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Data transformations have been promoted as a popular and easy-to-implement remedy to address 
the assumption of normally distributed errors (in the population) in linear regression.  However, the 
application of data transformations introduces non-ignorable complexities which should be fully 
appreciated before their implementation. This paper adds to existing Practical Research and Assessment 
Evaluation (PARE) publications on data transformations by providing a broad overview underlying 
the use of data transformations for the specific purpose of statistical inference and interpreting 
meaningful effect sizes. Data transformations not only potentially change the scale of the transformed 
variable; they also alter the fundamental relationships among variables while simultaneously changing 
the distribution of the errors. Given these repercussions, we clarify the nature of certain data 
transformations and strongly recommend the use of data transformations when they can enhance the 
interpretation of effect sizes. 

Data transformations are an important and popular 
tool in data analysis for addressing various practical 
issues. Indeed, Practical Assessment, Research and Evaluation 
(PARE) published a series of highly cited papers by 
Osborne and colleagues (Osborne, 2002, 2010; Osborne 
& Overbay, 2004) on the use of various forms of data 
transformations. Because data are typically non-normally 
distributed in practice (Cain, Zhang & Yuan, 2016; 
Micceri, 1989), these PARE papers focus on the utility 
of data transformations such that analyses which purport 
to require the assumption of normally distributed data, 
subsumed under linear regression (e.g., t-tests and 
ANOVA), would be expected to become more valid. 

Different classes of data transformations were 
developed from distinct modeling cultures of either 
statistical prediction or statistical inference (see Breiman 
(2001) for an overview of these two cultures). Given 
data, a model can be constructed to link predictors with 
an outcome for the purpose of statistically predicting 

future outcomes. For instance, a meteorologist would 
devise a model using current data on humidity, 
temperature, wind speeds, and other variables for a 
particular location to predict the expected amount of 
rainfall in the next hour at the same location. In this 
context of pure prediction, there is no interest in 
whether humidity has a linear effect on rainfall or 
whether the predictors in the model interact, etc. in the 
population. Conversely, sample data can be modeled 
with the goal of extracting information about the 
relationship between predictors and an outcome for 
inferences about the population. For instance, a clinical 
psychologist designs an experiment to examine the 
efficacy of loving-kindness meditation on depression 
relative to treatment-as-usual so as to estimate the 
treatment difference or effect size. An effect size is a 
quantification (i.e., size) of the impact (i.e., effect) of a 
predictor on an outcome. Here, information based on 
sample data is reduced to an effect size which is used to 
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make inferences about the relative effectiveness of 
loving-kindness meditation in the population via 
constructing confidence intervals (CIs) or conducting 
null hypothesis significance tests (NHSTs). In the 
context of statistical inference, there would be interest in 
whether the relative efficacy of treatment can be 
moderated or mediated by other variables and whether 
such relationships are present in the population. 
Between these two modeling traditions, the majority of 
psychological science and evidence-based practice has 
focused on statistical inference which emphasizes the 
interpretation of effect sizes and their statistical 
significance or estimate precision. Here, both the 
meaningfulness of the effect under study and its 
presence in the population are of key importance. 

The purpose of this paper is to complement the 
existing papers in PARE on data transformations by 
providing a broad overview on the rationale and utility 
of data transformations for the purpose of statistical 
inference. We illustrate distinct properties of data 
transformations in the context of data non-normality in 
relation to assumptions of linear regression and the 
central limit theorem (CLT) such that researchers can 
make informed decisions regarding their application. In 
essence, we emphasize that data transformations 
developed from the culture of statistical prediction 
should not be naively applied to applications focused on 
statistical inference, especially when interest is in 
interpreting effect size estimates and determining their 
presence in the population with NHSTs or CIs. 

The misapplication of data transformations will 
introduce complexities with non-ignorable 
repercussions. In particular, we show that 
transformations may not appropriately address the 
assumption of normality for statistical inference, and can 
more gravely change the research question in that the 
population effect size of initial interest does not map 
onto the resulting population effect size of the 
transformed data. Stated differently, the nature of the 
effect size based on the transformed data (even after 
reverse transforming) can be quite different from the 
nature of the effect size based on the original data. Note 
that effect sizes are accompanied by p-values associated 
with conducting NHSTs and CIs; changes in effect size 
estimates due to data transformations will result in 
changes in NHST results and CI coverage.  Additionally, 
we review and illustrate three popular data 
transformations (logarithmic, square root, and 
reciprocal) in facilitating the interpretation of effect 

sizes. Finally, we make recommendations for the proper 
use of data transformations for statistical inference. 

