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Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a 
reported statistic as well as the relative precision of the point estimate. These statistics offer more 
information and context than null hypothesis statistic testing. Although confidence intervals have 
been recommended by scholars for many years, these statistics are often not reported.  This may be 
partially due to the complexity of calculating confidence intervals for many statistics. Bootstrap 
resampling can be used to easily estimate confidence intervals around almost any type of point 
estimate. The aim of this paper is to demonstrate this methodology using real-world data and to 
develop several simple principles around this methodology to guide readers in appropriate application.

Effect sizes (ES), confidence intervals (CI), and 
confidence intervals for effect sizes (CIES) are 
indicators of practical significance. They are frequently 
treated as an inferior and less important set of statistics 
than those used to conduct null hypothesis statistical 
testing (NHST), which use p-values to inform statistical 
significance. However, NHST only provides a true/false 
response as to whether the traditional confidence 
interval includes a null value (exclusion results in 
statistical significance). CIES can provide the same 
information. The ES summarizes the magnitude of an 
effect or the strength of a finding in a standardized 
manner (e.g., correlation, Cohen’s D, odds ratio) and the 
CI provides information about the precision of a point 
estimate and the potential generalizability or replicability 
of the estimate. Taken together, they offer all of the 
information necessary to conduct NHST and the 
provide insight into how precisely a researcher has 
estimated the importance (magnitude) of an effect. 

The utility of ES, CI, and CIES was first recognized 
on an international level by the 1999 APA Task Force 

on Statistical Inference report (Wilkinson, 1999). The 
Task Force developed a list of best practices to 
modernize statistical practice for the 21st century. These 
best practices discouraged over-reliance on NHST and 
recommended that researchers report ES and CI as 
context for statistically significant effects. Shortly after, 
the fifth edition of APA’s Publication Manual (2001) was 
released and it echoed the Task Force’s 
recommendation. In the time that followed, discussion 
around the use and implementation of ES and CI 
increased. One notable scholar suggested the Task 
Force’s guidelines be extended to include the reporting 
of CIES as such statistics promote meta-analytic 
thinking (Thompson, 2002). Now more than fifteen 
years after the Task Force’s initial recommendation, 
reporting of ES, CI, and CIES is still not common 
practice in the behavioral and social sciences.  

The infrequent use of CI and CIES may in part be 
due to estimation difficulty. Traditionally, intricate, 
multi-step formulae have been used to compute 
confidence intervals by hand (Cumming & Finch, 2001; 
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Fidler & Thompson, 2001). These formulae are only 
available for select effect size statistics and they generally 
require advanced statistical knowledge to implement. 
Additionally, many of these formulae require 
assumptions that might not always be viable. However, 
as computers and statistical software packages 
developed, a more computationally intense method of 
estimating CI has become readily available. This method 
is known as bootstrap resampling and it can be used to 
identify a CI for any statistic, regardless of the data’s 
underlying distribution (DiCiccio & Efron, 1996; Efron 
& Tibshirani, 1994). This method allows CI to be 
estimated for statistics that are not normally presented 
with confidence intervals, such as medians, Cronbach’s 
alpha, results from exploratory factor analysis, and 
common effect sizes (e.g., eta-squared). 

The aim of this paper is to describe the utility of 
bootstrap analysis in calculation of confidence intervals 
and demonstrate the method with real-world data. Key 
principles of bootstrapping are highlighted throughout 
the examples presented. R syntax for each of these 
analyses is provided in the Appendix. For examples of 
SPSS syntax for similar analyses (without paying for the 
bootstrap module), see Osborne (2015, pp. 352-353) and 
Osborne (2014, pp. 75-76). 

Bootstrapping CI: Process and 
Methods 

Bootstrapping Process  

Bootstrap resampling is a systematic method of 
computing CI for nearly any estimate. In most research, 
you start off with the population of interest, take a 
sample from the population and run your analyses on 
that sample. If bootstrapped CI are desired, an additional 
sub-sampling and replication step is added to the analysis 
phase. This process starts by taking thousands of 
‘bootstrapped samples’ or ‘bootstrapped resamples’ 
from the original sample using random sampling with 
replacement. This results in thousands of resamples 
containing the same number of subjects as the original 
sample, but may contain specific records more than 
once. The analysis of interest is then replicated in each 
of these resamples, which leaves you with thousands of 
estimates of the static of interest. Together, those 
estimates are known as the bootstrap distribution. This 
process is summarized in Figure 1. DiCiccio and Efron 
(1996) recommend that at least 2000 replications are 
used when conducting bootstrap resampling; however 

we use 5000 replications throughout this paper as more 
bootstrapped samples improves estimation and has little 
downside in terms of processing time (i.e., it takes a 
modern computer only slightly longer).  

The idea behind this method is that the resamples 
can be viewed as thousands of potential samples from 
the population. Together, the estimates from the 
resamples represent the possible range of the estimate in 
the population. A robust empirical CI can then be 
estimated from the bootstrap distribution. 

Figure 1. Summary of Bootstrapping Process 

Bootstrapping Method 

There are many different methods for estimating CI 
from a bootstrapped distribution. Table 1 summarizes 
five of the more common methods. These methods use 
the bootstrap distribution in different ways to arrive at 
CI. The normal interval method only uses the bootstrap 
distribution to get an estimate of the standard error (SE), 
which it then uses in the more traditional CI formula (see 
Table 1). The remaining methods actually derive the 
estimate entirely from the bootstrapped distribution. 
The percentile interval, studentized interval, and BCa 
interval all conclude with the same step of identifying the 
percentiles corresponding to the desired CI as the upper 
and lower bounds (e.g., 2.5% and 97.5% for a 95% CI). 
These estimates differ however in adjustments made to 
the bootstrap distribution before this step. The 
percentile interval makes no adjustments, the 
studentized interval converts the distribution to 
studentized statistics, correcting each statistic by its 
associated standard error, and the BCa interval corrects 
the distribution for bias and acceleration. Finally, the 
basic interval method corrects the distribution for bias 
and then identifies the lower and upper bounds that 
capture the desired CI level using a slightly more 
complex formula.   
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 The selection of an appropriate bootstrapping 
method generally can be determined based on responses 
to fo1ur basic questions. These questions target the 
underlying assumptions of the methods (see Table 1) in 
order to select one that best fits the data. In general, 
these assumptions are tested by examining whether we 
have sufficient information for the method (i.e., 
standard error) and examining the bootstrap 
distribution. Remember the bootstrap distribution 
theoretically reflects the range of possible estimates in 
the population, thus we can use this information to 
review for potential problems that can introduce bias 
into our estimate. Some of the methods are more robust 
to such issues than others. The four basic questions to 
review are as follows:  

 

                                                 

1 The studentized statistic is computed by ሺߠ∗ െ  where ,ܧܵ/ሻߠ
  ̂ is the sample estimate, and SE isߠ ,is a bootstrap estimate∗ߠ
the standard error for the bootstrap sample. 

