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Big data analytics are prevalent in fields like business, engineering, public health, and the physical 
sciences, but social scientists are slower than their peers in other fields in adopting this new 
methodology. One major reason for this is that traditional statistical procedures are typically not 
suitable for the analysis of large and complex data sets. Although data mining techniques could 
alleviate this problem, it is often unclear to social science researchers which option is the most suitable 
one to a particular research problem. The main objective of this paper is to illustrate how the model 
comparison of two popular ensemble methods, namely, boosting and bagging, could yield an 
improved explanatory model. 

With the rise of big data, data scientists have 
acknowledged the importance of big data analysis and 
developed a new set of tools to handle them. One such 
effective tools is data mining. It is so named because this 
process is data-driven, rather than hypothesis-driven. 
Due to its exploratory character, data mining is also 
named “knowledge discovery in databases” (KDD) 
(Larose, 2014; Han & Kamber 2011). The objective of 
this article is to illustrate how different data mining tools 
can be utilized for social science research, using an 
archival data set as an example. 

Experts on data science predict that the size of 
digital data will double every two years; this indicates a 
50-fold growth from 2010 to 2020. Human- and 
machine-generated data are increasing ten times faster 
than traditional data, in which its future implications are 
hard to ignore (Ffoulkes, 2017).  These ever-expanding 
data are characterized by high volume, high velocity, and 
high variety (Laney, 2001). While there is not a clear 
boundary used to define big data, a typical high-volume 
data set carries thousands of rows or columns, which can 
often result in problems with data storage, management, 
and analysis. A high velocity data stream is an ongoing 

data feed that has the potential to overwhelm a 
conventional database server. Finally, a data set of high 
variety contains different types of data (e.g. numbers, 
texts, images, audio files, video clips…etc.). Data sets of 
this nature may present challenges to traditional data 
analysts, who are often exclusively accustomed to the 
analysis of structured data.  

Although the trend of big data is most prevalent in 
business settings, social scientists may also benefit from 
this movement involving big data. An apparent example 
is the availability of unstructured data and structured 
archival data on the Internet. Unstructured data are 
referred to as Webpages and digital footprints on social 
media, such as Facebook and Twitter. Collecting these 
data necessitates Web content mining, also known as 
Web scraping, which involves automated “crawling” the 
Internet and extracting data from Websites (Landers, 
Brusso, Cavanaugh, & Collmus, 2016). Needless to say, 
data collection, data management, and data analysis of 
this form of unstructured data is extremely challenging. 
However, social science researchers could also utilize 
structured archival data for nationwide or cross-cultural 
studies. This kind of data is usually survey data, which 
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are stored in a conventional row X column matrix, such 
as Programme for International Student Assessment 
(PISA) and Trends for International Math and Science 
Study (TIMSS). Additional examples are listed in the 
appendix. As mentioned before, Web content mining of 
unstructured data requires additional procedures and 
resources whereas archival data are more accessible and 
manageable. Thus, this article focuses on archival data 
only. 

In recent years, social scientists have started to 
realize that most traditional statistical procedures might 
not be suitable for the analysis of big data. For example, 
if one runs a regression analysis using 5,000 subjects, it 
is likely that most of the regressors in this analysis would 
yield statistically significant results even though the 
relationships might be trivial. Second, traditional 
parametric models, including regression and structural 
equation models, impose strong assumptions on the data 
structure and the distribution (Miller, Lubke, McArtor, 
& Bergeman, 2016). The founder of exploratory data 
analysis, John Tukey (1996), found that researchers often 
conduct analysis without examining the underlying data 
structure. To rectify this situation he endorsed using data 
visualization tools for checking parametric assumptions, 
spotting outliers, and evaluating model adequacy (Tukey, 
1986). Nonetheless, today most data mining techniques 
are non-parametric.  

It is important to emphasize that traditional 
statistical procedures and big data analytical methods can 
work hand in hand, rather than being at odds with each 
other. For example, in big data analytics, principal 
component analysis and cluster analysis are frequently 
employed for data reduction so that big data can be more 
manageable. Further, classification and regression tree 
(CART) and time-series forecasting are built upon 
classical regression modeling (Loh, 2011; Shen, 2018; 
Shmueli, Bruce, Stephens, & Patel, 2016). 

