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The dimensionality of a set of items is important for scale development. In practice, tools that make 
use of eigenvalues are often used to assess dimensionality. Parallel analysis is featured here as it is 
becoming an increasingly popular method for assessing the number of dimensions, and 
computational tools have recently been made available which will likely increase its use by 
practitioners. The current paper argues that methods that use eigenvalues to ascertain the number 
of factors may perform poorly under certain conditions, particularly for increasing levels of variable 
complexity and/or inter-factor correlations in the latent structure. A simulation study and an 
example are offered to substantiate this assertion. 

 

Choosing the number of latent traits in 
measurement models has been extensively discussed in 
two separate but related contexts: exploratory factor 
analysis (EFA) and item response theory (IRT). In the 
EFA literature, choosing the number of latent traits has 
been debated in numerous papers under the heading of 
“factor retention criteria” or “number of common 
factors” (e.g., Cattell, 1966; Green, Levy, Thompson, 
Lu, & Lo, 2012; Kaiser, 1960). Studies for testing the 
unidimensionality assumption have dominated the IRT 
literature; however, these studies do not provide 
guidance beyond the first dimension once the 
unidimensionality assumption is rejected. If the 
unidimensionality assumption is rejected, one has no 
idea of the dimensionaliaty. The use of 
multidimensional item response theory (MIRT) models 
is increasing, but one needs an accurate assessment of 
the number of latent traits (a similar decision process as 
for EFA) to use these models. Different approaches 
have appeared in the literature to determine the 
number of latent traits in the context of MIRT models 
(Bock, Gibbons, Muraki, 1988; Cho, Li, Bandalos, 
2009; Gessaroli & De Champlain, 1996; Gessaroli, De 
Champlain, & Folske, 1997; Maydeu-Olivares, 2001; 
Zhang, 1996). 

In both the EFA and IRT literatures, eigenvalue 
examination is a common practice for deciding the 
number of latent traits in the model. Previous research 
indicate that three eigenvalue examination methods are 
frequently used in the EFA literature for determining 
the number of latent traits: the Kaiser-Guttman rule 
(KG; Guttman, 1954; Kaiser, 1960), the subjective 
scree test (Cattell, 1966), and parallel analysis (Horn, 
1965; Green et al., 2012). Variance accounted for is the 
basis of the Kaiser-Guttmann rule. The variance for a 
complete system of non-redundant items equals the 
number of items. Thus, for a dimension to be stronger 
than average, it has to have an eigenvalue greater than 
one. The KG rule, then, chooses all dimensions with 
eigenvalues greater than one as “significant” 
dimensions. The scree test is really not a test, but a plot. 
It is a plot of the principal component eigenvalues 
against its dimension. Eigenvalues for “real” 
dimensions will be larger than average, however, after a 
point (dimension) all of the eigenvalues will be 
uniformly decreasing since the remaining variance 
accounted for by the eigenvalues is random. When the 
eigenvalues become uniformly decreasing the slope of 
eigenvalue to dimension becomes a constant. From this 
point on the plot will be simply a line. It is the 
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investigators task to determine (subjectively) at which 
dimension the scree plot becomes a line separating 
significant from random dimensions. Parallel analysis 
determines the number of valid dimensions by 
comparing the observed eigenvalues to those resulting 
from random matrices (of the same size). All observed 
eigenvalues larger than their corresponding random 
eigenvalues are considered “significant” and thus define 
a valid dimension. 

In a review of 152 articles published in three 
psychology journals from 1975 to 1984, Ford, 
MacCallum, and Tait (1986) found that the KG rule 
was the most widely used method (21.7%), followed by 
the subjective scree test (11.2%) in determining the 
number of factors. In another review of 217 studies 
published in two psychology journals between 1991 
and 1995, Fabrigar, Wegener, MacCallum, and Strahan 
(1999) reported that the KG rule was again at the top 
(16.5%), followed by the scree test (15.2%). In another 
review, the KG rule was again found to be the most 
widely used method in factor analytic studies (56.7%), 
followed by the scree test (35%), and parallel analysis 
(6.7%) of the published articles (Henson & Roberts, 
2001). Note that the KG rule is the default criterion 
used in most factor analysis programs. Fabrigar et al. 
(1999) also reported that about 21.7% of the studies 
used multiple methods. However, the multiple methods 
they suggested were based on eigenvalues with the 
exception of descriptive fit indices commonly used in 
confirmatory factor analysis (although confirmatory 
factor analysis can provide inferential tests, descriptive 
indices are promoted due to its significance tests being 
a function of sample size). 