1) Is there a formula to estimate the standard error of 
the statistic,  

2) Is the distribution symmetrical around the mean of 
the bootstrap resampled statistics, 

3) Is the distribution normal/ Gaussian, and  
4) Is the sample estimate a biased estimate of the 

population statistic.  
 

The first three questions are relatively easy to 
answer. The first asks if we can derive an estimate of the 
standard error for the statistic of interest. There are a 
number of statics for which there are no readily available 
estimates of standard error, and even when they do exist, 
bootstrap resampling may provide advantages. The 
second and third questions ask if the bootstrap 
distribution is approximately symmetrical and /or 
corresponds reasonably well to a normal/ Gaussian 
distribution. Finally, the last question targets the 

Table 1. Methods Used for Bootstrapped 95% CI Estimation 

Method  Description  Assumptions 

Normal Interval  The standard error (SE) is computed as the standard 
deviation (SD) of the bootstrap distribution. The CI are then 
computed by: ߠ∗ േ 1.96 ∗  is the sample ∗ߠ where ,ܧܵ
estimate. 

– The distribution of the bootstrapped 
statistic is approximately normal and 
symmetric. 

– The sample estimate is an unbiased 
estimator of the population estimate. 

Percentile Interval  The CI are the estimates at the .025 and .975 quantiles of 
the bootstrap distribution. 

– The distribution of the bootstrapped 
statistic is approximately symmetric. 

– The sample estimate is an unbiased 
estimator of the population estimate. 

Basic Interval  The CI are estimated by correcting the bootstrap 
distribution for bias, or skew, and solving for the estimates 
which capture 95% of the bootstrap statistics. 

– The sample estimate is an unbiased 
estimator of the population estimate. 

Studentized Interval  The statistic and SE of the statistic are computed for each of 
the bootstrap resamples. The bootstrap distribution is 
transformed into a distribution of studentized statistics1 
and the CI are found at the .025 and .975 quantiles.  

– The standard error for the estimate can
be computed. 

Bias‐Corrected & 
Accelerated Interval 
(BCa)A 

The bootstrap distribution is corrected for bias (i.e. skew) 
and acceleration (i.e., nonconstant variance) and the CI are 
found at the .025 and .975 quantiles of the corrected 
distribution. 

– None. 

A This method tends to suffer from convergence problems.  
Note. Please see Hall (1992), Efron & Tibshirani (1994), or Davison & Hinkley (1997) for additional information about these methods 
and Carpenter & Bithell (2000) for a brief review of the methods and assumptions. 
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existence of estimator bias. We can test this by 
comparing the estimate in the original sample to the 
average estimate in the bootstrapped distribution. While 
this is not a true comparison to the population estimate, 
it can provide an indicator of bias that might exist. A 
demonstration of how to check these assumptions and 
the differences when assumptions are violated is 
provided in Example 2 below.  

 In practice, we have found little difference 
between these methods. We often default to using the 
percentile method as it is one of the easiest to implement 
and more readily grasped by readers. However, we do 
recommend checking the assumptions of the model 
before using it, particularly if you have a smaller sample 
or your variables are known to suffer from non-
normality. If you have concerns about which method to 
use, try running a few of the different methods and see 
if they produce different results. If they do, use a method 
that is more robust (e.g., BCa). 

Example 1: Mean 

Many undergraduate students and graduate students 
are introduced to CI in an introductory statistics course. 
They learn how to calculate a 95% CI for a mean by 
hand, using the formula: ̅ݔ േ 1.96 ∗ ሺݏ/√݊ሻ, where  ̅ݔ ̅ is the 
mean,s is the standard deviation, and n is the sample 
size2.  This method of estimating CI for a mean is 
generally straight-forward and does not require the more 
complex bootstrapping procedures. However, we will 
start here as a pedagogical example of applying bootstrap 
methods to calculation of 95%CI.  

Data from the 2010 cohort of the Health and 
Retirement Study (RAND Center for the Study of 
Aging, National Institute on Aging, & the Social Security 
Administration, 2013) were used for this example. A 
subset containing 13,456 individuals between the ages of 
40 and 102, with complete retirement information (the 
year they retired or planned to retire) were used. The 
13,456 individuals in our dataset will be viewed as the 
‘population’ that we are aiming to represent.    

Traditional CI vs Bootstrapped CI 

First, we compare the CI produced by empirical 
bootstrap resampling techniques (via the percentile 
interval with 5000 resamples) to those produced by the 

                                                 
2The 1.96 constant in the formula is the z‐score corresponding 
with the 95% CI.  

traditional ‘by-hand’ method reviewed above to 
demonstrate the equivalence. We will take five random 
samples of 80 individuals from this ‘population’ to 
represent different samples that a researcher might 
collect. We then compute and compare the results (see 
Table 2). In this example, the two methods are found to 
produce similar results, with differences generally at the 
first or second decimal place. It is important to note that 
these methods will produce similar results unless the 
data violate parametric assumptions (e.g., data is 
skewed). In such cases, the bootstrapped CI will yield a 
better estimate because that calculation does not rely on 
distributional assumptions of the data (DiCiccio & 
Efron, 1996).   

Table 2. Confidence Interval Estimates for Mean 
Retirement Age 
Sample  Mean  Traditional 95% CI   Empirical 95% CIA

Lower 
Bound 

Upper 
Bound 

 Lower 
Bound 

Upper 
Bound 

1 60.83 58.51  63.14  58.47 63.05

2 61.14 59.36  62.91  59.33 62.87

3 63.40 61.46  65.34  61.39 65.30

4 61.35 58.91  63.79  58.91 63.74

5 62.60 60.83  64.37  60.82 64.31

A The empirical 95% CI were computed using the percentile 
method. This will be discussed more thoroughly in example 2. 