Ensemble Methods in Big Data 

Analytics 

One of the assets of big data analytics is that it is 
resilient to lack of replicability: big data analytics involves 
partitioning of a big data set into many subsets, on which 
multiple analyses are run. In each run, the model is 
refined by previous "training.” As such, results of big 
data analyses are considered the product of replicated 
studies. The process of learning from previous analysis 
is called “machine learning,” whereas the process of 

merging multiple analyses is known as, “the ensemble 
method.” To be more specific, the ensemble approach 
compares, complements, and combines multiple 
methods in the analysis, enabling one to generate a better 
model than what the analyst could have obtained, using 
just one solitary analysis (Chen, Lin, & Chou, 2011; 
Polikar, 2006; Rokach, 2010; Skurichina & Duin, 2002). 

Precursor of Ensemble Methods: Resampling 

Indeed, this idea is not entirely new. The 
aforementioned techniques are similar to cross-
validation and bootstrapping in resampling. Simple 
cross-validation was invented by Kurtz (1948) to 
examine psychometric properties. Later simple cross-
validation was extended to double cross-validation and 
multicross-validation (Mosier, 1951; Krus & Fuller, 
1982). Bootstrapping was invented by Bradley Efron 
(1979, 1981, 1982) and further developed by Efron and 
Tibshirani (1993). In classic procedures, the test statistic 
is compared against the sampling distribution. In other 
words, the decision relies on an external reference. 
However, this reliance on supposedly known 
distributions was criticized by Tukey (1986) because we 
are usually uncertain about the underlying distribution. 
As a remedy, bootstrapping creates an empirical 
distribution by repeated sampling of the data. In this 
sense, "bootstrap" is a concept reminiscent of pulling 
yourself up by your own bootstrap. However, data 
scientists go one step further: in the ensemble method 
the procedure does not merely repeat itself; rather, 
machine learning algorithms improve the model through 
repeated analyses. 

Machine Learning as a Remedy to Bias and 

Variance  

Given the emergence and advancement of machine 
learning algorithms in the field of predictive analytics, an 
ensemble approach of several different machine learning 
methods has received its due importance. In the field of 
statistical analysis, the trade-off of bias and variance is a 
well-known problem. The bias is quantified by the error 
which results from missing a target. For example, if an 
estimated mean is 3, but the actual population value is 
3.5, then the bias value is 0.5. The variance is the error 
which results from noise or random fluctuation. When 
the variance of a model is high, this model is considered 
unstable. A complicated model tends to have low bias 
but high variance. Conversely, a simple model is more 
likely to have a higher bias and a lower variance. 
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Among many machine learning methods, bagging is 
popularly utilized to decrease the variance whereas 
boosting is widely used to weaken the bias in the process 
of building a predictive model. Bagging, which stands for 
Bootstrap Aggregation, creates multisets of additional 
training data from the original sample repeatedly 
(Breiman, 1996; Büchlmann & Yu, 2002). Hence, 
bagging increases the size of these generated data and 
effectively minimizes the variance by decreasing the 
influence of extreme scores (Miller, Lubke, McArtor, & 
Bergeman, 2016). In contrast, boosting serves a different 
purpose: increasing predictive accuracy. The boosting 
method first creates a working model from the subsets 
of the original data set and then augments the 
performances of weak models so that they are eventually 
combined to be a strong model (Breiman, 1998; 
Schapire, Freund, Bartlett, & Lee, 1998). Depending on 
the characteristics of the data and the specific aim (e.g. 
generate a predictive model), these two methods show 
varying degrees of suitability. Thus, a visual 
representation of information is conducive to 
optimizing accessibility to and communication of 
quantitative message: Data visualization is a powerful 
method that aids in the detection and meaningful 
interpretation of certain distribution, pattern, and/or 
relation found in the data (Aparicio & Costa, 2015). The 
ensemble approach of bagging, boosting, and data 
visualization in efforts to synthesize the results 
significantly, which enhances the overall accuracy and 
understanding of the analyzed material (Skurichina & 
Duin, 2002). 

