students; that is if the null 
hypothesis is true. This probability is smaller than what 
we usually find acceptable (p < .05), so we reject the null-
hypothesis which states that the four groups do not 
differ in educational performance. In other words, the 
main effect of location is statistically significant. Since 

Table 1. Data and group means (μg) for the single 
factor design. 

Location 

Row 1 Row 2 Row 3 Row 4 
5 7 5 1 
6 9 4 3 
7 8 6 4 
8 5 7 2 
9 6 8 0 

μ1= 7 μ2= 7 μ3 = 6 μ4 = 2 

 

 
Figure 1. Excerpt of the SPSS output of a 
conventional between-subject ANOVA on the data 
of the 1 by 4 design in Table 1. 
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the F-test for the main effect of seating location is an 
omnibus test—the degrees of freedom of the nominator 
(dflocation) are larger than one—the main effect alone is not 
informative about which of the groups of students are 
statistically different from each other on their 
educational performance. As a result additional post-hoc 
analyses are required to explore in more detail the 
differences between groups. 

The conventional ANOVA answers the question of 
whether a student’s seating location affects educational 
performance, and to what extent. Interesting as such an 
empirical fact at times may be, the more interesting 
scientific questions are aimed at confirming or refuting 
theories that explain such empirical observations. Such 
questions require that focused and theory-driven 
expectations about differences between group means are 
tested against the empirical data. In the case of a 
between-subject design, these theoretical predications 
can be described by a row vector L consisting of a series 
contrast weights (lg), one for each of the g groups in the 
design. To test a theoretical prediction against the 
empirically derived group means, these contrast weights 
have to be specified in the so-called LMATRIX 
subcommand of the GLM procedure. The examples 
below illustrate how this is done for a variety of theory-
driven hypotheses on data in Table 1. 

Example 1: A first-row effect? One psychological 
theory of which the researchers expect it can explain the 
observed effect of seating location on education 
performance is based on social influence. This theory 
posits that all teachers have an invisible aura of power 
that submits all first-row students to a state of undivided 
attention. This theory would predict that the students 
sitting first-row will, on average, have higher grades than 
students sitting in rows two, three, and four. To test this 
theory against the data, the following focused question 
is to be asked: Is the average grade of students sitting in 
the first row higher than the average grade of students 
sitting in the other three rows? The following relation 
between the group means is thus expected: H1: μ1 > (μ2 

+ μ3 + μ4)/3. This can be rewritten as: μ1 ‒ 1/3μ2 ‒ 1/3μ3 

‒ 1/3μ4 > 0. The multipliers or weights in this equation 

 
1 In ANOVA calculations, it is common to use, not the group means (μg), but the effects of group membership (Φg) which are 

relative to the grand mean or intercept (μ.), so that μg = μ. + Φg. The alternative hypothesis of the contrast in Example 1 can thus be 
rewritten as H1: 1(μ. + Φ1) – 1/3(μ. + Φ2) – 1/3(μ. + Φ3) – 1/3(μ. + Φ4) > 0, or H1: 0μ. + 1Φ1 – 1/3Φ2 – 1/3Φ3 – 1/3Φ4 > 0. The weight 
for the grand mean or intercept (μ.) thus is l0 = 0 for this theoretical prediction. 

2 Copying and pasting the syntax in this manuscript into to the SPSS syntax editor may in some cases result in error messages. 
SPSS does not always recognize the double quotation marks correctly when syntax is copied and pasted from external sources. 

are the contrast weights (lg) that describe this focused 
question: l1 = 1, l2 = -1/3, l3 = -1/3, and l4 = -1/3. This 
set of weights can also be written as a row vector  
L = [1 -1/3 -1/3 -1/3]. The precise order of the contrast 
weights is dependent on how the levels of the factor are 
coded in your data set: The first contrast weight is for 
the first level (g = 1), the second for the second level (g 
= 2), etc. Questions are: Is this theoretical expectation 
supported by the data, and if so, to what extent?  

To perform the necessary analyses, one has to 
provide SPSS with the set of contrast weights that 
describes our theoretical hypothesis. For this purpose 
the following syntax needs to be specified in the SPSS 
syntax editor: 

 

GLM grade BY location 
  /LMATRIX = “Example 1: First row effect?” 
 location 1 -1/3 -1/3 -1/3 intercept 0  
  /DESIGN = location. 

 

The first line of the syntax specifies the dependent 
variable Grade and the independent variable or factor 
Location to be used in the General Linear Model (GLM) 
procedure. The LMATRIX subcommand is used to 
define our focused question or contrast. First, one can 
use quotation marks to provide a label for one’s focused 
question (i.e., “Example 1: First row effect?”). Second, 
the set of contrast weights for each level of the Location 
factor are provided. Finally, the weight of the so-called 
intercept or grand mean (l0) is provided. It can be 
calculated by taking the sum of the four weights (lg) 

specified in the contrast vector L: l0 = ∑lg. This value is 

usually zero1. Finally, the DESIGN subcommand 
specifies the structure of the experimental design which 
in this example involves a single factor called Location. 
Instead of typing in the complete syntax, you can use the 
SPSS graphical user interface to set up a conventional 
ANOVA, paste the instructions to the syntax editor, and 
add the LMATRIX subcommand2. Finally select the 
syntax and press run.  
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In the SPSS output, you will find two tables under 
the heading Custom Hypothesis Tests (see Figure 2). 
The contrast results table provides the contrast estimate 
(C) for this focused question, its standard error and 95% 
confidence interval, and the statistical significance of the 
hypothesis test (i.e., the p-value). The Contrast Results 
table provides C = 2.0 with a 95% confidence interval of 
0.3 to 3.7. The contrast estimate C is obtained by taking 
the sum of all observed group means (μg) weighted by 

their contrast weights (lg): C = 1μ1 ‒ 1/3μ2 ‒ 1/3μ3  

‒ 1/3μ4 = 1×7 ‒ 1/3×7 ‒ 1/3× 6 ‒ 1/3×2 = 2.0. This  
C estimate directly answers our focused question: The 
difference between first row students and the other 
students is 2.0 grade points on average. The C-estimate 
is best interpreted as an unstandardized effect size. The 
larger the C is, the better the theory is supported by the 
empirical data. However, since it is unstandardized—
meaning that it, amongst other things, depends on the 
exam grading scale—this result cannot always be 
compared directly with that of other studies. 

This C = 2.0 can subsequently be tested against the 
null-hypothesis stating that the average grade of first-
row students is identical to the average grade of all other 
students in the population. This null-hypothesis, thus, is: 

H0: C = 1μ1 ‒ 1/3μ2 ‒ 1/3μ3 ‒ 1/3μ4 = 0 (the 
hypothesized value as it is labeled in Figure 2). The 
statistical significance of this test is p = .026. We thus 
reject H0 in favor of H1. One should, however, always 
carefully check the sign of the contrast estimate C as a 
similar p-value would be found with C = -2.0 (which 
would indicate the opposite of the expected first row 

effect). The results of the hypothesis test, now with the 
usual statistics of the F-test, are once more provided in 
the Test Results table: F(1,16) = 6.0 and p = .026 (see 
Figure 2). Notice that the degrees of freedom of the 
nominator of the F-test equal one. Testing a specific 
theoretical prediction against the data thus involves a 
focused rather than omnibus test. Focused tests are 
directly meaningful without any further need for post-
hoc analysis.  