Are Transformations Pertinent to Data Analysis? 

To set the stage and introduce notation, consider 
linear regression as a general analytic framework where 
t-tests and ANOVA are special cases. Our discussion of 
transformations is thus relevant to this set of statistical 
approaches. In the context of statistical inference, the 
regression model serves as a simplified description of the 
phenomenon of interest inherent in the data (i.e., the 
signal or model), free from random error (i.e., noise or 
residual). 

For a single case i = 1,… N, the regression equation 
can be written as 

Yi = β0 + β1X1i + … + βKXKi + εi, (1)
 

where Yi is the observed value for the dependent 
variable (DV) for case i; Xki is an observed value on the 
kth independent variable for case i of k = 1, …, K 
independent variables; and εi is the unknown error for 
case i. The unknown parameters of the model (in the 
population) are β0, the intercept or predicted value of Y 
when all Xk are 0, and the K regression slopes where the 
kth regression slope is denoted as βk. The K βk are usually 
effect sizes of interest (e.g., see Pek & Flora, 2017), 
representing the conditional change in Y due to a 1-unit 
change in Xk. When Xk is a binary variable indicating one 
group from the other, βk is the population group 
difference in Y. 

Typically, the ordinary least squares (OLS) criterion 
is used to obtain estimates of these population effects by 
minimizing the sum of squared residuals, ∑ୀଵ

ே ሾ݁ሿଶ. The 
residual ei is an estimate of the unknown error, εi. The 
former is computed as the difference between the 
predicted and observed DV values for case i; i.e., ݁ ൌ
	 ܻ െ ܻ. At this point of formulating the regression 
model, estimates of the intercept and regression slopes 
can be obtained without any assumptions regarding 
normality. 

The assumption of normality is often made when 
inferences based on sample estimates of effect sizes (i.e., 
B0, B1, …, BK) are to be drawn about unknown 
population parameters (i.e., β0, β1, …, βK). Common 
inferential devices include NHSTs and CIs, allowing 
researchers to make statements about unknown 
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population effects based on sample estimates. When 
sample size N is not large, normality is formally assumed 
about the errors, εi, such that 

,~ࣨሺ0	ߝ , (2)	ଶሻߪ
 

where σ is the standard deviation of the errors in the 
population (see Williams et al., 2013). Often, this 
assumption is evaluated by examining normality of the 
residuals, ei, (and not the data) after assuming that these 
residuals are representative of the population errors, εi. 
In addition to normally distributed errors, the N cases 
are also assumed to be independently and identically 
distributed (i.e., no dependencies such as repeated 
measures or nested data structures). Because ߪଶ is 
usually estimated by the variance of the residuals, ݀ݏଶ, 
the sampling distribution used in inference about the 
population parameters is the t-distribution. 

When N is large, the assumption of normality in 
Equation 2 can be relaxed because of the CLT. The CLT 
states that as N increases to infinity, the sampling 
distribution of the estimates will converge toward a 
normal distribution when the errors are independent and 
identically distributed with finite variance regardless of the 

shape of the population distribution. In this vein, the 
assumption of normality is inessential when N is large 
enough. Although rules of thumb have been 
recommended for the CLT (e.g., N > 25 for each group 
in ANOVA or a t-test; Howell, 2013, p. 671), these 
heuristics cannot be broadly applied because the size of 
N required for the CLT to be invoked is a function of 
the extent of non-normality of the population 
distribution (see illustration below). 

The Central Limit Theorem in Action 

Consider the simplest case of linear regression in 
Equation 1 where an intercept-only model is fit to data; 
this setup is akin to estimating the mean from data (i.e.,  
ܻ ൌ  ). Here, the intercept B0 is also the mean of theܤ
DV. Figure 1 below shows three population 
distributions, and accompanying sampling distributions 
of the mean, B0, varied by sample size N. The first 
population distribution is normal that has skew = 0 and 
adjusted kurtosis = 0; and the next two population 
distributions are lognormal with skew = 1 and 7 as well 
as adjusted kurtosis 1.83 and 152, respectively. These 
distributions were chosen such that skewness and 
kurtosis in the population increased from distribution to 
distribution. For each population distribution, 1,000 

Figure 1. Population distributions and their respective mean sampling distributions for 10,000 samples drawn with 
varying sample size N. The solid (red) line represents a normal curve whereas the dashed (blue) line represents a kernel 
distribution. 

