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Researchers and data analysts are sometimes faced with the problem of very small samples, where the 
number of variables approaches or exceeds the overall sample size; i.e. high dimensional data.  In such 
cases, standard statistical models such as regression or analysis of variance cannot be used, either 
because the resulting parameter estimates exhibit very high variance and can therefore not be trusted, 
or because the statistical algorithm cannot converge on parameter estimates at all.  There exist an 
alternative set of model estimation procedures, known collectively as regularization methods, which 
can be used in such circumstances, and which have been shown through simulation research to yield 
accurate parameter estimates.  The purpose of this paper is to describe, for those unfamiliar with them, 
the most popular of these regularization methods, the lasso, and to demonstrate its use on an actual 
high dimensional dataset involving adults with autism, using the R software language.  Results of 
analyses involving relating measures of executive functioning with a full scale intelligence test score 
are presented, and implications of using these models are discussed. 

Linear models, including regression, analysis of 
variance (ANOVA), and their multivariate extensions 
are perhaps among the most widely used statistical 
techniques in the social and behavioral sciences.  These 
methods allow researchers to explore relationships 
among one or more independent variables and a single 
dependent variable (in the univariate case).  The 
research literature is replete with examples of 
researchers using such methods. At the same time, 
researchers and evaluators in the social sciences are 
often faced with the need to conduct data analysis in the 
presence of small sample sizes, particularly when they 
are working with small or difficult to access populations, 
such as children of migrant workers, adults with autism, 
or participants in very resource intensive programs that 
cannot accommodate large numbers of participants 
(Schunke, Schottle, & Vettorazzi, 2016; Mathur & 
Parameswaran, 2015; Garcia-Gomez, Risco, Lopez, 
Guerrero, & Garcia-Pena, 2014). 

Given the widespread popularity of linear models, 
coupled with the potential for problems fitting them in 
the context of high dimensional data, the purpose of the 
current manuscript is to describe and to demonstrate 
some alternatives for fitting linear models when the 
number of independent variables is nearly as large as, or 
exceeds the total sample size.  In particular, we will 
focus on the lasso estimator, which belongs to a family 
of statistical modeling procedures known collectively as 
regularization methods.  The lasso has been shown to 
be effective for fitting linear models with high 
dimensional data (e.g. Tibshirani, 1996), yielding 
estimates with low bias and low standard errors.  The 
paper begins with a brief review of the standard linear 
regression model, after which the lasso estimator is 
described.  Next, a motivating dataset is introduced, and 
a thorough demonstration of the lasso using the dataset 
is presented.  Finally, implications for use of the lasso in 
evaluation and research practice are discussed, along 
with areas for future research. 
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The linear model 

 The standard linear regression model can be 
written as 

ݕ ൌ ߚ  ଵݔଵߚ  ଶݔଶߚ  ⋯ ݔߚ     (1)ߝ

Where 
  =Dependent variable value for subject iݕ
  =Independent variable j value for subject iݔ
  =Interceptߚ
  =Coefficient for independent variable jߚ
  =Error for subject iߝ

 

The linear model in equation (1) characterizes the 
relationship between each independent variable, x, with 
the dependent variable, y, using the coefficients, �.  In 
order to obtain the estimates for these coefficients (ߚመ), 
the familiar least squares (LS) estimator is typically used.  
LS identifies ߚመ  values that minimize the squared 
residuals of the regression model in (1), as expressed in 
equation (2). 

݁ଶ ൌ ∑ ሺݕ െ ොሻଶݕ
ே
ୀଵ     (2)

 
Where 
N =Total sample size 
ොݕ ൌ መߚ െ ଵݔመଵߚ  ଶݔመଶߚ  ⋯   ݔመߚ
 መ = Sample estimate of model interceptߚ
 መ = Sample estimate of coefficient for independentߚ
variable j 
 

Put another way, LS seeks to find the values of 
 መ that minimize the squared difference betweenߚ መandߚ
the actual dependent variable values and the values that 
the model predicts. 

