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Longitudinal assessment is a type of assessment involving repeated measures over a period to evaluate 
whether and when an attribute (e.g., ability, skill) changes. Thus, change detection is of central interest 
in longitudinal assessment. In the assessment setting, change in the desired direction (typically 
upward) is often referred to as “learning”. While many methods have been proposed to detect change, 
they all require a prior definition of a changing point. However, this information is often unknown 
in practice. As an alternative, we focus on a family of tests based on stochastic processes of case-wise 
derivatives of the likelihood function (i.e., scores). These score-based tests could detect “learning” 
without prior information of a changing point and signal the changing point to the users. In this 
article, we will illustrate what the score-based tests are and the novel application by using the data of 
two physicians participating in longitudinal assessment for a medical specialty certifying board’s 
continuous certification program. 

Longitudinal assessment is a type of assessment 
involving repeated measures over a period of time to 
evaluate whether and when an attribute (e.g., ability, 
skill) underlying a set of observations changes. Thus, 
change detection is of central interest in longitudinal 
assessment. In the assessment setting, change in the 
desired direction (typically upward) is often referred to 
as “learning”. If a new education intervention is 
implemented, it would be valuable to assess whether the 
abilities of the participants have improved, and if so, at 
what time point the improvement occurs. From a 
statistical modelling standpoint, change is manifested by 
parameter instability. There are extensive studies about 
parameter instability detection in econometrics 
(Andrews, 1993; Brown, Durbin, & Evans, 1975; 
Hansen, 1992; Hjort & Koning, 2002; Horn & McArdle, 
1992; Nyblom, 1989), policy analysis (Zeileis & Hornik, 
2007) and drug intervention (Hothorn & Zeileis, 2008). 
In these studies, the computational tool is a family of 
statistical tests based on stochastic processes of case-

wise derivatives of the likelihood function (referred to as 
scores). These score-based tests require estimation of the 
null model only (i.e., when parameter stability is assumed 
to hold), and have been applied to linear models, 
generalized linear models (GLMs), Rasch models and 
factor analysis models (Merkle, Fan, & Zeileis, 2014; 
Merkle & Zeileis, 2013; Strobl, Kopf, & Zeileis, 2015; 
Wang, Merkle, & Zeileis, 2014; Zeileis & Hornik, 2007).  

The goal of this article is to demonstrate the use of 
score-based tests to detect learning in an individualized 
longitudinal assessment program comprising single best 
answer multiple-choice questions exclusively. First, we 
introduce the theoretical framework of the score-based 
tests. Second, we apply the score-based tests to the 
assessment data of two physicians with the same end-of-
year percent correct scores and demonstrate how the 
proposed test differentiates between the learner and the 
non-learner with tutorial code. Finally, we discuss the 
tests’ applications and limitations. 
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Overview of Longitudinal Assessment 
Platform 

In 2016, a medical specialty certifying board 
launched a web-based longitudinal assessment platform 
for its continuous certification program. Physicians who 
register for the program are required to answer 30 single 
best answer multiple-choice questions in each calendar 
quarter – a total of 120 questions in a calendar year. Each 
response is scored dichotomously (correct is coded as 1 
and incorrect is coded as 0), yielding a series of binary 
data for each physician.  In the following, we illustrate 
how to model these data in -GLM, a flexible 
generalization of ordinary linear regression that allows 
for the binary response data to be related to a linear 
model via a link function.  

Model: Generalized Linear Model 
(GLM) 

For the binary data collected for each physician, 
GLM in binomial family can be utilized with logit link in 
the following form: 

𝑦~Bernoulliሺ𝑝ሻ, (1)

logሺ
𝑝

1 െ 𝑝
ሻ  ൌ 𝑏, (2)

where 𝑖 ∈ 1, 2, 3, … 𝑛 represents the number of 
observations for each physician, with 𝑛 ൌ 120 for the 
current data set; 𝑦 ∈ 0, 1 representing physicians’ 
incorrect (0) or correct (1) response to each question. 
Parameter 𝑏 is considered as the mean of the logit 
function of the percent correct score 𝑝. Therefore, the 
instability of percent correct score is reflected in 
parameter 𝑏 change in the GLM, which could be 
detected in the score-based tests. In the following 
section, we describe how score-based test can be utilized 
as a tool to detect parameter instability. 

Method: Score-based Tests  

In this section, we review the score-based tests’ 
theoretical background and describe a test statistic that 
particularly fits the purpose of change detection. Related 
descriptions can be found in the literature (Merkle & 
Zeileis, 2013). 