Variability Across Samples 

Next, we took additional random samples from the 
population to demonstrate the variability in means and 
empirical CI among samples from the same population. 
We will take an additional 15 samples, each containing 
80 individuals, to provide a total of 20 samples from the 
population. Note, we are purposefully selecting a smaller 
sample size (that researchers still routinely use) as they 
are known to be more volatile in estimating population 
parameters. The empirical CI (estimated by the 
percentile interval with 5000 resamples) for each of the 
20 samples are presented in Figure 2. The ‘population’ 
mean is presented as a solid blue line. 
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Figure 2. Mean Retirement Age (Actual and Expected) 
and Empirical 95% CI 

 

As you can see in Figure 2, the “population” mean 
retirement age is approximately 62 years of age. 
Although there was a good amount of volatility in the 
point estimate (the mean), nineteen of the twenty 
samples contained the population mean within their 
bootstrapped confidence interval estimates, further 
verifying that we can generally be 95% certain that our 
CI contain the population mean. Most CIs are 
reasonably narrow, also indicating a reasonable level of 
precision and likelihood that replications would result in 
a reasonably similar outcome. 

Principle 1: Bootstrapping cannot fix small or 
biased samples.  

The results in Figure 2 also demonstrate an issue 
common to small and biased samples: the sample mean 
may deviate from the population mean. The mean 
retirement age in sample 11 is 63.9 years of age, 
approximately two years past the “population” mean, 
and the 95% CI around the mean does not contain the 
mean retirement age in the population. If this sample 
was the only one collected it would misrepresent the 
population, although the population mean is very close 
to the lower bound of the CI. However, data cleaning 
prior to bootstrap analysis can help if influential cases 
are the cause of the mis-estimation (Osborne, 2015). 

Example 2: Median 

The median is a better indicator of central tendency 
than the mean when data are not normally distributed. 
No simple, distribution-free, formula exists to calculate 
CI for the median, yet these are easily calculated by using 
bootstrap methods. This example demonstrates the 
process of bootstrapping CI around an estimate of the 
median and introduces the different methods used for 
bootstrapping CI.  

 The current example uses a subsample (n=200) 
of data from the National Health and Nutrition 
Examination Survey (NHANES; CDC & NCHS, 2010). 
We are interested in estimating the median and the 95% 
CI for four variables which are known to have skewed 
distributions: systolic blood pressure, diastolic blood 
pressure, body mass index, and average time making 
dinner. As we mentioned in the first example, 
bootstrapped CI estimation can yield better estimates 
than more traditional methods because it does not 
require the data to meet assumptions of normality. 

Bootstrap Methods   

To determine which methods are appropriate for 
our data, we must answer the four basic questions 
pertaining to the assumptions that were reviewed above: 
1) Is there a formula to estimate the SE? 2) Is the 
bootstrap distribution symmetric? 3) Is the bootstrap 
distribution normal/ Gaussian? and 4) Is the sample 
estimate a biased estimate of the population statistic? 
First, we know there is no true formula for the SE of the 
median. One method, the studentized interval, requires 
a formula for SE (see Table 1), thus it can automatically 
be removed from consideration. Next, we must evaluate 
the histograms of the bootstrapped statistics, or the 
bootstrap distributions, to address the remaining 
questions and determine which methods might be most 
appropriate for the data. These histograms are presented 
in Figure 3. Each contains a solid orange line 
representing the median of the original sample and a 
solid blue line representing the averaged bootstrapped 
median.  

Figure 3. Histograms of Bootstrapped Statistics 
 
Note. The median of the original sample is presented as a solid 
orange line and the averaged bootstrapped median is presented 
as a solid blue line..
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In reviewing the bootstrap distributions, both 
systolic blood pressure and body mass index appear to 
have normal, symmetrical distributions. The sample 
median and average bootstrapped median are very close 
for both variables, indicating the sample medians are 
unbiased estimators of the population medians. Based 
on these results, we can conclude that the normal, 
percentile, basic, or BCa interval methods are most 
appropriate for these two variables (see Table 1). 
Diastolic blood pressure and average time making dinner 
both have non-normal, asymmetric distributions. The 
sample median for diastolic blood pressure is close to 
the average bootstrapped median, indicating the sample 
estimate is unbiased. However, the sample median for 
time making dinner is not very close to the average 
bootstrapped median, suggesting the sample estimate is 
a biased estimator. These results suggest the basic or 
BCa are the most appropriate methods for Diastolic 
blood pressure and the BCa is the most appropriate for 
average time making dinner. 

Different methods of bootstrap CI estimation are 
more appropriate than others for particular variables. If 
we were conducting this analysis for research and found 
some of the variables to violate particular assumptions, 
we would likely use the method most appropriate for the 
majority of variables or statistics of interest (in this case, 
the BCa method). However, for our pedagogical 
purpose, we will plot them all and compare. Figure 4 
presents the CI for each of the variables (using 5000 
bootstrap resamples). The sample median is presented 
as a solid horizontal line and the CI deemed appropriate 
are presented in blue. 

Depending on the method used, the confidence in 
the effect estimate may differ particularly when working 
with non-normal distributions that violate the necessary 
assumptions. For example, systolic blood pressure and 
BMI are normally distributed and provide consistent CIs 
across methods, whereas diastolic blood pressure and 
time for dinner did not. In the case of diastolic blood 
pressure, the normal interval method tends to 
overestimate both the lower and upper bound of the CI, 
while the percentile method tends to underestimate the 
lower bound and overestimate the upper bound. Finally, 
in regard to time for dinner, the normal and basic 
methods greatly overestimate the upper bound of the CI. 

Principle 2: Different methods of bootstrapping CI 
can yield different results.  

These results highlight that the method used to 
estimate CI can make a difference. Before selecting a 
method, the assumptions of the methods should be 
reviewed and tested. If multiple methods can be used, 
then it may be worthwhile to review and compare the 
estimates. If differences exist, it may be advisable to use 
the method that is most closely aligns with the necessary 
assumptions.Step 5: Comparing Balance  

Example 3: Correlation 

Correlations are standardized measures of 
association. There are formulae to calculate CI for 
correlation coefficients, but they are rarely reported. 
This example illustrates the estimation of CI for 
correlations and highlights the effect of sample size on 
the precision of the estimated CIs. 