High dimensional data 

In some research and evaluation contexts, the 
number of variables that can be measured (p) 
approaches, or even exceeds the number of individuals 
on whom such measurements can be made (N).  For 
example, the number of participants in a summer horse 
camp for children identified with an emotional disability 
might be relatively small due to the amount of resources 
need to accommodate each participant (e.g. Garcia-
Gomez, Risco, Lopez, Guerrero, & Garcia-Pena, 2014).  
At the same time, program evaluators may be able to 
obtain a relatively large number of cognitive and 

affective measurements for each participant, resulting in 
high dimensional data.  The researchers may want to 
know how scores on these measures change over time, 
or how one set of measures is related to another set.  
However, with a limited sample size the standard linear 
models, such as regression, that would normally be used 
to address the research questions may not work well.  In 
particular, when used with small sample sizes, such 
models will yield inflated standard errors for the model 
coefficient estimates (Bühlmann & van de Geer, 2011).  
One consequence of these inflated standard errors is a 
reduction in power, leading the researcher to 
erroneously conclude that one or more of the 
independent variables are not related to the outcome of 
interest, when in fact they are.  Furthermore, having a 
large number of p independent variables relative to N 
can result in the presence of collinearity, or very strong 
relationships among the independent variables, leading 
to biased parameter estimates, as well as the 
aforementioned highly inflated standard errors (Fox, 
2016).  When N=p, a linear regression model will 
provide perfect fit for the data, although it may not be 
generalizable to a broader sample, as it is essentially 
overfitting the sample data (Hastie, Tibshirani, & 
Friedman, 2009).   Finally, when p exceeds N, it is simply 
not possible to obtain LS estimates for the model 
parameters, and the researcher is not able to address the 
research questions of interest. 

Regularization methods 

There exist a number of strategies for researchers 
to use in dealing with high dimensional data, including 
variable selection methods (e.g. stepwise regression, 
best subsets regression), and data reduction techniques 
(e.g. principal components regression, supervised 
principal components regression, and partial least 
squares regression).  Prior research has found that, in 
the presence of high dimensional data, these variable 
selection methods can produce estimates with inflated 
standard errors for the coefficients (Hastie, Tibshirani, 
& Friedman, 2009).  Data reduction models largely 
mitigate this problem, but they do so by combining the 
independent variables into a small number of linear 
combinations, making interpretation of results for 
individual variables somewhat more difficult, and 
creating an extra layer of complexity in the model as a 
whole (Finch, Hernandez Finch, & Moss, 2014).   

A third family of techniques that has proven useful 
in the context of high dimensional data involves 
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alternative parameter estimation algorithms known as 
regularization, or shrinkage techniques.  Whereas 
variable selection methods such as best subsets and 
stepwise regression models assign an inclusion weight 
of either 1 (include the variable in the model) or 0 
(exclude the variable from the model), and then 
separately estimate the value of ߚመ for the included 
variables, regularization methods identify optimal 
values of the ߚመ such that the most important 
independent variables receive higher values, and the 
least important are assigned coefficients at or near 0.  
Because these estimates are obtained in a single step and 
do not involve the either/or decision of the variable 
selection methods described above, the resulting 
regularized model variances and standard errors do not 
suffer from the type of inflation inherent with methods 
such as best subsets and stepwise regression (Hastie, 
Tibshirani, & Friedman, 2009). In addition, the 
regularization methods do not combine the 
independent variables using linear combinations, 
thereby avoiding the increased complexity associated 
with approaches such as principal components analysis.  
A regularization method that has been shown to be 
effective across a wide range of conditions is the lasso 
(Tibshirani, 1996). This method has been used 
successfully in a number of fields including health 
statistics (e.g., Li, Feng, & Jiang, 2011; Wu, Chen, 
Hastie, Sobel, & Lange, 2009), economics (e.g. 
Shcauberger & Tutz, 2015; Fastrich, Pterlini, & Winker 
(2015); Fan, Lv, & Qi, 2011), and computer science (e.g. 
Vastrad & Vastrad, 2013; Kakade, Shalev-Schwartz, & 
Tewari, 2012), but has received relatively little attention 
in education and psychology. 

