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There is always a chance that examinees will answer multiple choice (MC) items correctly by guessing. 
Design choices in some modern exams have created situations where guessing at random through the 
full exam—rather than only for a subset of items where the examinee does not know the answer—
can be an effective strategy to pass the exam. This paper describes two case studies to illustrate this 
problem, discusses test development decisions that can help address the situation, and provides 
recommendations to testing professionals to help identify when guessing at random can be an 
effective strategy to pass the exam. 

When an exam includes multiple choice (MC) items, 
there is always a chance that examinees will answer items 
correctly by guessing. Historically, there has been a great 
deal of research on the effects of guessing on reliability 
and validity, as well as various methods to correct for 
guessing behavior (e.g., Diamond & Evans, 1973; Frary, 
1969). In current practice, and in some theoretical 
measurement models, it is often assumed that the effects 
of guessing are negligible. Some scholars have described 
the threat of guessing as “overrated” (Haladyna, 2004, p. 
113). However, design choices in some modern exams 
have created situations where guessing at random 
through the full exam—rather than only for a subset of 
items where the examinee does not know the answer—
can be an effective strategy to pass the exam. Obviously, 
such a situation calls into question the utility of the exam 
and the validity of any content-based interpretations of 
the exam results. 

This article begins with a definition of the problem 
of extensively guessing throughout an exam and 
describes means to calculate guessing probabilities. 
Next, we discuss current assessment design decisions 
that can create situations where guessing at random can 
be an effective strategy to pass exams, thus lowering the 

validity of content-based interpretations of the exam 
results. This discussion is followed by two case studies 
that show real-world examples of how guessing through 
the full exam can be a viable strategy. We then discuss 
strategies to address guessing behavior at various stages 
in the test development process and conclude with a 
brief discussion of policy considerations related to these 
test development decisions. 

Defining the Problem 

As mentioned previously, the extensive body of 
research on guessing on MC exams goes back decades 
(e.g., Hamilton, 1950; Wood, 1976; Zimmerman & 
Williams, 1965). However, the majority of this research 
assumes examinees take the exam seriously by answering 
items they know and guessing only when they do not 
know an answer. In contrast, the type of guessing that 
this paper is concerned with is pervasive, where the 
examinee randomly guesses on most or all of the items 
on an exam. We will refer to this type of guessing as full-
exam random guessing (hereafter, FERG). On its face, 
FERG appears to be a terrible test-taking strategy that 
no examinee would seriously consider using. However, 
examines could benefit from this strategy in specific 
testing situations. For example, consider an exam given 
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in English to an English Language Learner (ELL) who 
has very low English proficiency or a mathematics exam 
with lengthy story problems given to a student with only 
minimal reading ability. If examinees do not understand 
the language on the exam, they may have no other 
recourse than FERG. 

As higher stakes for students and teachers are 
attached to assessments, the pressure to raise exam 
scores increases, sometimes through unethical means. 
Consider a situation where a teacher is administering an 
oral MC exam to students of very low ability. In practice, 
MC item writers are instructed to write distractors that 
are plausible and would be attractive to those who lack 
the necessary knowledge to answer the item correctly 
(Haladyna, 2004). With this in mind, it may be a 
reasonable (though unethical) decision for the teacher to 
instruct the students to adopt FERG, rather than 
attempting items and being drawn to attractive, but 
incorrect, response options.  

To put it more bluntly, in this era of growing 
resistance to standardize testing (e.g., Eichenwald, 2015; 
Gorski, 2014), a newspaper report that one can get out 
of the bottom category in a testing program by random 
guessing just looks bad. Regardless of how many 
psychometricians say it is unlikely, public disclosure that 
a testing program is susceptible to FERG might result in 
a substantial erosion in the face validity and public buy-
in for the program. Even though in many cases it is 
unlikely that most examines would use FERG, putting 
forth an assessment design where FERG could be 
effective is an unnecessary risk. 

Estimating the Probability of Success When Using 
FERG 

Clearly, exams should be constructed to minimize 
the probability of someone passing (or reaching some 
other performance threshold) by using FERG. But 
before those design decisions can be made, one needs to 
understand how to calculate the likelihoods of achieving 
various scores through FERG, and to determine an 
operational definition of “unlikely.” 

Consider a 100-item exam consisting of 4-option 
MC items. When asked what score an examinee likely 
would obtain by using FERG on this exam, many would 
correctly reply “25” (a 0.25 chance of guessing each 
question correctly multiplied by 100 items). However, 25 
is only the average score one would obtain across many 
repeated FERG attempts. Approximately half of the 

time examinees would score higher than 25, and about 
15% of the time examinees would score 30 or higher. 
Theoretically, there is a miniscule, but non-zero, chance 
that the examinee could score 100% correct.  

If an exam is being used to classify examinees (e.g., 
pass/fail, below basic/basic/proficient/advanced, 
master/non-master), the cut score necessary for 
entrance into the lowest meaningful performance 
category beyond the minimum performance category 
(i.e., the “minimum classification threshold”) should be 
set at a score that one would be unlikely to achieve with 
FERG. Because any score on the exam is theoretically 
possible when using FERG, it is necessary to choose an 
operational definition of “unlikely.” Although any 
definition will be necessarily arbitrary, there is some 
precedent for using 5% as a cutoff. Specifically, 5% 
frequently is used as the cutoff for the value of alpha (i.e., 
the probability of a type I error) in many statistical tests 
and is adopted as a threshold by some publications. As 
in other statistical situations, it would be prudent to 
adopt a more stringent threshold (e.g., 1%) for a very 
high-stakes decision, or a less stringent threshold (e.g., 
10%) for a low-stakes decision. For simplicity, we will 
adopt 5% as the operational definition of “unlikely” for 
the remainder of this paper. 