More interesting is the question of how much of the 
empirical or observed variance associated with 
differential seating locations can be explained by the 
theory. In other words, how much of the SSmodel = 85 
obtained with the conventional ANOVA (labeled 
SScorrected model in Figure 1) can the theory account for? The 
answer is provided by SScontrast in Figure 2 which reflects 
variance in educational performance explained by our 
theory. Since no theory will perfectly predict all the 
empirical differences between the groups, SScontrast will be 
smaller than SSmodel. Following Rosenthal and colleagues 
(2000), we will label the difference as SSnoncontrast which 
reflects the amount of between-group variance that the 
theory cannot explain:   

𝑆𝑆model = 𝑆𝑆contrast + 𝑆𝑆noncontrast (3) 

 

We find that SScontrast = 15 (see Figure 2), so that 
SSnoncontrast = 85 – 15 = 70. Standardized effect sizes may 
be calculated using the η2 introduced in Equation 2. 
Dividing SScontrast by the SStotal as obtained with a 
conventional ANOVA (labeled SScorrected total in the SPSS 
output in Figure 1) provides an estimate of the 
proportion of variance in educational performance that 
was explained by the theory: 

η2 =
𝑆𝑆contrast

𝑆𝑆total
 (4) 

 

Using this equation, we find that η2 = 15/125 = 
12%. In other words, the social influence theory could 
only account for 12% of the variance in student grades. 
Not much given that the observed variance in 
educational performance associated with differential 
seating locations was as much as η2 = 68%. Although the 
social influence theory accounted for a statistically 
significant part of the observed differences between 
groups—and thus strictly speaking was supported by the 
data—a large proportion of the empirical differences 
between the groups could not be explained. 

 

Figure 2. Excerpt of the SPSS output for Example 1 
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The performance of the theory can be more directly 
compared with the empirical data by dividing SScontrast by 
SSmodel, which tells us that only 15/85 = 17.6% of the 
observed differences between the groups can be 
accounted for by our theory. Following Rosenthal and 
colleagues (2000), we will label this effect size η2

alerting: 

ηalerting
2 =

SScontrast

𝑆𝑆model
 (5) 

 

The remaining 82.4% of SSmodel thus is variance due 
to the seating location manipulation that the theory 
cannot predict. Alternatively this can be calculated based 
on SSnoncontrast. Dividing SSnoncontrast by SSmodel provides the 
proportion of between group variance that the theory 
cannot account for, since: 

ηalerting
2 = 1 −

𝑆𝑆noncontrast

𝑆𝑆model
 (6) 

 

Example 2: Rows 2 and 3 outperform 1 and 4? 
An alternative psychological theory of which the 
researchers expect that it can explain the observed effect 
of seating location on education performance is based 
on media psychology. Media psychology theory predicts 
that students assigned to rows 2 and 3 outperform those 
seated in rows 1 and 4 because the latter groups are 
seated respectively too close or too far from the 
projection screen to read properly the teacher’s slides. 
The alternative hypothesis related to this theory thus is 

H1: C = (μ2 + μ3)/2 > (μ1 + μ4)/2, or: C = ‒ 1/2μ1  

+ 1/2μ2 + 1/2μ3 ‒ 1/2μ4 > 0. This can be tested against 

the null-hypothesis H0: C = ‒ 1/2μ1 + 1/2μ2 + 1/2μ3  

‒ 1/2μ4 = 0. As explained in Example 1, the required 
vector with contrast weights can be directly obtained 
from these hypotheses: L = [-1/2 1/2 1/2 -1/2].  
To test this contrast against the data, the following 
LMATRIX subcommands needs to be specified: 

 

/LMATRIX = “Example 2: Rows 2 and 3 
 outperform 1 and 4?”  
 location -1/2 1/2 1/2 -1/2 intercept 0 

 

 
3 Determining whether the difference in explained variance between two theories is statistically significant is outside the scope 

of the present manuscript, but the interested reader is referred to Rosenthal and colleagues (2000). 

As expected, the contrast estimate is larger than 
zero to a statistically significant extent with C = 2.0, 
F(1,16) = 8.0, and p = .012. The sum of squares of the 
contrast is SScontrast = 20. Using Equation 5, we find that 
η2

alerting = 20 / 85 = 23.5% of the variance that was 
observed to be associated with differential seating 
locations is accounted for by the theory. We can thus 
conclude that, compared to the previous theory based 
on social influence, predictions based on media 
psychology theory fit the data slightly better3. 

Example 3: A negative linear trend? An 
alternative explanation for the effect of seating location 
observed in Table 1 is taken from nonverbal 
communication theory. This theory posits that 
educational performance depends on the frequency of 
eye contact between teacher and student. Moreover, 
empirical studies in this domain demonstrate that 
teachers generally make less eye contact with students 
sitting further to the back of the lecturing hall. 
Specifically, this theory predicts a linear decrease in the 
frequency of eye contact, and thus a linear decrease in 
educational performance, with increasing distance 
between student and teacher. The following focused 
question thus is to be asked: Is there a negative linear 
relation between seating location and educational 
performance?  For linear contrasts, the required contrast 
weights are most easily obtained through special tables 
(see Table 2). In this table, we find that the required 
weights are L = [3 1 -1 -3], so that the alternative 

hypothesis becomes H1: C = 3μ1 + 1μ2 ‒ 1μ3 ‒ 3μ4 > 0. 
To test this theoretical prediction against the data, the 
following LMATRIX subcommand needs to be 
specified: 

 

/LMATRIX = “Example 3: A negative linear 
 trend?” location 3 1 -1 -3 intercept 0 

 

As expected, the contrast estimate C = 16 is 
positive, and significantly larger than zero with F(1,16) 
= 25.6 and p < .001. The sum of squares of the contrast 
is SScontrast = 64. Using Equation 5, we find that out of 
the variance that was observed to be associated with 
differential seating locations η2

alerting = 64/85 = 75.3% is 
accounted for by the theory.  
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We can thus conclude that of all three theories, 
predictions based on nonverbal communication theory 
fit the data best. Of course, the effects of seating location 
on educational performance may not be explained 
satisfactorily by a single theory; as often, multiple 
theories may be needed to explain all causal factors. In 
the next section, we discuss cases in which multiple 
theories are used to predict the data in Table 1. 

Example 4: Combining contrasts. The group of 
researchers in our example decided to test against the 
empirical data in Table 1 a prediction based on the two 
most promising theories: the nonverbal communication 
theory from Example 3, and the media psychology 
theory from Example 2. The first theory predicted a 
linear decrease in educational performance across the 
four rows because of a diminished frequency of eye 
contact over distance. The second theory predicted that 
students assigned two rows 2 and 3 would have better 
chances of performing well on the final exam, because 
they were seated at an appropriate distance from the 
projection screen: neither too close to (compared to  
row 1 students) nor too far from the screen (compared 
to row 4 students). Combined, the theories thus predict 
that the nonverbal benefit for row 1 students may be 
partly negated by them not being able to read the 
teacher’s slides properly. At the same time, the theories 
combined would predict a much lower performance of 
row 4 students, compared to their peers, then each 
theory would predict on its own. To test how well both 
theories combined predict the empirical effects of 

seating location, the two contrasts need to be specified 
together in a single LMATRIX subcommand separated 
by a semicolon: 

 

/LMATRIX = “Example 4: Combining contrasts” 
 location -1/2 1/2 1/2 -1/2 intercept 0; 
 location 3 1 -1 -3 intercept 0  

 

SPSS will still provide the information in the 
Contrast Results table for each hypothesis separately, 
but the Test Results table will now provide the SScontrast 
and F-test for the combined prediction (see Figure 3). 
We find that F(2,16) = 16.8 with p < .001. Notice that 
the degrees of freedom of the nominator are two, and 
thus that the F-test is an omnibus test. We tested both 
contrasts against the empirical data simultaneously, but 
made no predictions about the relative importance of the 
two theories in predicting student grades. From this 
single F-test alone we, thus, cannot determine whether 
each individual contrast predicts a statistically significant 
part of the data, or what each prediction’s relative 
contribution is to the SScontrast. 

The SScontrast of the combined prediction is 84. The 
prediction based on the two theories together thus 
predicts η2 = 84 / 125 = 67.2% of the overall variance 
in educational performance (using Equation 4); nearly as 
much as the variance observed to be associated with 
differential seating locations as determined with 
conventional ANOVA (i.e., 68%). This excellent 
performance of the combined prediction is more directly 
expressed with η2

alerting, which we calculate to be η2
alerting = 

84 / 85 = 98.8% (see Equation 5). In other words, the 
two theories combined explain nearly all of the observed 
between group variance—nearly all of the variance that 
is to be accounted for. 

