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Structural equation modeling (SEM) has become widespread in educational and psychological 
research. Its flexibility in addressing complex theoretical models and the proper treatment of 
measurement error has made it the model of choice for many researchers in the social sciences. 
Nevertheless, the model imposes some daunting assumptions and restrictions (e.g. normality and 
relatively large sample sizes) that could discourage practitioners from applying the model. Partial 
least squares SEM (PLS-SEM) is a nonparametric technique which makes no distributional 
assumptions and can be estimated with small sample sizes. In this paper a general introduction to 
PLS-SEM is given and is compared with conventional SEM. Next, step by step procedures, along 
with R functions, are presented to estimate the model. A data set is analyzed and the outputs are 
interpreted. 

Structural equation modeling (SEM) is a technique 
which combines factor analysis and regression. As 
compared to conventional statistical techniques such as 
regression, SEM is a more robust approach to testing 
substantive theories. Psychological constructs are 
usually complex and many variables might combine and 
interact to affect any phenomenon simultaneously. 
However, statistical techniques such as regression make 
simplifying assumptions about complex phenomena by 
considering only a limited number of variables to 
explain the variance in a dependent variable. These 
techniques do not further assume any relationships 
among the independent variables. According to 
Schumacker and Lomax (2004), SEM is more 
compatible with what happens in real-life because (a) it 
takes into account the relationships among many 
variables simultaneously and (b) in contrast to 
techniques such as regression which assume the 
measurement of the variables is error-free, SEM takes 
measurement error into account. SEM can 
simultaneously examine relationships among observed 
variables and latent variables as well as among latent 
variables. 

Appealing as SEM may be, some of its 
assumptions are hard to meet in some research 

contexts. In terms of data distribution, it requires 
normally distributed data. As to sample size, relatively 
large sample sizes are required. Alternatively, Stevens 
(1992) suggests a sample size of fifteen participants per 
observed variable.  Lohilen (1992) argued that 
researchers should choose at least one hundred 
participants for measurement models with two to four 
factors. 

There are two types of SEMs: the conventional 
SEM which is referred to as covariance-based SEM (CB-
SEM) and the partial least squares SEM (PLS-SEM) 
which is variance based. Due to the estimation 
procedures employed in each of the two types of SEM, 
they make different distributional assumptions and aim 
at different objectives. Using maximum likelihood (ML) 
estimation method, CB-SEM aims at estimating model 
parameters so that the discrepancy between the model-
implied and sample covariance matrices is minimized. 
ML estimation implies a multivariate normal 
distribution. On the other hand, PLS-SEM, originally 
developed by Wold (1966, 1982, 1985) and Lohmoeller 
(1989), aims at maximizing dependent variables’ 
explained variance by adopting an ordinary least 
squares estimation method. PLS-SEM is a 
nonparametric method hence makes no distributional 
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assumption. CB-SEM is more suited to well-researched 
domains where enough theoretical and substantive 
knowledge is available thus CB-SEM can be employed 
to test the postulated network of relationships among 
the variables (i.e., test theories). One the other hand, 
PLS-SEM is more appropriate where theory is less 
developed. They are primarily used to develop theories 
in exploratory research.  

Where meeting the ML assumptions is a challenge, 
PLS-SEM provides a good solution. According to Hair, 
Hult, Ringle, and Starstedt (2014), PLS-SEM is 
advantageous over the conventional SEM in situations 
where sample sizes are small, the data are not normally 
distributed, and complex models with many observed 
variables and relationships are estimated. Model 
complexity has little influence on the sample size 
required for PLS-SEM. In this approach to SEM, 
partial regression relationships are computed as 
opposed to estimating all the structural relationships 
simultaneously which is characteristic of CB-SEM. As 
Hair, et al., (2014, p. XII) note “PLS-SEM use has 
increased exponentially in  a variety  of  disciplines  
with  the  recognition  that  PLS-SEM’s  distinctive 
methodological features make it  a viable alternative to 
the more popular  CB-SEM [i.e., covariance-based 
SEM] approach”. 

CB-SEM vs PLS-SEM  

According to Chin (2010) CB-SEM is covariance 
based while PLS-SEM is prediction based. As a 
corollary of this feature, CB-SEM takes the model 
specified as true model and attempts to come up with 
path estimates that minimize the discrepancy between 
the model implied and sample covariance matrices. The 
degree of match between model implied and sample 
covariances is reflected in global model fit indices. 
Therefore, models with poor factor loadings and R-
squares may show good fit indices solely on the 
grounds that the parameter estimates led to the highest 
match between the two matrices. Purely relying on 
model fit may result in path and factor loading 
estimates which are statistically significant but not 
substantively strong enough (Chin, 1998). Thus, Chin 
(1998, P. xii) suggests that “Instead, closer attention 
should be paid to the predictiveness of the model”, 
rather than to overall fit. 

In CB-SEM model misspecifications (e.g., adding 
an irrelevant item to a factor) ripple through the entire 

model and affect all the path and loading estimates in 
the entire model. A wrongly included or exclude item 
under a factor affects estimates of the item loadings 
under another factor which might be several blocks 
away. However, PLS estimates are affected only by the 
paths and loadings in the immediate block where a 
given construct lies (i.e., the constructs immediately 
affecting or affected by the construct). Thus in the 
component based PLS algorithm a distinction is made 
between whether one wishes to explain the covariances 
of items under neighboring constructs or those under 
constructs further away. 