 Applying the 5% threshold to the above 
example, we can see in Figure 1 that the minimum 
classification threshold should be set at or above 33 
points. In other words, with a 100-item, 4-option MC 
exam, the minimum cut score should be set at 33 points 
(or more) in order for examinees to have a less than 5% 
chance of achieving the minimum classification 
threshold by using FERG. The probabilities shown in 
the figure are calculated using the cumulative binomial 
distribution. Instructions to calculate these values for 
different testing situations using Microsoft Excel are 
included in Appendix A. Appendix B includes SAS code 
to estimate these probabilities for exams that consist of 
items with a variety of guessing probabilities (e.g., a 
combination of 3-, 4-, and 5-option MC items). 
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Figure 1. The probability of achieving various scores 
using a FERG strategy on a 100‐item, 4‐option MC 
exam. 

 

Design Decisions that Make Guessing More 
Attractive  

Giving multiple retake opportunities, removing 
response options, and reducing exam lengths have all 
been put forth as reasonable and examinee-friendly 
assessment design choices. However, each of these 
decisions can have an effect on the attractiveness of 
FERG as a test-taking strategy.  

When high stakes are associated with exam 
performance, examinees are typically allowed retake 
opportunities. The Standards for Educational and 
Psychological Testing specifically call for retake 
opportunities to be provided when tests affect student 
promotion or graduation decisions (APA, AERA, and 
NCME, 2014, Standard 12.9). These retake 
opportunities increase the likelihood of achieving a 
minimum classification threshold due to chance. For 
example, consider an assessment where the minimum 
classification threshold has been set so that there is a 5% 
chance of an examinee achieving the threshold when 
using FERG. If the testing program allows up to 4 
administrations of the exam (i.e., the original exam plus 
3 retake opportunities) there is an 18.5% chance of an 
examinee achieving the threshold on at least 1 
administration of the exam when using a FERG strategy 
on each attempt.  Referring back to the earlier example, 
in a 100-item, 4-option MC exam, applying the 5% 
threshold required the minimum classification threshold 
to be set at or above 33 points. If 3 retake opportunities 
were allowed for the assessment, minimum classification 

threshold should be set at or above 36 points in order to 
maintain the same 5% probability of achieving the 
minimum classification threshold using the FERG 
strategy (see Figure 2).  Appendix A provides 
instructions for how to calculate the probabilities of 
achieving various minimum classification thresholds in 
Microsoft Excel when retakes are allowed and the 
FERG strategy is applied for each attempt.  

Figure 2. The probability of achieving various 
scores using a FERG strategy on a 100‐item, 4‐
option MC exam with 3 retake opportunities. 

 

Researchers have noted that removing response 
options can make assessments more accessible to 
students with disabilities and ELLs (Beddow, Elliott, & 
Kettler, 2009; Beddow, Kettler, & Elliott, 2008; Beddow, 
Kurx, & Frey, 2011). Additionally, there is an emerging 
consensus in the psychometric literature that supports 
the use of 3-option MC items (Rodriguez, 2005). 
However, as the number of response options decreases, 
the likelihood of success due to guessing increases. For 
example, for a 175-item exam, the minimum 
classification threshold when using 5-option MC items 
should be set to at least 58; when using 3-option MC 
items, the minimum classification threshold should be at 
least 70 in order to avoid examinees reaching the 
minimum classification threshold by using FERG. 

Reducing exam length to decrease testing burden 
and giving multiple retake opportunities on high-stakes 
exams have both been put forth as reasonable 
assessment design choices. In K-12 testing, shorter 
exams can help to assuage the concerns of those worried 
about too much classroom time taken up by 
accountability testing. Similarly, shorter credentialing 
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exams require less seat time and may therefore result in 
lower administration costs.  

Although the necessary values for the minimum 
classification threshold is proportional to exam length, 
short exams present additional problems, especially 
when multiple cut scores need to be set. For example, 
on a 40-item, 4-option MC exam, the minimum 
classification threshold should be at least 16. If 3 cut 
scores were set on such an exam, they would all be 
compressed into the 17-40 range. Because the cut scores 
in this situation would only differ by a few points, the 
classification consistency would likely be poor. Figure 3 
shows how exam length, MC item type, and retake 
opportunities interact when identifying the minimal 
value for minimum classification thresholds  

Figure 3. Minimum classification thresholds in 
order to have a 5% (or less) chance of achieving 
the threshold using FERG, for various exam 
lengths, retake policies, and MC item formats. 

 

Case Studies 

At this point, the discussion of FERG as a strategy 
has been hypothetical and the chances of it becoming an 
effective strategy for test takers may seem far-fetched. 
However, the following two case studies present large-
scale, real-world assessments where FERG could be 
used effectively. 

Case Study #1 

This case is based on a set of recently delivered 
statewide K-12 accountability assessments for students 
with severe cognitive disabilities. Each exam was 
individually administered (i.e., one student assessed at a 

time as opposed to group administered) and consisted 
of 15, 3-option MC items. If the student answered the 
item correctly, the student received 2 points. If the 
student answered the item incorrectly, the student was 
allowed to choose again from the remaining two options. 
If the student answered the item correctly on the second 
try, the student received 1 point. If the student answered 
the item incorrectly on the second try, the students 
received 0 points for that item. Therefore, the total 
possible score ranged from 0 to 30 for each exam. 

 Given the scoring procedure for these exams, 
when a student guesses on an item, his/her expected 
score for that item is 1 (see Figure 4). This makes 
achieving high scores by using FERG very likely. For 
example, a student has an approximately 26% chance of 
scoring 20 or higher using FERG. The effect of guessing 
is even more pronounced at lower score points: a 
student has an approximately 80% chance of scoring 10 
or higher when guessing. The probabilities of achieving 
various scores on these exams are shown in Figure 5. 

Figure 4. Visual explanation of the probabilistic 
outcomes for a given item if a student used the 
FERG strategy. 