The lasso  

Regularization methods have in common the 
application of a penalty to the LS estimator described in 
equation (1).  One such approach is the least absolute 
shrinkage and selection operator (lasso; Tibshirani, 
1996).  The fitting criterion for the lasso is written as  

݁ଶ ൌ ∑ ሺݕ െ ොሻଶݕ
ே
ୀଵ  ∑ߣ උߚመඏ


ୀଵ      (3)

The terms in equation (3) are as defined above, 
with the addition of the tuning parameter ߣ, which is 
used to control the amount of shrinkage (i.e. the degree 
to which the relationship of the independent variables 
to the dependent variable are down weighted or 
removed from the model).  Larger ߣ values correspond 
to greater shrinkage of the model; i.e. a greater reduction 

in the number of independent variables that are likely to 
be included in the final model.  On the other hand, a ߣ 
of 0 leads to the LS estimator.  Given the goal of 
minimizing ݁ଶ , the parameter estimates ߚመ  will be 
reduced in size, and some will even be set to 0, while at 
the same time the predictions (ݕො)  based upon the 
parameter estimates should be as accurate as possible, 
meaning that the parameter estimates cannot all be 
minimized or set to 0.  In other words, the goal of the 
lasso estimator is to eliminate from the model those 
independent variables that contribute very little to the 
explanation of the dependent variable, by setting their 
መߚ  values to 0, while at the same time retaining 
independent variables that are important in explaining 
y. 

In discussing the lasso, it is important to note the 
tradeoff between estimator bias and variance.  The least 
squares estimator is known to have low bias in many 
situations, but can also have relatively large variance, 
particularly in the context of high dimensional data; i.e. 
relatively many predictors and few observations (Loh & 
Wainwright, 2012).  In contrast, the lasso has been 
found to have somewhat greater bias than the standard 
least squares estimator, but with lower variance, 
particularly in the high dimensional case (Hastie, 
Tibshirani, & Wainwright, 2015).  The increased bias 
associated with the lasso is caused by the fact that, as 
noted above, the penalty tends to drive the values of the 
coefficient estimates toward 0.  Thus, the lasso values 
will underestimate to some extent the population 
parameters.  At the same time, the fact that the 
magnitudes of the estimates are constrained to some 
extent means that the lasso estimator will also tend to 
have smaller variance than least squares, and therefore 
may provide an overall more accurate prediction than 
the standard least squares estimate, particularly in the 
presence of small samples (Tibshirani, 1996).   

A key aspect of using the lasso is the determination 
of the optimal ߣ value.  The most common approach to 
finding the appropriate tuning parameter value is 
through the use of cross-validation.  With standard 
cross-validation the researcher divides the full sample 
into k subsamples using random selection.  One of 
these subsamples is then designated as the training set, 
and the others are known as the test sets.  The lasso is 
then applied to the training set for a variety of ߣ values, 
and the resulting ߚመ  estimates are applied to each of the 
test samples in order to obtain predicted values of ݕfor 
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each individual.  The mean square error for test set k 
with tuning parameter value (ܧܵܯఒ	) is then calculated 
for each of the test samples as 

	ఒܧܵܯ ൌ
∑ ሺ௬ೖି௬ොೖഊ	ሻ

మಿ
సభ

ேೖ
  

  (4)

Where 
  =Dependent variable value for subject i in test set kݕ
	ොఒݕ ൌ Model predicted dependent variable value for 
subject i in test set k using ߣ 
 
The ܧܵܯఒ	  values are then averaged across the K 
test samples for each value of ߣ.  The optimal value of 
 .	ఒܧܵܯ	is the one that yields the lowest mean ߣ

If the sample is too small to be divided into training 
and cross-validation samples, a variation called leave-
one-out or jackknife cross-validation can be used 
instead (Efron & Stein, 1981; Tukey, 1958; Quenouille, 
1949).  With this method, the lasso model is fit to the 
data leaving out one individual and then applying the 
cross-validation method described above to compare 
that individual’s actual and predicted values of y.  This 
individual is then placed back into the sample, another 
individual is removed, the lasso model fit to the data, 
and model parameters applied to the data of the newly 
removed individual in order to obtain a cross validation 
estimate of the value in equation (4).  This approach is 
repeated for each individual in the sample so that the 〖
   is calculated involving all members of the	ఒܧܵܯ
sample.  As an example, consider a sample consisting of 
10 individuals.  The jackknife approach for determining 
the optimal value of ߣ would proceed as follows: 

1. Remove person 1 from the dataset and estimate 
a regression model for a given λ value using the 
other 9 individuals in the sample. 