The attentive reader may notice that SScontrast in 
Figure 3 equals the sum of the sum of squares predicted 
by each theory separately (i.e., the sum of the SScontrast 
values for the contrasts in Examples 3 and 4). This is the 
case only when the combined contrasts are orthogonal 
or independent. Two theories have orthogonal 
predictions when differences between groups as 
predicted by one theory are not also (partly) predicted by 
the other. Whether two contrasts are orthogonal or not 
can be determined by taking the sum of the product of 
contrast weights for each cell (see Rosenthal et al., 2000). 

If the sum of products is ∑(lg,contrast1 × lg,contrast2) = 0, then 

Table 2. Contrast weights for positive linear 
contrasts 

 Contrast weights 

Number of cells 1 2 3 4 5 6 7 8 

2 -1 1       

3 -1 0 1      

4 -3 -1 1 3     

5 -2 -1 0 1 2    

6 -5 -3 -1 1 3 5   

7 -3 -2 -1 0 1 2 3  

8 -7 -5 -3 -1 1 3 5 7 

Note. Table based on Rosenthal et al. (2000; p. 153). For 
an extended table including contrast weights for designs 
involving more groups or for quadratic contrasts see 
Rosenthal et al. (2000). 
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the two theoretical predictions are orthogonal. In our 
example, the two set of contrasts weights were L1 =  
[-1/2 1/2 1/2 -1/2] and L2 = [3 1 -1 -3]. The sum  

of the product of contrast weights then is (‒ 1/2 × 3) + 

(1/2 × 1) + (1/2 × ‒ 1) + (‒ 1/2 × ‒ 3) = 0, so that the 
contrasts from Examples 3 and 4 have non-overlapping 
predictions. 

Contrasts with non-orthogonal predictions may be 
combined as well, but with overlapping predictions the 
added value of including a second theory, with respect 
to the variance explained, is diminished. However, it is 
the scientific question of interest that determines the 
contrast weights, and thus whether or not contrasts with 
non-orthogonal predictions need to be combined (for a 
more detailed discussion, see Rosenthal et al., 2000). For 
an example of two contrasts with overlapping 
predictions, consider Examples 1 and 3. 

Factorial between-subject designs 

In a between-subject design with multiple factors 
each of n participants is assigned to one of the cells in 
the study design. In contrast to single factor designs, 
group or cell membership is defined by multiple factors 
or experimental conditions. Consider the following 
hypothetical experiment: The psychologists from our 

earlier example decided to conduct a follow-up 
experiment to test the theory that the effect of seating 
location on educational performance is indeed mainly 
caused by the teacher having decreased levels of eye 
contact with students sitting farther to the back of the 
lecturing hall. For this purpose, they asked a total of  
n = 72 participants to attend a lecture in which they were 
taught all kinds of trivia about rare animal species. The 
lecture was give twice, each time to a group of 36 
participants: once with and once without the teacher 
wearing dark sunglasses. In each session, the 36 
participants were randomly assigned to one of the four 
rows in the lecturing hall. Group membership thus is 
defined by two factors. Factor A, labeled Sunglasses, 
consisted of i = 2 levels: Teacher did not (coded with 1) 
or did wear sunglasses (coded with 2). Factor B, labeled 
Location, consisted of j = 4 levels, each referring to one 
of the four rows in the lecturing hall. The resulting 
between-subject 2 by 4 condition experimental design, 
and the observed cell means are shown in Table 3. 
Performance of participants was assessed with a 
retention task consisting of 10 multiple-choice questions 
about the trivia just learned. Their retention scores are 
provided in Table 4; ranging from 0 (no recall) to 10 
(perfect recall). 

In a conventional two factor between-subject 
ANOVA, the total variance (SStotal; labeled SScorrected total in 
SPSS) is again decomposed into two parts: Variance 
associated with group membership (SSmodel; labeled 
SScorrected model in SPSS) and the residual or error variance 
(SSresidual; labeled SSerror in SPSS; see Equation 1). 
However since group membership is defined by two 
factors, the SSmodel is further decomposed in three 
additive effects: the main effects of the factors and the 
interaction effect: 

SSmodel=SSfactor A+SSfactor B+SSfactor A*factor B (7) 

 

In our example, the variance associated with group 
membership, and thus with the manipulation of 
sunglasses and seating locations, is SSmodel = 178.9 (See 
SScorrected model in Figure 4), and accounts for η2 = 178.9 / 

 

Figure 3. Excerpt of the SPSS output for Example 4. 
 

Table 3. The 2 by 4 condition experimental design 
and observed cell means (μij). 

  Factor B: Location (row) 

  1 2 3 4 

Factor A: 
Sunglasses 

1 (without) μ11 = 8 μ12 = 7 μ13 = 6 μ14 = 3 

2 (with) μ21 = 6 μ22 = 4 μ23 = 5 μ24 = 4 
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274.9 = 65.1% of the overall variance in retention scores 
(using Equation 2). With Sunglasses as Factor A and 
Location as Factor B, this variance is further 
decomposed in SSmodel = SSsunglasses + SSlocation 

+ SSsunglasses*location (based on Equation 7). The SSsunglasses = 
28.1 is the variance accounted for by the difference in 
retention when the teacher did or did not wear 
sunglasses, averaged across the levels of the Location 
factor (i.e., the variance accounted for by the main  
effect of Sunglasses). The null-hypothesis of the 
corresponding F-test is that there is such no main effect 
of wearing sunglasses. With F(1,64) = 18.8 and  p < .001, 
this null-hypothesis is rejected.  

The SSlocation = 111.4 is the variance accounted for 
by the average differences, aggregated across the two 
levels of the Sunglasses factor, in performance between 
students sitting in the various rows (i.e., the variance 
accounted for by the main effect of Location). The null-
hypothesis of the corresponding F-test is that there is no 
such main effect of seating location. With F(3,64) = 24.8 
and p < .001, this null-hypothesis can be rejected. 

The SSsunglasses*location = 39.4 is the variance accounted 
for by the so-called difference of differences (e.g., 
Rosnow & Rosenthal, 1995): The effect of one factor 

being different for the various levels of the other factor. 
The null-hypothesis of corresponding F-test is that no 
such differences of differences exist, and thus that the 
effect of Location is the same for both levels of the 
Sunglasses factor and vice versa. With F(3,64) = 8.8 and 
p < .001 this null-hypothesis can be rejected. 

The researchers in our example, of course, did not 
conduct this experiment without a clear theoretical 
prediction in mind. If the nonverbal communication 
theory is correct, then the predicted decrease in 
performance across rows should not, or at least not as 
strongly, be observed when the teacher wore sunglasses. 
After all, by wearing dark sunglasses, the possibility of 
having eye contact is reduced equally for all students 
regardless of their seating location. The significant 
Sunglasses by Location interaction effect in Figure 4 may 
suggest that their theory is supported by the data—since 
their theory predicted the effects of Location to be 
different for the two levels of the sunglasses factor—, 
but the conventional ANOVA does not test the 
researchers’ prediction directly. As explained in the 
introduction, the interaction effect in a 2 by 4 design 
involves an omnibus test. As a result, there are 
multitudes of ways in which the effect of seating location 
may be different for the different levels of the sunglasses 
factor. Yet, only one of these possible differences of 
differences is predicted by the theory. In the next 
example, such specific predictions will be tested using 
contrast analysis.  

When specifying the required set of contrast 
weights, one can generally ignore that group 
membership is defined by multiple factors. In other 
words, we can treat the example data as if they were 
obtained with an experiment that had a 1 by 8 design 
with g = 8 levels. This simplifies the required SPSS 
syntax, as L remains a row vector. As a result, the 

Table 4. The data for the 2 by 4 condition 
experimental design. 