Similarly, the IRT literature has recommendations 
for using eigenvalues computed from tetrachoric or 
polychoric correlations in dimensionality assessment. In 
an early seminal work, Hattie (1985) identified 87 
indices for assessing the unidimensionality assumption. 
Some of these rules were based on eigenvalues. In like 
manner, Reckase (1979) suggested that the first 
principal component should account for at least 20% 
of the total variance in order to obtain acceptable 
unidimensional ability parameter estimates. This is also 
in line with a quote from Vernon (1950) quoted in 
Cronbach (1951). “For a test to be interpretable, 
however, it is not essential that all items be factorially 
similar. What is required is that a large proportion of 
the test variance be attributable to the principal factor 
running through the test.” Using the ratio of the first 

and second eigenvalues as an index of 
unidimensionality (although no criterion was provided 
for interpreting this ratio) was also observed in the 
literature (Lord, 1980; Lumsden, 1957, 1961). Recently, 
modifications of parallel analysis using 
tetrachoric/polychoric correlations have appeared in 
the literature for exploring the unidimensionality 
assumption (Drasgow & Lissak, 1983; Finch & 
Monahan, 2008; Tran & Formann, 2009; Weng & 
Cheng, 2005) and the number of multiple latent 
dimensions (Cho, Li, & Bandalos, 2009) for 
dichotomously or polytomously scored data. 

In this paper, we highlight potential implications 
of using eigenvalues in dimensionality assessment 
under certain conditions. We do this because 
eigenvalues are often considered when ascertaining 
dimensionality. In our discussion of eigenvalues we first 
highlight a mathematical necessity for the first 
eigenvalue. Although some expert methodologists and 
experienced researchers may have realized this feature 
of the first eigenvalue, we believe many researchers are 
still unaware of it as evidenced by the popularity of the 
eigenvalue > 1 rule and it being the default procedure 
in many factor analysis programs as well as the 
increasing recommendation of the potential of parallel 
analyses by factor analysis experts. Next, we discuss 
potential implications of this feature of the first 
eigenvalue in terms of dimensionality assessment using 
a simulation study. 

A Closer Look at the First Eigenvalue 

As previous reviews indicated, methods based on 
eigenvalue examination are popular and frequently used 
for dimensionality assessment in published studies. 
Among these methods, previous simulation studies also 
report that parallel analysis is the most viable option 
based on eigenvalues (Cho et al., 2009; Crawford, 
Green, Levy, Lo, Scott, Svetina, & Thompson, 2010; 
Dinno, 2009; Drasgow & Lissak, 1983; Finch & 
Monahan, 2008; Green et al., 2012; Hayton, Allen, 
Scarpello, 2004; Tran & Formann, 2009; Weng & 
Cheng, 2005). However, an interesting feature of the 
first eigenvalue seems to be overlooked in the literature 
when evaluating the performance of these methods. In 
our opinion, this feature was overlooked because many 
studies only used an independent cluster structure for 
their data simulation. In this section, we demonstrate 
why researchers should be cautious when using 
eigenvalues for assessing dimensionality.  
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Table 1 shows two factor structures of equal 
strength. The sum of the squared loadings for each 
factor is equal; the eigenvalue for each dimension is 
1.47. Note that the total of the eigenvalues for each set 
of factors is also equal, 4.41 for both structures. The 
difference in the structures is that one is simple and the 
other is complex. Note that in both cases common 
variance accounts for just shy of 50% of the total 
variance, 9. Note, too, that there are two matrices 
representing the correlation of the factors; one with 
uncorrelated factors and the other with correlated 
factors, but with relatively small correlations, 0.2. If we 
let the factor matrix for the simple factors be F1, the 
factor matrix for the complex structure be F2, the 
correlation matrix with uncorrelated factors be R1 and 
the minimally correlated factor matrix be R2, then we 
can obtain the expected correlation matrices for the 
four conditions (two factor structures by two factor 
correlations) by simply multiplying the appropriate 
factor structure times the desired factor correlation  
matrix times the transpose of the same factor structure. 
One can then extract principal component eigenvalues 
from these four expected correlation matrices: 
CSU=F1R1F1’, CSC=F1R2F1’, CCU=F2R1F2’, 
CCC=F2R2F2’. CSU is the correlation matrix with the 
simple factor structure and uncorrelated factors. Its 
first three eigenvalues are: 1.98, 1.98, and 1.98. CSC is 
the correlation matrix with the simple factor structure 
and correlated factors. Its first three eigenvalues are: 
2.57, 1.69, and 1.69. CCU is the correlation matrix with 
the complex factor structure and uncorrelated factors. 