ML estimations in CB-SEM rest on the 
assumptions of multivariate normal distributions and 
independence of observations whereas the soft 
distributional assumptions of the PLS-SEM render it 
distribution-free with no requirement of independence 
of observations. Consequently “traditional parametric-
based techniques for significance testing/evaluation 
would not be appropriate” with PLS-SEM which is 
non-parametric and prediction oriented (Chin, 2010). 

 Model identification issues in CB-SEM necessitate 
a sample size which increases with model complexity. 
According to the conventional 10-time rule, 10 cases 
are required for any observed variable in the model 
which in the case of models with say, 100 items at least 
1000 cases are required. However, sample size in PLS-
SEM is determined by the dependent variable which 
has the highest number of predictors.  In the model in 
Figure 1, imagine each of the latent variables were 
measured by at least 20 items which would make 80 
indicators in the model. To conduct a CB-SEM a 
sample size of at least 800 is required whereas the same 
10 time rule necessitates a sample size of only 30 cases 
since “reading” has the highest number of arrows 

 
Figure 1. A hypothetical model of reading 
comprehension 
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directed at it, i.e., three. Therefore, PLS-SEM estimates 
can be obtained with much smaller sample sizes relative 
to model complexity. 

Among less important reasons for choosing PLS 
over CB-SEM is model specification and model 
interpretation. Unlike in CB-SEM, practice of PLS-
SEM does not require concerns with model 
identification, setting a metric for latent variables, and 
adequacy of the measurement scale for the estimator. 
In PLS-SEM, researchers simply need to specify what 
indicators measure each construct and how the 
constructs are related to each other. 

Finally, PLS-SEM can handle both formative and 
reflective measurement models. In a reflective 
measurement model the construct is the cause of the 
indicators. Take language proficiency as a construct. 
The more proficient a test taker is the higher the 
probability of giving correct answers to language 
proficiency items. That is why the direction of arrows 
in a reflective construct are from the construct to the 
indicators (see Figure 2). 

 

Figure 2. Examples of formative and reflective 
constructs. SES is a formative construct and 
Language Prof. is a reflective one. 

  

On the other hand, in a formative construct the 
indicators cause or form the construct.  Socioeconomic 
status (SES) is an example of a formative construct. 
SES is determined by education, income and 
occupation, among others. In a formative construct 
arrows go from indicators to the construct (see Figure 
2). Although formative constructs can also be used 
with CB-SEM, “doing so requires construct 
specification modifications (e.g., the construct must 
include both formative and reflective indicators to meet 
identification requirements)” (Hair et al. 2014). 

The merits and demerits of PLS-SEM have been 
heatedly debated by its proponents and critics. From 
the critics’ camp Rönkkö and Evermann (2013) used 
both conceptual argument and empirical demonstration 

to call into question the oft-touted capabilities of PLS-
SEM such as PLS-SEM is a SEM method, can model 
measurement error, can be used to validate 
measurement models, works well with small sample 
sizes, provides significance tests regarding the null 
hypotheses of path coefficients, and is appropriate for 
exploratory, model building research. Henseler et al. 
(2014) refuted the critiques of Rönkkö and Evermann 
holding that their arguments stem from a flawed 
simulation study and misconceptions about potentials 
and capabilities of PLS-SEM. For more studies 
regarding the advantageous and disadvantageous of 
PLS-SEM respected readers are referred to Rigdon 
(2012; in press), Henseler et al. (2014), Rönkkö and 
Evermann (2013), and McIntosh, Edwards, and 
Antonakis, (2014). 

As chin (2010) stated, CB-SEM and PLS-SEM 
should be considered as being complementary rather 
than competitive. Depending on the research context 
and the objectives, either one may be better suited. 
According to Henseler et al. (2014): 

There is no such thing as an estimation method 
that is best for every model, every distribution, every 
set of parameter values, and every sample size. For all 
methods, no matter how impressive their pedigree 
(maximum likelihood being no exception), one can find 
situations where they do not work as advertised. 

Hair, Ringle, and Sarstedt (2011) suggested a set of 
rules of thumb for choosing between PLS-SEM and 
CB-SEM. They suggested using PLS-SEM when the 
goal is theory development and theory extension which 
entail prediction of key constructs, when the model 
involves formative measures, the structural model is 
complex, sample size is very small, and normal 
distribution assumptions are violated. On the other 
hand CB-SEM is to be preferred in research contexts 
where theory testing, confirmation, and comparison is 
the goal hence global fit indices are required, if 
additional specification of error variances are needed 
(e.g., they need to be covariated), if the structural model 
includes nonrecursive relationships, and if 
measurement invariance of the models is to be 
checked. 

Although PLS-SEM originated in the work of 
Wold (1973, 1975), it was not until 2005 that software 
for estimating it was made available. The late 
introduction of PLS software, and the dominance of 
CB-SEM, made PLS-SEM application lag way behind 
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its theoretical development. In what follows we 
demonstrate how to run a PLS-SEM model with R and 
how to evaluate and interpret the results.   

Model Evaluation 

As with CB-SEM, model evaluation is a two-step 
process: First the measurement model is evaluated and 
then the structural model is examined. A measurement 
model is evaluated in terms of the degree to which (1) 
the indicators are unidimensional, (2) the latent 
variables explain variations in the indicators, and (3) the 
constructs have discriminant validity. 