  Factor B: Location (row) 

  1 2 3 4 

Factor A: 
Sunglasses 

1 (without) 6 7 5 2 

 7 9 8 2 

 7 8 6 4 

 8 8 7 3 

 8 7 7 4 

 8 6 4 3 

 9 5 6 1 

 9 6 5 3 

 10 7 6 5 

2 (with) 5 2 5 4 

6 4 4 6 

7 3 3 2 

8 5 6 5 

7 3 6 5 

6 5 4 3 

4 4 7 3 

6 4 5 4 

5 6 5 4 

 

Table 5. Lambda weights for the theoretical 
prediction in Example 5. 

  Factor B: Location (row) 

  1 2 3 4 

Factor A: 
Sunglasses 

1 (without) l1 = 3 l2 = 1 l3 = -1 l4 = -3/5 

2 (with) l5 = -3/5 l6 = -3/5 l7 = -3/5 l8 = -3/5 

 

 
Figure 4. Excerpt of the SPSS output of a 
conventional between-subject ANOVA on the data 
of the 2 by 4 design in Table 4. 
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procedure is similar for factorial designs as for single 
factor designs. 

Example 5: A direct test of the theory. If one 
applies strictly the researchers’ theory, then the following 
predictions must be made regarding the relative 
differences between the group means. In the condition 
without sunglasses, and thus with unconstrained eye 
contact, a linear decrease in retention scores is to be 
expected with increasing distance between the students 
and the teacher. In the condition with sunglasses, all four 
rows of students are expected to the have the same 
performance on average; a performance, we assume, that 
is similar to, and thus as low as, that of the row 4 students 
in the condition without sunglasses. The contrast 
weights for a decreasing linear trend across four groups 
is found in Table 2 to be 3 1 -1 -3.  In terms of group 
means (μij), the alternative hypotheses thus becomes H1: 

C = 3μ11 + 1μ12 ‒ 1μ13 ‒ 3(μ14 + μ21 + μ22 + μ23 + μ24)/5 

> 0, or H1: C = 3μ11 + 1μ12 ‒ 1μ13 ‒ 3/5μ14 ‒ 3/5μ21  

‒ 3/5μ22 ‒ 3/5μ23 ‒ 3/5μ24 > 0.   

Since the original 2 by 4 design of the experiment 
from which the data were obtained is now treated as a 1 
by 8 design with k = 8 levels, the contrast weights can 
again be listed in a single row vector L. Especially with 
more complex factorial designs, mistakes in ordering the 
contrast weights can be avoided by writing them in the 
table of your experimental design (see Table 5). If you 
make sure that the levels of Factor A are in the rows and 
that of Factor B in the columns of your table, then the 
contrast weights can be listed in reading order, so that  
L = [3 1 -1 -3/5 -3/5 -3/5 -3/5 -3/5]. To test this 
specific theoretical prediction against the data, the 
following syntax needs to be specified in the SPSS syntax 
editor: 

GLM retention BY sunglasses location 
 /LMATRIX = “Example 5: A direct test of the 
 theory”  
 sunglasses*location 3 1 -1 -3/5 -3/5 -3/5 -3/5  
 -3/5 intercept 0  
 /DESIGN = sunglasses*location. 

 

The first line in the syntax provides the dependent 
variable Retention and the two factors that define group 
membership in the experimental design: Sunglasses and 
Location. In order for SPSS to correctly read the set of 
contrast weights defined under the LMATRIX 
subcommand, Factor A must be listed first in the GLM 
specification and Factor B second. In a conventional 

factorial ANOVA the DESIGN subcommand lists 
Sunglasses, Location, and Sunglasses*Location. When 
performing contrast analysis, only the highest order 
interaction should be specified for SPSS to understand 
that in listing the contrast weights in the LMATRIX 
subcommand the factorial design is treated as a single 
factor design consisting of eight levels, and with this 
factor labeled Sunglasses*Location. Treating the design 
as such allows for a more convenient specification of the 
LMATRIX (cf. Howell & Lacroix, 2012).   

Table 5. Lambda weights for the theoretical 
prediction in Example 5. 

  Factor B: Location (row) 

  1 2 3 4 

Factor A: 
Sunglasses 

1 
(without) 

l1 = 3 l2 = 1 l3 = -1 l4 = -3/5 

2 (with) l5 = -3/5 l6 = -3/5 l7 = -3/5 l8 = -3/5 

The results of the analysis can be interpreted in a 
similar fashion as for single factor designs. We find that 
the contrast estimate is C = 11.8, and is statistically larger 
than 0 with F(1,64) = 65.3, and p < .001. In other words, 
the theoretical prediction is supported by the empirical 
data. The SScontrast = 97.9, so that η2

alerting = 97.9 / 178.9 
= 54.7%. Thus the theory, although statistically 
supported by the empirical data, could account for only 
about half of the variance observed to be associated with 
the experimental manipulations. In other words, the 
experimental manipulation of seating location and eye 
contact have affected retention scores in ways the theory 
could not fully predict. Additional post-hoc explorations 
may provide valuable insights into the nature of this 
unexplained variance, for example by testing different 
parts of the theoretical prediction in separate analyses. 
Contrast analysis is an efficient and effective means for 
conducting such post-hoc analyses, as will be 
demonstrated in the next example. 

Example 6: Negative linear effect of seating 
location without but not with sunglasses? To follow 
up on the outcomes of the empirical test of their eye 
contact theory, the researchers decided to test separately 
two parts of the theoretical prediction. The first part 
predicts a negative linear effect of the distance between 
the students and the teacher on student retention with 
unconstrained eye contact; that is for the first level  
(i = 1) of the Sunglasses factor. The second part predicts 
that no such linear effect should occur in the conditions 
in which the teacher could not make eye contact with the 
students; that is for the second level (i = 2) of the 
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Sunglasses factor. In order to test these two predictions 
against the empirical data in separate tests, two sets of 
contrast weights have to be defined, each considering 
only four of the eight groups in the design. 

The contrast weights for a decreasing linear trend 
across four groups is found in Table 2 to be 3 1 -1 -3, so 
that the alternative hypothesis for the groups without 
sunglasses (the first row of Table 3) becomes H1: C1 = 
3μ11 + 1μ12 – 1μ13 – 3μ14 > 0. The groups of students in 
the sunglasses condition are not included in this 
particular question, and all are therefore given a contrast 
weight of 04.  The vector with contrast weights for this 
first prediction thus is L1 = [3 1 -1 -3 0 0 0 0].  

For the second theoretical prediction, involving 
only the second row of Table 3, the theory predicts that 
C2 = 3μ21 + 1μ22 – 1μ23 – 3μ24 = 0. The vector with 
contrast weights thus is L2 = [0 0 0 0 3 1 -1 -3]. In this 
case, the theory predicts that the null-hypothesis cannot 
be rejected. To test both hypotheses separately, one can 
either run two separate contrast analyses, or specify two 
LMATRIX subcommands in a single GLM syntax: 

 

GLM retention BY sunglasses location 
 /LMATRIX = “Example 6: Linear decrease without 
 sunglasses?”  
 sunglasses*location 3 1 -1 -3 0 0 0 0 intercept 0  
  /LMATRIX = “Example 6: Linear decrease with 
 sunglasses?”  
 sunglasses*location 0 0 0 0 3 1 -1 -3 intercept 0 
  /DESIGN = sunglasses*location. 

 

We find that the contrast estimates are C1 = 16 and 
C2 = 5 for the conditions without and with sunglasses 
respectively. Both levels of the Sunglasses factor thus 
show signs of a negative linear effect of seating location 
on student retention, but with a less strong—or less 
steep—effect in the conditions with sunglasses (as 
indicated by the contrast value being positive but lower). 
As expected, the tested negative linear effect of seating 

 
4 There are two ways in which a contrast weight of 0 is used. The first is to set aside groups in the design for which no 

predictions are being made (as in Example 6). The second is with tests of linear contrast involving an odd number of groups (see 
Table 2). In the latter case, a weight of zero does not mean that a group is set aside, but that its mean is expected to fall exactly 
between that of the other groups. If a group is assigned a weight of zero, then the size of the mean of that group affects neither the 
contrast estimate C nor its associated p-value. Consider, for example, three groups of which the first has a mean of μ1 = 4, and the 
third a mean of μ3 = 8. The contrast estimate for a positive linear contrast will always be C = 4 regardless of the value of the mean of 
the second group. Therefore, Rosenthal et al. (2000) suggest tests of linear contrasts to be best performed when comparing four or 
more groups. 

location on retention was statistically larger than C = 0 
without sunglasses, with F(1,64) = 76.8 and p < .001. 
However, and against expectations, also in the 
conditions with sunglasses was the contrast estimate 
found to be statistically larger than zero, with F(1,64) = 
7.5 and p = .008. In other words, seating location 
affected student retention even with the teacher wearing 
dark sunglasses. 