Score 

The above GLM’s log-likelihood function can be 
written as the sum of observations’ log-likelihoods 

ℓሺ𝑏; 𝑦ଵ, … , 𝑦ሻ ൌ 



ୀଵ

log𝑓ሺ𝑦|𝑝ሻ, (3)

where 𝑓ሺሻ is the GLM’s parametric distribution. 

Maximizing the model’s log-likelihood function is 
equivalent to solving the first-order conditions 





ୀଵ

𝑠ሺ𝑏
; 𝑦ሻ ൌ 0, (4)

where 

𝑏
 ൌ 𝑎𝑟𝑔𝑚𝑎𝑥బ

ℓሺ𝑏; 𝑦ଵ, 𝑦ଶ, … , 𝑦ሻ. (5)

and 

𝑠ሺ𝑏
; 𝑦ሻ ൌ

𝜕ℓሺ𝑦, 𝑏ሻ

𝑏
|బൌబ  

(6)

Distribution Theory 

The functions of the scores obtained above follow 
a stochastic process along an auxiliary variable 𝑉 (i.e., 
time). We can build the following intuition for the tests. 
We examine observations’ scores as V is moved from its 
least value to the greatest. If the parameter is stable, the 
scores should fluctuate around zero. Conversely, the 
scores will significantly shift from zero when the 
parameter demonstrates instability. 

To obtain test statistics, we define a cumulative 
score as 

𝐁ሺ𝑡; 𝑏
ሻ ൌ 𝐈መିଵ/ଶ𝑛ିଵ/ଶ 

ሾ௧ሿ

ୀଵ

𝐬ሺ𝑏
; 𝐲ሺሻሻ        ሺ0  𝑡  1ሻ, (7)

where 𝐲ሺሻ represents the observed data vector for ith-
largest observation, with the order determined by the 
auxiliary variable 𝑉. 𝐈መ denotes the estimate of the 
covariance matrix of the scores, which decorrelates the 
fluctuation processes associated with observation model 
parameters. To account for the possible autocorrelation, 
we use the heteroskedasticity and autocorrelation 
consistent (HAC) estimation to adjust the covariance 
matrix. ሾ𝑛𝑡ሿ is the integer part of 𝑛𝑡 (i.e., a floor 
operator), and 0  𝑡  1. With a sample size of 𝑛, 

𝐁ሺ𝑡; 𝑏
ሻ changes at 0, ଵ


, ଶ


, … , 


. For 𝑡 ൌ  1the 

cumulative score vector always equals 0, as defined in 
Equation (4). 
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Under the null hypothesis of parameter stability, 
𝐁ሺ𝑡; 𝑏

ሻ converges in distribution to an independent 
Brownian bridge (Hjort & Koning, 2002): 

𝐁ሺ𝑡; 𝑏
ሻ →

ௗ
𝐁ሺ⋅ሻ, (8)

where 𝐁ሺ⋅ሻ is a unidimensional Brownian bridge 
associated with the parameter 𝑏. 

To define a unidimensional Brownian bridge, let 
𝑊ሺ𝑡ሻ represent the value of the stochastic process at the 
point 𝑡, then the Brownian bridge satisfies the following 
conditions: 

𝜇ሺ𝑡ሻ  ൌ  0 ∀ 𝑡, (9)
 

Covሺ𝑡ଵ, 𝑡ଶሻ  ൌ  minሺ𝑡ଵ, 𝑡ଶሻ (10)
 

𝑊ሺ0ሻ  ൌ  0, (11)
 

𝑊ሺ1ሻ  ൌ  0, (12)
where 𝜇ሺ𝑡ሻ and Covሺ𝑡ଵ, 𝑡ଶሻ respectively represent 

the mean t and covariance between points 𝑡ଵ and 𝑡ଶ. The 
beginning and ending are restricted to be 0 (“tied 
down”).  A graph of a simulated Brownian bridge is 
shown in Figure 1. 

Figure 1. Example of a simulated unidimensional 
Brownian bridge. The dashed line represents 0, 
which is the beginning and ending of the stochastic 
process. 

 

To obtain scalar test statistics, we summarize the 
empirical behavior of Equation (6) and compare it to the 
analogous scalar summary of the Brownian bridge. 

Test Statistic 

After summarizing the empirical cumulative score 
process via a scalar, the asymptotic distribution of the 
scalar can be obtained by applying the same summary to 
the asymptotic Brownian bridge. This yields critical 

values and p values. Various statistics have been 
proposed, and selection of a statistic could be based on 
the plausibility of potential instability patterns. 