Population

N
or

m
al

Skew = 0
Kurtosis = 0

N = 100

Skew = .07
Kurtosis = .02

N = 25

Skew = -.09
Kurtosis = .03

N = 5

Skew = .02
Kurtosis = .02

Lo
gn

or
m

al
 1

Skew = 1
Kurtosis = 1.83

Skew = .03
Kurtosis = -.19

Skew = .20
Kurtosis = .38

Skew = .31
Kurtosis = 0

Lo
gn

or
m

al
 2

Skew = 7
Kurtosis = 152

Skew = .77
Kurtosis = 1.16

Skew = 1.15
Kurtosis = 2.37

Skew = 2.65
Kurtosis = 14.53



Practical Assessment, Research & Evaluation, Vol 22 No 9 Page 4 
Pek, Wong, & Wong, Data Transformations for Inference 
                          
samples were drawn and their means (B0) were 
computed and then plotted to form an empirical 
sampling distribution (see histograms). For the normal 
population, observe that the sampling distributions are 
normal regardless of sample size N because the normal 
and kernel distributions are practically indistinguishable. 
For the lognormal populations, the kernel of the 
sampling distributions approach normality as sample 
size N increases. This relationship is moderated by the 
extent of non-normality in the population such that the 
sampling distribution of B0 approaches normality more 
slowly in the more skewed and kurtotic second 
lognormal population. 

This illustration demonstrates that the CLT 
obviates the need for normality of the errors when N is 
large enough. However, the quantification of large 
“enough” remains elusive. In general, larger N is 
required for more non-normal residual distributions and 
more predictors in the model, such that a general rule-
of-thumb cannot be reasonably recommended. For a 
single variable presented in Figure 1, N = 5 is sufficient 
for a population distribution with skew =1 whereas N = 
100 is insufficient for a population distribution with 
skew = 7. Further, coverage of 95% CIs for 10,000 
samples about the mean for the normal population was 
close to .95 regardless of sample size. For the lognormal 
population with skew = 1, coverage about the mean was 
.935, .944. and .948 for N = 5, 25, and 100, respectively. 
For the lognormal population with skew = 7, coverage 
was .814, .866, and .912, for N = 5, 25, and 100, 
respectively. R code for this simulation study is available 
upon request. Note that non-normality of the residuals 
and errors, ceteris paribus, would only result in wider CIs 
and NHSTs with less power. 

Can Data Transformations Address Non-normality 
for Inference? 

Given the practical constraints that sample 
distributions are usually non-normal and sample sizes 
are not large, data transformations have been proposed 
as a solution to address non-normality (e.g., Osborne, 
2002; 2010; Osborne & Overbay, 2005; all published in 
PARE). In lieu of the CLT with respect to statistical 
inference, applying transformations to address non-
normality of errors should more often be recognized as 
a small sample method. Stated differently, normality of the 
errors or residuals is irrelevant when N is large “enough” 
for the CLT to be invoked. 

There are many transformations used to address 
skewed and kurtotic sample distributions, many of 
which are special cases of larger families of 
transformations. For instance, the logarithmic and 
square root transformations are special cases of the Box 
and Cox (1964) and Tukey’s (1977) ladder family of 
transformations. Nonlinear transformations from these 
families of transformations are often selected to linearize 
the relationships among variables by way of obtaining 
normally distributed data residuals, ei. Stated differently, 
these families of transformations were developed for the 
purpose of re-expressing nonlinear relationships 
between predictors and an outcome to linear ones via 
variable transformation. Note that these linearizing 
transformations would ideally simultaneously normalize 
the residuals, ei. In practice, after normality (or linearity) 
of the transformed data is achieved, analyses with linear 
regression proceed as usual (i.e., OLS estimation). 