 

In order to set a minimum classification thresholds 
where examinees have a 5% (or less) chance of achieving 
the threshold using FERG, the threshold needs to be set 
at 27 out of 30 (or higher). In other words, if we were 
setting multiple cut scores for this exam, the lowest cut 
score should not be less than 27 if we want to avoid 
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having people score above the cut score by randomly 
guessing through the whole exam. This issue could be 
somewhat remediated if the scoring rules were amended 
to remove the “second chance” option (see Figure 5). 
Without the second chance option (where the examinee 
gets to try to choose a correct answer from among the 
remaining options) the lowest cut score could be set as 
low as 18 points.  

Figure 5. Probability of getting an exam score (or 
higher) using the FERG strategy, given the Case #1 
test design, with and without the second chance 
option. 

 

Case Study #2 

This case is based on a recently administered 
educational assessment for adults that was delivered 
nationally. This program classifies adults into 1 of 7 
performance categories.  There are three different 
versions of the operational exam, each targeted at a 
different ability range (i.e., low, moderate, high). Each 
version of the operational exam is 38, 3-option MC 
items. A shorter locator exam is used to determine which 
version of the operational exam is administered. If an 
examinee scores very low on the operational exam, the 
examinee is not placed into a performance category and 
instead receives a “no score.”  

Using the cut scores for the locator exam and the 
operational exams, the probabilities of being placed into 
each performance category when using FERG were 
calculated (see Table 1). Ideally, one would want an 
examinee who guessed randomly all the way through the 
locator exam and then through the operational exam that 
they were assigned to score in the lowest performance 
level (or receive a “no score”). However, the actual 

results from FERG are much different: there is a greater-
than-a-coin-flip (55%) probability of being classified at 
Level 3, and overall there is a 79% chance of being 
classified at Level 2 or higher when using FERG.  

Table 1. Probabilities of Being Placed into Each 
Performance Level on the Case Study #2 Exam by 
Using the FERG Strategy  

  Level Probability  Cumulative Level 
Probaility 

Level 1  11%  91% 
Level 2  20%  79% 
Level 3  55%  59% 
Level 4  3%  4% 
Level 5  1%  1% 
Level 6  0%  0% 
Level 7  0%  0% 

     
No Score  9%  N/A 

 

Although it is very unlikely that an examinee can use 
FERG to be placed into one of the highest performance 
categories, these results raise serious questions about the 
utility and meaning of the lowest performance 
categories. In order to reduce the probability of being 
classified into a level greater than Level 1 when using the 
FERG strategy, the operational exam lengths would 
need to be extended to greater than 50, while 
maintaining the same cut scores. 

Strategies to Combat FERG 

In many educational and credentialing assessment 
programs, cut scores are set using criterion-referenced 
performance standards. These performance standards 
are based on the absolute (as opposed to 
relative/normative) levels of performance as defined by 
performance level descriptors (education) or 
descriptions of the knowledge, skills, and abilities of a 
minimally qualified candidate (credentialing). Clearly, as 
seen in the case studies, these criterion-referenced 
decisions can result in the placement of one or more cut 
scores at score points where, based on the design of the 
assessment and the question formats, an examinee may 
achieve these scores using the FERG strategy. The 
following sections identify different phases of the 
assessment development process where steps can be 
taken to minimize the effectiveness of FERG. 
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Early in the Assessment Development 

Process 

Choosing item types 

Steps taken early in the assessment development 
process may be some of the most effective in limiting 
the effectiveness of FERG. One solution would be to 
use constructed response (CR) items in lieu of MC items. 
However, while CR items are less susceptible to 
guessing, they also have some disadvantages (e.g., high 
scoring costs).  Alternatively, choosing MC varieties that 
are less susceptible to guessing may be helpful. Figure 3 
shows how 5-option MC items are less susceptible to 
FERG than are 3-option MC items. Alternatively, 
dichotomously scored multiple-select MC items can 
reduce the effectiveness of FERG. For example, a 4-
option multiple-select MC where the examinee selects 2 
correct options has a .167 chance of being guessed 
correctly (as opposed to a traditional 4-option MC item, 
which has a .250 chance of being guessed correctly). One 
downside of some of the MC item variations is the 
increased difficulty in writing additional effective 
distractors (see Item Development and Review section 
below). 

Choosing administration designs 

The choice of administration design may be an 
effective method to protect against FERG. 
Computerized adaptive test (CAT) designs dynamically 
assign items to examinees based on the examinee’s 
ability (as estimated by the items that they have 
completed to that point in the test). CAT designs can 
protect against FERG in two ways. First, because 
examinees are presented items that are well-matched to 
their ability level, they are less likely to resort to guessing 
in the first place (Wainer & Mislevy, 2000). Second, in 
CAT models that are based on an IRT model that 
includes a pseudo-guessing parameter, guessing may not 
need to be accounted for because the scores “…are 
adjusted for guessing in a much more sophisticated way 
than are conventional formula scores” (Dorans, 2000, p. 
141). One drawback of the CAT designs is that they 
require large item banks and large examinee volumes in 
order to have accurate item statistics for making 
appropriate item selections. 

Designing the test blueprint 

FERG can be especially problematic when exams 
are difficult (or have items with very homogeneous levels 

of difficulty) and have multiple cut points. For this type 
of exam, standard setting panelists working from a 
criterion-referenced performance definition may choose 
a cut score that is near the low end of the scale. From a 
content perspective, the cut score may be defensible, but 
if it is so low that examinees can pass using FERG, any 
content-based interpretation of the performance 
classification associated with that cut point will be 
suspect. The cut score cannot be arbitrarily raised to 
nullify the effect of guessing without also increasing 
performance expectations. One way around this 
problem is to add a sufficient number of low-difficulty 
items to the test blueprint in order to allow standard 
setting panelists to set cut scores high enough that 
examinees would be extremely unlikely to pass by 
guessing alone. In this way, the cut score does not 
increase (in terms of performance expectations) so much 
as the test scale is extended downward. The content of 
the easier items must still be relevant and fit under of the 
umbrella of the construct that the test was designed to 
measure. One disadvantage of this method is that it will 
increase the length of the test (though this may also 
result in increased reliability). Additionally, it may 
introduce some inefficiency to the measurement. That 
is, for examinations with important decision points (e.g., 
transitions between performance categories) targeting 
most items to have difficulty levels near the associated 
decision points can maximize the accuracy of the test 
scores around that decision point. In cases with these 
important decision points, adding easy items is 
inefficient in that it will likely do little to improve 
measurement precision around the cut points. However, 
it will help prevent examines from passing by using 
FERG. 