Unidimensionality can be assessed by checking (a) 
Cronbach’s alpha (b) composite reliability through 
Dillon-Goldstein’s rho, (c) principal component analysis of 
each construct. Cronbach’s alpha is the average 
correlation between the indicators of a given construct. 
A Cronbach’s alpha index of 0.70 and higher is 
evidence in support of homogeneity of the indicators. 
Chin (1998) considers Dillon-Goldstein’s rho to be a 
better indicator than Cronbach’s alpha. As a rule of 
thumb Dillon-Goldstein’s rho values higher than 0.70 
suggest unidimensionality. Another tool for checking 
unidimensionality is principal component analysis of 
the constructs. For a block of variables to be 
unidimensional, their first eigenvalues should be larger 
than 1 while the subsequent ones should be smaller 
than 1. 

Quality of a measurement model can also be 
checked by measuring how much of the variance of the 
indicators of a given construct is shared. The amount 
of shared variance is measured through establishing 
convergent validity. High factor loadings (>0.7) and 
average variance extracted (AVE) (>0.5) are indicators 
of convergent validity. AVE is the mean of communalities 
(i.e., factor loadings squared, which should be at least 
0.50) of the indicators associated with any given 
construct. AVEs of 0.50 indicate that the construct 
explains at least half of the variance of its observed 
variables. 

Discriminant validity is another tool which shows 
how distinct a given construct is from other constructs. 
Discriminant validity can be checked through (1) cross 
loading of the observed variables. The loadings of the 
indicators associated with a given construct should be 
higher than their loadings on any other construct. (2) 
Fornell-Larcker criterion which compares AVEs with 
the squared correlations of each construct with other 

constructs. For a construct to have discriminant 
validity, it should have an AVE larger than its highest 
correlation with any of the other constructs 

Assessment of the Structural Model 

Quality of an inner model is assessed by examining 
the following indices: (1) regression weights, (2) 
coefficient of determination (R2), (3) redundancy index, 
and (4) the goodness-of-fit (Gof) statistics. Since 
goodness-of-fit indices of overall fit in CB-SEM are 
based on the discrepancy between the model implied 
and empirical covariance matrices, they are not suitable 
in PLS-SEM contexts. Fit of PLS-SEM models should 
depend on predictive capability of the model. In PLS-
SEM statistical significance of regression coefficients is 
checked. R2 values, which indicate how much of the 
variance in the endogenous latent variables is 
accounted for by their independent latent variables, 
have been categorized as follows: 

Redundancy shows the amount of variance in an 
endogenous variable which is attributable to 
independent latent variables. No cut-off or rule of 
thumb has been suggested for redundancy. The higher 
the redundancy the higher the predictive power of the 
latent independent variables. 

A goodness-of-fit (GoF) index has also been 
proposed (e.g., Tenenhaus, Amato, & Esposito Vinzi, 
2004; Tenenhaus, Esposito Vizini, Chatelin, & Lauro, 
2005) as a solution for the global fit of the PLS-SEM. 
GoF is “an index of prediction power for the entire 
model…. GoF values greater than 0.7 are considered as 
‘very good’ within the PLS community” (Sanchez et al., 
2015).   

Previous Applications of PLS-SEM in 
Education 

PLS-SEM has not been used extensively in 
education and psychology. A Scopus search with 
“Partial Least Square Structural Equation Modeling” as 
search terms resulted in 922 documents (June, 2016). 
Out of these, 448 were listed under ‘business, 
management, and accounting’ subject area, 266 were 
under ‘computer science’, 222 ‘social sciences’, 140 
‘engineering’, and 107 ‘decision sciences’. The 222 
documents under ‘social sciences’ were examined. No 
document addressed educational and psychological 
constructs such as intelligence, reading comprehension, 
math, etc. The majority of works listed under social 
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sciences were again related to management, business, 
and tourism. Even those related to education addressed 
some management-related factors in education like 
student and course satisfaction and course evaluation. 
Below a handful of the most relevant research is 
reviewed.   

Raffard, Bortolon, Burca, Gely-Nargeot, 
Capdevielle (2016) used PLS-SEM to investigate the 
factors that contribute to different dimensions of 
apathy (cognitive, emotional, and behavioral) in older 
adults. They found that different factors of apathy are 
differently and significantly related to cognitive 
functioning, anticipatory pleasure, sensitivity to reward, 
and physical functioning. 

 Shahijan, Rezaei, and Amin (2016) investigated 
the impact of perceived brand orientation, intercultural 
friendship, and university reputation on international 
students’ course satisfaction and continuance 
behavioral intention in higher education in Malaysia 
using PLS-SEM. Their findings showed that perceived 
brand orientation and university reputation positively 
affect course satisfaction and course continuance 
behavioral intention, while intercultural friendships 
affects course continuance intention but not course 
satisfaction. 

Shafaei, Nejati, and Abd Razak (2016) studied the 
factors that contribute to international students’ 
psychological and sociocultural adaptation and well-
being in a host country (Malaysia). They proposed a 
model and tested it using PLS-SEM. Their model 
demonstrated that longer length of stay in the host 
country negatively influences attachment to the home 
country. Furthermore, adjustment and attachment 
attitude positively influence psychological adaptation 
while only adjustment attitude positively influences 
sociocultural adaptation.  

Hauser, Paul, and Bradley (2012) studied the 
association between changes to computer self-efficacy 
and computer anxiety and their effects on performance 
on computer-related tasks in online and face-to-face 
education. They conclude that in face-to-face education 
there is a need for continuous free-flowing dialog with 
the students to enhance learning while, logical 
organization is very important in online media. 