Example 7: Negative linear trend more 
pronounced without than with sunglasses? In 
Example 6, we found that the negative linear effect of 
seating location on student retention appeared to be 
more pronounced without (C1 = 16) as compared to 
with the teacher wearing sunglasses (C2 = 7).  In this 
example, we ask the question whether the slope of this 
negative linear effect is steeper without than with 
sunglasses, and thus test whether C1 is larger than C2 to 
a statistically significant extent. The alternative 
hypothesis of this question then is that C = C1 – C2 > 

0, and thus H1:  C = (3μ11 +1 μ12 ‒ 1μ13 ‒ 3μ14) ‒ (3μ21  

+ 1 μ22 ‒ 1μ23 ‒ 3μ24) = 0. The vector with contrast 
weights for this question thus is L = [3 1 -1 -3 -3 -1 1 3]. 
The null-hypothesis is that the slopes are identical (i.e., 
that C1 – C2 = 0), and thus that H0: C = 3μ11 + 1μ12  

– 1μ13 – 3μ14 ‒ 3μ21 ‒ 1μ22 + 1μ23 + 3μ24) = 0. To answer 
this question, the following LMATRIX and DESIGN 
subcommands needs to be specified in the GLM 
procedure: 

 

/LMATRIX = “Example 7: Negative linear trend 
 larger without than with sunglasses?” 
 sunglasses*location 3 1 -1 -3 -3 -1 1 3 intercept 0 
/DESIGN = sunglasses*location. 

 

We find that the contrast estimate is C = 11. This is 
the difference between the contrast estimate for the 
negative linear contrast without (C1 = 16) and with 
sunglasses (C2 = 5) as obtained in Example 6. Moreover, 
we find that this C = 11 is larger than zero to a 
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statistically significant extent, with F(1,64) = 18.2 and  
p < .001. This demonstrates that while constraining eye 
contact by wearing dark sunglasses may not completely 
remove the predicted linear effect of seating location on 
student retention, it does attenuate it to a statistically 
significant extent. 

Contrast analysis in within-subject 

designs 

Single factor within-subject designs 

In a within-subject (or repeated measures) design each 
of n participants is assigned to all cells of the 
experimental design. Assume that the data in Table 1 
were obtained with a repeated measures experiment, and 
that each row in Table 1 contains the data for a single 
participant. The single within-subject factor is labeled 
Location and consists of g = 4 levels. The sample then 
consists of n = 5 students, each of whom tested four 
times on their retention of the course materials: Once 
while sitting the first row (variable named row1), once 
sitting in the second row (row2), once sitting in third row 
(row3), and once sitting in the fourth and last row of the 
lecturing hall (row4). A conventional repeated-measure 
ANOVA on the data in Table 1 will tell the researchers 
what amount of variance in the data can be attributed to 
differences in seating location. The outcome of this test 
is reported in Figure 5.  

In a within-subject ANOVA that involves a single 
factor, the overall variance in the data is decomposed 
into: 

SStotal=SSfactor+SSperson+SSfactor*person (8) 

 

SSfactor is the variance associated with the effect of 
group membership, and thus the effect of the 
experimental manipulations. Since group membership is 
defined by a single factor SSfactor = SSmodel. Because we 
have repeated observations from each participant in 
within-subject designs, the residual term from the 
between-subject analysis (see Equation 1) can be 
decomposed into SSperson and SSfactor*person. The SSperson 
(labeled SSerror in SPSS) reflects overall individual 
differences in performance when aggregated across the 
four measurements (i.e., a main effect of person). The 
SSfactor*person (labeled SSerror(factor) in SPSS) is variance due to 
the experimental manipulations affecting different 
students differently (i.e., a person by factor interaction). 

The SSfactor*person is the error term used in the calculation 
of the F-test for the effect of the within-subject factor.  

In our example, the variance associated with group 
membership, and thus with the manipulation of seating 
locations is SSmodel = SSlocation = 85 (see the Tests of 
Within-Subjects Effects table in Figure 5).  Its associated 
error term is SSlocation*person = 33.5. The effect of seating 
location is statistically significant with F(3,12) = 10.1 and 
p = .001. SPSS does not list SStotal in the output (see 
Figure 5), but the overall variance in the data can be 
calculated using Equation 8: SStotal = 85 + 6.5 + 33.5 = 
125. We thus find that the effect of seating location can 
explain η2 = 85/125 = 68.0% of the overall variance in 
retention scores (using Equation 2). 

Performing contrast analysis is rather similar for 
within- as for between-subject designs. In case of within-
subject designs, each theoretical prediction is descripted 
by a row vector M (so-called transformation matrix) 
consisting of a series of contrast weights (mg), one for 
each of the g cells of the design (i.e., one for each 
repeated observation). The required contrast weights can 
be obtained in the same manner as before, but since the 
contrast weights now reflect expected differences 
between repeated observations, they have to be specified 
in an MMATRIX rather than an LMATRIX 
subcommand in the SPSS syntax.  

There are small differences in how the MMATRIX 
subcommand is used compared to the LMATRIX 
subcommand. First, when an MMATRIX is specified 
the SScontrast cannot be compared directly to the SSmodel as 
obtained with a conventional within-subject ANOVA. 
As a result, the calculation of η2

alerting is slightly more 
complicated. Second, the MMATRIX subcommand can 

 
Figure 5. Excerpt of the SPSS output of a 
conventional within-subject ANOVA on the data of 
the 1 by 4 design in Table 1 
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only be included in the GLM syntax once. To test 
multiple predictions separately in one run (as in Example 
6) the vectors with contrast weights have to be specified 
in a single MMATRIX subcommand. Finally, the way in 
which the contrast weights are listed in the syntax is 
slightly different for the MMATRIX subcommand. 
These differences will be explained in more detail in 
subsequent examples 

Example 8: A negative linear trend? Let us test 
against the data of Table 1, now treated as originating 
from a within-subject design, the prediction based on 
nonverbal communication theory (see Example 3). This 
theory predicts a linear decrease in educational 
performance with increasing distance between student 
and teacher. The vector with contrast weights can again 
be obtained from Table 2: M = [3 1 -1 -3]. To test this 
prediction against the empirical data, the following 
syntax needs to be specified in SPSS syntax editor:  

 

GLM row1 row2 row3 row4 
 /WSFACTOR=location 4  
 /MMATRIX="Example 8: A negative linear trend?"  
 row1 3 row2 1 row3 -1 row4 -3 
 /MEASURE=grade 
 /WSDESIGN=location. 

 

The first line of the syntax provides the variable 
names of the repeated observations to be included in the 
General Linear Model (GLM) procedure (the variables 
labeled row1 to row4 in the dataset; see the  
online supplementary material). The WSFACTOR 
subcommand provides the name of the within-subject 
factor Location and its number of levels (g = 4). The 
WSDESIGN subcommand is used to specify the 
structure of the within-subject experimental design 
which in this example involves a single factor labeled 
Location. The optional MEASURE subcommand is 
used to provide a label for what was measured in each of 
the repeated observations (i.e., exam grades). Finally, the 
MMATRIX subcommand lists the contrast weights for 
each cell in the design (i.e., for each repeated 
observation). A more convenient alternative that does 
not require listing the name of each repeated variable in 
the MMATRIX subcommand is to use the ALL 
statement:  

  /MMATRIX = "Example 11: A negative linear 
 trend?" ALL -3 -1 1 3 
 

As before, you can either write the syntax directly in 
the syntax editor, or use the SPSS graphical user 
interface to set up a conventional repeated measures 
ANOVA, paste the instructions to the syntax editor, and 
add the MMATRIX subcommand manually. After 
running the syntax, the output of the analysis can be 
found in the SPSS output under the heading Custom 
Hypothesis Tests (see Figure 6). 