Reducing the number of performance 
categories/adding graded forms 

Once initial assessment design decisions have been 
made (e.g., exam lengths, item types, whether or not to 
allow retake opportunities and how many), the program 
will have enough information to estimate the lowest 
score for the minimum classification threshold that 
would be susceptible to FERG (see Appendix A and 
Appendix B; for sophisticated scoring designs, computer 
simulation may be necessary). Upon calculating these 
probabilities, the program may learn that the assessment, 
as designed, will not support the required number of 
performance categories. One solution would be to 
reduce the number of performance categories. Another 
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would be to create multiple, graded exam forms (e.g., a 
high ability form and a low ability form with a locator 
test to determine which form an examinee takes) that 
each support a subset of the performance categories. 
However, the utility of these solutions may be limited by 
policy constraints. That is, the number of performance 
categories may be dictated by regulations. Similarly, 
policy considerations may require administering the 
same exam (or multiple forms parallel in content and 
difficulty) to all examinees, rendering the graded form 
solution unfeasible. 

During Item Writing and Review 

Because the number of response options has a large 
effect on the impact of FERG (see Figure 2), it is 
essential to continuously remind item writers and 
reviewers of the importance of including high-quality, 
plausible distractors. Effective item writing training is 
also crucial because, “Writing plausible distractors … is 
the most difficult part of MC item writing” (Haladyna, 
2004, p. 120). Four-option MC items may not have a 
benefit over (and may function more like) 3-option MC 
items if the items include poor-performing, throw-away 
distractors. 

During Scoring 

Adjusting scores for guessing 

There is an extensive literature on adjusting MC 
exam scores to account for guessing. (e.g., Budescu & 
Bar-Hillel, 1993; Little 1966; Lord, 1963; Mattson; 1965; 
Zimmerman & Williams, 2003). A summary of the 
standard correction for guessing is shown in Appendix 
C. While many discussions about corrections for 
guessing are based on classical test theory (CTT), there 
have also been correction methods developed for IRT 
(see Chiu, 2010) and models designed for the explicit 
modeling of guessing (e.g., Park, Pituch, Kim, Dodd, & 
Chung, 2015). Lesage, Valcke, and Sabbe (2013) 
provided a summary of some newly developed 
alternatives to traditional guessing adjustment methods. 
Although there are several guessing adjustment 
methodologies to choose from, there is not a consensus 
in the psychometric field as to which the best is, nor 
whether or not corrections for guessing should be 
applied. A primary downside of correcting for guessing 
during scoring is that examinees must be made aware of 
the methodology being used; the appropriate test-taking 
strategy will vary based on the type of guessing 
adjustments (Lesage et al., 2013). Similarly, when 

guessing adjustments are to be applied, it is essential that 
such adjustments are clearly explained in the instructions 
to examinees. Another potential problem (for scoring 
adjustments and other means of accounting for 
guessing) is that assumptions must be made about 
examinees’ guessing behaviors that may not universally 
apply (e.g., risk aversion may be a confounding factor). 
Finally, for the most part, these adjustments assume that 
examinees answer items correctly when they know the 
right answer. With FERG, the examinee does not 
attempt to answer items, so the effectiveness of some of 
these procedures in addressing FERG does not have as 
extensive a research base (though it stands to reason that 
the effectiveness of the adjustments may generalize to 
FERG). 

Identifying aberrant response patterns 

FERG is clearly an aberrant response pattern. As 
such, it can be identified through statistical means. Smith 
(1993) recommends using fit statistics to identify 
randomly guessing examinees when using the Rasch 
model. Karabasos (2003; also working with the Rasch 
model), reviewed 36 person-fit indices and found several 
that were effective in identifying examinees who used 
FERG. Additional detection methods based on classical 
statistics are also discussed in Rogers (1997). A primary 
drawback of these methods is that while they can 
provide evidence that an examinee was using FERG, 
they do not prove it. Therefore, it is unclear how to treat 
examinees who are flagged using these methods (e.g., 
cancelling their scores). As in cheating investigations, 
testing programs will need to develop clear, defensible 
policies to deal with flagged candidates if such a course 
of action is adopted. An additional limitation of these 
methods is that as the proportion of examinees with 
aberrant response patterns increases, these aberrancies 
become more difficult to detect (Karabasos, 2003). (This 
is likely less of a problem because in most cases only a 
small percentage of examinees will use FERG.) 

During Standard Setting 

In some cases it may be possible to adjust for 
guessing during the standard setting process. For 
example, Plake and Cizek (2012) described three ways of 
adjusting the cut scores obtained when using the 
Yes/No variation of the Angoff standard setting 
method (Impara & Plake, 1997). A variation of this 
adjustment is shown in Appendix D. When using this 
adjustment, the standard setting panelists are instructed 
to make judgments based on the underlying question, 
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“Would the borderline examinee likely get the question 
right because they know the right answer.” In this type 
of standard setting activity, panelists typically are 
provided with additional statistics to inform their 
decisions. Often these statistics include p-values (the 
proportion of examinees who answered each question 
correctly) and impact data (the proportion of examinees 
in each performance category based on the panel’s 
recommendations).  