Al-Azawei and Lundqvist (2015) investigated the 
factors that relate to student satisfaction in on-line 
courses in an Arabic context. Their findings showed 

that learning styles and gender had no significant effect 
on perceived usefulness, perceived ease of use, and 
course satisfaction. 

PLS-SEM Software Programs 

Currently, there are several alternative PLS-SEM 
software programs such as SPAD-PLS, VisualPLS (Fu, 
2006), PLS-GUI (Li, 2005), PLS-Graph (Chin, 1993–
2003), SmartPLS (Hansmann, & Ringle, 2004), as well 
as the R packages plspm (Sanches, Trinchera, & 
Russolillo, 2015) and semPLS (Monecke, 2013). R 
packages plspm and semPLS like all the other R packages 
are free and open source. That is, the packages are not 
black boxes and each researcher has access to the 
algorithms and the codes employed behind the scenes 
to carry out statistical analyses and can build upon 
them. Access to R packages simply needs an internet 
connection. Statistical analyses which needs pages of 
codes to run, can be carried out by just a few lines of 
codes in R. The plspm package, which is applied in the 
current demonstration, does not allow to specify 
models graphically. However, it estimates confidence 
intervals for the parameter estimates. 

Empirical Example 

In this section a hypothetical data set is analyzed 
using plspm package (Sanches, Trinchera, & Russolillo, 
2015) in R. R (R Development Core Team) is an all-in-
one free statistical software which can be employed to 
do a wide range of statistical analyses an educational 
measurement practitioner might need. R and its 
packages can be downloaded from the Comprehensive 
R Archive Network’s (CRAN) website at 
https://www.r-project.org/.Some basic information on 
how to download and use R is given in the Appendix. 

 There are four latent variables in this study: 
reading comprehension, motivation, strategy use, and 
vocabulary. The purpose of the study is to test a model 
of reading comprehension in relation to learners’ 
motivation, vocabulary knowledge, and learning 
strategy use. PLS models are conventionally specified in 
two stages: First the structural or the inner model, 
where the relationships among the latent variables are 
specified, is defined. Then the measurement or the outer 
model, where the relationships among latent variables 
and their observed variables are specified, is postulated. 
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Figure 3. The postulated reading model 
 

The structural relationships must be specified in 
the form of a square matrix. To define the relationships 
specified in Figure 3, we need a matrix with four rows 
and four columns (since we have four variables). In this 
matrix the elements in the upper triangle and the 
diagonal must be 0 whereas the elements in the lower 
triangle can be either 0 or 1 depending on the structural 
relationships between the constructs. As shown in 
Figure 4 row names and the corresponding column 
names are the same. For example, the first row and the 
first column are both ‘motivation’. The matrix should 
be read in a “column -affecting- row” way. A number 
one in cell ij indicates that Column j affects Row i. 

 

Figure 4. The square matrix to defne the model 
 

As mentioned before, all the elements in the 
diagonal and the upper triangle in Figure 4 are zero. 
Reading in the “column-affects-row” way, the matrix 
indicates that ‘vocabulary’ (column) affects ‘reading’ 
(row), i.e., their intersection is 1. As Figure 4 shows, 
‘reading’ is affected by all columns (variables) except 
itself. The zeros in the diagonal mean that the 
constructs cannot affect themselves and the zeros in 
the upper triangle indicate that no causal loops are 
possible in PLS-SEM (i.e., there should not be two-way 
arrows in the PLS-SEM). 

In R four objects, each representing one of the 
variables, should be defined. The pattern of zeros and 
ones is an exact replica of the matrix in Table 2. The 
combine function c() is used to create the objects. 

motivation=c(0,0,0,0) 

strat.use=c(1,0,0,0) 

vocabulary=c(1,1,0,0) 

reading=c(1,1,1,0) 

What we are doing is creating four vectors that will 
be the rows of the argument path matrix. Then we use 
the function rbind() that creates a matrix by 
“stacking” the row vectors. Then the vectors should be 
bound in a matrix using the following function: 

inmodel=rbind(motivation, 
strat.use, vocabulary, reading) 

Now the path diagram of the structural model can 
be obtained by using the function innerplot() as 
follows:  

innerplot(inmodel) 

In the next step the outer (measurement) model is 
specified. In this step we have to tell the software what 
indicators are associated with what latent variable. To 
this end, we make a list containing of as many blocks of 
variables as we have latent constructs as follows: 

measurmodel=list(11:20,21:30,31:3
4, 1:10) 

In the above list four blocks of variables have been 
specified each representing the indicators of one of the 
latent constructs. It should be noted that the order of 
the blocks should be the same as the order of the latent 
variables in the matrix in Figure 4. For example 
indicators associated with ‘motivation’ are placed in 
Columns 11 to 20 in the data matrix, and so on.  

By default, plspm() assumes that the 
measurement of the latent variables is in reflective 
mode, known as mode A in the PLS-SEM world. 
However, it is strongly recommended that you 
explicitly define a vector of modes. In the present 
study, for example, mode of the four constructs can be 
indicated through the following command:  

mode = c("A","A","A","A") # all latent 
variables are measured in a reflective way 

Alternatively, if any of the constructs is formative 
(i.e., mode B), letter B is used in the above vector for 
that respective construct. If in the present study the 
first two constructs were formative, the following code 
should be used to reflect the mode: 
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mode = c("B","B","A","A")#  The first 
two constructs are formative but the second two 
are reflective. 