This study demonstrated how one could utilize a 
variety of data mining techniques, including bootstrap 
forest, boosted tree, and data visualization, to unveil 
patterns in the large-scaled and imbalanced data set of 
Programme for the International Assessment of Adult 
Competencies (PIAAC). Developed by Organization for 
Economic and Cooperation and Development (OECD), 
this international assessment measures and evaluates the 
basic skills and competencies of adults around the globe. 
The results of the latest PIAAC (OECD, 2016), 
collected from 33 participating nations in 2014, indicated 
that the U.S. adults were falling behind their 
international counterparts in all three test categories, 
namely, literacy, numeracy, and problem-solving in 
technology-rich environments. This alarming if not 
disturbing report gave an impetus to probe the U.S 
sample exclusively.  In addition to test items which 
measured literacy, numeracy, and problem-solving in 

technology-rich environments, PIAAC also comprised 
multiple survey items believed to be relevant to learning 
and therefore supposedly conducive to test outcomes. In 
the analysis, this study purposefully took account of 
several of those related items, which are a readiness to 
learn, cultural engagement, political efficacy, and social 
trust. 

Method 

Variables 

The learning outcomes recorded in PIAAC were 
literacy, numeracy, and technology-based problem-
solving scores. The scores of these three domains in the 
U.S. sample are strongly correlated (Figure 1). Further, 
as shown by the scree plot (Figure 2), a principal 
component analysis indicated that all three skills can be 
combined into one component (eigenvalue = 2.54). 
Taking all of the above into consideration, the 
composite score of literacy, numeracy, and problem-
solving (the overall learning outcomes) was treated as the 
dependent variable. 

 
Figure 1. Correlation matrix of literacy, numeracy, 
and problem-solving. 
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Figure 2. Scree plot of PCA of literacy, numeracy, 
and problem-solving. 

Data analysis 

Because OECD utilized multi-stage sampling, 
sample weights were used in all analyses. Two ensemble 
methods, the bootstrap forest and the boosted tree, were 
run with the U.S. data. The rationale of choosing the 
ensemble approach is simple. As mentioned before, 
numerous studies have confirmed that the ensemble 
approach outperforms any single modeling method 
(Dietterich, 2000; Freund & Schapire, 1997; Lemmens & 

Croux, 2006; Meir & Ra ̈tsch, 2003; Optiz & Maclin, 
1999; Schapire et al., 1998).  

Bagging and boosting are the two most popular 
ensemble methods. Both methods are built on machine 
learning, in which data sets are partitioned and analyzed 
by different models. Each model is considered a weak 
learner as well as a weak classifier, and the final solution 
is a synthesis of all these weak learners. A weak learner 
is defined as a model in which the error rate is slightly 
better than random guessing (Hastie, Tibshirani, & 
Friedman, 2016). Both bagging and boosting are also 
resampling methods because the large sample is 
partitioned and re-used in a strategic fashion. When 
different models are generated by resampling, inevitably 
some are high bias model (underfit) while some are high 
variance model (overfit). In the end, the ensemble 
cancels out these errors. In addition, it can also account 
for sample variation. Specifically, each model carries a 
certain degree of sampling bias, but finally the errors also 
cancel out each other (Wujek, 2016). 

Bagging 

Bagging, also known as the bootstrap forest, is a 
parallel method: in the first stage all resamples are 
generated independently by sampling with replacement 
and these replicates do not inform each other (Breiman, 
1996). Additionally, in each bootstrap sample about 30% 
of the observations are set aside for later model 

validation. These observations are grouped as the out of 
bag sample (OOBS) (Zaman & Hirose, 2011). At the 
second stage, the computer algorithm converges these 
resampled results together by averaging them out. 
Consider this metaphor: After 100 independent 
researchers conducted his/her own analysis; this 
research assembly combines their findings as the best 
solution.  