Because such transformed data are on a different 
scale compared to the original data (e.g., natural log of 
reaction time instead of reaction time), the nature of the 
effect as operationalized by the original variable and its 
interpretation changes due to the transformation (see 
also section on transformations for interpretation). To 
address this complication in interpretation, several 
authors and textbooks have recommended reverse 
transformations after conducting inference on the 
transformed variables (e.g., Bland & Altman, 1996; 
Harrell, 2015; Howell, 2013). However, inferential 
results (i.e., NHSTs and CIs) associated with the simple 
reverse transformation does not necessarily map back 
onto the original effect of interest (Duan, 1983; Zhou & 
Gao, 1997), and we strongly discourage the use of 
reverse transformations. Pek, Wong, and Wong (2017) 
illustrate in a simulation study that reverse transformed 
CIs often fail to capture the population mean of the 
original distribution because coverage was observed to 
paradoxically worsen with increasing sample size. 

A separate class of data transformations has also 
been developed to address the issue of contamination by 
outliers of (normal) sample data. In the presence of non-
normal data, the analyst can either assume that the 
population distribution is non-normal, or the sample 
data which were drawn from a normal population have 
been contaminated. These assumptions are empirically 
untestable with a single data set. Under the assumption 
that the data are contaminated, long tails of data 
distributions are presumably due to the presence of 
outlying cases. Non-normal sample data could either be 
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drawn from a non-normal population distribution, or be 
a mixture of distributions coming from a normal 
population of interest contaminated by observations 
from nuisance populations. Alas, statistical methods 
cannot distinguish these two fundamentally distinct 
concepts (Bauer & Curran, 2003), and assumptions 
regarding the distributional form of the population 
would have to rest on theory. 

Winsorizing and trimming are transformations 
devised to address assumed data contamination 
represented by extreme cases in the tails of the sample 
distribution (e.g., see Tukey & McLaughlin, 1963; 
Wilcox, 2010)1. Winsorizing involves replacing extreme 
values in the data to specified percentiles of the data; a 
10% Winsorization would limit observations below and 
above the 10th and 90th percentiles, respectively, to the 
10th and 90th percentiles. In contrast, trimming involves 
removing extreme values in the data and analyzing a 
smaller data set; a 10% trimming would exclude 
observations below and above the 10th and 90th 
percentiles. Note that with 10% Winsorizing or 
trimming, 80% of the data remains unchanged. Wilcox 
and Keselman (2003) recommend trimming 20% of data 
by default so as to achieve a small standard error and 
sufficiently control for Type I error.  

Consider the following scores discussed in an 
introduction to these robust methods by Erceg-Hurn & 
Mirosevich (2008), which have been ordered from 
lowest to highest:  

1, 3, 5, 6, 7, 10, 11, 12, 75, 75. 
 

Winsorizing by 20% would result in a transformed data 
set of 

5, 5, 5, 6, 7, 10, 11, 12, 12, 12, 
 

and trimming by 20% would result in a reduced data set 
of 

5, 6, 7, 10, 11, 12. 
 

By ordering the data so as to identify and address 
the extreme and outlying cases, correct inference based 
on the Winsorized or trimmed data cannot be computed 
with the OLS estimator because the cases are no longer 

                                                 
1Trimming and Winsorizing are distinct from data cleaning 

and regression diagnostics in that they are motivated by robust 
methods of estimation. Under this paradigm, the median is the 

independently distributed. Instead, robust estimators 
need to be applied to arrive at correct inferential results 
(for a textbook on this topic, see Wilcox, 2017). Also 
important to note is that although the scale with which 
the Winsorized or trimmed data remains unchanged, 
these transformations like all transformations will 
change the nature of the effect size of the population 
with which the sample was drawn from (see example 
below). When extreme cases are not outliers but part of 
the population of interest, Winsorized or trimmed 
estimates are biased estimates of the population effect 
sizes. Trimming and Winsorizing will result in more 
powerful NHSTs and tighter CIs about the population 
trimmed mean or population Winsorized mean, 
respectively, relative to the population mean. However, 
because it is unlikely that the population trimmed mean 
or Winsorized mean is more appropriate compared to 
the population mean when the population distribution is 
non-normal, we do not broadly recommend them for 
practice. Yet, if the population distribution is normal and 
the data are assumed to be contaminated by outliers, 
then trimming is recommended.  