Now that the inner and outer models and the 
mode of the constructs have been specified, it is high 
time we ran the main PLS function using the following 
code: 

Pls=plspm(data, innermodel, outer 
model, mode, boot.val=TRUE) 

As it was shown before, the object mydata was 
created to which the data are assigned and the 
inmodel is the object to which the inner model is 
assigned and the measurmodel is an object to which 
the outer model is assigned. Replacing the created 
objects in the above command we will have  

Pls=plspm(mydata, inmodel, 
measurmodel, mode, boot.val=TRUE) 

To see what’s included in the object Pls, simply 
type Pls into the editor window or R console and press 
‘enter’. The output shown in Table 1 is returned:  

Table 1. The outputs of plspm function 

Partial Least Squares Path Modeling (PLS-PM) 
 NAME                     DESCRIPTION 

1 outer_model  outer model 
2 $inner_model  inner model 
3 $path_coefs  path coefficients matrix 
4 $scores  latent variable scores 
5 $crossloadings  cross-loadings 
6 $inner_summary  summary inner model 
7 $effects  total effects 
8 $unidim  unidimensionality 
9 $gof  goodness-of-fit 
10 $boot  bootstrap results 
11 $data  data matrix 

You can also use the function 'summary' 
 

The dollar sign ($) in R codes means that the 
operation specified after $ should be called within the 
object named before $. For example, executing the 
command Pls$outer_model will return  

Pls$unidim. Alternatively the ‘summary’ 
function: 

summary(Pls) 

returns all the necessary output. Quality of a PLS 
path model is assessed in two stages: first the 
measurement model or the outer model is assessed and 
if its characteristics are acceptable we get to the 
structural model. 

Results  

Assessment of the measurement model 

The indices related to unidimensionality of the 
measurement model can be recalled by executing the 
Pls$unidim command: 

Pls$unidim  

Table 2. Dimensionality Indices 

  Mode  MVs  C.alpha  DG.rho  eig.1st  eig.2nd 

motivation  A  10  0.705393 0.790631 2.824991 1.344691

strat.use  A  10  0.352403 0.581488 1.742269 1.468916

Vocabulary  A  4  0.78207  0.860024 2.427522 0.726916

Reading  A  10  0.305252 0.532348 1.711604 1.504565

Note: strat.use=strategy use; MV=manifest variable; 
C.alpha= Cronbach alpha;DG.rho= Dillon-
Goldstein’s rho; eig.= eigenvalue 

 

According to the model evaluation criteria 
explained above, Cronbach alpha and Dillon-
Goldstein’s rho indices of 0.70 and higher support 
homogeneity of the indicators. As Table 2 shows both 
Cronbach alpha and Dillon-Goldstein’s rho for both 
motivation and vocabulary constructs are above 0.70 
whereas the other two constructs do not show 
acceptable values i.e., < 0.70. The unidimensionality 
assumption requires that the first eigenvalues of the 
measurement models be greater than 1 and the second 
eigenvalue be less than 1. As the sixth and seventh 
columns of Table 2 show, the first and second 
eigenvalues of only the vocabulary are acceptable. 
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Quality of a measurement model can also be 
inspected by checking convergent validity which shows 
the amount of variance the indicators have in common. 
High factor loadings (>0.7) and average variance 
extracted (AVE) (>0.5) are indications of convergent 
validity. As it was explained before, AVEs of 0.50 
indicate that the construct explains at least half of the 
variance of its observed variables. As Table 3 shows, 
except for the indicators of the vocabulary and one of the 
indicators of the strategy use the entire factor loadings are 
below the acceptable level of 0.70. Accordingly the 
communalities, which are squares of the loadings, are 
below the acceptable 0.50 value. 

Factor loadings can be recalled by executing the  

pls$outer_model command. 

Low communality values and as a consequence 
low AVEs indicate that, except for the vocabulary, the 
other latent variables explain less that 50% of the 
variability in their respective indicators. Redundancy 
will be referred to when evaluating the structural 
model. Low factor loadings and communalities as well 
as small AVEs (Table 5), except for the vocabulary, 
show lack of convergent validity in the latent variables. 

Discriminant validity is another tool which shows 
how distinct a given construct is from other constructs. 
Discriminant validity can be checked by (1) the loyalty 
of the indicators to their respective latent variable 
which is reflected in the cross loading of the observed 
variables. The loading of the indicators associated with 
a given construct should be higher than their loading 
with any other construct. The indicators that violate 
this requirement are dubbed traitor indicators. (2) Any 
constructs should have an AVE larger than its highest 
correlation with any of the other constructs. As cross 
loadings in Table 4 show there are few traitor indicators 

in the model. Loyalty of the indicators supports 
discriminant validity of the latent variables. 

Pls$crossloadings  

Table 4. Table of cross loadings (the table is truncated 
due to space limitations) 
Name Block motivation  strat.use  vocabulary reading

mot1 Motivation 0.4  0.23  0.19 0.12
mot2 Motivation 0.69  0.43  0.33 0.4
mot3 motivation 0.36  0.26  0.01 0.1
mot4 motivation 0.56  0.29  0.17 0.25
mot5 motivation 0.6  0.31  0.26 0.22
mot6 motivation 0.74  0.5  0.46 0.3
mot7 motivation 0.41  0.17  0.27 0.05

 

However, as Table 5 shows AVE of only 
vocabulary is higher than its correlation with the other 
latent variables. Thus the second requirement of 
discriminant validity is not met by strat.use, motivation, 
and reading. Note the correlations between the latent 
variables (as well as all the other outputs recalled in this 
paper) can be generated by executing the 
Pls$summary command. 