2. Use the parameter estimates obtained in step 1 
to obtain a predicted value of the dependent 
variable for person 1. 

3. Calculate the squared difference between the 
observed and model predicted dependent 
variable values for person 1 at the specific value 
of ߣ. 

4. Repeat steps 1 through 3 for person 1, using 
different values of ߣ. 

5. Repeat steps 1 through 4, removing person 2 
from the data and reinserting person 1. 

6. Use equation (4) to calculate the MSE for each 
value of ߣ 

7. Select the value of ߣ that has the smallest value 
of MSE  

Inference for regularization methods  

Researchers using regression techniques are 
typically interested not only in obtaining an estimate of 
the relationships between the independent and 
dependent variables, but also in ascertaining whether 
there is likely to be a relationship among these variables 
in the population; i.e. whether there is a statistically 
significant relationship between the independent and 
dependent variables.  The adaptive nature of the 
regularization approaches makes the question of 
inference potentially difficult to answer, because the 
methods are simultaneously engaging in variable 
selection and parameter estimation (Hastie, Tibshirani, 
& Wainwright, 2015).  In other words, with the lasso 
variable selection and statistical inference are 
intertwined, making the determination of statistical 
significance somewhat difficult.  Researchers working 
on this problem have suggested using a Bayesian 
approach (Park & Casella, 2008), or the bootstrap 
(Meinhausen & Bühlmann, 2010) in order to conduct 
statistical inference for the regularization methods.  
Both approaches incorporate variable selection with 
model inference, so that the issue of statistical 
significance remains intertwined with variable selection. 

Work has also been done in the area of post-
selection inference for regularization methods.  Perhaps 
the most promising of these approaches is the 
covariance test (Lockhart, Taylor, Tibshirani, & 
Tibshirani, 2014).  The test is conducted after the 
optimal value of ߣ, and thus the final set of independent 
variables to be included in the model have been 
selected.  In order to test for the significance of the 
coefficient associated with independent variable ݔ,, the 
algorithm first identifies the value of ߣ for which 
 .  Theߣ entered the model, which is denoted asݔ
model parameter estimates at this step areߚመሺߣሻ.  Next, 
the independent variables that were included in the 
model prior to the entrance of  ݔ for ߣିଵ are 
identified and called ܣିଵ.  The algorithm then refits 
the regularized regression model using only the ܣିଵ set 
of independent variables (i.e. excluding ݔ), but using 
the value of ߣas the regularization parameter.  This 
model yields the parameter estimates ߚመೖషభሺߣାଵሻ.  The 
covariance test is then calculated as 
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ܶ ൌ
ଵ

ఙమ
൫〈ݕ, 〈ሻߣመሺߚܺ െ ,ݕ〉   ሻ〉൯ߣመೖషభሺߚܺ

   (5)

Where 
,ݕ〉  ሻ〉 =Covariance between actual y and modelߣመሺߚܺ
predicted y including variable ݔ 
,ݕ〉  ሻ〉 = Covariance between actual y andߣመೖషభሺߚܺ
model predicted y excluding variable  ݔ 

ොଶߪ ൌ ଵ

ேି
ܴܵܵ  

ܴܵܵ = Residual sum of squares for the solution with 
p predictors 

ܶ	is distributed as an F statistic with 2 and N-p 
degrees of freedom. The covariance test compares the 
additional amount of variance accounted for by the 
model when variable ݔ is included in the model versus 
when it is excluded.  A statistically significant result for 

ܶ would lead to rejection of the null hypothesis that ݔ 
does not contribute to explaining the dependent 
variable y. 

Empirical example using R 

Methodology 

In order to demonstrate the utility of the lasso 
approach for fitting linear models, data analysis was 
conducted using an exemplar dataset.  The data were 
collected on 10 adults with autism who were clients of 
an autism research and service provision center at a 
large Midwestern university.  Adults identified with 
autism represent a particularly difficult population from 
which to sample, meaning that quite frequently sample 
sizes are small.  The sample for this analysis was 
comprised of 10 adults (9 males), with a mean age of 20 
years, 2 months (SD=1 year, 9.6 months).  Of interest 
for the current analysis was the relationship between 
executive functioning as measured by the Delis-Kaplan 
Executive Functioning System (DKEFS; Delis, Kaplan, 
& Kramer, 2001) and the full scale intelligence score 
(FSIQ) on the Wechsler Adult Intelligence Scale, 4th 
edition (WAIS-IV; Wechsler, 2008).  Because of the 
difficulty in obtaining samples of adults with autism, 
relatively little work has been conducted with this 
population regarding the relationship between executive 
functioning and IQ, although it is known to be 
particularly relevant for individuals with autism in 
general (Mclean, Johnson Harrison, Zimak, & Morrow, 
2014).   