Empirical Illustration 

Various types of data transformations are illustrated 
below using empirical data from the Programme for 
International Assessment (PISA) collected on N = 40 
countries. Figure 2 below displays histograms for PISA 
2012 reading score differences between girls and boys 
aged between 15 years and 3 months and 16 years and 2 
months, with girls scoring higher. The original difference 
score distribution is positively skewed, and the 
logarithmic transformation corrects for this skewness 
relatively well as the kernel distribution of the 
transformed scores is more symmetric. In comparison, 
the 20% Winsorized and trimmed distributions are 
considerably narrower after the data transformation; 
20% Winsorizing or trimming amounts to retaining 60% 
of the original data. In Figure 2, the means of the sample 
distributions are represented by different point types 
which exhibit some variability, indicating that the 
transformations change the nature of the population 
mean being estimated. If the (unknown) population 
distribution of these difference scores is truly non-
normal, the reverse transformed mean, the Winsorized 
mean, and the trimmed mean are all biased (i.e., 

most robust central tendency in terms of sensitivity to outliers 
and is defined by 50% trimming. 
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inaccurate) estimates of the population mean. Among 
these different approaches, the sample mean of the 
original distribution is the only unbiased estimate of the 
population mean. 

Additionally, the whiskers extending from the 
means in Figure 2 depict their respective CIs. The CI 
widths also show variability like their means. The 
narrowest CI is associated with the reverse 
transformation, followed by CIs of the original data, the 
trimmed data, and finally the Winsorized data. Because 
narrower CIs communicate lower sampling variability, 
higher statistical power, and better estimate precision, 
some authors (e.g., Bland & Altman, 1996) have 
recommended reporting estimates associated with the 
narrowest CIs. However, we strongly discourage such 
practice because this recommendation ignores the fact 
that data transformations change the nature of the data 
and its commensurate effect size. Based on this 
recommendation, the reverse transformation mean and 
CI would be selected for the PISA example. However, 
these estimates are likely biased representations of the 
population mean given that the observed sample is 
representative of the population. Indeed, Pek, Wong, 
and Wong (2017) demonstrate that reverse transformed 
CIs were the narrowest compared to other competing 
CIs, but they had the poorest coverage because they 
were not centered about the original population mean. 
Stated differently, the reverse transformation method is 

associated with highly biased effect size estimates and 
NHSTs with exceedingly high Type I errors. 

Recommendations for Data Transformations 

Historically, transformations were developed for 
two purposes: to address the assumptions of a statistical 
model, and to aid interpretation (Tukey, 1957). The 
section above explicated the first purpose of 
transformations to address non-normality of errors in 
linear regression (cf., Osborne, 2002, 2010; Osborne & 
Overbay, 2004). Two important points to bear are that 
normalizing transformations (a) change the nature of the 
effect of interest, and (b) are a small sample method in 
terms of normalizing residuals within the context of 
linear regression; the latter outcome is unnecessary when 
sample size N is large enough. 

When inferences about effects in the original scale 
of the data are of interest, we recommend avoiding the 
mechanical use of data transformations without 
consideration of the interpretability of resulting effect 
sizes. Additionally, only when there is a clear reason to 
suspect data contamination (e.g., observed normality in 
previous data) should trimming be used because 
trimmed estimates have better statistical properties 
compared to Winsorized estimates (Wilcox, 1998). 
When sample size N is large enough, applying linear 
regression as usual without applying a data 
transformation is appropriate because of the CLT. 

 

Figure 2. Histograms for differences in PISA 2012 reading scores between girls and boys with girls scoring higher. The 
solid (red) line represents a normal curve whereas the dashed (blue) line represents a kernel distribution. The grey 
histogram for trimmed scores is overlaid on the white histogram for Winsorized scores. The Winsorized scores have a 
stark bimodal kernel distribution and are associated with a flatter normal curve; the trimmed scores have less of a 
bimodal kernel distribution and are associated with a more peaked normal curve.
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Finally, if normality of the errors is a concern, bootstrap 
approaches to inferences are appropriate alternatives 
(e.g., see Efron & Tibshirani, 1993 for an introduction). 
The bootstrap circumvents the issue of assuming 
normality of the errors by empirically constructing the 
sampling distribution of the effect sizes of interest by 
assuming that the sample is a reasonable surrogate of the 
population2. To bootstrap the sampling distribution of 
Bk, R bootstrap replicates of the same size as the original 
data are drawn from the sample with replacement. Then, 
the same linear regression is fit to these R samples such 
that R bootstrapped estimates, ܤ෨, are obtained. 
Typically, R = 1,000 or 5,000 such that these ܤ෨ form a 
smooth distribution which serves as the sampling 
distribution for Bk. It is from this empirically constructed 
sampling distribution, which is typically non-normal, 
that NHST is performed or bootstrap CIs are 
constructed. 