Pls$summary 

Table 5. Correlations between the latent variables 
  motivation strat.use  vocabulary AVE 

motivation       0.278053
strat.use  0.588      0.167758
vocabulary 0.467  0.487    0.604537
reading  0.402  0.516  0.43  0.147677

 

 

 

 

Table 3. Table of factor loadings (the table is truncated due to space limitations) 

 Name Block weight loading communality redundancy 
1 mot1 motivation 0.134829 0.396653 1.57E-01 0.00E+00 
2 mot2 motivation 0.297015 0.692382 4.79E-01 0.00E+00 
3 mot3 motivation 0.092887 0.364058 1.33E-01 0.00E+00 
4 mot4 motivation 0.183764 0.559904 3.13E-01 0.00E+00 
5 mot5 motivation 0.202267 0.597311 3.57E-01 0.00E+00 
6 mot6 motivation 0.320865 0.737344 5.44E-01 0.00E+00 
7 mot7 motivation 0.126107 0.413852 1.71E-01 0.00E+00 
8 mot8 motivation 0.161854 0.423113 1.79E-01 0.00E+00 
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Structural Model Assessment 

In the next step the quality of the inner (structural) 
model is evaluated by executing the 
Pls$inner_model commands: 

Pls$inner_model  

Table 6. Structural model path coefficients 
$strat.use         

  Estimate  Std. Error  t value  Pr(>|t|)

Intercept  0.00  0.09  0.00  1.00
Motivation  0.59  0.09  6.58  0.00

         
         

$vocabulary         
  Estimate  Std. Error  t value  Pr(>|t|)

Intercept  0.00  0.09  0.00  1.00
Motivation  0.28  0.12  2.38  0.02
strat.use  0.33  0.12  2.80  0.01

         
$reading         

  Estimate  Std. Error  t value  Pr(>|t|)
Intercept  0.00  0.09  0.00  1.00
motivation  0.09  0.12  0.78  0.44
strat.use  0.36  0.12  2.98  0.00
vocabulary  0.21  0.11  1.94  0.06

 

The first section of Table 6 shows the loading 
(Estimate) of ‘motivation’ on ‘strategy use’. In the 
second part the loadings of ‘motivation’ and ‘strategy 
use’ on ‘vocabulary’ have been presented. And in the 
third section the loadings of ‘motivation’, ‘strategy use’, 
and ‘vocabulary’ on ‘reading’ are presented. As Table 6 
shows, all the regression weights except for the effect 
of motivation and vocabulary on reading are statistically 
significant.  

The plot(Pls) command returns the graphical 
representation of the postulated model with the 
regression coefficients. The loadings in Table 6 can 

easily be seen in Figure 5. To check the statistical 
significance of the loadings the table should be 
consulted. 

Figure 5. Graphical representation of the model 
with the loadings 

 

Hair et al, (2014) considered R2 values of 0.75, 
0.50, and 0.25 for the dependent variables as 
substantial, moderate, and weak, respectively. However, 
Sanchez, et al. (2015) considered R2 values of >.60 as 
high, between 0.30 and 0.60 as moderate and below 
0.30 as low. The R2 values, as shown in Table 7 are low 
to moderate. No cut-off or rule of thumb has been 
suggested for redundancy. The higher the redundancy 
the better the predictive capability of the latent 
independent variables. The redundancy values for the 
endogenous latent variables are very low which show 
that the latent independent variables explain an 
infinitesimal amount of the variance in the endogenous 
latent variables. 

Finally the GoF index of 0.28 for the whole model 
is well below the suggested cutoff of 0.70. The GOF 
can be recalled by executing the Pls$gof command. 

  

  Pls$inner_summary 

Table 7. Summary of the structural model indices 
  Type  R2  Block_Communality  Mean_Redundancy  AVE 

motivation  Exogenous  0  0.2780534  0  0.278053 

strat.use  Endogenous  0.34556  0.1677576  0.05797027  0.167758 

vocabulary  Endogenous  0.2869  0.6045369  0.1734414  0.604537 

reading  Endogenous  0.31342  0.1476774  0.04628506  0.147677 
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In addition to the direct effects displayed in Table 
6 above, indirect and total effects can also be recalled as 
shown in Table 8. Bollen (1987, p.40) defines direct 
effect as “those influences unmediated by any other 
variable in the model” and indirect effects as those 
influences “mediated by at least one intervening 
variable” and total effects are sums of direct and 
indirect effects. In Figure 5, for example, motivations 
affect reading both directly and indirectly through 
strat.use and vocabulary. The indirect and total effects 
of motivation on reading are calculated as follows: 

Indirect effects: 

P1=Motivation strat.use * strat.use reading 

P2=Motivation strat.use * 
strat.usevocabulary*strat.use-->reading 

P3=Motivationvocabulary*vocabulary--
>reading 

Total effect: 

Total=direct path (motivationreading) 
+p1+p2+p3 

By executing the Pls$effects command, one 
can get the indirect and total effects: 