The contrast estimate C = 16 is positive, and is 
statistically different from zero with F(1,4) = 44.9 and  
p = .003 (see Figure 6). In other words, we reject the null 
hypothesis which states that C = 0. The variance that can 
be explained by our theoretical prediction is SScontrast = 
1280. When the prediction involves differences between 
repeated measures—i.e., when an MMATRIX 
subcommand is specified—this value cannot be directly 
compared with the outcome of the conventional 
repeated measures ANOVA reported in Figure 5. To do 
so, SScontrast first has to be divided by the sum of squared 
within-subject contrast weights (mg): 

𝑆𝑆contrast
′ =

𝑆𝑆contrast

∑ mg
2

 (9) 

 

We find SS’contrast = 1280 / (32 + 12 + -12 + -32) = 
1280 / 20 = 64. Based on Equation 5, we can calculate 
that η2

alerting = SS’contrast / SSlocation = 64 / 85 = 75.3%. 

 

Figure 6. Excerpt of the SPSS output for Example 8. 
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Factorial within-subject designs 

In a factorial within-subject design, group 
membership is defined by two or more within-subject 
factors, and each of n participants is member of all 
groups. Assume that the data in Table 4 originated from 
a within-subject experiment in which group membership 
was defined by a Factor A labeled Sunglasses (consisting 
of i = 2 levels) and a Factor B labeled Location, 
(consisting of j = 4 levels, each referring to one of the 

four rows in the lecturing hall). Treated as a within-
subject experiment, each of n = 9 student were tested 
eight times on their retention of the course materials 
(with the data of the first person in the first and fifth row 
of Table 4, the data of the second person in the second 
and sixth row, and so forth). As with a between-subject 
factorial design (see Equation 7), a conventional within-
subject ANOVA will explain the differences between 
groups in terms of two main effects and a Sunglasses by 
Location interaction effect. In repeated measures 

 

Figure 7. Excerpt of the SPSS output of a conventional within-subject ANOVA on the data of the 2 by 4 
design in Table 4. 
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designs, however, each effect has its own specific error 
term. The SStotal is decomposed into: 

SStotal= SSfactorA+SSfactorB  
+ SSfactorA*factorB+SSperson+SSfactorA*person

+ SSfactorB*person+SSfactorA*factorB*person 

(10) 

 

The SSfactorA*person (labeled SSerror(factorA) in SPSS), 
SSfactorB*person (labeled SSerror(factorB) in SPSS), and 
SSfactorA*factorB*person (labeled SSerror(factorA*factorB) in SPSS) are 
the error terms used in the calculation of the F-statistics 
for the main and interaction effects respectively. In our 
example, we find that SSsunglasses = 28.1, SSlocation = 111.4, 
and SSsunglasses*location = 39.4, so that, following Equation 7, 
SSmodel = 28.1 + 111.4 + 39.4 = 178.9 (see Figure 7). The 
SStotal can be calculated using Equation 10 and is SStotal = 
28.1 + 111.4 + 39.4 + 23.8+ 6.8 + 21.3 + 44.3 = 275.2. 
Group membership, and thus the manipulation of 
sunglasses and seating location, then explains η2 = 178.9 
/ 275.2 = 65.0% of the overall variance in retention 
scores (using Equation 2).  

 Example 9: A direct test of the theory. To 
illustrate the use of the MMATRIX subcommand in 
factorial designs, let us consider the theoretical 
prediction of Example 5, but now with the data in Table 
4 as resulting from a repeated-measures experiment with 
both Location and Sunglasses as within-subject factors. 
The required contrast weights (mg) are listed in Table 2: 
M = [3 1 -1 -3/5 -3/5 -3/5 -3/5 -3/5]. To test this 
theoretical prediction against the empirical data, the 
following syntax needs to be specified in the SPSS syntax 
editor. Note that in contrast to between-subject factorial 
designs (see Example 5), no modifications are needed to 
the WSDESIGN subcommand in order for SPSS to 
treat the 2 by 4 design as a 1 by 8: 

 

GLM noglasses_row1 noglasses_row2 
 noglasses_row3 noglasses_row4  glasses_row1 
 glasses_row2 glasses_row3 glasses_row4 
 /WSFACTOR=sunglasses 2 location 4  
 /MMATRIX= "Example 9: A direct test of the 
 theory?"  
 ALL 3 1 -1 -3/5 -3/5 -3/5 -3/5 -3/5 
 /MEASURE=retention  
 /WSDESIGN=sunglasses location 
 sunglasses*location. 

We find that the contrast estimate is C = 11.8 and 
is statistically different from 0 with F(1,8) = 143.9 and  
p < .001. In other words, the theoretical prediction is 
supported by the empirical data. The SScontrast = 1253.2. 
To calculate η2

alerting, we again first need to divide SScontrast 
by the sum of squared within-subject contrast weights 
(mg; see Equation 9): SS’contrast = 1253.2 / 12.8 = 97.9. 
Next we calculate η2

alerting using Equation 5: η2
alerting = 97.9 

/ 178.9 = 54.7%. 

Example 10: Negative linear effect of seating 
location without but not with sunglasses? To 
illustrate the use of the MMATRIX subcommand for 
testing multiple contrasts in a single run of the GLM 
command, let us consider the two predictions tested in 
Example 6. The first prediction is a negative linear effect 
of seating location on student retention for the first level 
(i = 1) of the Sunglasses factor (i.e., when the teacher did 
not wear sunglasses). The second prediction is that no 
such linear effect should occur for the second level  
(i = 2) of the sunglasses factor (i.e., when the teacher was 
wearing sunglasses). The two vectors with the contrasts 
weights needed to test these two predictions are similar 
to those used in the between-subjects case in Example 
6: M1 = [3 1 -1 -3 0 0 0 0] and M2 = [0 0 0 0 3 1 -1 -3], 
respectively. 

In contrast to the LMATRIX subcommand, the 
MMATRIX subcommand can only be specified once in 
the GLM syntax. However, two sets of contrast weights 
can be included under the same MMATRIX 
subcommand separated by a semi-colon. In that case, 
SPSS will provide a univariate F-tests for each contrast 
separately, and a multivariate F-test for the combined 
prediction. To do so, the following MMATRIX 
subcommand needs to be specified in the GLM 
procedure: 

 

/MMATRIX=  
 "Example 10: Linear decrease without 
 sunglasses?" ALL 3 1 -1 -3 0 0 0 0; 
 "Example 10: Linear decrease with sunglasses?" 
 ALL 0 0 0 0 3 1 -1 -3 

 

The contrast estimate of each separate prediction is 
reported in the Contrast Results (K Matrix) table (see 
Figure 8). The F-test for each contrast is reported in the 
Univariate Test Results Table. We find that the contrast 
estimates are C1 = 16 and C2 = 5 for the conditions 
without and with sunglasses respectively. Both levels of 
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the Sunglasses factor thus show signs of a negative linear 
effect of seating location on student retention, but with 
a less strong—or less steep—effect in the conditions 
with sunglasses (as indicated by the contrast value being 
positive but lower). As expected, the tested negative 
linear effect of seating location on retention was 
statistically larger than C = 0 without sunglasses, with 
F(1,8) = 177.2, and p < .001. However, and against 
expectations, also in the conditions with sunglasses was 
the contrast estimate found to be statistically larger than 
zero, with F(1,8) = 8.4, and p = .020. In other words, 
seating location affected student retention even with the 
teacher wearing dark sunglasses. The test of the 
combined prediction is provided in the Multivariate Test 
Results table in Figure 8, but as a multivariate rather than 
a univariate ANOVA test. 