Its first three eigenvalues are: 4.14, 0.90, and 0.90. 
Finally, CCC is the correlation matrix with the complex 
factor structure and correlated factors. Its first three 
eigenvalues are: 5.45, 0.68, and 0.68. 

Readers familiar with the decision process for the 
number of dimensions in the factor analytic or item 
response theory frameworks should realize the 
potential implications of this feature of the first 
eigenvalue when eigenvalues are used to make a 
decision on dimensionality for a set of items. As the 
variable complexity in the structure and/or the 
correlation among factors increase, the first eigenvalue 
gets larger at the expense of the others. This should 
lead to a decrease in the number of predicted factors in 
the model when eigenvalues are used as the sole 
decision criterion. This decrease should be more 
pronounced as the variable complexity in the factor 
structure and/or the correlation among factors 
increase. The consequences for the KG rule which 
dominates the literature are obvious as one can easily 
see how many of the first three eigenvalues are greater 
than one. As variable complexity and/or factor 
correlation increases the number of predicted factors 
using the KG rule will decrease. Here, we consider the 
implications for parallel analysis since it has become 
more accessible to practitioners as computational tools 
have been made available in recent years (O’Connor, 
2000; Patil, Vivek, Surendra, Mishra, & Danavan, 2007; 
Raiche, 2011; Revelle, 2014), and parallel analysis was 
recommended in the literature as a viable alternative in 
dimensionality assessment of latent structures. Note 

Table 1. Simple and Complex Structures with and without Correlated Factors 

  Simple (F1)  Complex (F2) 

λ1  0.70  0.00  0.00 0.60 0.20  0.30 
λ2  0.70  0.00  0.00 0.60 0.20  0.30 
λ3  0.70  0.00  0.00 0.60 0.20  0.30 
λ4  0.00  0.70  0.00 0.30 0.60  0.20 
λ5  0.00  0.70  0.00 0.30 0.60  0.20 
λ6  0.00  0.70  0.00 0.30 0.60  0.20 
λ7  0.00  0.00  0.70 0.20 0.30  0.60 
λ8  0.00  0.00  0.70 0.20 0.30  0.60 
λ9  0.00  0.00  0.70 0.20 0.30  0.60 

 2   1.47  1.47  1.47  4.41  1.47  1.47  1.47  4.41 

 
         
  Uncorrelated (R1)  Slightly Correlated (R2) 

  1  0  0  1 0.2  0.2 
  0  1  0  0.2 1 0.2 
  0  0  1  0.2 0.2  1 
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that results for parallel analysis are not as obvious as 
one does not know the expected value of these 
eigenvalues for random matrices. 

Implications for Parallel Analysis 

Parallel analysis was originally proposed by Horn 
(1965) for principal component analysis and can be 
conceptualized as a more sophisticated way of 
implementing the KG rule. The eigenvalues from a 
correlation matrix for uncorrelated variables in the 
population should all be equal to one. In other words, 
the eigenvalues from an identity matrix would create a 
horizontal line at y=1 in a scree plot. The KG rule 
suggests keeping any dimension that accounts for more 
than chance variation. Parallel analysis similarly 
suggests retaining the components that have an 
eigenvalue greater than what would be expected due to 
chance, but it acknowledges sampling fluctuations in 
eigenvalues. Parallel analysis replaces the “one” in the 
KG rule with a cut-off criterion based on the empirical 
sampling distributions of the eigenvalues obtained from 
random data. What is meant by random data is a 
dataset where all correlations among the variables are 
zero at the population level. 