No double counting on this type of collective 
wisdom is better than relying on one-person’s decision. 
However, it is important to note that the bootstrap 
method works best when each model yielded from 
resampling is independent and thus these models are 
truly diverse. If all researchers in the assembly think in 
the same way, then no one is thinking. By the same 
token, if the bootstrap replicates are not diverse, the 
result might not be as accurate as expected. Putting it 
bluntly, if there is a systematic bias and the classifiers are 
bad, bagging these bad classifiers can make the end 
model worse (Hastie, Tibshirani, & Friedman, 2016). As 
mentioned before, in theory, an ensemble method 
should suppress both bias and variance by merging 
overfitted and underfitted models. However, Kotsiantis 
(2013) found that bagging tends to generate less 
heterogeneous models than its boosting counterpart. 
Additionally, Fumera, Roli, and Serrau (2005) found that 
the misclassification rate of bagging has the same bias as 
a single bootstrap though the variance is reduced by 
increasing the number of resamples. This can be 
explained by the disposition of overfitting in bagging. 
When these overfitted models are averaged, the same 
bias is retained while the variance is canceled out. 

Boosting  

Boosting, also known as the boosted tree, is a 
sequential and adaptive method because the previous 
model informs the next model so that improvement can 
be made through subsequent modeling (Breiman, 1998; 
Freund & Schapire, 1997; Optiz &Maclin, 1999). 
Initially, all observations are assigned the same weight. If 
the model fails to classify certain observations correctly, 
then these cases are assigned a heavier weight so that 
they are more likely to be selected in the next model. In 
the subsequent steps, each model is constantly revised in 
an attempt to classify those observations successfully. 
Boosting is so named because of gradient improvement 
by learning mistakes in previous steps. Ultimately, the 
final model is created by a majority vote as the best 
solutions are kept and the worst ones are eliminated. 
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While bagging requires many independent models for 
convergence, boosting reaches a final solution after a 
few iterations. Hence, boosting is much less computing-
intensive than bagging. The differences between bagging 
and boosting is summarized in Table 1. 

Debate on Bagging and Boosting  

Whether bagging or boosting is better has been an 
ongoing debate for nearly two decades. It is not 
surprising to see that in some situations, bagging 
outperforms boosting whereas in others the outcomes 
are reversed (Chandrahasan, Christobel, Sridhar, & 
Arockiam, 2011; Dietterich, 2000; Khoshgoftaar, van 
Hulse, & Napolitano, 2011; Kotsiantis, 2013; Wang, 
Zhang, & Guo, 2015; Zaman & Hirose, 2011). Many 
studies concluded that boosting outperforms bagging in 
most cases, specifically when the analyst works with a 
noisy data set. On the other hand, bagging is a suitable 
option in data environment with less noise (Dietterich, 
2000; Khoshgoftaar et al., 2011). Nonetheless, it is 
impractical for the researcher to analyze how noisy the 
data set is before choosing a particular ensemble 
approach. In addition, the bias–variance tradeoff is a 
central but insurmountable problem in machine 
learning. Ideally, the analyst hopes to obtain a model that 
can accurately detect the patterns in the data set and also 
generalize the finding to unseen data. As 
aforementioned, bagging is good at minimizing variance 
whereas boosting is capable of reducing bias, but none 
can accomplish both simultaneously.   

The authors are convinced that there is no single 
best ensemble method applicable to analyze all 

situations. One strategy is to run both analysis and select 
the better fitting one by model comparison. In model 
comparison, there are several criteria for assessing the 
goodness of a model, namely, the R2, the Root Average 
Squared Error (RASE), the Average Absolute Error 
(ASE), Akaike's information criterion (AIC), and 
Bayesian Information Criterion (BIC). The R2 is the 
variance explained whereas ASE is the average error rate 
of the model. RASE is the same as RMSE except that 
RMSE adjusts for degrees of freedom but RASE does 
not. AIC developed by Hirotsugu Akaike (1973) is in 
alignment with Ockham’s razor: Given all things being 
equal, the simplest model tends to be the best one, and 
simplicity is a function of the number of adjustable 
parameters. BIC is similar to AIC, but its penalty against 
complexity is heavier than that of AIC (Burnham & 
Anderson, 2004; Yang, 2005). Once again, there is no 
single best criterion. If the researcher would like to 
obtain an explanatory model that can retrospectively 
illuminate the relationship between the variables, then 
variance explained and error rates should be taken into 
account. If the project aims to generate a predictive 
model that can inform decision makers about what 
output is expected given certain input, then the 
misclassification rate or the hit rate should be the 
primary criterion. If the research objective is to find a 
compact model that yields practical and manageable 
action items, then AIC or BIC should be considered. 
The diverse and even contradictory results in comparing 
various ensemble methods is due to the fact that 
different criteria could lead to different conclusions. For 
example, in a recent study Hamori, Kawai, Kume, 
Murakami, and Watanabe (2018) found that boosting is 