In this application, the following method is used to 
detect 𝑏 instability. Parameter stability is rejected if the 
largest component of the empirical cumulative score 
vector is greater than the critical value. The value of V, 
at which the violation occurs, indicates the location of 
the detected component. This statistic is called the 
“double maximum” (𝐷𝑀): 

𝐷𝑀 ൌ max
ୀଵ,…,

|𝐁ሺ𝑏
ሻ|. (13)

Specifically, time is the auxiliary variable of interest 
and cumulative sum scores fluctuate as more 
observations are added. If parameter stability holds, then 
observation scores will fluctuate randomly around zero. 
If parameter changes, the score associated with the 
parameter will be greater than the critical value. 

Empirical Study 

In this empirical illustration, we apply the score-
based test described above to 120-question response 
data from two physicians participating in the 
longitudinal assessment program. These two physicians 
have the same percent correct scores for the entire 
calendar year, but their quarterly response patterns are 
different. The aim is to detect whether there are 
parameter changes with respect to time for these two 
physicians (i.e., whether these two physicians “learn” 
during the four quarters). 

Descriptive Statistics 

The two physicians’ quarterly and end-of-year 
percent correct scores are displayed in Table 1. The 
former (Q1-Q4 columns of Table 1) is calculated based 
on 30 responses received quarterly; the latter is based on 
120 responses collected by the end of the year (last 
column of Table 1). Their overall percent correct scores 
for the entire year are the same (59.17%). However, 
Physician 1 has a lower percent correct score in the 
second quarter (Q2) in comparison to Q4; whereas 
Physician 2 has relatively “stable” percent correct scores 
across the four quarters. The descriptive statistics 
presented in Table 1 do not tell us whether the higher 
percent correct score in Q4 for Physician 1 indicates 
“learning” or just random fluctuation of performance. 
In addition, even if “learning” occurs, we do not know 
where the exact changing point is (e.g., the end of Q3, 
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the beginning of Q4, or the end of Q4). In the following 
section, we will use the score-based test to answer these 
questions. The test is conducted in R version 3.6.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 

Table 1. Quarterly and end-of-year percent correct 
scores for two physicians. Q1- Q4 indicates quarter 1 
to quarter 4, respectively. Sum indicates the end-of-
year percent correct score. 

 Q1 Q2 Q3 Q4 Sum 
Physician 

1 
53.33% 46.67% 53.33% 83.33% 59.17% 

Physician 
2 

60.00% 56.67% 66.67% 53.33% 59.17% 

Score-based Test Results  

When the score-based test is applied to the two 
physicians’ responses, each response has a score (𝑏, 
corresponding to the logit function of the percent 
correct score) to describe how well the model describes 
the observation. The responses are ordered according to 
the response time, and we search changing points in the 
scores on that sequential order. In this case, if the 𝑏 
parameter changes, the statistic 𝐷𝑀 will be greater than 
its corresponding critical value. With the test statistic’s 
fluctuation displayed across the entire year, peaks higher 
than the critical value indicate changing points. 

To demonstrate how to conduct the score-based 
test analysis, we use two physicians’ data for simplicity. 
The tests can be scaled up to all physicians, which will 
be described later. We first load the data.  

load("physician1.rda") 
load(“physician2.rda”) 

The data are a sequence of 120 binary data for each 
physician. 

Physician 1:  
1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 
0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 
1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 
0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 
1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 
1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 
 
Physician 2:  
0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 
0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 
1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 
1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 
1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 
0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 

Next, we extract the cumulative score fluctuation using 
the function gefp()from strucchange package with 
the code below: 

 
Cumscore_physican1 <- gefp(Response ~ 1,  
family = binomial,  vcov = kernHAC,  
data =  physician1) 

where Response ~ 1 represents the intercept-only GLM, 
and the linking function belongs to the binomial family 
because of binary response data. These two arguments 
together implement Equation (1) and (2). The vcov 
argument is specified as “kernHAC” to account for 
possible autocorrelation among the responses. “data” 
argument specifies the data set. The same function is 
applied to Physician 2’s data set. 