Although not noted in Plake and Cizek (2012), this 
statistical information also should be adjusted for 
guessing if guessing adjustments are to be applied to the 
recommended cut scores. If the p-values and impact 
data are not adjusted, they will be too high (i.e., inflated 
due to guessing) and may bias the standard setting 
panel’s recommendations.  An illustration of how to 
adjust p-values is shown in Appendix E (see also, Davis, 
1951; Lindquist & Hoover, 2015). Scores can be adjusted 
to calculate impact data using the method listed in 
Appendix C or through some other adjustment for 
guessing. 

A downside of adjusting standard setting results for 
guessing is that the process requires making similar 
assumptions about guessing behavior as those made 
when calculating guessing adjustments during scoring. 
That is, fairness issues may be associated with these 
adjustments. If adjusting the cut scores can be viewed as 
a post-hoc penalty for guessing, some would argue that 
candidates should be told about it in advance in order to 
adjust their test taking strategies (e.g., do not leave any 
items unanswered). 

Discussion 

It is the responsibility of researchers, test 
developers, and users to ensure that placing examinees 
into a performance level on a test indicates that the 
examinee has demonstrated the requisite knowledge, 
skills, and abilities, as opposed to succeeded through 
random guessing. Testing situations where guessing at 
random can be an effective strategy for passing the exam 
harm the validity of content-based interpretations of the 
exam results. As illustrated in the case studies shown 
here, guessing on assessments is not a theoretical 
problem, but a real challenge that must be taken into 
account and balanced against competing goals when 
developing assessments. 

The information presented here about the potential 
effects of FERG leads to a specific recommendation: 
Testing programs should estimate the probability 

of achieving the minimum classification threshold 
when using FERG early in the assessment 
development process. Appendices A and B provide 
two methods to calculate these probabilities. For 
programs using sophisticated scaling methodologies, 
statistical simulations may be necessary to calculate these 
probabilities. The earlier a program identifies FERG as 
a potential threat, the greater the range of available 
remediation tools. Alternatively, if a program does not 
find out that FERG is a threat until after the exam is 
administered, potential means of remediation may be 
very limited. For example, standard setting adjustments 
may be the only possible solution because scoring 
changes may not be feasible. That is, if examinees were 
not informed of the guessing adjustment prior to taking 
the exam and allowed to modify their test taking strategy 
appropriately, it would be unfair to adopt certain 
guessing adjustments. 

Some may argue that it seems unrealistic to assume 
that test takers would ever view FERG as a legitimate 
strategy. However, the case studies presented here 
illustrate that some existing large-scale testing programs 
are susceptible to this strategy, which raises doubts about 
the validity of performance classifications based on these 
exams (and subsequent decisions based on those 
classifications). Testing programs may need to alter their 
assessment designs in order to ensure that examinees are 
placed in performance categories based on what they 
know rather than how well they can guess. 
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Appendix A. Using Microsoft Excel to Estimate the Probability of Scoring at or 
Above a Given Score by Randomly Guessing When Each Exam Item has the 

Same Chance Probability1  

For a Single Administration 

The probability is estimated using the binomial distribution function in Excel. 

Values that are needed: 

 A = the score to be checked 

 B = the exam length (i.e., number of scored items) 

 C = the probability of getting an item correct when randomly guessing (usually, 1 divided by the 
number of response options2 ) 

Enter the following equation into an empty cell in an Excel spreadsheet. Replace the A, B, and C, values 
with the actual values of interest. D is the resulting probability. 

 D = (1 - BINOM.DIST(A,B,C,TRUE)) + BINOM.DIST(A,B,C,,FALSE)  

The result is the probability of an examinee getting the score of interest (or higher) by randomly guessing 
during a single administration. 

When Retakes are Allowed 

This calculation is needed to answer a slightly different question that is of interest when retakes are allowed: 
“What is the probability of an examinee getting the score of interest (or higher) on at least one test administration by randomly 
guessing?” 

Values that are needed: 

D = the probability calculated in the previous step 

E = the number of possible administrations (e.g., original administration + 3 retake opportunities = 
4 possible administrations) 

Enter the following equation into an empty cell in an Excel spreadsheet. Replace the D value with the 
probability calculated above and E with the value of interest. 

 =1 - BINOM.DIST(0,E,D,FALSE) 

                                                 
1  If items have different probabilities of success when randomly guessing (e.g., the exam contains a combination of 3-, 4-, and 5-option MC 

items), the average probability of success across items can be used with the equations shown to approximate the probabilities. For more 
accurate results, use the SAS code in Appendix B. 

2 If multiple-select MC items are used, the COMBIN function in Excel can be used to estimate the chance probability of success when 
randomly guessing on an item. For example, if the exam items each have 5 response options from which the examinee selects the best two 
(and the item is scored with no partial credit), the chance probability of success can be calculated by entering the following equation into an 
empty cell in an Excel spreadsheet 

=1/COMBIN(5,2) 

The result, in this case, is 0.1. That is, with 5 options, 10 unique pairs of 2 items can be created, so randomly guessing two options would 
have a 1/10 = 0.1 probability of resulting in a correct response.  
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Appendix B. Using SAS to Estimate the Probability of Scoring at or Above a 
Given Score by Randomly Guessing When Exam Items Have Different Chance 

Probabilities 

*************************************************************** 
* Directions:                                                 * 
*                                                             * 
* Enter the guessing probabilities for each item below the    * 
* term 'datalines,' one per line, and run the full program.   * 
*                                                             * 
* Explanations for the various steps are provided below.      * 
*                                                             * 
* The program takes about 2 minutes to run under the default  * 
* settings for a 100-item test. Run times will also vary with * 
* computer processing power                                   * 
*                                                             * 
***************************************************************;  
 
data probabilities;  
  input guess_prob; 
  datalines; 
  ENTER PROBABILITIES HERE, ONE PER LINE (REMOVE THIS LINE OF TEXT) 
  ; 
run; 
 