In order to demonstrate the utility of the lasso with 
small samples, regression models with FSIQ as the 

dependent variable, and the 16 DKEFS subscales 
appearing in Table 1 as the independent variables were 
fit using each of the regularization methods separately.  
Analyses were conducted with the glmnet library in 
the R software package, version 3.11 (R Core 
Development Team, 2014). Standard least squares 
regression could not be used in this case, because the 
number of independent variables exceeded the sample 
size.  In addition, given the small sample size, the leave-
one-out cross-validation approach was used to identify 
the optimal value of ߣ.  Prior to conducting the analysis, 
the necessary R libraries must be loaded, using the 
library command. 

library(Scale) 
library(glmnet) 
library(selectiveInference) 

 

The data are then standardized prior to the conduct 
of the statistical analyses. 

#Standardize the variables prior to 
conducting data analysis# 
attach(wais_dkefs.final) 
wais_dkefs.z<‐scale(wais_dkefs.final, 
center=TRUE, scale=TRUE) 
dkefs.z<‐
as.matrix(wais_dkefs.z[,2:17]) 

 

Results 

The first step in using the lasso estimator is to 
determine the optimal value of the tuning parameters.  
As described above, the optimal value of ߣ can be 
ascertained using leave-one-out cross-validation.  Figure 
1 displays the leave-one-out cross-validated mean 
square error (MSE) for the natural log of ߣ.  Following 
are the R commands to fit the cross-validated model 
using the jackknife approach described above, which is 
called through the use of nfolds= the number of 
observations in the dataset. 

wais_dkefs.z.lasso.cv<‐
cv.glmnet(dkefs.z,wais_dkefs.z[,1], 
type.measure="mse", nfolds=10) 
plot(wais_dkefs.z.lasso.cv) 
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Figure 1.  Leave-One-Out Cross-Validation Mean 
Squared Error by the log of ߣ (bottom axis) and the 
number of non-zero coefficients (top axis) 

 

It is clear that the MSE was smaller for lower values 
of the regularization parameter.  For the lasso estimator, 
the optimal ߣ  is the one that minimizes the leave-one-
out MSE value calculated using equation (4).  In this 
example, the minimum was determined through leave-
one-out cross-validation to be 0.139.  While it is not easy 
to ascertain this minimum value from the figure above, 
the glmnet R library has a convenient function that 
will show the value of ߣ corresponding to the minimum 
MSE.  This function appears below. 

wais_dkefs.z.lasso.cv$lambda.min 
[1] 0.01394299 

 
In addition, to provide a further demonstration of 

the relationship between λ and MSE, we fit the model 
for several values of λ and then calculated the MSE for 
each.  These values appear in Table 1.  From these, we 
can see that larger values of λ were associated with the 
largest MSE values and declined as λ approached its 
optimal value of 0.0139, where MSE was minimized.  
When λ was less than 0.0139, MSE increased once 
again, as we can see in Table 1.  This is the pattern that 
is demonstrated in Figure 1. 

 
Table 1. MSE by value of ߣ for selected ߣ 

 MSE ߣ
0.0100 0.2402 
0.0139 0.2387 
0.0180 0.2501 
0.1350 0.4891 
0.3679 0.9215 

For the optimal ߣ value, 8 of the 16 predictors were 
retained in the model, and the R2 value was 0.91; i.e. 
91% of the variance in FSIQ was explained by the 8 
retained DKEFS variables.   