 
Cumscore_physican2 <- gefp(Response ~ 1,  
family = binomial,  vcov = kernHAC,  

  data =  physician2) 

Finally, we compare the maximum of these 
cumulative scores against the critical value obtained 
from Brownian bridge, and retrieve p-value from 
sctest() function (in strucchange package): 

sctest(Cumscore_physician1, "max") 
sctest(Cumscore_physician2, "max")

where the “max” argument requests the 𝐷𝑀 statistics 
described in Equation (13).  The above code returns the 
statistics and the corresponding p values for Physicians 
1 and 2, respectively: 

f(efp) = 1.6011, p-value = 0.01187 
f(efp) = 0.60765, p-value = 0.854

These results indicate Physician 1 has experienced 
significant (p value less than 0.05) percent correct score 
change whereas Physician 2 has not. 

In addition to the test statistics, adding plot = TRUE 
argument in sctest() generates an instability plot for 
each physician to facilitate visual representation.  Figure 
2 displays the resulting plots. The left panel and right 
panel represent Physician 1 and Physician 2, respectively. 
The x-axis represents the auxiliary variable (i.e. time) as 
shown in Equation (7), with every 30 responses 
indicating a quarter in this example. The curved line 
depicts the test statistic fluctuation process for each 
observation (greater values reflect more instability), with 
the dashed horizontal line representing the critical value. 
As stated before, the hypothesis of parameter stability is 
rejected if the  𝐷𝑀 test statistic (the maximum in the 
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fluctuation process or the peak in the plots) crosses the 
critical value. It can be observed that Physician 1’s 
parameter changes in September, while Physician 2’s 
parameter is stable across the year. 

Figure 2. 𝐷𝑀 statistic with respect to time. Dashed 
red horizontal line represents the critical value at 𝛼 
=0.05. Left panel represents Physician 1 and right 
panel represents Physician 2, both testing parameter 
𝑏, the logit function of percent correct scores. 

 

In general, Physician 1’s plot can be seen as a 
prototype of a “learner”, whose parameter changes (and 
the percent correct score increases in this case); whereas 
Physician 2 can be seen as the typical response pattern 
of a “non-learner”, with no statistics crossing the line of 
the critical value. 

Discussion 

Summary 

In this article, we introduced the theoretical 
background of score-based tests and analyzed two 
physicians’ response data with the same overall percent 
correct scores in a one-year longitudinal assessment 
program. The score-based test shows that Physician 1’s 
percent correct score changes significantly and the 
changing point is in September, whereas Physician 2’s 
percent correct score does not fluctuate significantly 
across the year. This analysis can be easily applied to a 
great number of physicians’ response data by using for 

loop and parallel computation using parallel or 
foreach package for speed-up. Among 18,297 
physicians who completed 120 questions in the 2016 
longitudinal assessment program, 1,637 (9%) were 
detected to have changed in either direction. Among 
these, 92.3% (1,524 out of 1,637) of the physicians’ 
percent correct scores increased, signaling “learning” in 
this setting. 

Applications 

The score-based tests illustrated in this paper 
provide a convenient statistical tool to monitor changes 
in longitudinal assessment platforms, informing with the 
changing point(s). Multiple statistics could cover a wide 
range of applications.  In particular, the auxiliary variable 
does not need to be continuous time points.  For 
example, the auxiliary variable could be students’ grade, 
age group or cognitive ability.  In such cases, researchers 
can simply use the ordinal statistics by changing the 
argument in the sctest() with WDMo or maxLMo.  The 
tests are easy to use for this purpose since no new model 
estimates are required.  

Extensions 

In this article we focused on testing GLM estimated 
by maximum likelihood function.  The score-based tests 
described here generally apply to estimation methods 
that maximize/minimize an objective function.  For 
example, the tests have been applied using pairwise 
maximum likelihood estimation (Wang, Strobl, Zeileis, 
& Merkle, 2018).  In addition, the estimated model could 
be multivariate models, such as structural equation 
modeling (Merkle & Zeileis, 2013) and item response 
theory (Wang et al., 2018). These previous studies 
focused on the measurement invariance issue, and the 
tests can be applied to detecting parameter instability in 
general.   

Limitations 

Score-based tests are subjected to several 
limitations. First, score-based tests only identify 
“change”. “Non-learners” can be those with constantly 
high, mediocre, or low performance. Second, in order to 
differentiate whether the parameter change represents 
an increase or a decrease, parameters before and after 
the changing point must be compared. Lastly, score-
based tests do not tell us “why” the change occurs. The 
percent correct change might be attributable to factors 
other than change in individual’s ability such as item 
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difficulty drift, familiarity with the platform or 
fatigue/burnout. Further examination on each 
individual could facilitate better understanding of the 
reason for change. 
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