Table 1. Comparison of bagging and boosting 

 Bagging Boosting 

Sequent Two-step Sequential 

Partitioning data into subsets Random Give misclassified cases a heavier weight 

Sampling method Sampling with replacement Sampling without replacement 

Relations between models Parallel ensemble: Each model is 
independent 
 

Previous models inform subsequent 
models 

Goal to achieve Minimize variance Minimize bias, improve predictive 
power 

Method to combine models Weighted average Majority vote 

Requirement of computing resources Highly computing intensive Less computing intensive 

 



Practical Assessment, Research & Evaluation, Vol 23 No 17 Page 6 
Yu, Lee, Lara & Gan, Big Data Analytics 
                          
superior to all other machine-learning methods, 
including neural networks. However, it is noteworthy 
that this conclusion is based on the criterion of 
predictive accuracy, not variance explained or simplicity. 

Further, in model comparison, the values in the 
final model (i.e. the validation model), instead of the 
training model, were evaluated because the training 
model is always overfitted. Unlike classical hypothesis 
testing, which relies on a cut-off for decision-making, the 
data mining method aims to recognize the data pattern, 
without a rigid cut-off for variable selection.  

After identifying the best model and the most 
important predictors, median smoothing was utilized to 
examine the relationship of the predictors and the 
learning outcomes. In this large-scale assessment, the 
sample size of each OECD member nation was around 
5,000. When thousands of data points generate a noisy 
scatterplot, detecting a pattern within the sample 
becomes challenging. This problem, called overplotting, 
is resolved by dividing the data into several portions 
along the x–dimension, computing the median of y in 
each portion, and looking at the trend after connecting 
the medians (Tukey, 1977; Yu, 2014). 

Results 

Bagging, Boosting, and Model Comparison 

Table 2 shows the descriptive statistics of the U.S. 
test scores. For inferential statistics, variables related to 
readiness to learn, cultural engagement, political efficacy, 
and social trust were input into bagging and boosting as 
predictors of composite learning outcomes, respectively. 
The OLS regression, bagging, and boosting results were 
evaluated by model comparison criteria and the best one 
was retained (see Table 3). The primary goal of this 
project is an explanation, rather than prediction or 
simplification (selecting the most compact model), and 
therefore R2, RASE, and AAE are taken into account 
for model comparison. It is evident that both bagging 

and boosting outperformed OLS regression in terms of 
variance explained and the error rate. More importantly, 
as shown in Table 4, in OLS regression almost every 
predictor is found to be significant in a two-tailed test (p 
< .05). If a one-tailed test is used, then every predictor is 
significant. This result is partly due to collinearity (the 
inter-relationships among the predictors influence the 
magnitude of the regression estimates). However, 
decision tree, which is the building block of bootstrap 
forest, is immune to multicollinearity (Fielding, 2007).  
Further, it is important to re-emphasize that no cross-
validation (CV) by subsetting the data was done for 
regression modeling and thus stability of this “good” 
result is in question. On the other hand, subsetting was 
used in both bagging and boosting. In training the 
bootstrap method yielded overfitted models because the 
R2 is unreasonably high. Therefore, a proper comparison 
should be based on the validation results only. Using the 
criteria of R-square, RASE, and AAE, the boosted tree 
model slightly outperformed the bagging approach 
(higher variance explained and lower error).  