Given a focus on statistical inference, effects under 
study and their presence in the population are of prime 
importance. The application of data transformations 
should primarily facilitate the interpretability of key 
effect sizes, and secondarily address the assumption of 
normally distributed errors when sample size is small. A 
meaningful effect which is unlikely to be present in the 
population (i.e., having poor inferential properties) is 
limited in its application and generalizability. Conversely, 
a significant effect is impractical if the effect itself is 
difficult to interpret. In the next section, we focus on the 
often ignored but essential property of data 
transformations in improving effect size interpretation. 

Data transformations for interpretation 

Some transformations can improve the 
interpretation of effects when the transformed data and 
the changed nature of the effect under study have 
meaningful structure and scale, respectively. For 
instance, the measurement of sound in decibels follows 
a natural logarithmic scale, the Richter scale quantifying 
the magnitude of earthquakes follows a base-10 
logarithmic scale, and speed is the reciprocal of time. 
Note that effect sizes should be interpreted only when 
they are statistically significant or estimated with limited 
sampling variability. In this section we consider three 

                                                 
2 When the sample is not large enough to fully represent 

the population, the bootstrap method does not perform well. 

popular transformations: the logarithm, the square root, 
and the inverse (cf. Osborne, 2002). 

Logarithmic Transformation 

The natural logarithm is a useful nonlinear 
transformation when effects are nonlinear and 
multiplicative. Logarithms convert a multiplication to an 
addition. For the transformed variable logY, a 1 unit 
increase in logY is equivalent to multiplying Y by 2.72 
because the natural exponent, e1 ≈ 2.72. Stated 
differently, a 1-unit increase in logY is equivalent to an 
increase of 172% in the original scale of Y. It follows 
then that applying the linear regression to data on the 
logarithmic scale corresponds to a multiplicative model 
in the original scale. Let the linear regression equation in 
the logarithmic scale be 

logYi = b0 + b1X1i + … + bKXKi + Ei. (3)
 

Taking the exponent on both sides of Equation 3 
obtains 

Yi = ݁బାభభା⋯ା಼಼ା	ா 
ܤ=

ᇱ ଵܤ
ᇱభ   ܤ

ᇱ಼ ݁
ᇱ, 

(4)

 

where ܤ
ᇱ ൌ ݁, ܤ

ᇱ ൌ ݁ೖ and ݁
ᇱ ൌ eா (see Gelman & 

Hill, 2007). In the scale of the original data as in 
Equation 4, the predictors Xk enter into the model 
multiplicatively instead of additively (cf., Equation 1). 
Also note that the error ݁

ᇱ also enters the model 
multiplicatively instead of additively (cf., Ei); this means 
that if Ei is normally distributed, it follows by definition 
that ݁

ᇱcannot be normally distributed.  

Suppose that unionized university faculty’s log 
salaries per month are regressed onto years of 
experience, yielding a predicted regression equation of: 
log(earnings) = 8.2 + 0.02years. Faculty starting without 
any experience are expected to earn e8.2 ≈ $3,614 per 
month, or $43,691 per annum. With regard to 
interpreting the regression slope, with every year of 
experience gained, faculty’s salaries are expected to 
increase by 0.02 in log(earnings). Observe that e0.02 = 
1.020. Hence, faculty with one more year of experience 
on the job are expected to earn about 2% more. Such a 
nonlinear increment in salary, in relation to years on the 
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job, is consistent with faculty unions negotiating salary 
increments per year as a small percentage of base pay. 