Data from the Education Longitudinal Study of 
2002 (U.S. Dept. of Education & National Center for 
Education Statistics, 2010) are used to examine the 
relationship between student math achievement and 
three other variables: reading achievement, socio-
economic status (SES), and student belief that “Math is 

 

Figure 4. Empirical CI for Median Blood Pressure, 
BMI, & Time to Make Dinner 
 
Note. CI whose assumptions were met by a variable are presented in blue. 
CI whose assumptions were not met are presented in orange. Upper 
boundaries in the right two boxes were skewed, leading to the mean and 
upper bound being so close as to not be distinguishable. 
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Fun”. The ‘population’ for this example includes 10,353 
10th grade students that were surveyed in 2002.3 

Sample Size  

Five random subsamples of the data, ranging in size 
from 50 to 1500, are taken to represent five samples of 
varying sizes that a researcher could take from the 
population. Correlation coefficients and empirical CI 
(via the percentile method with 5000 resamples) are then 
estimated for each sample in order to demonstrate how 
sample size can impact the precision of an estimate and 
the use of CI in interpreting this precision.  

Figure 5 summarizes the results of this analysis. 
The correlation in the ‘population’ of 10,353 students is 
presented as a solid blue line. The correlation in each of 
the samples from the population is presented as a blue 
dot. If we examine the figure, we find math 
achievement is most highly correlated with reading 
achievement, followed by SES and the belief that 
“Math is Fun”. We also see the samples with smaller 
sample sizes are generally associated with larger CI and 
estimates that are further from the estimate in the 
population4.  This leads us to our third principle.  

 

 
 
Figure 5. Correlations and their Empirical 95% CI 
for 5 Different Sample Sizes 
 
Note. The empirical 95% CI were computed using the 
percentile method 

                                                 
3   Sample weighting was not applied as we are not using the 
data to draw substantive conclusions., but rather to 
demonstrate bootstrap analyses. 

4 Note, two of the correlations in the smallest sample are 
actually quite close to the population estimate. However, the CI 

Principle 3: Precision of the point estimate and CI 
improve with increases in sample size.  

CI becomes narrower as sample size increases. 
Thus, larger samples will have the narrower confidence 
intervals, while smaller samples will have wider intervals. 
This suggests that we have a better estimation of the true 
value of the correlation in the population when a larger 
sample size is used. We are more likely to question how 
well the effect would replicate when a small sample is 
used and large CI are exhibited. 

Example 4: Cronbach’s Alpha 

Cronbach’s Alpha is a commonly used indicator of 
reliability. It tells us the degree to which a set of items 
exhibit internal consistency and it is known to be sample 
specific. It is recommended practice to report 
Cronbach’s Alpha in any study using a set of items to 
construct a scale. Estimation of CI around alpha 
estimates can further bolster the use of alpha by 
providing an indicator of how these results might 
generalize. 

 Data from The National Science Foundation 
Surveys of Public Understanding of Science and 
Technology, 1979-2006 (Miller, Kimmel, ORC Macro, 
& NORC, 2009) are used to illustrate the use of CI in 
estimation of Cronbach’s Alpha. A subset of the data 
containing 313 individuals between the ages of 18-24 are 
used. Responses to six items, rated on a Likert-type 
agreement scale from 1(strongly disagree) to 4 (strongly 
agree), are evaluated as indicators of stereotypes of 
scientists. For the purpose of this example, we will 
pretend we created this scale and would like to examine 
how it functions.  

Item-Total Correlations 

Item-total correlations represent the correlation 
between an item and all the other items, where the total 
of the other items is achieved by summing or averaging 
them. This is a good place to start when examining scale 
function because it allows us to see which items exhibit 
internal consistency with the construct being measured. 
The item-total correlations for the six items, along with 

suggest that there was great variability in the estimate among 
the bootstrap resamples and thus it is difficult to have 
confidence in the estimate. 
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95% empirical CI (via the percentile method with 5000 
resamples), are presented in Figure 6. In general, the 
item-total correlations are fairly low, ranging from 0.13 
to 0.53 and the CI tend to be quite large. These results 
suggest we are likely to see variability in these estimates 
if additional samples are collected and the estimates will 
likely remain lower than desired. Furthermore, one item 
is found to have a CI that includes zero, suggesting the 
item may contribute very little or potentially nothing to 
our construct of interest. Overall, these initial results are 
discouraging and we might stop here if our goal was 
simply to evaluate these items potential as a scale; but it 
is not so let’s continue.   

Figure 6. Item-Total Correlations and Empirical 
95% CI for 6 Items 
 
Note. The empirical 95% CI were computed using the 
percentile method. 

Reliability 

Cronbach’s alpha and 95% empirical CI (via the 
percentile method with 5000 resamples) were estimated 
for the six items. The alpha was rather low, α=0.60, and 
the CI ranged from 0.53 to 0.67. Together, these results 
lead us to expect that there will be significant variability 
in the point estimate for alpha in other similar samples, 
and that none of them are expected to rise to a level one 
could consider adequate. 

Principle 4: CI can provide insight on 
generalizability. 

If we were analyzing these results without the CI we 
could get a different view of this scale. Even though the 
Cronbach’s Alpha estimates are lower than desired, we 
might convince ourselves that the results represent a 
lower bound estimate and that we could see better 
results in a different sample. The upper bound of the CI 

                                                 
5 Greenhouse‐Geisser corrected statistics reported due to lack 
of sphericity. 

estimates does not exceed .7, thus they have disabused 
us of such thoughts. In this example, the CI tell us that 
the scale has relatively low internal consistency among 
the population of interest but the differences between 
the groups are likely to replicate. In this way, the CI 
provide us a lens through which to glimpse the potential 
generalizability of the scale to the intended population. 

Example 5: Repeated Measures 
ANOVA 

A central hallmark of science is replication (Killeen, 
2008; Thompson, 2002; Yu, 2003). While not perfect, 
resampling methods can inform the researcher as to the 
potential replicability or non-replicability of an effect. 
This fifth example explores the use of bootstrapping CI 
as an indicator of power. 

This example uses data from a colleague performing 
a study in a physical therapy environment in Australia 
(Gabel, Osborne, & Burkett, 2015). The study aimed to 
compare a new physical therapy technique for knee 
rehabilitation (#5) to four standard ones using a measure 
of muscle activity captured via electromyography 
(EMG). At the time of initial analysis, the researcher had 
21 participants, with plans to measure a total of 35. As 
this type of data collection is time consuming, he wanted 
to know if a sample of 35 would have sufficient power. 
The initial results, summarized Table 3, were promising 
and highly significant (F(4,80) = 11.60, p < .0001, η2 = 
0.65).5 

Table 3. EMG measures in knee rehabilitation 
patients across five activities (N=21) 

EMG  Mean  SE 

Traditional 95% CI 

Lower 
Bound 

Upper 
Bound 

1  82.71  14.94  54.44  111.99 
2  91.14  15.92  59.95  122.33 
3  97.10  13.46  70.71  123.48 
4  90.57  13.93  63.26  117.88 
5  141.38  17.53  107.02  175.74 

 

Despite the small sample, the first four conditions 
are relatively similar, and the fifth is markedly different 
in terms of effort as measured by EMG. It is possible to 
calculate power in simple repeated measures ANOVA 
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such as this, but the real question from the colleague was 
whether he could trust that this effect was real. In other 
words, as a physical therapist he is probably more 
interested in whether his results will generalize to other 
patients or whether this effect is unstable. Although 
external replication is ideal (replication with an 
independent sample), internal replication analyses can 
provide insight by estimating the probabilities of 
replication given other similar samples. Additionally, 
bootstrap resampling can be used to estimate the 
expected stability of effect size estimates (in this case, 
eta-squared).  