Horn (1965) originally proposed comparing each 
sample data eigenvalue to the average of the empirical 
eigenvalue sampling distribution for the corresponding 
rank position and retaining the components that have 
larger sample eigenvalues than the average random data 
eigenvalue. The original procedure was also extended 
to common factor analysis by creating empirical 
sampling distributions of principal axis eigenvalues 
from the random data (Humphreys & Ilgen, 1969). 
Since it was proposed, some adjustments have been 
suggested for the original parallel analysis procedure to 
improve its efficiency. One practical concern was using 
the average of the empirical eigenvalue sampling 
distribution. The use of the average eigenvalue as a 
criterion implies that the original parallel analysis 
procedure operates at a significance level of 0.5, which 
is very generous in terms of the conventional 
hypothesis testing approach (Buja & Eyuboglu, 1992). 
This would tend to increase the probability of making a 
type I error (extracting a factor that actually should not 
be extracted) and makes the parallel analysis procedure 
tend to predict too many factors (Glorfeld, 1995). 
Therefore, it is suggested that the 95th or 99th 
percentiles of the empirical eigenvalue sampling 
distribution be used as cutoffs. 

Another concern is related to the sensitivity of the 
eigenvalue sampling distribution to the distributional 
form used to generate multivariate data with 
uncorrelated variables. In most applications, the 
empirical eigenvalue distributions were derived from 
uncorrelated variables with a multivariate normal 
distribution. Whether these empirical eigenvalue 
sampling distributions are sensitive to non-normality 
was an open question. Simulation studies consistently 
showed that none of the distributional forms 
overestimate or underestimate the mean or quantiles of 
the random data eigenvalue sampling distributions. 
Both mean and centile estimates were stable across 
various distributional forms (Buja & Eyuboglu, 1992; 
Dinno, 2009; Glorfeld, 1995).  

Recently, researchers argued that the 95th or 99th 
percentile eigenvalues generated from random data 
provide an appropriate null hypothesis only for the first 
eigenvalue, because the size of the later (noise) 
eigenvalues are influenced by the presence of the prior 
significant factors (Green et al., 2012; Turner, 1998). 
Beyond the first eigenvalue, the sampling distributions 
of the random data eigenvalues are not directly 
comparable to the sample eigenvalue estimates unless 
the previous significant factors have been modeled into 
the data generation process. Therefore, this would 
suggest using a separate simulation to test each 
eigenvalue as opposed to using only one simulation to 
test all eigenvalues at once. Green et al. (2012) 
proposed a revised version of parallel analysis that 
relies on successive simulations to test each eigenvalue 
independently by taking the magnitude of previous 
significant eigenvalues into account. Modifications of 
the parallel analysis procedure using 
tetrachoric/polychoric correlations have also appeared 
in the literature in order to determine the necessary 
number of latent traits when modeling categorical 
response data (Cho et al., 2009; Drasgow & Lissak, 
1983; Finch & Monahan, 2008; Tran & Formann, 2009; 
Weng & Cheng, 2005). 

As the magnitudes of the eigenvalues have been 
shown to be dependent on the increasing level of 
variable complexity and/or inter-factor correlations in 
the underlying structure, the performance of parallel or 
revised parallel analysis may not be optimal for factor 
structures displaying these attributes. For 
demonstration purposes, Table 2 presents four factor 
structures. Structure 1 represents an independent 
cluster structure in which each variable loads on only 
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one factor, while Structures 2 and 3 represent semi-
complex structures, and Structure 4 represents a full 
complex structure with three common factors. For 
Structure 1, we also generated data by manipulating the 
correlations among common factors at levels of 0, 0.4, 
and 0.7. While the choice of correlations for the factors 
was arbitrary, it was also intentional. We chose 0 for no 
correlation (orthogonal solution), 0.40 for a moderate 
amount of correlation, and 0.70 for a more substantial 
amount of correlation in the factors. For the semi-
complex and complex factor structures, we did not 
simulate correlation among the factors.  

Factor Structure 1 was chosen because much of 
the previous research that has informed practice chose 
such simple structures with no item complexity or 
factor correlation. Factor Structure 2 shows each item 
loading on two dimensions, but with three sets of items 
loading on different pairs of dimensions, Factor 
Structure 3 is a bi-factor structure. In a bi-factor 
structure, all items load on a general factor – in this 
case F1, but there are also group factors, here F2 and 
F3. Note that at the primary factor level for this bi-
factor structure only two factors will appear. However, 
hierarchical factor analysis would allow the original 
structure to be recovered (the general factor [F1] will 
be at level two). Finally, Factor Structure 4 is presented 
to specifically show that item inter-relations can 
manifest themselves at the factor level where the items 
are complex or at the factor correlation level where the 
items become less complex, but there are factor 
correlations. For example if we have a math test, it may 
be difficult to differentiate algebra and geometry items 
from an orthogonal solution. If we allow an oblique 
rotation, the items may become more differentiable, 
however, the factors will be correlated. We provide 
more on this later. 