Pls$effects  

Table 8. Direct, indirect, and total effects 
relationships  direct  indirect  Total 

motivation ‐> 
strat.use 

0.587843  0  0.587843 

motivation ‐> 
vocabulary 

0.275914  0.19088  0.466794 

motivation ‐> 
reading 

0.092513  0.309728  0.402241 

strat.use ‐> 
vocabulary 

0.324712  0  0.324712 

strat.use ‐> reading  0.357859  0.069119  0.426978 
vocabulary ‐> 
reading 

0.212862  0  0.212862 

 

Since PLS-SEM is a nonparametric statistical 
procedure, parametric significance tests based on 
normal distribution assumptions are not suitable for 
parameter estimates hence precision of the estimates 
should be checked through standard errors provided by 
bootstrap validation. In bootstrap N samples are drawn 
(with replacement) from the original data set. 
Therefore, N estimates for each parameter in the model 
is obtained and the standard deviations (standard 
errors) for each parameter are calculated. The size of 
bootstrap samples should be the same as that of the 
original data set. Hair et al. (2014) recommend 500 
samples as a rule of thumb. For example, if our original 
sample has 200 valid observations, 500 samples of 200 
cases are drawn randomly for the original sample then 
for each of the parameters in the model we obtain 500 
estimates from each one of the bootstrap samples. 
Finally the mean of the 500 estimates and their 
standard deviation (standard error) is calculated. In 
order to obtain t-values for the parameters the original 
estimates of each parameter is divided by the bootstrap 
standard error.	
Bootstrap can be carried out by using the 
boot.val=TRUE in the plspm() function.  
Executing the Pls$boot command will return the 
bootstrap output shown in Table 9. 

Table 9-11 show the bootstrap results for factor 
loadings, total effects, and direct effects, respectively. 
In all of these tables, the first column represents the 
original parameters we obtained applying the plspm 
function, the second column displays the mean of the 
parameters obtained from the 500 replications, and the 
third column displays the deviation of these estimates 
around their respective means (here standard errors). 
The last two columns display the lower percentile and 
upper percentiles of the 95% bootstrap confidence 
interval. 
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With the standard errors obtained from the 
bootstrap procedure, the significance of the PLS 
parameters can be tested. The parameter estimates 
which are at least twice their standard errors are 
significantly different from zero. For example as Table 
11 shows, the effect of motivation on strategy use is 
significant at  = 0.5 since the original estimate (0.59) 
is at least twice its respective standard error 
(t=0.59/0.06 =9.8) whereas the effect of the 
motivation on reading is nonsignificant 
(t=0.09/0.12=0.75). These results have also been 

reflected in the confidence intervals associated with 
these parameters. The confidence intervals of the 
motivation-->strat.use do not contain zero hence the 
parameter is significantly different from zero while the 
confidence intervals associated with the motivation-
>reading parameter contains zero, hence it is not 
statistically significant. 

Conclusion 

This paper first described the differences between 
PLS-SEM and CB-SEM and demonstrated the 

Pls$boot 
Table 9. Factor loadings and Bootstrap standard errors (the table is truncated due to space limitations) 
$loadings           
  Original  Mean.Boot  Std.Error  perc.025  perc.975 

motivation‐mot1  0.40  0.38  0.16  0.04  0.64 
motivation‐mot2  0.69  0.68  0.08  0.47  0.80 
motivation‐mot3  0.36  0.35  0.15  0.07  0.63 
motivation‐mot4  0.56  0.52  0.12  0.25  0.71 
motivation‐mot5  0.60  0.58  0.10  0.37  0.73 
motivation‐mot6  0.74  0.73  0.06  0.62  0.83 
motivation‐mot7  0.41  0.39  0.13  0.12  0.66 

Table 10. Total effects and Bootstrap standard errors 
$total.efs  Column1  Column2  Column3  Column4  Column5 
  Original  Mean.Boot  Std.Error  perc.025  perc.975 

motivation ‐> strat.use  0.59  0.62  0.06  0.49  0.74 

motivation ‐> vocabulary  0.47  0.49  0.08  0.30  0.63 

motivation ‐> reading  0.40  0.45  0.17  ‐0.06  0.63 
strat.use ‐> vocabulary  0.32  0.36  0.11  0.15  0.58 

strat.use ‐> reading  0.43  0.44  0.22  ‐0.24  0.65 
vocabulary ‐> reading  0.21  0.20  0.13  ‐0.09  0.44 

 

Table 11. Path coefficients and Bootstrap standard errors 

$paths           

  Original  Mean.Boot  Std.Error  perc.025  perc.975 

motivation‐> strat.use  0.59  0.62  0.06  0.49  0.74 
motivation‐>vocabulary  0.28  0.26  0.12  0.00  0.45 
motivation‐>reading  0.09  0.12  0.12  ‐0.09  0.37 
strat.use‐>vocabulary  0.32  0.36  0.11  0.15  0.58 
strat.use‐>reading  0.36  0.37  0.21  ‐0.27  0.60 
vocabulary‐>reading  0.21  0.20  0.13  ‐0.09  0.44 
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application of PLS-SEM to second language data using 
the freeware R. As it was shown in the Introduction 
section, the two SEM procedures should be viewed as 
complementary rather than competitive. According to 
Hair, Ringle, and Sarstedt (2011), in research settings 
where the objective is theory testing and confirmation, 
the CB-SEM is the right choice whereas in contexts 
where the aim is to make predictions and develop 
theories the appropriate method is the PLS-SEM. Due 
to its flexibility to handle both normal and nonnormal 
distributions, much smaller sample sizes (compared to 
CB-SEM), and highly complex models, PLS-SEM 
targets a wider range of problems than CB-SEM can in 
the social sciences.  