*************************************************************** 
* This section estimates performance on the exam for a sample * 
* of examinees using the probabilities entered above.         * 
*                                                             * 
* The program estimates the performance for 100,000 examinees * 
* randomly guessing their way through the test                * 
*                                                             * 
* If more/fewer examinees are desired, replace the 100000     * 
* value in the “do" statement below with the desired sample   *  
* size. Larger sample sizes provide more precise results, but *  
* will take longer to analyze.                                * 
*                                                             * 
* The value "90210" below is a seed for random number         * 
* generation and can be replaced with any number you choose.  * 
***************************************************************; 
 
data examinee_outcomes; 
  set probabilities; 
  do examinee = 1 to 100000;              
     guess_outcome = ranbin(90210,1,guess_prob); 
     output; 
  end; 
run;  
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*************************************************************** 
* This section calculates total score for each examinee       * 
***************************************************************; 
 
proc sort; by examinee; run; 
proc univariate data=examinee_outcomes noprint; 
  by examinee; 
  var guess_outcome; 
  output out=examinee_scores sum=score; 
run; 
 
 
*************************************************************** 
* This section calculates and prints the score distribution   * 
* for randomly guessing examinees. The resulting cumulative   * 
* frequency values indicate the percent of examinees scoring  * 
* at or above a given value.                                  * 
***************************************************************; 
 
proc sort data=examinee_scores; by descending score; run; 
 
proc freq data=examinee_scores order=data noprint;  
  table score/out=frequency_table outcum;  
run;  
 
proc sort data=frequency_table; by score; run; 
 

proc print data=frequency_table; run; 
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Appendix C. Estimating the Number of Items Where the Examinee Knows the 
Answer, Accounting for Skipping Behavior 

 

Let 
݊௧௧ ൌ the number of items on the test 
ܺ௦ ൌ the observed number of correct responses 
ܺ′௦ ൌ the observed number of incorrect responses 

 

Assumption 1: The test is scored dichotomously, where the examinee receives one point for a correct answer 
and zero points for an incorrect answer. 

Assumption 2: Skipped items are scored as incorrect. 

Therefore, based on Assumptions 1 and 2, 

݈ܽݐݐ݊ ൌ ݏܾܺ  ݏܾ′ܺ (C1)
 

Let 
݊ ൌ the number of items where the examinee knows the answer 
݊ᇱ ൌ the number of items where the examinee does not know the answer 

 

Assumption 3: Examinees respond correctly to the questions where they know the answer. 

Assumption 4: When examinees don’t know the answer, they either guess at random or skip the item. 

Therefore, based on assumptions 1-4, 

݊௧௧ ൌ ݊  ݊ᇱ (C2)

 

Let 
݊௨௦௦ ൌ the number of items where the examinee guesses  
݊௨ ൌ the number of items where the examinee guesses correctly 
݊௨ ൌ the number of items where the examinee guesses incorrectly 
݊௨௦ ൌ the number of items where the examinee skipped the item 

 

Therefore 

݊ᇱ ൌ ݊௨௦௦ ݊௨௦ (C3)

݊ᇱ ൌ ݊௨  ݊௨ ݊௨௦ (C4)

 

Solving Equation C3 for ݊௨௦௦ and solving Equation C4 for ݊௨ gives  

݊௨௦௦ ൌ ݊ᇲ െ ݊௨௦ (C5)

݊௨ ൌ ݊ᇱ െ ݊௨ െ ݊௨௦ (C6)
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Given the above assumptions, the observed number of correct (ܺ௦) and incorrect (ܺ′௦) responses for an 
examinee can be expressed as 

ܺ௦ ൌ ሺ1 ∗ ݊ሻ  ሺ1 ∗ ݊௨ሻ  ሺ0 ∗ ݊௨ሻ ሺ0 ∗ ݊௨௦ሻ, (C7)

			ܺ′௦ ൌ ሺ0 ∗ ݊ሻ  ሺ0 ∗ ݊௨ሻ  ሺ1 ∗ ݊௨ሻ ሺ1 ∗ ݊௨௦ሻ, (C8)

 

Solving Equation C7 for ݊ and solving Equation C8 for ݊௨ gives 

݊ ൌ ܺ௦ െ ݊௨ (C9)

݊௨ ൌ ܺ′௦ െ ݊௨௦ (C10)

 
Let 

ܲ ൌ the probability of guessing a given item correctly  
ܳ ൌ the probability of guessing a given item incorrectly  

 
 

Based on Assumption 1 

ܲ ൌ 1 െ ܳ (C11)

 

Assumption 5: It is possible to obtain an estimate of the probability of guessing correctly for each item.  

Based on Assumptions 1-5, ݊௨ can be estimated as 

݊௨ ൌ ܳ ∗ ݊௨௦௦ (C12)

 

Substituting from Equation C5 and simplifying gives 

݊௨ ൌ ܳ ∗ ሺ݊ᇲ െ ݊௨௦ሻ (C13)

݊௨ ൌ ܳ ∗ ݊ᇲ െ ܳ ∗ ݊௨௦ (C14)

 

Solving Equation C14 for ݊ᇲ gives 

݊ᇲ ൌ
݊௨  ሺܳ ∗ ݊௨௦ሻ

ܳ
 (C15)

 
Substituting the value of ݊ᇲ  from Equation C15 into Equation C6 gives 
 

݊௨ ൌ
݊௨  ሺܳ ∗ ݊௨௦ሻ

ܳ
െ ݊௨ െ ݊௨௦ (C16)

 
Substituting the value of ݊௨ from Equation C16 into Equation C9 gives 

݊ ൌ ܺ௦ െ ൬
݊௨  ሺܳ ∗ ݊௨௦ሻ

ܳ
െ ݊௨ െ ݊௨௦൰ (C17)
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Substituting the value of ݊௨ from Equation C10 into Equation C17 gives 

݊ ൌ ܺ௦ െ ቈ
ሺܺᇱ௦ െ ݊௨௦ሻ  ሺܳ ∗ ݊௨௦ሻ

ܳ
െ ሺܺᇱ௦ െ ݊௨௦ሻ െ ݊௨௦ (C18)