Table 1. Relationship between coefficients in the log 
and original scale. 
Natural log 
scale, bk 

Original scale 
ܤ
ᇱ  

Percentage 
increase in Y 

.01  1.010  1.0% 

.02  1.020  2.0% 

.03  1.030  3.0% 

.04  1.041  4.1% 

.05  1.051  5.1% 

.06  1.062  6.2% 

.07  1.073  7.3% 

 

From Table 1, the exponentiation of an effect on a 
log-transformed variable (logY) is approximately 
equivalent to the proportion change in Y; however, this 
correspondence between bk and percentage increase in 
Y becomes weaker as regression slope values of bk 
increase (see Table 1). Multiplicative models, where the 
logarithm of the DV is regressed onto k predictors, are 
more appropriate than additive models when Y takes on 
positive values and increases as a factor or proportion of 
its base value in relation to changes in Xk. In such 
contexts, the logarithm transformation aids in both the 
interpretation of effects as well as addresses nonlinearity 
and error non-normality. 

Square Root Transformation 

Although the popular square root transformation 
can be useful for simplifying relationships with quadratic 
effects, and also for stabilizing variances (Baguley, 2012), 
this transformation does not aid in interpretation.  

It is well-known that children’s vocabulary 
acquisition increases at an increasing rate (e.g., see Hart 
& Risley, 1995). Suppose that counts of vocabulary 
words (Y) are modeled in relation to children’s ages in 
months (X). Consider the simple linear regression model 
where the square root of the cumulative frequency of 
children’s words is regressed onto their age 

ඥ ܻ ൌ ܾ  ܾଵ ܺ  ܧ . (5)
 

Squaring both sides of Equation 5 yields  

ܻ ൌ ሺܾ  ܾଵ ܺ  ሻଶ=ܾܧ
ଶ  2ܾܾଵ ܺ  ܾଵଶ ܺ

ଶ  ݁
ᇱ 

ܤ=
ᇱ 	ܤଵᇱ ܺ  ଶܤ	

ᇱ
ܺ
ଶ 	݁

ᇱ, 
(6)

where ܤ
ᇱ ൌ 	ܾ

ଶ,	ܤଵ
ᇱ ൌ 2ܾܾଵ,ܤଶ

ᇱ ൌ ܾଵ
ଶ, and ݁

ᇱ ൌ
2ܾܧ  2ܾଵ ܺܧ 	ܧ

ଶ 

Clearly, the transformation obfuscates the 
interpretation of the coefficients b0 and b1 in the square 
root scale. The intercept based on the transformed data, 
b0, is the square root of the intercept in the original scale 
(i.e., ܾ ൌ ඥܤ

ᇱ), and is also a factor in the slope ܤଵ
ᇱ   or 

the instantaneous rate of change at age Xi = 0 in the 

original scale (i.e., ܾ ൌ
భ
ᇲ

ଶభ
). Likewise, the slope 

estimated from the transformed data, b1, has an equally 
complicated interpretation. Although b1 is the square 
root of the quadratic coefficient in the original scale (i.e., 
ܾଵ ൌ ඥܤଶ

ᇱ), it is also a factor of the instantaneous rate 

of change in the original scale of counts (i.e., ܾଵ ൌ
భ
ᇲ

ଶబ
). 

Additionally, similar to the log transformation, observe 
that if Ei in Equation 5 is normally distributed, then ݁

ᇱ 
cannot be normally distributed in Equation 6. Thus, the 
square root transformation changes the functional 
relationship between predictors and outcome and the 
distribution of the errors. 

While the square root transformation can be said to 
stabilize the variance of the residuals and remove 
nonlinearity in effects (e.g., Equation 5 has no quadratic 
term), applying the linear regression to the transformed 
data results in virtually uninterpretable regression 
coefficients in the square root scale (Gelman & Hill, 
2007). Indeed, such linearizing and variance stabilizing 
transformations are more suitable for pure prediction 
problems (e.g., Box & Cox, 1964; Freeman & Tukey, 
1950). Instead of applying the square root 
transformation, such nonlinearity can instead be directly 
modeled with a quadratic term in the linear model (cf., 
Equation 6). 

Inverse or Reciprocal Transformation 

Another transformation which can aid in the 
interpretation of effects is the reciprocal or inverse, so 
long as interest is not about effects in the original scale. 
Suppose that researchers are interested in whether IQ as 
measured by Raven’s progressive matrices has an effect 
on performance on mental sum problems. Let Y be the 
time taken in minutes to complete 10 mental sum 

problems in a specific test, and 
ଵ


	be the average speed 

of completing each item per minute. 
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The regression of speed onto IQ scores (X) can be 
expressed as 

10

ܻ
ൌ ܾ  ܾଵ ܺ  . (7)ܧ

 

Taking the reciprocal and multiplying by 10 on both 
sides of Equation 7 yields: 

ܻ ൌ
10

ܾ  ܾଵ ܺ  ܧ
. (8)

 

Observe that the intercept and slope in the scale of 
speed (i.e., b0 and b1) do not have a simple relationship 
with the intercept and slope in the original scale of time 
(i.e., B0 and B1; cf. Equation 1). However, applying the 
reciprocal transformation is completely justified when 
interest is about the effect in the transformed scale. 