Figure 2 displays the magnitude of the model 
coefficients on the y-axis for each variable (represented 
by the individual lines) for each model (represented by 
the individual panels in the figure), by the magnitude of 
the log of ߣ appearing on the x-axis.  The R commands 
for fitting the lasso model, and then plotting the values 
of the model coefficients by the log of ߣ appears below, 
followed by the resulting graphical output 

wais_dkefs.z.lasso<‐
glmnet(dkefs.z,wais_dkefs.z[,1],alpha=
1, standardize=FALSE, nlambda=100) 
plot(wais_dkefs.z.lasso, 
xvar="lambda", label=TRUE, 
ylab=c("Lasso Coefficient")) 

 

 

Figure 2. Model Coefficients by Log of Lambda for the 
Lasso 

 

Larger values of the log of ߣ reflect a more severe 
penalty.  From these results it is clear that as the penalty 
becomes more severe, the number of variables with 
coefficients near 0 becomes larger as well.  Of interest 
to the researcher is identification of the ߣ value that 
yields the most parsimonious model (i.e. one with as few 
non-zero coefficients as possible) that also explains as 
substantial amount of the variance in the dependent 
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variable as possible.  To this end, Figure 3 displays the 
R2 value (lower x-axis) for each model (panels) by the 
magnitude of the coefficients (y-axis) and the number of 
variables included in the model (upper x-axis). 

plot(wais_dkefs.z.lasso, xvar="dev", 
label=TRUE, ylab=c("Lasso 
Coefficient"), xlab=c("R Squared")) 
 

 

Figure 3.  Model Coefficients by R2 for Lasso 
 

Clearly, as the number of included variables was 
greater, so was the R2 value.  The key for the researcher 
using the lasso is to find the optimal tuning parameter 
values so that a relatively parsimonious model is 
selected that explains a relatively large amount of 
variance in the dependent variable.  As noted above, this 
value for ߣ was 0.139. 

 The standardized parameter estimates (i.e. beta 
weights) for each model appear in Table 2.  These are 
the standardized weights because we first standardized 
the data prior to fitting the model.  Following is the R 
command to obtain the coefficients for the lasso 
estimator at the optimal value of ߣ. 

coef(wais_dkefs.z.lasso.cv,s="lambda.m
in") 

 

Table 2. Standardized Model Coefficients for 
Independent Variables

Variable Lasso 
Visual scanning -.001 
Number sequencing .04+ 
Letter sequencing .32+ 
Number-letter sequencing .63+ 
Motor speed NA 
Letter fluency .13+ 
Category fluency NA 
Category switching NA 
Category switching accuracy NA 
Filled dots .48+ 
Empty dots NA 
Dots switching NA 
Color naming NA 
Word reading NA 
Inhibition .04 
Inhibition/switching -.003 
*NA=Variable not selected for inclusion in final model
+Statistically significant at =0.05 

 

The optimal lasso model included 8 of the original 
16 variables.  Variables that were left out of the final 
model are denoted by NA in the table. 

In order to determine which of the DKEFS scores 
were significantly related to the FSIQ, the covariance 
test, which was described above, was used.   To access 
this test in R, the slectiveInference library must 
first be loaded.  The following commands can then be 
employed in order to obtain the results for the 
covariance tests of the null hypothesis of no relationship 
with the dependent variable, for each of the 
independent variables. 

lasso.sigma<‐
estimateSigma(dkefs.z,wais_dkefs.z[,1]
, intercept=FALSE, standardize=FALSE) 
lasso.beta = coef(wais_dkefs.z.lasso, 
s=.0139)[‐1] 
lasso.inference = 
fixedLassoInf(dkefs.z,wais_dkefs.z[,1]
,lasso.beta,.0139, 
sigma=lasso.sigma$sigmahat) 
lasso.inference 

The indication of statistical significance for each of 
the independent variables appears in Table 2, above.  Of 
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the 8 variables that the lasso included in the model, 5 
were statistically significantly related to FSIQ (Number 
sequencing, Letter sequencing, Number-letter 
sequencing, Letter fluency, and Filled dots), and all had 
positive coefficients.  Thus, higher scores on each of 
these subscales were associated with higher FSIQ 
scores.  These coefficients are based upon the 
standardized data, and therefore can be interpreted in 
the same fashion as are beta weights in traditional 
regression analysis.  For example, a 1 standard deviation 
increase in the variable Number-letter Sequencing was 
associated with a 0.63 standard deviation increase in the 
WAIS score.   