 
Using algebra, Equation C18 can be re-written as 

݊ ൌ ܺ௦ െ ቈ
ܺᇱ௦ሺ1 െ ܳሻ

ܳ
െ
݊௨௦ሺ1 െ ܳሻ

ܳ
 (C19)

 

By substituting from equation C11 and reorganizing 

݊ ൌ ܺ௦ െ 
ܲ
ܳ
ሺܺᇱ௦ െ ݊௨௦ሻ൨ (C20)

 

In other words, the number of items to which the examinee knew the answer can be estimated using the observed 
number of correct answers, the observed number of incorrect answers, the observed number of skipped items, and 
the probability of randomly guessing correctly/incorrectly. For very low observed scores, the estimated number of 
questions could be less than zero; in these cases it should be set to zero. Equation C20 is mathematically equivalent 
to the classic correction for guessing formula (see Lindquist & Hoover, 2015). 
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Appendix D. Adjusting a Cut Score to Account for Guessing, Accounting for 
Skipping Behavior 

Assumption 1: The exam is scored dichotomously, where the examinee receives one point for a correct answer 
and zero points for an incorrect answer. 

Assumption 2: Skipped items are scored as incorrect. 

Assumption 3: Examinees respond correctly to the questions where they know the answer. 

Assumption 4: When examinees don’t know the answer, they either guess at random or skip the item. 

Assumption 5: It is possible to obtain an estimate of the probability of guessing correctly for each item.  

Assumption 6: Standard setting panelists were instructed to make judgments without regard for guessing. For 
example, standard setting panelists were instructed to estimate the likelihood of a borderline candidate getting the 
question correct because the candidate knew the correct answer. 

Let 

ܺ௪ = the unadjusted passing score  
ܺௗ = the adjusted passing score  
ܺ௫ = the maximum possible score on the test (i.e., the total number of items) 
ܺௗᇲ௧_௪ = the number of items where the examinee does not know the answer 

 

For someone at the passing score (based on Assumption 6), 

ܺௗᇲ௧_௪ ൌ ܺ௫ െ ܺ௪ (D1)

 

Let 

ܺ௨௦௦ ൌ the number of items where the examinee guesses 

ܺ௨௦௦_௧ ൌ the number of items where the examinee guesses correctly 
ܺ௪ ൌ	the number of items where the examinee answers incorrectly 
ܲ ൌ the probability of guessing a given item correctly  
ܮ ൌ the probability that an examinee will guess item when they don’t know the answer  

 

To account for guessing, we should adjust the passing score upward by the number of points (i.e., items) that we 
would expect the candidate at the passing score to not know but guess correctly: 

ܺௗ ൌ ܺ௪  ܺ௨௦௦_௧ (D2)

 

We can estimate the number of items where the candidate at the passing score will guess: 

ܺ௨௦௦ ൌ ܮ ∗ ܺௗᇲ௧_௪  (D3)
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We can also estimate the number of items the examine will guess correctly 

ܺ௨௦௦_௧ ൌ ܲ ∗ ܺ௨௦௦ (D4)

 

Substituting the value of ܺ௨௦௦ from Equation D3 into Equation D4 gives 

ܺ௨௦௦_௧ ൌ ܲ ∗ ܮ ∗ ܺௗᇲ௧_௪  (D5) 

 
And substituting the value of ܺ௨௦௦_௧ from Equation D5 into Equation D2 gives 
 

Xadj = Xraw + ܲ ∗ ܮ ∗ Xdon’t_know (D6)

 
Finally substituting the value of Xdon’t_know from Equation D1 into Equation D6 gives 
 

ܺௗ ൌ ܺ௪  ሾܲ ∗ ܮ ∗ ሺܺ௫ െ ܺ௪ሻሿ (D7)

 
ܺ௪   is known from the standard setting study 
ܺ௫ is known based on the number of items on the test 
ܲ can be estimated based on the number of response options (i.e., for a 3-option MC item, ܲ = .3333) 
 .is unknown ܮ
 
In order to determine ܺௗ  we must determine a reasonable estimate of ܮ. One way to estimate ܮ would be to use 
operational testing data and the calculations shown in Appendix C: 

1. For each examinee, identify: 
a. the number of skipped items  
b. the estimated number of items where the examinee did not know the answer  

(calculate using ݊௧௧ െ ݊, as defined in the previous appendix) 

2. Divide (a) the number of skipped items by (b) the estimated number of items where the examinee did not 
know the answer 

3. Subtract the value from 1 
4. Average the results across all examines to obtain an estimate of L 
5. Plug the estimate of L into Equation D7 and solve to determine the Adjusted Cut Score 
 

If examinees always skip the items for which they don’t know the answer, then L will equal zero and ܺௗ ൌ ܺ௪ If 
examinees always answer every question, then L will equal 1 and Equation D7 will reduce to 

ܺௗ ൌ ܺ௪  ሾܲ ∗ ሺܺ௫ െ ܺ௪ሻሿ (D8)

 

Note that equation D8 is equivalent to the “1/A Guessing Adjustment” method described in Plake and Cizek 
(2012, pp. 196-197). 
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Example: 

• ܺ௪ (i.e., raw passing score) = 18 

• ܺ௫ (i.e., test length) = 38 

• ܲ ≈ .3333 (three-option MC) 

 this means that, on average, examinees guessed on an estimated 60% of items where they didn’t) 60. ≈ ܮ •
know the answer) 

 

Adjusted passing score  = 18 + [.3333 * .60 * (38-18)] 

                      = 18 + [4] 

          = 22 
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Appendix E. Estimating the Proportion of Examinees Who Know the Answer to 
an Item, Accounting for Skipping Behavior 

Let 
݉௧௧ ൌ the number of test takers 
݉௦ ൌ the number of test takers who provided correct responses 
݉′௦ ൌ the number of test takers who provided correct responses 

 

Assumption 1: The exam is scored dichotomously, where the examinee receives one point for a correct answer 
and zero points for an incorrect answer. 