Internal Replication 

Bootstrap analysis with 5000 resamples attempted 
to shed light on the probability of another sample 
replicating these results. As Table 4 shows, the average 
expected F is 13.57 (CI: 0.00, 17.27), which is a wide 
interval, not unexpected with such a small sample. 
However, even with such a small sample, 100% of the 
bootstrapped resamples yielded a significant effect, 
which suggested that the effects were likely to replicate. 
Further, the CI around the eta-squared estimate were 
large, ranging from 0.57 to 0.79. Thus, the expectation 
was that a similar sample would produce similar results 
(i.e., a reasonably strong effect) and thus was worth 
pursuing.   Indeed, the researcher subsequently gathered 
another data set that showed this bootstrapped 
prediction was a very good estimate of the effect in an 
independent (replication) sample. 

Principle 5: CI can predict replication 

Estimation of CI for tests of significance and effect 
sizes can predict the replication of the significance and 
magnitude of an effect. If CI for tests of statistical 
significance only contain values with associated p-values 
below .05, the results are likely to replicate within a 

similar sample. If the CIs contain values associated with 
p-values greater than .05, the results are not as likely to 
replicate. Similarly, if CIES contain a relatively small 
range that primarily contains small, medium, or large 
effect sizes, we are likely to see similar results in other 
samples. If the CIES contain a larger range, replication 
is less predictable. 

Example 6: Logistic Regression 

Logistic regression is performed to understand the 
variables that contribute to a binary outcome variable, 
such as whether students in high school will graduate or 
not. The current example uses to data from the National 
Education Longitudinal Study of 1988 (U.S. Dept. of 
Education & National Center for Education Statistics, 
1989) to predict graduation based on student socio-
economic status (SES). Five random samples of 200 
students were taken from the dataset to demonstrate 
trends in CI estimation that can inform the utility of an 
estimate. 

Logits, Odds-Ratios, and Predicted Probabilities 

Table 5 displays the results for logistic regressions 
to predict graduation in each sub-sample. The likelihood 
ratio test and the SES coefficient in each of the models 
are significant. These results tell us that each model is 
significantly improved by inclusion of SES. We can then 
proceed to examine the effect of SES on graduating. 
While the results of logistic regression are generally 
output as logits, we convert them to odds ratios as this 
is a more intuitive metric to understand. The odds ratios 
for SES range from 1.72-3.97 across the models. This 
can be interpreted to mean the odds of graduating 
increase by 1.72-3.97 as the SES levels rise by 1 standard 
deviation.  

  

Table 4. Summary of bootstrap analysis of EMG data. 

Statistic 
Bootstrapped Distribution 95% Empirical CI

N  Mean Median  SD Minimum Maximum Lower Bound  Upper Bound

F  5000  13.49  12.84  4.83 2.35 43.47 0.00  17.27

P‐value  5000  0.00  0.00  0.00 0.00 0.06 0.00  0.00

Significant 
flag 

5000  1.00  1.00  0.02 0.00 1.00 1.00  1.00

Partial Eta2  5000  0.56  0.56  0.08 0.29 0.79 0.57  0.79

Note. The empirical 95% CI for the F stat, p-value, and significant flag were computed using the basic method while the CI for the eta-
squared was computed using the BCa method. Methods were identified based on assumptions and different methods were used because 
the BCa method suffered from extreme endpoints for some of the variables. 
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Table 5. Odds-Ratios for Logistic Regression to 
Predict Graduating in the Next Hour 

Sample 

Logit  Odds Ratio 
Likelihood 
Ratio TestIntercept  SES A  Intercept 

SES A 

1  2.56***  1.16**  12.89  3.19  14.38***
2  2.47***  0.54*  11.85  1.72  4.45* 
3  2.50***  1.00***  12.17  2.71  3.84***
4  2.66***  1.38***  14.28  3.97  29.35***

A SES was standardized to have a mean of zero and a standard 
deviation of 1 among those in the NELS: 88 dataset.  
* p<.05. ** p<.01. *** p<.001. 

 

While odds ratios are more intuitive than logits, 
there is a metric that is even easier to understand: 
predicted probability. Predicted probabilities represent 
the probability of an event occurring based on a set level 
of a predictor variable. We converted the results in Table 
5 to predicted probabilities of graduating for three 
different SES levels. These predicted probabilities and 
their empirical 95% CIs (via the percentile method) are 
presented in Figure 7. Note that we could have estimated 
CIs for any of the estimates reported in Table 5. 

Figure 7. Predicted Probability of Graduating at 
Three Different SES Levels 
 
Note. The empirical 95% CI were computed using the 
percentile method. 

 

Figure 7 clearly depicts the relationship between 
SES and graduating. The probability of graduating 
ranges from 78-87% at SES levels 1 standard deviation 
below the mean, 92-95% at mean SES levels, and 95-
98% at SES levels 1 standard deviation above the mean. 
Notice the CI range decreases as SES increases. This can 
be interpreted to mean that when SES is higher we are 

                                                 
6   It is, of course, a pseudo R2 for a reason‐ in logistic 
regression, which utilizes maximum likelihood estimation, we 
do not directly measure variance accounted for. 

generally good at predicting that graduation will occur. 
However, as SES level decreases and graduation 
becomes somewhat less probable, we are less able to 
accurately predict it. In other words, there is more error 
associated with the graduation estimates among those at 
lower SES levels. 