Discussion 

Researchers working in the social sciences are not 
infrequently faced with the problem of having to work 
with small samples.  For example, a summer horse camp 
intervention for children identified with emotional 
problems might be very resource intensive, so that only 
a small number of individuals can participate.  At the 
same time, a relatively large number of measurements 
might be made on each individual (e.g. daily behavior 
ratings, cognitive assessments throughout the camp, 
parental ratings at regular intervals), thereby creating a 
high dimensional dataset in which the number of 
variables approaches or exceeds the sample size.  
Whatever the cause, researchers faced with small 
samples and high dimensional data will find the use of 
popular statistical techniques, such as regression and 
ANOVA, to be difficult at best, and impossible at 
worst, as in the example presented above.  In order to 
use a standard model such as regression in this case, the 
researcher would either need to make a subjective 
determination regarding which independent variables to 
exclude from the analysis, fit several smaller models 
using subsets of the independent variables, or attempt 
to collect more data, which may not be feasible.  It is in 
such situations that regularization techniques may be 
extremely useful. 

A word should be given regarding how best to 
report, in publications, results from studies using the 
lasso.  Of key importance in reporting the results of the 
lasso is the approach used to determine the optimal 
value of the tuning parameter, ߣ.  Therefore, the author 
will want to include all of the relevant information that 
led to the selection of this value, such as the graphical 
presentation of MSE by the log of ߣ, as demonstrated 
in Figure 1 above.  In addition, the researcher will also 

want to provide the reader with information about the 
magnitudes of the regression coefficients for the 
variables by the value of ߣ, as in Figure 2, and the 
proportion of variance explained by models with 
varying ߣ values and numbers of predictors (Figure 3).  
Both the MSE by ߣ and coefficient by ߣ graphs provide 
the reader with a sense for what the optimal tuning 
parameter value should be, and how this value impacts 
the results of the analysis.  In addition to focusing on ߣ, 
it is also key to present the parameter estimates and 
hypothesis testing results for the optimal tuning 
parameter value, as was done in Table 2 above. 

Extensions of regularization methods 

In addition to regression models such as the one 
presented above, the lasso can also be used in the 
context of multivariate data (i.e. more than one 
dependent variable) such as MANOVA (Ullah & Jones, 
2015), logistic regression for categorical dependent 
variables (Tibshirani, 1996), survival analysis 
(Tibshirani, 1997), factor analysis (Hirose & Yamamoto, 
2015), and cluster analysis (Pan, Shen, & Liu, 2013).  
While the goals of these various methods are quite 
different from one another, the underlying 
regularization methodology is very much the same as 
for the approaches described here.  In all cases, a 
penalized fitting function is used to ensure that only 
salient variables are retained in the final model, thereby 
making accurate parameter estimation more possible 
than would be the case if all possible variables were 
used.  As was demonstrated above, using such 
regularization procedures is relatively straightforward in 
the R software environment, and prior simulation work 
has shown that the parameter estimates obtained from 
these models are quite accurate under a variety of 
circumstances (e.g. Tibshirani, 1996). 

In addition to the lasso, other regularization 
methods have also been suggested for use with high 
dimensional data.  These include the grouped lasso 
(Yuan & Lin, 2006), in which sets of variables are kept 
or remove together, the adaptive lasso (Zou, 2006), 
whereby separate lasso estimators are used in 
subsequent steps, the Bayesian lasso (Park & Casella, 
2008), and the elastic net (Zou & Hastie, 2005), which 
includes a second tuning parameter in addition to �, 
among others.  These additional methods offer 
alternatives for researchers working with high 
dimensional data, and continue to be studied by 
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statisticians in order to better understand their 
properties across a range of data conditions. 
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Appendix 