Using each of these four factor structures, we 
simulated 1000 datasets with manifest continuous 
outcomes under two different sample size conditions 
(N=100, 500) using a common factor model. Then, we 
applied parallel analysis using the 95th percentile of the 
random data principal axis eigenvalues to make a 
decision about the number of common factors for each 
simulated dataset. As seen in Table 3, the parallel 
analysis procedure correctly identified the number of 
factors in Structure 1 almost all the time regardless of 
sample size (99.2% of the time for N = 100 and 100% 
of the time for N = 500)  when the correlation among 
factors was zero. When the correlation among factors 

was increased to 0.4,  parallel analysis still yielded 
almost perfect results in identifying the number of 
factors in Structure 1 (98.3% of the time for N = 100 
and 100% of the time for N = 500). When the 
correlation among factors was increased to 0.7, the 
results were not as good. Then parallel analysis was 
correct only 22.1% of the time (choosing 3 factors) for 
the datasets with sample size of 100. One factor was 
chosen 43.0% of the time and 2 factors 34.7% of the 
time. In contrast, for sample size of 500 parallel analysis 
still predicted with 100% accuracy. 

For a semi-complex factor structure (Structure 2), 
the percentage of datasets in which the number of 
factors was correctly identified for the N=100 sample 
size condition dropped to 80.7%. Note that the 
suggested number of factors by the parallel analysis 
procedure was two for 17.6% of the generated datasets. 
In contrast, parallel analysis still predicted with 100% 
accuracy for sample size of 500. For a bi-factor 
structure (Structure 3), parallel analysis suggested a two 
factor solution most of the time regardless of sample 
size (85.7% of the time for N = 100 and 100% of the 
time for n = 500). For a complex factor structure 
(Structure 4), the procedure was correct only 0.7% of 
the time (predicting 3 factors) while predicting one 
factor 71.2% of the time for the N=100 sample size 
condition. For the N = 500 sample size condition, the 
correct classification increased to 35.8%, while 
predicting two factors the remaining 64.2% of the time. 

It may be argued that the poor results presented 
above occurred due to a technical flaw in the 
application of the traditional parallel analysis procedure 
as outlined in the literature (Green et al., 2012; Turner, 
1998). As mentioned before, the sampling distribution 
of the random data eigenvalues is not directly 
comparable to the sample eigenvalue estimates beyond 
the first eigenvalue, unless the previous significant 
eigenvalues have been modeled into the data generation 
process to test later eigenvalues. For increasing levels of 
variable complexity or inter-factor correlations, the 
increase in the first eigenvalue leaves less room 
remaining for the second or third eigenvalue, so that 
they were smaller than the corresponding random data 
eigenvalues. Green et al. (2012) proposed a revised 
version of parallel analysis that relies on successive 
simulations to test each eigenvalue independently by 
taking the magnitude of previous significant 
eigenvalues into account. Theoretically, the revised 
version of parallel analysis should help in the above 
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scenarios. For this reason, the same simulation 
procedure was repeated for Structures 1, 2, 3, and 4 and 
the number of factors for each dataset was identified 
using the revised parallel analysis procedure. The results 
from the revised parallel analysis procedure are given in 
Table 4. Although the revised parallel analysis 
procedure showed noteworthy improvement over the 
traditional parallel analysis procedure, there was still a 
significant amount of replications with incorrectly 
identified number of factors, particularly when the 
sample size is smaller. The results imply that identifying 
the number of major factors with parallel analysis is less 

than optimal, and there is a risk of under-prediction 
under certain conditions. In factor analysis, under-
extraction may have serious consequences as discussed 
in the literature (Fava & Velicer, 1992, 1996; Wood, 
Tataryn, & Gorsuch, 1996). 

To summarize, the first eigenvalue becomes 
dominant while the rest of the eigenvalues get closer to 
zero when the variable complexity and/or correlation 
among factors increase. Consequently, this 
phenomenon influences the implementation of parallel 
analysis. It should be noted that the complexity in 
Structures 2 and 4 was caused by fairly insignificant 
loadings; values of 0.2 or 0.3 that researchers tend to 
ignore in most practical applications. This shows that it 
doesn’t take much variable complexity for 
dimensionality assessment procedures based on 
eigenvalues to under-predict the number of major 

factors. We realize that we only produced results for 
parallel analysis, but other procedures such as the 
Kaiser-Guttman rule will tend to produce results in the 
same direction.  