Psuedo-R2 

 Before concluding this example, let us consider one 
more statistic sometimes reported in logistic regression: 
the pseudo R2. Pseudo R2 is an estimate of the amount 
of variance explained by a model and an indicator of 
goodness-of-fit.6  There is considerable debate over 
which of the dozen or so methods to use (Menard, 2000; 
Mittlbock & Schemper, 1996), or even whether to use 
any of them at all (Osborne, 2015). We proceed by 
estimating three of the most popular estimates attributed 
to McFadden (1974), Cox and Snell (1989), and 
Nagelkerke (1991) to demonstrate often volatile nature 
of such estimates, and how CIs can make the reader 
more informed of the precision of an estimate such as 
these. These estimates and their corresponding CI are 
presented in Figure 8.   

Figure 8. Three Pseudo R2 Estimates and their 
Empirical CI 
 
Note. The empirical 95% CI were computed using the BCa 
method.

 

The CI provide insight into the error assocated with 
each estimate. If we examine the psuedo R2 estimates 
alone, we find the Cox and Snell estimates provide the 
smallest estimates while the Nagelkerke provide the 
highest. When we examine the CI we find the 
Nagelkerke estimates, that provide the most favorable 
indication of association, are also paired with the largest 
error. The Cox and Snell estimates provide the smallest 
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estimate of association, but they are linked with the least 
error. While the Cox and Snell estimates may provide the 
most consistent estimates out of these methods, the 
results do not indicate a strong likelihood of replication 
of the point estimate. 

Principle 6: CI can inform us of the utility of an 
estimate.   

Large CI indicate there is a greater degree of error 
in an estimate and that the results may not replicate or 
generalize. In the current example, the large CI around 
the predicted probabilities of graduating for low SES 
students suggest the point estimate is not very reliable 
and should be interpreted with caution. Similarly, when 
large CI are consistently associated with a particular type 
of estimate or effect size this can inform our 
understanding of the reliability of the estimate itself. 

Conclusions 

Good science must be informed by replication, 
although in the social and behavioral sciences, 
replication is not currently common. Precision is also 
important, yet often overlooked in publications. 
Confidence intervals can help inform readers as to how 
precise point estimates are, and how likely the point 
estimates are to be replicated in another similar sample. 
Although authors are encouraged to publish effect sizes 
and confidence intervals, there is a methodoligical gap in 
estimation of these CIs for certain statistics. Our goal in 
this paper was to demonstrate an easily accesible, 
empirical method for estimating confidence intervals for 
these (or almost any other) statistics using bootstrap 
analysis (e.g., Osborne, 2014 demonstrates the use of 
bootstrap analysis for evaluating the stability of factor 
loadings and eigenvalues in exploratory factor analysis).  

In this paper we present examples of applications 
of bootstrap analysis for producing CIs for statistics 
such as medians, Cronbach’s alpha, partial eta squared, 
and pseudo-R2 statistics. We also demonstrated some 
basic principles that researchers should keep in mind 
when conducting bootstrap analysis. For example: 

1) bootstrap analysis cannot repair a fatally flawed (e.g., 
highly biased) sample, 

2) different methods of calculation of bootstrap-based 
CIs require different assumptions, 

3) larger samples tend to produce better precision and 
narrower confidence intervals 

4) confidence intervals can inform inferences about the 
possible generalizability of results 

5) confidence intervals can predict replication, and 

6) bootstrapped confidence intervals can reveal 
important information about the utility of a statistic. 

The methods presented in this paper provide 
researchers with the tools to routinely report confidence 
intervals for effect estimates for a broad range of 
statistical estimates. If embodied, these methods would 
provide readers with context and estimates of precision 
for commonly reported statistics. 
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Appendix A – R Code 

Please note there are MANY ways to produce bootstrapped CIs in R. Some packages and functions 
incorporate the option to produce CIs as part of the function. The authors chose to employ user-written functions 
along with the boot package for ease of understanding. These methods can be adjusted for nearly any statistic 
that an individual would like to bootstrap. 

 

Example 1: Mean 
# Import Data 
retire <- read.csv("E:/Example1.csv", header = TRUE, colClasses="numeric") 
 
# 'Population' mean 
mean(retire$ageRetire)  
 
# ESTIMATE CI 'BY HAND' 
byhand <- function(data, seed) { 
 set.seed(seed) 
 sub=data[sample(nrow(data),80),] 
 mn=mean(sub$ageRetire) 
 sd=sd(sub$ageRetire) 
 constant=1.96 * (sd / (80 ** .5)) 
 todo=c(Mean=mn,LowerCI=mn-constant,UpperCI=mn+constant) 
 return(todo) 
} 
byhand(data=retire, seed=69) 
byhand(data=retire, seed=15) 
byhand(data=retire, seed=28) 
byhand(data=retire, seed=63) 
byhand(data=retire, seed=41) 
 
# ESTIMATE CI VIA BOOTSTRAPPING PROCEDURES 
library(boot) # Load boot library 
 
# Write function to estimate mean 
sampleMean <- function(data, seed, indices) { 
 set.seed(seed) 
 sub=data[sample(nrow(data),80),] 
 sample=sub[indices,'ageRetire'] #select sample 
 todo=mean(sample, na.rm=TRUE) 
 return(todo) 
} 
 
# Call and run sampleMean function from boot function to get bootstrap  
# distribution 
res1<-boot(data=retire, seed=69, statistic=sampleMean, R=5000) 
res2<-boot(data=retire, seed=15, statistic=sampleMean, R=5000) 
res3<-boot(data=retire, seed=28, statistic=sampleMean, R=5000) 
res4<-boot(data=retire, seed=63, statistic=sampleMean, R=5000) 
res5<-boot(data=retire, seed=41, statistic=sampleMean, R=5000) 
 
# Use boot.ci function to get estimate of CI from bootstrap distribution 
boot.ci(res1, type="perc")$percent[4:5] 
boot.ci(res2, type="perc")$percent[4:5] 
boot.ci(res3, type="perc")$percent[4:5] 
boot.ci(res4, type="perc")$percent[4:5] 
boot.ci(res5, type="perc")$percent[4:5]
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Example 2: Median 

# Import Data 
health <- read.csv("E:/Example2.csv", header = TRUE, colClasses="numeric") 
 
# Estimate median for four variables of interest 
apply(health,2,median) 
 
library(boot) # Load boot library 
 
# Write function to estimate median 
sampleMedian <- function(data, indices) { 
 sample=data[indices,] # Select sample 
 todo=c(median(sample[,1], na.rm=TRUE), 
     median(sample[,2], na.rm=TRUE), 
     median(sample[,3], na.rm=TRUE), 
     median(sample[,4], na.rm=TRUE)) 
 return(todo) 
} 
 