From Equation 7, the intercept b0 is the expected 
average speed for completing a single item per minute 
when IQ scores, X = 0. For improved interpretability of 
the intercept, centering the predictor has been 
recommended such that b0 can be interpreted as the 
expected speed at the mean of the sample’s IQ scores 
(see Cohen, Cohen, West, & Aiken, 2003, p.34). The 
slope b1 is simply the expected change in average speed 
per minute required to complete one mental sum item 
associated with a 1-unit increase in IQ. Also, if the error 
Ei is assumed to be normally distributed, then the error 
in Equation 8 cannot follow a normal distribution. 
Similar to the logarithmic transformation, the reciprocal 
transformation can aid in the interpretation of an effect 
as well as address non-normality of the errors in the 
context of small sample size. 

Summary and Recommendations 

We have reviewed, illustrated, and discussed the use 
of transformations for data analysis with focus on 
statistical inference with the popular linear regression 
model, which also includes t-tests and ANOVA. Data 
transformations were developed to aid in interpretation 
as well as to address underlying assumptions of a 
statistical model (Tukey, 1957). We offer two specific 
recommendations on the application of data 
transformations for statistical inference with linear 
regression. 

Our first recommendation is that data 
transformations should primarily be applied to enhance 

the interpretation of key effect sizes. Idiosyncratic 
consequences and advantages of data transformations 
should be carefully adjudicated when they are applied to 
improve the interpretation of effect sizes. 
Transformations such as the log and the reciprocal are 
justified if the resulting effect sizes are meaningful and 
consistent with psychological theory. An added benefit 
is improved inference when the transformed population 
errors can be assumed to be normal. If the transformed 
population errors are not normal, the bootstrap can be 
applied to address non-normality with small sample size 
and improve inference. Trimming is justified when there 
is reason to suspect contamination of the sample data, 
which is assumed to be drawn from a normal population, 
by outliers in the tails of the observed distribution. 

A second recommendation is to avoid 
transformations for the sole purpose of achieving 
normality of residuals without consideration of 
downstream changes to effect sizes and their inference. 
Independent of transformations, the bootstrap can 
address non-normality of residuals in the context of 
small sample size. Further, transformations focused 
solely on obtaining normality of residuals are 
unnecessary with large sample sizes because the CLT 
would supersede the assumption of normal errors. 
Worse, such transformations could inadvertently 
introduce bias such that the effect in the transformed 
scale is no longer consistent with the effect in the 
original scale of interest. Bias could also occur with 
transformations which preserve the original scale of the 
data. For instance, a very large sample with a smooth but 
skewed distribution such as reaction time data is more 
likely to reflect a non-normal population distribution 
than a normal distribution contaminated by a large set of 
outliers at the tail. Winsorizing or trimming such data 
would be inappropriate. An apparent need for applying 
a transformation (e.g., in the presence of non-normal 
residuals, ei) implies that the linear regression model is 
not the best approximation of the data; nonlinear models 
are more appropriate for non-normal population errors 
(e.g., reaction time data; see Luce, 1986; Ratcliff, 1993; 
Van Zandt & Townsend, 2013).  

Transforming data has several repercussions 
regarding the meaning or interpretability of the resulting 
estimated effect, as well as this effect’s statistical power 
and CI coverage. Transforming data can also aid in 
obtaining more efficient prediction models. 
Unfortunately, current treatments and 
recommendations for the use of data transformations in 
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data analyses are relatively imprecise in describing their 
underlying purposes and motivations which can be 
traced to two separate data analysis cultures – data 
modeling (i.e., statistical inference) versus algorithmic 
modeling (i.e., statistical prediction; Breiman, 2001). It is 
our hope that this paper clarifies the complexities and 
subtleties underlying data transformations such that 
researchers can make informed decisions regarding their 
use in statistical analyses. 
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