When comparing the η2
alerting of the two predictions, 

it becomes clear that the linear decrease in retention over 
distance is much more prevalent without than with the 
teacher wearing sunglasses. In the condition without 
sunglasses the negative linear trend explained η2

alerting = 
64.4% of the variance empirically associated with the 
manipulation of sunglasses and seating location. In 
contrast, only η2

alerting = 6.3% of this variance is explained 
in the condition with sunglasses. To calculate these 

effect sizes we first have to divide the SScontrast by the sum 
of squared within-subject contrast weights in M (see 
Equation 9). For the condition without sunglasses, we 
find that SScontrast = 2304 (see the Univariate Test Results 
table in Figure 8). Divided by the sum of squared 
contrast weights (mg), we find that SS’contrast = 2304 / 20 
= 115.2 (using Equation 9). Next we use Equation 5 to 
calculate that η2

alerting = SS’contrast / SSmodel = 115.2 / 178.9 
= 64.4%. For the condition with sunglasses, we find that 
SScontrast = 225, so that SS’contrast = 225 / 20 = 11.3, and 
that η2

alerting = 11.3 / 178.9 = 6.3%. 

Mixed designs 

In mixed designs, group membership is defined by 
a combination of between- and within-subject factors. 
As a result, each of n participants is member of some but 
not all of the cells in the design. Assume that the data in 
Table 4 originated from a mixed design experiment in 
which group membership was defined by a between-
subject Factor A labeled Sunglasses (consisting of i = 2 
levels) and a within-subject Factor B labeled Location, 
(consisting of j = 4 levels, each referring to one of the 
four rows in the lecturing hall). In this case, each of  
n = 18 students were tested 4 times on their retention of 
the course materials (i.e., while sitting first, second, third, 
or fourth row from the teacher) but with the teacher 
either wearing or not wearing sunglasses. As a result each 
row in Table 4 contains the retention scores from a 
single participant.  

With this mixed design, the variance in the data, or 
SStotal, is decomposed into:  

 

SStotal=SSfactorA+SSfactorB+SSperson|factorA+ 

SSfactorA*factorB+SSfactorB*person|factorA 

 

(13) 

 

The SSperson|factorA (labeled SSerror in SPSS) is the error 
term used in the calculation of the F-statistic for the 
main effect of the between subject factor (in this case 
Sunglasses). The SSfactorB*person|factorA (labeled SSerror(factorB) in 
SPSS), in turn, is used as the error term for the main 
effect of the within-subject factor (in this case Location), 
and for the interaction between the within- and between- 
subject factor (in this case the Location*Sunglasses 
interaction). In our example, we find that SSsunglasses = 
28.1, SSlocation = 111.4, and SSlocation*sunglasses = 39.4 (see 
Figure 9), so that, based on Equation 7, SSmodel = 178.9. 
The SStotal can be calculated using Equation 13 and is 

 

Figure 8: Excerpt of the SPSS output for Example 
10. 

 



Practical Assessment, Research & Evaluation, Vol 23 No 9 Page 17 
Haans, Contrast Analysis: A Tutorial 
              

SStotal = 111.4 + 28.1 + 30.5 + 39.4 + 65.5 = 274.9. 
Group membership, and thus the manipulation of 
sunglasses and seating location, is found to be associated 
to η2 = 178.9 / 274.9 = 65.1% of the overall variance in 
retention scores (using Equation 2). 

In the case of mixed designs, each theoretical 
prediction is described by a matrix W consisting of a 
series of contrast weights (wij), one for each cell in the  
design. What complicates contrast analysis on mixed 
designs is that the factorial structure of the experimental 
design cannot be ignored: The 2 (Sunglasses) by 4 
(Location) design cannot be treated as a 1 by 8 design. 
As a result the set of contrast weights (W) is a matrix 
rather than a vector. For example, the theoretical 
prediction that the negative linear effect of seating 
location on student retention is more pronounced 
without than with sunglasses (as tested in Example 10 
for a between-subject design) becomes W = [3 1 -1 -3;  
-3 -1 1 3].  To test such a prediction against the empirical 

data, matrix W has to be decomposed into two 
vectors—one for the between-subject part (which we 
labeled L), the other for the within-subject part of the 
design (which we labeled M)—that when multiplied 
yield the desired matrix W, where W = LT × M. The 
vector L has to be specified in the LMATRIX, and the 
vector M in the MMATRIX subcommand. The 
examples below explain how these two vectors can be 
obtained.  

Consequently, there are limits to the theoretical 
predictions one can test with mixed designs. For 
example, the theoretical prediction of Example 5 cannot 
be tested when the data in Table 4 result from an 
experiment with a combination of between- and within-
subject factors: There is no combination of L and M 
vectors whose multiplication will yield LT × M = W =  
[3 1 -1 -3/5; -3/5 -3/5 -3/5 -3/5]. Interpreting the 
outcomes of a contrast analysis is, however, similar for 
mixed as for between- and within-subject designs. 

 

Figure 9: Excerpt of the SPSS output of a conventional mixed ANOVA on the data of the 2 by 4 design in 
Table 4 with Sunglasses as between- and Location as within-subject factor. 
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Example 11: Negative linear effect of seating 
location without but not with sunglasses? Let us 
once more test the two predictions from Examples 6 and 
10, but this time while treating the Sunglasses as a 
between-subject and Location as a within-subject factor. 
The first prediction is a negative linear effect of seating 
location on student retention for participants assigned to 
the first level (i = 1) of the Sunglasses factor (i.e., when 
the teacher did not wear sunglasses). The matrix of 
contrast weights that define this expectation, as 
determined in Example 6, is W1 = [3 1 -1 -3; 0 0 0 0].  
The second prediction involves a similar negative linear 
effect of seating location but for the condition with 
sunglasses: W2 = [0 0 0 0; 3 1 -1 -3].   

To determine the vectors L and M for these two 
predictions, and thus to determine what contrast weights 
have to be specified in the LMATRIX and MMATRIX 
subcommands, it is often convenient to split the design 
in Table 3 into its between- and within-subject part (see 
Table 6). In this relatively simple two-factor design, the 
between-subject part comprises the Sunglasses factor, 
and the within-subject part the Location factor. 

The theoretical prediction specified by W1 is a 
negative linear effect of seating location on retention 
scores for students whose teacher did not wear 
sunglasses. In the within-subject part of the design in 
Table 6, we can list the contrast weights (mj) that 
correspond to such a negative linear effect of seating 
location. These contrast weights can be obtained from 
Table 2: 3 1 -1 -3. These four weights form vector M = 
[3, 1, -1, -3] and have to be listed in the MMATRIX 
subcommand of the GLM procedure.  

The first prediction pertains only to the participants 
whose teacher did not wear sunglasses, and we can thus 
set aside the second level of the Sunglasses factor by 
assigning its contrast weight a value of l2 = 0 in the 
between-subject part of the design in Table 6. Finally, we 
assign the first level of the Sunglasses factor a contrast 
weight of l1 = 1 in the between-subject part of the Table 
6, so that the linear effect specified by M is tested only 
for the group in the no sunglasses condition. These two 

weights form vector L1 = [1 0] and have to be listed in 
the LMATRIX subcommand in the GLM syntax. The 
specification of the LMATRIX and MMATRIX 
subcommands for the first prediction thus becomes: 

 

 /MMATRIX= "Example 11: negative linear 
 trend…" ALL 3 1 -1 -3  
 /LMATRIX= "…without sunglasses?"  
 sunglasses 1 0 intercept 1 

 

Note that the weight of the intercept (l0) in the 
LMATRIX subcommand is 1. As explained in Example 
1, the weight of the intercept can be calculated by taking 
the sum of the contrast weights (li) specified in the 
LMATRIX subcommand: l0 = ∑li.  