Assumption 2: Skipped items are scored as incorrect. 

Therefore, based on Assumptions 1 and 2, 

݉௧௧ ൌ ݉௦  ݉′௦ (E1)

 

Let 
݉ ൌ the number of examinees who know the answer to the item 
݉ᇱ ൌ the number of examinees who do not know the answer to the item 

 
Assumption 3: Examinees respond correctly the questions where they know the answer. 

Assumption 4: When examinees don’t know the answer, they either guess at random or skip the item. 

Therefore, based on assumptions 1-4, 

݉௧௧ ൌ ݉ ݉ᇱ (E2)

 

Let 
݉௨௦௦ ൌ the number of examinees who guess on the item  
݉௨ ൌ the number of examinees who guess correctly on the item 
݉௨ ൌ the number of examinees who guess incorrectly on the item 
݉௨௦ ൌ the number of examinees who skip the item 

 

Therefore 

݉ᇱ ൌ ݉௨௦௦ ݉௨௦ (E3)

݉ᇱ ൌ ݉௨  ݉௨ ݉௨௦ (E4)

 

Solving Equation E3 for ݉௨௦௦ and solving Equation E4 for ݉௨ gives  

݉௨௦௦ ൌ ݉ᇲ െ ݉௨௦ (E5)

݉௨ ൌ ݉ᇱ െ ݉௨ െ ݉௨௦  (E6)
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Given the above assumptions, the observed number of people who provided correct (݉௦) and incorrect 
(݉′௦) responses for the item can be expressed as 

݉௦ ൌ ሺ1 ∗ ݉ሻ  ሺ1 ∗ ݉௨ሻ  ሺ0 ∗ ݉௨ሻ ሺ0 ∗ ݉௨௦ሻ,  (E7)

݉′௦ ൌ ሺ0 ∗ ݉ሻ  ሺ0 ∗ ݉௨ሻ  ሺ1 ∗ ݉௨ሻ ሺ1 ∗ ݉௨௦ሻ, (E8)

 

Solving Equation E7 for ݉ and solving Equation E8 for ݉௨ gives  

݉ ൌ ݉௦ െ ݉௨ (E9)  

݉௨ ൌ ݉′௦ െ ݉௨௦ (E10)

 

Let 
ܲ ൌ the probability of guessing the item correctly  
ܳ ൌ the probability of guessing the item incorrectly 

 

Based on Assumption 1 

ܲ ൌ 1 െ ܳ (E11)

 

Assumption 5: It is possible to obtain an estimate of the probability of guessing correctly the each item.  

Based on Assumptions 1-5, ݉௨  can be estimated as 

݉௨ ൌ ܳ ∗ ݉௨௦௦ (E12)

 

Substituting from Equation E5 and simplifying gives 

݉௨ ൌ ܳ ∗ ሺ݉ᇲ െ ݉௨௦ሻ (E13)

݉௨ ൌ ܳ ∗ ݉ᇲ െ ܳ ∗ ݉௨௦ (E14)

 

Solving Equation E14 for ݉ᇲ gives 

݉ᇲ ൌ
݉௨  ሺܳ ∗ ݉௨௦ሻ

ܳ
 (E15)

 

Substituting the value of ݉ᇲ  from Equation E15 into Equation E6 gives 

݉௨ ൌ
݉௨  ሺܳ ∗ ݉௨௦ሻ

ܳ
െ݉௨ െ ݉௨௦ (E16)

 

Substituting the value of muc from Equation M16 into Equation E9 gives 

݉ ൌ ݉௦ െ ൬
݉௨  ሺܳ ∗ ݉௨௦ሻ

ܳ
െ݉௨ െ ݉௨௦൰ (E17)
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Substituting the value of ݉௨ from Equation E10 into Equation E17 gives 

݉ ൌ ݉௦ െ ቈ
ሺ݉ᇱ

௦ െ ݉௨௦ሻ  ሺܳ ∗ ݉௨௦ሻ
ܳ

െ ሺ݉ᇱ
௦ െ ݉௨௦ሻ െ ݉௨௦ (E18)

 

Using algebra, Equation E18 can be re-written as 

݉ ൌ ݉௦ െ ቈ
݉ᇱ

௦ሺ1 െ ܳሻ

ܳ
െ
݉௨௦ሺ1 െ ܳሻ

ܳ
 (E19)

 

By substituting from equation E11 and reorganizing 

݉ ൌ ݉௦ െ 
ܲ
ܳ
ሺ݉ᇱ

௦ െ ݉௨௦ሻ൨ (E20)

 

Note: 


ொ
 is the odds of guessing an item correctly. 

Then, the obtain the proportion of examinees who know the correct answer to the item simply divide ݉ by 
݉௧௧. 

In other words, the proportion of examinees who knew the correct answer to an item can be estimated using the 
observed number of examinees who answered the question correctly, the observed number of examinees who 
answered the question incorrectly, the observed number of examinees skipped the question, and the probability of 
randomly guessing correctly/incorrectly.   

Note: If very few examinees answer the question correctly, the estimated proportion could be less than zero. In 
these cases it should be set to zero. 
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Example: 

 

• 1000 examinees are a given a 3-option MC test item (ܲ ≈ .3333, ܳ ≈ .6667) 

• 700 answer the item correctly. 

• 300 do not answer the item correctly (200 answer the item incorrectly, 100 skip the item). 

 

The traditional p-value estimate of item difficulty would be 

 

700
1000

ൌ 	 .70 

 

To estimate the number of examinees who know the answer, we do the following: 

 

݉ ൌ 700 െ 
. 3333
. 6667

ሺ300 െ 100ሻ൨ ൌ 	600 

 

Therefore, the adjusted p-value will be  

 

600
1000

ൌ 	 .60 
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