Table 5 shows the ranking of predictors in relation 
to the overall learning outcomes. The top three 
predictors were cultural engagement (voluntary work for 
non-profit organizations), social trust (other people take 
advantage of you), and readiness to learn (like learning 
new things). 

Table 2. Descriptive statistics of test scores of the USA 

Gender Literacy Numeracy Problem-solving Composite 

 Mean SD Mean SD Mean SD Mean SD 

Female (n=2,323) 269.18 47.73 245.38 53.68 275.00 42.20 259.82 46.86 

Male (n=2,687) 270.39 49.15 260.48 56.78 280.26 44.40 266.58 49.01 

 

Table 3. Model comparison 

Subset 
type 

Method R2 RASE AAE 

No subset 
OLS 

regression 
0.1647 43.692 34.603 

Training Boosting 0.2058 42.708 34.031 

Training Bagging 0.4813 34.515 26.979 

Validation Boosting 0.1791 43.488 34.597 

Validation Bagging 0.1685 43.768 34.689 
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Table 4. OLS regression result 

Predictor Estimate 
Std. 

Error 
t 

Ratio 
p 

Relate new ideas 
into real-life 

13.07 0.85 15.32 <.0001* 

Like learning new 
things 

1.93 1.02 1.89 0.0595 

Attribute 
something new 

1.54 0.98 1.56 0.1180 

Get to the bottom 
of difficult things 

1.80 0.91 1.96 0.0497* 

Figure out how 
different ideas fit 
together 

-3.46 0.96 -3.61 0.0003* 

Looking for 
additional info 

0.56 0.95 0.59 0.5576 

Voluntary work 
for non-profit 
organizations 

4.50 0.56 7.97 <.0001* 

No influence on 
the government 

-3.08 0.53 -5.85 <.0001* 

Trust only few 
people 

-3.57 0.61 -5.84 <.0001* 

Other people take 
advantage of you 

-3.28 0.73 -4.50 <.0001* 

 
 
 
 
 

Table 5. The final boosted tree model for the USA 
sample 

Variable 
Number 
of Splits 

Sum of 
squares 

Voluntary work for non-profit 
organizations 

17 1.1594e+11 

Other people take advantage of 
you 

29 8.5015e+10 

Like learning new things 23 7.687e+10 

Figure out how different ideas fit 
together 

20 4.5563e+10 

Attribute something new  22 3.86e+10 

Get to the bottom of difficult 
things 

16 3.6352e+10 

No influence on the government 17 3.2498e+10 

Relate new ideas to real life 29 2.499e+10 

Looking for additional info 16 1.7984e+10 

Trust only few people 12 1.5299e+10 

 

The relationship between readiness to learn and 
learning outcomes were positive and linear. However, 
non-linear patterns were detected when social trust and 
cultural engagement regressed against learning 
outcomes. Because the sample size was considerably 
large, median smoothing was employed for each level of 
the X variable. By doing so, the X-Y association could 
be detected by the trend of the medians. 

 
Figure 3. Median smoothing plot of learning 
outcomes and cultural engagement in the U.S. 
sample. 
 
 
 

 
Figure 4. Median smoothing plot of learning 
outcomes and social trust in the U.S. sample. 
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Figure 5. Median smoothing plot of learning 
outcomes and readiness to learn in the U.S. sample. 

Conclusion 

Generalizability 

Due to the large sample size and use of multi-stage 
sampling scheme, the findings based upon this sample 
could be well-generalized to the entire U.S. population. 
If a simple random sampling method is applied to the 
nation, participants from bigger cities and states (e.g. 
New York, NY; Los Angeles, CA) might be over-
represented. As a remedy, in this multi-stage sampling 
scheme, the population is partitioned into 50 segments 
(states) and demographic information of each state was 
sourced from the Census Bureau. In the subsequent 
stages, participants were selected from every corner of 
the country while non-citizens were excluded (OECD, 
2016). Additionally, many social science studies are 
conducted with samples that are small and 
disproportionally drawn from Western, educated, 
industrialized, rich, and democratic populations 
(WEIRD; Henrich, Heine, & Norenzayan, 2010). This 
nationwide sample alleviates the problem of WEIRD. 