To test the second prediction against the empirical 
data, we can add an additional LMATRIX subcommand 
in which the contrast weights (li) are reversed, so that  
L2 = [0 1]. This way, the linear prediction specified 
under the MMATRIX subcommand will be tested on 
the group of which the teacher wore sunglasses. The full 
syntax then becomes: 

 

GLM row1 row2 row3 row4 BY sunglasses 
 /WSFACTOR=location 4  
 /MMATRIX= "Example 11: Negative linear 
 trend…" ALL 3 1 -1 -3  
 /LMATRIX= "…without sunglasses?"  
 sunglasses 1 0 intercept 1 
 /LMATRIX= "…with sunglasses?"  
 sunglasses 0 1 intercept 1 
 /MEASURE=retention  
 /WSDESIGN=location  
 /DESIGN=sunglasses. 

 

The first line of the syntax provides the variable 
names of the repeated observations to be included in the 
General Linear Model (GLM) procedure (the variables 
labeled row1 to row4 in the dataset; see supplementary 
materials). The WSFACTOR subcommand provides the 
name of the within-subject factor Location and its 
number of levels (g = 4). The optional MEASURE 
subcommand is used to provide a label for what was 
measured in each of the repeated observations (i.e., exam 
grades). The WSDESIGN subcommand is used to 
specify the structure of the within-subject part of 

Table 6. L and M contrast weights for prediction 
W1 in Example 11. 

Between-subject 
part: Sunglasses 

Within subject part: Location (row) 

1 2 3 4  

 L m1 = 3 m2 = 1 m3 = -1 m4 = -3 M 

1 (without) l1 = 1 w11 = 3 w12 = 1 w13 = -1 w14 = -3  
2 (with) l2 = 0 w21 = 0 w22 = 0 w23 = 0 w24 = 0  
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experimental design which in this example involves  
a single factor labeled Location. The DESIGN 
subcommand is used to specify the between-subject part 
of the design which in this case involves a single factor 
Sunglasses. With designs involving more than a single 
between-subject factor, only the highest order 
interaction should be listed in the DESIGN 
subcommand in order for L to remain a row vector (as 
explained in Example 5).   

Since we specified two separate LMATRIX 
subcommands, the SPSS output will show two Custom 
Hypothesis Tests: one for each of the two predictions. 
The contrast estimates are found to be larger than zero 
to a statistically significant extent both for the group 
without and for the group with the teacher wearing 
sunglasses, with C1 = 16, F(1,16) = 115.9, p < .001, and 
C2 = 5, F(1,16) = 11.3, p = .004, respectively. Since we 
specified an MMATRIX subcommand, the SScontrast of 
each analysis has to be divided by the sum of squared 
MMATRIX contrast weights (mj) before we can 
calculate η2

alerting. For our first prediction, we find that 
SS’contrast = 2304 / 20 = 115.2 (using Equation 9). Based 
on this, we find that η2

alerting = 115.2 / 178.9 = 64.4% 
(using Equation 5). For the second prediction, the 
SS’contrast = 225 / 20 = 11.3, so that η2

alerting = 11.3 / 178.9 
= 6.3%.  

Example 12: Negative linear trend more 
pronounced without than with sunglasses? Let us 
test once more whether the predicted negative linear 
effect of seating location on student retention is more 
pronounced without as compared to with the teacher 
wearing sunglasses. In other words, we test whether the 
difference between C1 and C2, as estimated in Example 
11, is larger than zero. The alternative hypothesis thus is 

H1:  C = (3μ11 +1 μ12 ‒ 1μ13 ‒ 3μ14) ‒ (3μ21 +1 μ22 ‒ 1μ23 

‒ 3μ24) > 0 (see also Example 10). The null hypothesis is 
H0: C = 0. This prediction is described by contrast 
weight matrix W = [3 1 -1 -3; -3 -1 1 3].  

As demonstrated in Example 11, it is often 
convenient to split the design of the study in its between- 
and within-subject part when specifying the two vectors 
L and M. Across the j = 4 levels of the within-subject 
part of the design, representing the repeated measures 
obtained in the four rows of the lecturing hall, a negative 
linear trend is expected. The corresponding within-
subject contrast weights (mj) can be obtained from Table 
2, and are M = [3 1 -1 -3]. These should be specified in 
the MMATRIX subcommand.  

This predicted linear trend on the repeated 
measures is expected to be more pronounced for the 
first than for the second level of the between-subjects 
part of the design. The contrast weights for the between-
subject part of the design (li) thus are l1 = 1 and l2 = -1 
for respectively the first and second level of the 
Sunglasses factor. The vector with between-subject 
contrast weights to be specified in the LMATRIX 
subcommand thus is L = [1 -1]. The specification of the 
L- and MMATRIX subcommands then becomes: 

 

/MMATRIX= "Example 12: Negative linear 
 trend…" ALL 3 1 -1 -3  
/LMATRIX= "…larger without than with 
 sunglasses" sunglasses 1 -1 Intercept 0 

 

We find that the contrast estimate is positive and 
larger than 0 to a statistically significant extent, with  
C = 11, F(1,16) = 27.4, and p < .001. In other words, we 
can reject the null hypothesis in favor of the alternative 
hypothesis which stated that the predicted linear effect 
of seating location is attenuated by the teacher wearing 
sunglasses, and thus more pronounced in the group with 
unconstrained eye contact between teacher and students. 

Discussion 

In this manuscript, I have explained how to conduct 
contrast analysis using the test or contrast matrix L and 
the transformation matrix M. I have focused in 
particular on analysis in SPSS using the LMATRIX and 
MMATRIX subcommand of the GLM procedure. For 
Stata users, annotated .do syntax files are available as part 
of the supplementary materials. Taken together, the 
various examples and accompanying syntaxes provide 
researchers with a toolbox to tackle a wide range of 
research questions and experimental designs. Due to 
space limitations, I have not included examples of more 
complex designs, such as mixed designs with three or 
more factors. However, I am certain that with the 
provided examples, the reader is sufficiently prepared to 
tackle more complex questions as well.  

The focus of the present manuscript has been on 
testing a priori defined hypotheses regarding differences 
between groups or cell means against empirical data 
acquired through psychological experimentation. The 
procedures explained in this manuscript can, however, 
also be used for other means. Contrast analysis is, for 
example, also highly suited for exploring post-hoc the 
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often complex interactions obtained with conventional 
ANOVA.  For more information on how to use contrast 
analysis to follow-up on significant omnibus interaction 
tests, and on how to deal with multiple comparisons (i.e., 
the inflation of experiment-wise Type I errors), the 
interested reader is referred to Abelson and Prentice 
(1997), Howell and Lacroix (2012), and Jaccard and 
Guilamo-Ramos (2002a; 2002b). 

I also have not discussed the assumptions behind 
contrast analysis as these are similar to conventional 
ANOVA, including that the observations are normally 
distributed in each group or cell of the design, that 
population variances of each group are identical, and 
that observations are independent (see, e.g., Stevens, 
2007). The often violated sphericity assumption that 
applies to within-subject factors typically does not apply 
to contrast analysis as violations of sphericity cannot 
occur with focused tests (i.e., with test that have a single 
degree of freedom). Only when the combined prediction 
of two contrasts are tested on a within-subject factor (as 
in Example 10) can violations of sphericity be 
problematic. In these cases, however, most statistical 
software packages perform a multivariate rather than a 
univariate test of significance for which sphericity is not 
required (see, e.g., Stevens, 2007). 

Many textbooks dictate the use of factorial 
ANOVA in which differences between group or cell 
means are explained by a series of main and interaction 
effects, whether these answer the researcher’s questions 
of interest or not. As discussed in the onset of the 
manuscript, this curious convention—called factorial 
ANOVA—not only puts researchers at risk of 
committing what Hand (1994) called a type III error, but 
may also lead them to face undue difficulties in following 
up on statistically significant main and interaction effects 
through a combination of eye-balling graphs or 
conducting additional post-hoc analyses; analyses that 
are often as uninformative as the main and interaction 
effects themselves. Contrast analysis can save us from 
these burdens, and my hope is that the present 
manuscript can make a modest contribution to making 
the technique more accessible in its use. 
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Note: 

The results in this paper can be replicated using the data and syntax for Stata or SPSS found in  

https://scholarworks.umass.edu/cgi/viewcontent.cgi?filename=0&article=1373&context=pare&type=additio
nal  
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