# Call sampleMedian function from boot function to estimate bootstrap  
# distribution 
res <- boot(data=health, statistic=sampleMedian, R=5000) 
res # Look at median, bias (sample median-average bootstrap median), and SE 
 
# Plot bootstrap distribution 
plot(res, index=1) # Index argument identifies variable to use 
plot(res, index=2)  
plot(res, index=3)  
plot(res, index=4)  
 
# Or can use hist function for more control 
hist(res$t[,1],breaks=5,main="Systolic BP",xlab=NULL,col="gray") 
hist(res$t[,2],breaks=6,main="Diastolic BP",xlab=NULL,col="gray") 
abline(v=res$t0[1],col="#FF6600") # Add line for sample median 
abline(v=mean(res$t[,1],na.rm=T),col="#6699FF") # And av. bootstrap median 
 
# Get estimate of CI from bootstrap distribution 
boot.ci(res,index=1) # Index argument identifies variable to estimate CI for 
boot.ci(res,index=2) 
boot.ci(res,index=3) 
boot.ci(res,index=4 

  



Practical Assessment, Research & Evaluation, Vol 21, No 5 Page 15 
Banjanovic & Osborne, Confidence Intervals for Effect Sizes 
                                                   

Example 3: Correlation 
# Import Data 
educ <- read.csv("E:/Example3.csv", header = TRUE, colClasses="numeric") 
 
# Estimate 'Population' Correlations 
apply(educ[2:4],2, function(col) cor(col,educ$BYTXMIRR)) 
 
# Select subsamples of varying sizes 
set.seed(33); sub50<-educ[sample(nrow(educ), 50), ] 
set.seed(71); sub100<-educ[sample(nrow(educ), 100), ] 
set.seed(02); sub250<-educ[sample(nrow(educ), 250), ] 
set.seed(91); sub500<-educ[sample(nrow(educ), 500), ] 
set.seed(62); sub1500<-educ[sample(nrow(educ), 1500), ] 
 
library(boot) # Load boot library 
 
# Write function to estimate correlation 
sampleCorr <- function(data, indices) { 
 sample=data[indices,] # Select sample 
 todo=apply(sample[2:4],2, function(col)cor(col,sample$BYTXMIRR)) 
 return(todo) 
} 
 
# Estimate bootstrap distribution 
res50 <- boot(data=sub50, statistic=sampleCorr, R=5000) 
res100 <- boot(data=sub100, statistic=sampleCorr, R=5000) 
res250 <- boot(data=sub250, statistic=sampleCorr, R=5000) 
res500 <- boot(data=sub500, statistic=sampleCorr, R=5000) 
res1500 <- boot(data=sub1500, statistic=sampleCorr, R=5000) 
 
# Look at histograms of bootstrap distribution 
hist(res50$t[,1]) 
hist(res50$t[,2]) 
hist(res50$t[,3]) 
 
# Look at sample correlations and bias 
res50 
res100 
res250 
res500 
res1500 
 
# Get bootstrapped CIs 
# **Note: use function to combine CI for Reading Achievement (var1),  
# **SES (var2), and belief math is fun (var3) 
getCIs<- function(result) { 
 CI<-do.call("rbind", sapply(1:3, FUN = function(i)   
  boot.ci(result,type="perc", index=i)$perc[4:5], simplify = FALSE)) 
 return(CI) 
} 
getCIs(res50) 
getCIs(res100) 
getCIs(res250) 
getCIs(res500) 
getCIs(res1500) 
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Example 4: Cronbach’s Alpha 
# Import Data 
sciYng <- read.csv("E://Example4.csv", header = TRUE,  
 colClasses="numeric") 
 
# Get alpha and item total correlations for each sample 
library(CTT) # Load CTT library for reliability function to compute 
rel<-reliability(sciYng, itemal = TRUE) 
rel$alpha # Identifies alpha from rel 
rel$pBis # Identifies the item total correlations from rel 
 
# Function to estimate alpha and item total correlations 
sampleRel <- function(data, indices) { 
 sample=data[indices,] # Select sample 
 rel=reliability(sample, itemal = TRUE) 
 todo=c(rel$alpha,rel$pBis) 
 return(todo) 
} 
 
# Get bootstrap distribution for each variable 
res2 <- boot(data=sciYng, statistic=sampleRel, R=5000) 
 
# Check bootstrap distributions 
hist(res2$t[,1]); hist(res2$t[,2]); hist(res2$t[,3]); hist(res2$t[,4]);  
hist(res2$t[,5]); hist(res2$t[,6]); hist(res2$t[,7]) 
 
#Get bootstrapped CIs 
getCIs<- function(result) { 
 CI<-do.call("rbind", sapply(1:7, FUN = function(i)  
  boot.ci(result,type="perc", index=i)$perc[4:5], simplify = FALSE)) 
 return(CI) 
} 
getCIs(res2) 
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Example 5: Repeated Measures ANOVA 
# Import Data 
emg <- read.csv("E:/Example5.csv", header = TRUE, colClasses="numeric") 
 
# Repeated Measures ANOVA 
library(car) # Load package for Anova function (will compute Greenhouser Geiser) 
model <- lm(cbind(EMG1, EMG2, EMG3, EMG4, EMG5) ~ 1, data=emg) # Run ANOVA 
summary(model) # Print model summary 
anova(model) # Print model fit  
exercise.type<-as.factor(c(1,2,3,4,5)) 
anova.out<-Anova(model,idata=data.frame(exercise.type), 

   idesign=~exercise.type)# Estimate Greenhouse Geiser 
summary(anova.out) # Print additional model statistics 
 
# Estimate Traditional CI Around Mean From Results 
summary <- summary(model) 
coeff <- as.data.frame(rbind(cbind(1, t(summary[[1]][[4]][1:2])),  
               cbind(2, t(summary[[2]][[4]][1:2])),  
               cbind(3, t(summary[[3]][[4]][1:2])),  
               cbind(4, t(summary[[4]][[4]][1:2])),  
               cbind(5, t(summary[[5]][[4]][1:2])))) 
names(coeff) <- c('EMG', 'Estimate', 'SE') 
coeff$LB <- coeff$Estimate - (1.96 * coeff$SE) 
coeff$UB <- coeff$Estimate + (1.96 * coeff$SE) 
 
library(boot) # Load boot library 
library(heplots) # Load heplots library for etasq function 
 