Discussion 

Analyzing archival data are challenging to 
psychological researchers because conventional 
statistical procedures might be inappropriate to big data 
analytics. One potential shortcoming is that with a huge 
sample size the statistical power of a parametric test 
would approach 99%, and therefore even trivial effects 
might be misidentified as significant. Furthermore, this 
overfitted model might yield a high error rate (i.e. “miss 
rate”) and a low accuracy rate (i.e. “hit rate”) in 

prediction. On the contrary, a bootstrap forest model 
typically yields a higher hit rate (Cutler, 2017). 

Although big data analytics has become well 
established in business, public health, physical science, 
technology, and engineering, some researchers rarely use 
this emerging methodology (Cheung & Jak, 2016; Dede, 
Ho, & Mitros, 2016; Sinharay, 2016). One possible 
reason is that big data analytics may be confusing to 
many. Like any other statistical methods, there are pros 
and cons in different data mining techniques, leading to 
difficulty in deciding which method is more appropriate 
than another at different times. Some researchers count 
on simulation methods to examine the robustness of 
various techniques based on the assumption that real-
world data are usually messy. However, it is unlikely for 
simulators to generate all possible scenarios and 
therefore advice like “in most cases” one particular 
method is superior to another is not helpful. Hence, it is 
the conviction of the authors that method choice and 
model goodness should be assessed on a case-by-case 
basis. Despite the fact that bagging is relatively resource-
demanding, most mid-range computers are capable of 
performing a bootstrap forest in a short time. It is 
advisable to run both bagging and boosting, and then 
choose the best result according to the criteria of model 
comparison. In addition, the developers go even one 
step further by creating an ensemble of models yielded 
from different modeling techniques, such as regression, 
neural networks, decision tree, boosting, bagging…etc. 
(Dean, 2018). Discussion of “the ensemble of 
ensembles” is out of the scope of this paper; 
nonetheless, this emerging trend is promising and thus 
awaits further investigation in the future. 

In hypothesis testing, decisions are based on certain 
cut-off points (e.g. p < .05, RMSEA < .1) whereas data 
mining emphasizes pattern recognition (Bishop, 2006; 
Kosinski, Wang, Lakkaraju, & Leskovec, 2016). In big 
data analytics, the picture is quite different. As shown in 
the results section, the output tables show the rank order 
of predictors yielded by bagging or boosting. Although 
this ranking mechanism may seem unfamiliar, it offers 
accuracy and efficiency when dealing with big data. Big 
data analytics utilizes both model building and data 
visualization, which greatly aid unveiling patterns that 
might go undetected. 

In conclusion, it is the conviction of the authors 
that while the ensemble method, model comparison, and 
data visualization are employed side by side, interesting 
patterns and meaningful conclusions could be extracted 
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from a big data set. Psychological researchers are 
encouraged to consider these promising methodologies. 
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Appendix 

Websites for archival data: 
• Center for Collegiate Mental Health (CCMH): http://ccmh.psu.edu/   
• European Values Survey (EVS): http://www.europeanvaluesstudy.eu/   
• Gallup Global Wellbeing (GGW): http://www.gallup.com/poll/126965/gallup-global-wellbeing.aspx   
• Happy Planet Index (HPI): http://www.happyplanetindex.org/   
• Inter-university Consortium for Political and Social Research (ICPSR): 

https://www.icpsr.umich.edu/icpsrweb/   
• National Opinion Survey Center (NORC): https://gssdataexplorer.norc.org/   
• Programme for International Student Assessment (PISA): https://www.oecd.org/pisa/pisaproducts/   
• Programme for the International Assessment of Adult Competencies (PIAAC): 

http://www.oecd.org/site/piaac/publicdataandanalysis.htm   
• Trends for International Math and Science Study (TIMSS): http://timssandpirls.bc.edu/   
• United Nations Human Development Programme (UNDP): http://hdr.undp.org/en/data               
• World Values Survey (WVS): http://www.worldvaluessurvey.org/wvs.jsp  
• US Government's open data: http://data.gov  
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