R code and output for fitting the lasso and elastic net models for example data 
 
Example data file 
 
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

3.741530 0.573051 -0.175230 -1.339954 -0.368095 1.090042 -0.115272 -0.577052 0.425472 0.179867 1.088520 
0.100441 1.183853 -0.694153 -0.766538 0.455033 -0.017487 -1.367410 -0.050084 -0.817974 -1.559255 0.579605 
2.553595 1.007614 1.543381 0.463916 -0.898300 -0.053513 1.533398 0.180512 0.113829 -0.096545 -0.352276 
0.153503 -1.341994 -1.445909 1.730850 1.027419 0.677408 -0.001175 -0.138712 -0.759287 -0.447889 0.483444 
1.465349 1.104495 -0.507631 -0.517296 0.242078 0.761720 -1.901134 -2.223851 -0.736562 2.318569 -2.272791 
-0.012732 0.111837 -0.846025 0.155868 -0.897112 -1.184396 -0.295120 0.881524 0.966334 -1.903001 1.055233 
0.726743 -0.320148 0.297111 0.508650 0.206923 -0.527616 -0.030750 -0.805411 0.766234 0.496932 -0.120334 
2.170335 0.068812 1.809094 -0.761952 -2.154671 -0.286850 -0.860617 -0.102291 2.345841 0.284032 0.253651 
-1.669843 -1.172163 -1.161900 0.935259 0.858773 -0.271187 -1.231314 -0.238721 -1.086486 0.989511 2.269332 
1.009178 1.741643 1.454726 -2.975978 2.920440 -0.798064 0.156104 1.350790 -1.084402 -0.943684 -0.180285 

 
#Read the data from a .dat file, print the data to be sure that it# #was read in 
correctly, and create matrices of the independent and# 
#dependent variables.# 
demo<‐read.table("c:/research/lasso demonstration/demo.dat", header=F) 
demo 
 
demo.iv<‐as.matrix(demo[,2:11]) 
demo.dv<‐as.matrix(demo[,1]) 
 
#Cross‐validation to determine optimal value of lambda# 
demo.lasso.cv<‐cv.glmnet(demo.iv, demo.dv, type.measure="mse", nfolds=10) 
plot(demo.lasso.cv) 
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demo.lasso.cv$lambda.min 
[1] 0.01543617 
 
#Fit the LASSO model and plot coefficient values by log of lambda and R‐square# 
demo.lasso<‐glmnet(demo.iv,demo.dv,alpha=1, standardize=FALSE, nlambda=100) 
plot(demo.lasso, xvar="lambda", label=TRUE, ylab=c("Lasso Coefficient")) 

 

 
plot(demo.lasso, xvar="dev", label=TRUE, ylab=c("Lasso Coefficient"), xlab=c("R 
Squared")) 
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#Coefficients for the minimum value of lambda# 
coef(demo.lasso.cv, s="lambda.min") 
11 x 1 sparse Matrix of class "dgCMatrix" 
                     1 
(Intercept)  1.1448974 
V2           0.5251900 
V3           .         
V4          ‐0.2920695 
V5           .         
V6           1.3487055 
V7           0.6581483 
V8           .         
V9           0.7553453 
V10          0.1237440 
V11          .  
 
#Conduct post‐selection inference for the lasso# 
library(selectiveInference) 
lasso.sigma<‐estimateSigma(demo.iv,demo.dv) 
lasso.beta = coef(demo.lasso, s=.01543617)[‐1]  
#[‐1] leaves out the intercept from inference# 
lasso.inference = fixedLassoInf(demo.iv,demo.dv,lasso.beta,.01543617, 
sigma=lasso.sigma$sigmahat) 
lasso.inference 
 
Call: 
fixedLassoInf(x = demo.iv, y = demo.dv, beta = lasso.beta, lambda = 0.01543617,  
    sigma = lasso.sigma$sigmahat) 
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Standard deviation of noise (specified or estimated) sigma = 0.211 
 
Testing results at lambda = 0.015, with alpha = 0.100 
 
 Var   Coef Z‐score P‐value LowConfPt UpConfPt LowTailArea UpTailArea 
   3 ‐0.737  ‐9.449   0.000    ‐0.878   ‐0.602       0.048      0.049 
   4 ‐0.344  ‐2.900   0.004    ‐0.556   ‐0.142       0.050      0.050 
   5  1.094   6.652   0.000     0.817    1.397       0.048      0.049 
   6  0.893   8.074   0.000     0.688    1.087       0.049      0.050 
   7 ‐0.298  ‐1.645   0.103    ‐0.661    0.102       0.049      0.050 
   8  0.317   2.177   0.030     0.043    0.564       0.049      0.048 
  10 ‐0.118  ‐1.317   0.184    ‐0.280    0.109       0.050      0.049 
 
Note: coefficients shown are partial regression coefficients 
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