In the second part of the paper R functions were 
provided to estimate PLS-SEM using “plspm” package. 
Step by step procedures to estimate the model were 
explained. A data set was analyzed and the output 
tables and graphics were interpreted. For beginners 
some introductory information on downloading and 
and working with R is also provided in the Appendix.  

In this paper we only presented application of 
PLS-SEM to a simple model for those already familiar 
with the logic of SEM in general and PLS-SEM in 
particular. Having read this paper carefully,  interested 
researchers can hopefully conduct more complicated 
PLS models such as multigroup PLS-SEM. 
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Appendix 

Working with R 

R (R Development Core Team) is an all-in-one free statistical software which can be employed to do a wide 
range of statistical analyses an educational measurement practitioner might need. R covers a wide range from basic 
statistics to more advanced techniques such as item response theory, structural equation modeling, multilevel 
modelling and cognitive diagnostic modeling, to name but a few. R is composed of a base program and a lot of add-
on (user-contributed) packages that can be installed on the base program to perform a broad range of statistical and 
graphical analyses. R is syntax-based and open-source. Its language is highly flexible and customizable.  

Commands can be typed into R in two ways by typing them directly into the R main window which is called 
console or indirectly into a separate window called editor window. A collection of commands typed into the editor 
window can be saved and reused for future uses. The console window automatically opens with R but to open the 
editor go to the File menu. If you want to write new commands click on New script but if you intend to use 
already-saved commands go to Open script. To execute commands in the console you need to simply press enter 
but in the editor put the cursor on the command and press ctrl+R 

The following points should be kept in mind when working with R, especially those who are new to R:  

1) R is case sensitive. For example, Setwd() and setwd() are two different functions. 

2) Don’t forget to use quotation marks when they are needed. For example, in the 

install.packages(“plspm”) and setwd(“c:\\temp\\R\\plspm”) functions, 

forgetting to use quotation marks would result in error. 

3) Use the slash character or double backslash when specifying the path to the directory. 

4) Each time a new R session starts, load the package(s) you intend to work with. 

The following steps should be taken, before one can conduct any analysis in R: 

1) Install the required packages, 

2) Load the packages, 

3) Set the directory where the data can be read from/stored into, 

4) Import the data  

To install a package (e.g., the plspm package), simply execute the following function: 

install.packages(“plspm”, dep=TRUE) 
 

The argument dep=TRUE will also download all the packages on which the package depends. In the new 
dialog box, scroll down the list to select the nearest CRAN location to you and the package will be installed. Copies 
of R and its packages are kept up to date in different locations around the globe. To obtain graphics install 
“ggplot2” package using the “install.packages” function above.   

Each time a new R session is started, one needs to load the packages he intends to work with. The following 
function can be used to load a package: 

library(plspm) 
In general, R commands are split up into two parts as follows: 

object <- function( arguments ) 

which simply means ‘object is created from function’. Anything created in R is an object. Objects can be 
anything from single values to statistical models or the output of an analysis. For example take the following 
command: 
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a <- c(1,2,3) 

The function c will be applied to the three values in the parentheses to make the object a. This function is a 
concatenation function which joins together the elements inside the parenthesis. Now we can do mathematical or 
statistical operations on the object ‘a’. For example executing  

a - 1  

will yield 

[1] 0 1 2 

Objects are kept in memory and can be referred back for later uses. When you want to exit R, it will ask you 
whether you intend to save your workspace (the collection of objects and things you have created in a session) 

The next step is to make a working directory in which you want R to read data and scripts from and store 
outputs, scripts, and objects into. To set the directory, use the setwd() command. Type in the path to the folder 
where you want R to read the data from and save the objects and scripts to inside the parentheses. For your 
convenience, you can open the folder where, for example, your data file is stored in. Click once in the address bar 
and the file path is selected (i.e., gets blue). Copy the path and paste it into the brackets, as follows: 

setwd("C:\\Users\\Dropbox\\cognition") 

Now either double the backslashes or change them into slashes (i.e., /)  

After you have loaded the package, the data should be imported into R. The most convenient way to import 
data into R, is to save the file in the format of comma separated values (.csv) in Microsoft Excel or tab-delimited 
text (.txt or .dat). 

The foreign package can be used to import data from different statistical packages (like SPSS or Stata) data 
into R. To do so, execute the following command: 

library(foreign)  

Depending on the format of the data read.delim, read.csv, read.spss,or  read.xlsx 
functions can be used to assign the data to an object.  If the data file is a .csv file, the following command assigns 
the data to the object mydata: 

mydata <- read.csv("san.csv", header=TRUE) [,c(2:21)] 

header=TRUE tells R to read the variable names from the first row of the data file. If the data file does not 
have the variable names, the argument header=FALSE should be used. Since item data are located in Columns 2 
to 21, the brackets at the very end of the above command select all the rows and Columns 2 to 21 (within the 
brackets, what comes before comma refers to rows and what comes after comma refers to columns) 

In a similar vein if data file is a SPSS or Excel file, the following functions can be used to import the data: 

mydata<-read.spss("san.sav", to.data.frame=TRUE) 

mydata<- read.xlsx(“san.xlsx”, 1) 

in the above command we specify that the data are located in the worksheet 1 in the Excel file. 

SPSS and Excel data can be imported into R by using the Hmisc and xlsx packages, respectively. First the 
packages must be installed and loaded as explained above. 
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