 

Conclusions  

Both parallel analysis and revised parallel analysis 
are recommended in the literature and seem to be the 
most viable alternatives among the methods to 
ascertain dimensionality that rely on eigenvalues. The 

increasing availability of computational tools for these 
methods makes them more likely to be used in applied 
research. However, we argue that they may perform 
poorly in certain conditions. The poor results are not 
directly related to the methods, but due to the fact that 
the interpretations of eigenvalues are ambiguous under 
certain conditions. When variable complexity and/or 
inter-factor correlations increase, the first eigenvalue 
gets larger at the expense of the others. Due to the 
large first few eigenvalues, the remaining later 
eigenvalues may be smaller than random data 
eigenvalues. As a result, parallel analysis and revised 
parallel analysis tend to predict fewer substantial 
dimensions  

Inter-relationships of items from related latent 
dimensions can manifest themselves as factor 
complexities (items loading on multiple factors) or as 

Table 2. Population latent factor structures used for the simulation 

  Factor Structure 1  Factor Structure 2  Factor Structure 3  Factor Structure 4 

Item  F1  F2  F3  F1  F2  F3  F1  F2  F3  F1  F2  F3 
1  0.7  0  0  0.7  0  0.3  0.7  0.4  0  0.7  0.3  0.3 
2  0.6  0  0  0.6  0  0.2  0.6  0.3  0  0.6  0.2  0.2 
3  0.7  0  0  0.7  0  0.3  0.5  0.4  0  0.7  0.3  0.3 
4  0.6  0  0  0.6  0  0.2  0.7  0.3  0  0.6  0.2  0.2 
5  0.7  0  0  0.7  0  0.3  0.6  0.4  0  0.7  0.3  0.3 
6  0  0.7  0  0.3  0.6  0  0.5  0.3  0  0.3  0.6  0.2 
7  0  0.6  0  0.2  0.5  0  0.7  0.4  0  0.2  0.5  0.3 
8  0  0.5  0  0.3  0.4  0  0.6  0.3  0  0.3  0.4  0.2 
9  0  0.7  0  0.2  0.6  0  0.5  0  0.4  0.2  0.6  0.3 
10  0  0.6  0  0.3  0.5  0  0.7  0  0.3  0.3  0.5  0.2 
11  0  0  0.7  0  0.3  0.5  0.6  0  0.4  0.2  0.3  0.5 
12  0  0  0.6  0  0.2  0.4  0.5  0  0.3  0.3  0.2  0.4 
13  0  0  0.5  0  0.3  0.3  0.7  0  0.4  0.2  0.3  0.3 
14  0  0  0.7  0  0.2  0.5  0.6  0  0.3  0.3  0.2  0.5 
15  0  0  0.6  0  0.3  0.4  0.5  0  0.4  0.2  0.3  0.4 



Practical Assessment, Research & Evaluation, Vol 22 No 7 Page 7 
Zopluoglu & Davenport, Jr., Using Eigenvalues in Dimensionality Assessment 
                          
items on separate dimensions that are related (factors 
correlated). Thus, a complex structure with orthogonal 
factors, such as Structure 4 in Table 2, can be 
equivalent to a much simpler factor structure with 
oblique factors after rotation. Note that it is the 
researcher’s choice to allow or disallow factor 
correlations. Thus, the researcher’s choice will influence 
the result we see and subsequently our understanding 
of reality. After an oblique rotation of Structure 4, we 
get factor F3 below with its corresponding factor 
correlation matrix. 
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In this case, it may be argued that the factors 
become redundant as the correlations among factors 
increase, and parallel analysis correctly advises the 
analyst to retain fewer factors. The number of 
dimensions reported by the parallel analysis procedure 
can be thought of as a lower bound to the number of 
dimensions and becomes a measure of nonredundancy 

of dimensions. Another alternative explanation could 
be that high inter-factor correlations imply a second-