# Function to estimate various indices 
rmANOVA <- function(data, indices) { 
 EMG.meas <- data[indices,]  # Select sample 
 model <- lm(EMG.meas ~ 1) 
 exercise.type <- as.factor(1:ncol(EMG.meas)) 
 anova.out <- Anova(model, idata=data.frame(exercise.type),   
           idesign=~exercise.type) 
 stats <- summary(anova.out) 
 return(c(Fstat = stats$univariate.tests[10], 
      pValue = stats$univariate.tests[12], 
      GGstat = stats$pval.adjustments[1], 
      GGpValue = stats$pval.adjustments[2],  
      etaSq = etasq(anova.out, anova = TRUE)$'eta^2'[2], 
      dGGpvalue = ifelse(stats$pval.adjustments[2] < .05, 1, 0))) 
} 
emg5 <- cbind(emg$EMG1, emg$EMG2, emg$EMG3, emg$EMG4, emg$EMG5) # Select Measures to 

use 
results5 <- boot(data = emg5, statistic = rmANOVA, R = 5000)    
 
# Check bootstrap distribution 
hist(results5$t[,1]); hist(results5$t[,2]); hist(results5$t[,3]) 
hist(results5$t[,4]); hist(results5$t[,5]); hist(results5$t[,6]) 
 
# Describe Bootstrap Distribution 
apply(results5$t, 2, function(x) c(N = nrow(results5$t), 
                  Mean = mean(x), 
                  Median = median(x), 
                  SD = sd(x), 
                  Min = min(x), 
                  Max = max(x))) 
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# Get bootstrapped CIs 
getCIs<- function(result) { 
 CI<-as.list(do.call("rbind", sapply(1:6, FUN = function(i) { 
  boot=boot.ci(result,type=c("basic"), index=i) 
  list(rbind(unlist(boot)[c(7:8)])) 
 } 
 ))) 
 return(CI) 
} 
getCIs(results5) 
  
# Re-run with only first 4 EMG Measures 
emg4 <- cbind(emg$EMG1, emg$EMG2, emg$EMG3, emg$EMG4) 
results4 <- boot(data=emg4, statistic=rmANOVA, R=2000)  
getCIs(results4) 
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Example 6: Logistic Regression 
# Import Data 
nels <- read.csv("E:/ Example6.csv", header = TRUE, colClasses="numeric") 
 
# Get 5 subsamples of 200 
set.seed(63); sub1<-nels[sample(nrow(nels),200),] 
set.seed(8); sub2<-nels[sample(nrow(nels),200),] 
set.seed(74); sub3<-nels[sample(nrow(nels),200),] 
set.seed(32); sub4<-nels[sample(nrow(nels),200),] 
set.seed(51); sub5<-nels[sample(nrow(nels),200),] 
 
# EXAMPLE ANALYSIS FOR 1 SAMPLE 
# estimate model parameters, predicted probability, psuedo R-squared 
mod <- glm(graduated ~ zses, data = sub1, family = "binomial") 
 
summary(mod) # General logistic results 
exp(coef(mod)) # Odds ratios 
anova(mod,test="Chisq") # Model chi-squared test 
 
# get predicted probabilities for zses= -1, 0, and 1 
z=c(-1,0,1) # Vector of values for zses 
logit=coef(mod)[1]+(coef(mod)[2]*z) # Logit 
exp(logit)/(1+exp(logit)) # Predicted probabilities 
 
# psuedo R-squared values 
N  <- nobs(mod) 
glm0 <- update(mod, . ~ 1) 
LLf <- logLik(mod) 
LL0 <- logLik(glm0) 
as.vector(1 - (LLf / LL0)) # McFadden 
as.vector(1 - exp((2/N) * (LL0 - LLf))) #Cox and Snell 
as.vector((1 - exp((2/N) * (LL0 - LLf))) / (1 - exp(LL0)^(2/N))) #Nagelkerke 
 
# BOOTSTRAP REPLICATION PROCEDURES 
library(boot) # Load boot library 
 
# Function to estimate various indices 
sampleLog <- function(data, model, indices) { 
 sample=data[indices,] # Select sample 
 mod=glm(model, data=sample, family="binomial") 
 # Get estimates of R2 
 N  <- nobs(mod) 
 glm0 <- update(mod, . ~ 1) 
 LLf <- logLik(mod) 
 LL0 <- logLik(glm0) 
 McFad<-as.vector(1 - (LLf / LL0)) 
 CoxSnell<-as.vector(1 - exp((2/N) * (LL0 - LLf))) 
 Nag<-as.vector((1 - exp((2/N) * (LL0 - LLf))) / (1 - exp(LL0)^(2/N))) 
 # Get predicted probabilities for -1 0 and 1 
 z=c(-1,0,1) 
 logit=coef(mod)[1]+(coef(mod)[2]*z) 
 PredProb=exp(logit)/(1+exp(logit)) 
 todo=c(McFad,CoxSnell,Nag,exp(coef(mod)[2]),PredProb) 
 return(todo) 
} 
res10 <- boot(data=sub1, model=graduated ~ zses, statistic= sampleLog, R=5000) 
res11 <- boot(data=sub2, model=graduated ~ zses, statistic= sampleLog, R=5000) 
res12 <- boot(data=sub3, model=graduated ~ zses, statistic= sampleLog, R=5000) 
res13 <- boot(data=sub4, model= graduated ~ zses, statistic= sampleLog, R=5000) 
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res14 <- boot(data=sub5, model= graduated ~ zses, statistic= sampleLog, R=5000) 
 
# Check bootstrap distribution of sample 1 
hist(res10$t[,1]); hist(res10$t[,2]); hist(res10$t[,3]); hist(res10$t[,4]);  
hist(res10$t[,5]); hist(res10$t[,6]); hist(res10$t[,7])  
 
# Get bootstrapped CIs 
getCIs<- function(result) { 
 CI<-as.list(do.call("rbind", sapply(1:7, FUN = function(i) { 
   boot=boot.ci(result,type=c("perc","bca"), index=i) 
   list(rbind(unlist(boot)[c(7:8,12:13)])) 
 } 
   ))) 
 return(CI) 
} 
getCIs(res10) 
getCIs(res11) 
getCIs(res12) 
getCIs(res13) 
getCIs(res14) 
 
# Print sample values of each statistic 
res10$t0;res11$t0;res12$t0;res13$t0;res14$t0 

 

Note: 

You can download a .zip file with all the data examples used in this paper.  All data are anonymous and most 
are based on publicly-available data.  Thanks to Dr. Philip Gabel and Dr. Brendan Burkett for allowing us use 
of partial data from their research.   
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