Table 3. The Percentage of decisions using parallel analysis procedure 
  Number of Identified Factors 
  1  2  3  4 
N =100         
Factor Structure 1 (ϕ=0)      99.20%  0.80% 
Factor Structure 1 (ϕ=.4)    1.10%  98.30%  0.60% 
Factor Structure 1 (ϕ=.7)  43.00%  34.70%  22.10%  0.20% 
Factor Structure 2 (ϕ=0)  0.20%  17.60%  80.70%  1.50% 
Factor Structure 3 (ϕ=0)  14.30%  85.70%     

Factor Structure 4 (ϕ=0)  71.20%  28.10%  0.70%   

N =500         
Factor Structure 1 (ϕ=0)      100.00%   
Factor Structure 1 (ϕ=.4)      100.00%   
Factor Structure 1 (ϕ=.7)      100.00%   
Factor Structure 2 (ϕ=0)      100.00%   
Factor Structure 3 (ϕ=0)    100.00%     
Factor Structure 4 (ϕ=0)    64.20%  35.80%   

Table 4. The percentage of decisions using revised 
parallel analysis procedure 

  Number of Identified Factors 

  1  2  3  4  5 

N =100           
Factor Structure 1 
(ϕ=0)      95.30%  4.49%  0.21% 
Factor Structure 1 
(ϕ=.4)      96.50%  3.30%  0.20% 
Factor Structure 1 
(ϕ=.7)      95.10%  4.60%  0.30% 
Factor Structure 2 
(ϕ=0)    11.60%  85.10%  3.20%  0.10% 
Factor Structure 3 
(ϕ=0)  0.50%  97.50%  2.00%     

Factor Structure 4 
(ϕ=0)  21.80%  73.60%  4.50%  0.10%   

N =500           
Factor Structure 1 
(ϕ=0)      95.40%  4.60%   
Factor Structure 1 
(ϕ=.4)      94.30%  5.70%   
Factor Structure 1 
(ϕ=.7)      94.50%  5.40%  0.10% 
Factor Structure 2 
(ϕ=0)      95.10%  4.90%   
Factor Structure 3 
(ϕ=0)    96.20%  3.70%  0.10%   
Factor Structure 4 
(ϕ=0)    21.40%  77.60%  1.00%   
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order general factor, and thus the eigenvalues and 
parallel analysis correctly identifies this strong second-
order general factor, while ignoring the first-order 
factors. While we acknowledge these alternative 
perspectives, we note the practical challenges. Suppose 
that the underlying structure is a bifactor structure as in 
Structure 3 in Table 2. If a researcher uses eigenvalues 
and parallel analysis as decision makers, it’s very likely 
that the parallel analysis would recommend two 
dimensions as shown in our simulations. If the 
researcher extracts two factors and then use an oblique 
rotation, there would be a nice independent cluster 
structure with two correlated dimensions. However, the 
interpretation of this two dimensional solution would 
be different than the interpretation of the original bi-
factor structure. Therefore, we urge researchers to 
carefully consider and interpret the results of parallel 
analysis or revised parallel analysis procedures. 

We also note that some scholars already indicated 
their reservations with regard to use of eigenvalues in 
dimensionality assessment. McDonald (1981) stated 
that “…it’s important to recognize that there is no 
direct relationship between the proportion of variance 
due to the first common factor and the presence or 
absence of additional common factors. Certainly, it is 
easy to invent realistic numerical examples in which a 
multidimensional set of items has higher first-factor 
variance than a unidimensional set. (p. 112)” Similarly, 
Mulaik (2010) made a numerical example where there 
were seven factors with inter-factor correlations in the 
.50s and a few cross-loadings and parallel analysis 
indicated only three dimensions. He also noted “…Not 
only does the first eigenvalue depend on the magnitude 
of the loadings on the factors, but also on the 
correlations among them. So, those Monte Carlo 
studies of the PA method that only study simple 
orthogonal factors do not realistically portray situations 
frequently encountered with real data. (p.191)” To 
conclude, practitioners should be careful in interpreting 
the number of dimensions indicated by parallel analysis, 
revised parallel analysis, or any other method that relies 
on the magnitude of eigenvalues in dimensionality 
assessment. The resulting number of factors should be 
taken as a lower bound to dimensionality, and one 
should conduct a thorough exploratory analysis by 
considering alternative plausible models with 
oblique/orthogonal (to detect higher order factors) 
multiple dimensions (to detect other plausible models 

with differing number of factors that may be more 
interpretable). 
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