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A variety of differential item functioning (DIF) methods have been proposed and used for ensuring 
that a test is fair to all test takers in a target population in the situations of, for example, a test being 
translated to other languages. However, once a method flags an item as DIF, it is difficult to 
conclude that the grouping variable (e.g., test language) is responsible for the DIF result because 
there may exist many confounding variables that lead to the DIF result. The present study aims to (i) 
demonstrate the application of propensity score methods in psychometric research on DIF for day-
to-day researchers, and (ii) describe conditional logistic regression for matched data in a DIF 
context. Propensity score methods can help to achieve the comparability between different 
populations or groups with respect to participants’ pre-test differences, which can assist in 
examining the validity of making a causal claim with regard to DIF. 

In the development of educational, psychological, 
or licensure tests, or in the adaptation of tests to 
another language, an essential issue is to make sure that 
the test is fair to all test takers in the target population 
and the comparison of test scores is meaningful. For 
example, in recent years more than 60 countries have 
participated the Third International Mathematics and 
Science Study (TIMSS) and Programme for 
International Student Assessment (PISA). Many 
researchers have used the results of these international 
tests to inform their educational policy and school 
practice. It should be noted that these tests are often 
developed in one language first and then adapted to 
other languages for participants from different 
countries (e.g., Johansone & Malak, 2008). Therefore, 
an important question that has been raised is, “Do the 
test items in different languages measure the same 
abilities?” A similar question has been raised regarding 
the development of computerized tests, “Do the same 
items function the same in different test administration 
modes (e.g., paper-and-pencil vs. computerized tests) 
for all test takers?” 

Various differential item functioning (DIF) 
methods have been introduced to address these kinds 

of issues (e.g., Angoff, 1972, 1993; Cardall & Coffman, 
1964; Holland & Thayer, 1988; Shepard, 1982; 
Swaminathan & Rogers, 1990; Zumbo, 1999, 2007). An 
item displays DIF when individuals from different 
groups do not have the same probability of getting the 
item right after matching on their ability or attribute of 
interest. After an item has been flagged as DIF, test 
developers often proceed to examine whether it indeed 
puts one group at disadvantage and favors the other 
due to some extraneous sources other than the ability 
or attribute, such as the translation or administration 
mode. The researchers then make a decision whether 
the items should be removed from the test.   

The present study has two purposes. The first 
purpose is to demonstrate the application of propensity 
score methods in assessment and testing research on 
DIF for day-to-day researchers. Propensity score 
matching methods can help to achieve the 
comparability between different populations or groups 
with respect to participants’ pre-test differences, which 
can assist in examining the claim of DIF being the cause of 
item bias. The second purpose is to introduce the use of 
conditional logistic regression for data analysis based on 
matched data to the fields of assessment and testing 
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literature. These propensity score DIF methods are also 
compared to other conventional DIF methods. More 
specifically, the present study demonstrates how to 
apply propensity score methods with logistic regression 
analysis when examining DIF due to the effect of 
translation from English to French using Trends in 
International Mathematics and Science Study (TIMSS) 
2007 mathematics test data. 

At the outset, it is important to point out that 
conditional logistic regression differs from the 
conventional logistic regression such that the 
conditional maximum likelihood function is specified 
only for the discordant pairs/clusters1 Conditional 
logistic regression is widely used for case-control 
studies in epidemiology and biostatistics research, but 
has been largely neglected in assessment research (e.g., 
Breslow, Day, Halvorsen, Prentice, & Sabai, 1978; 
Langholz & Goldstein, 2001; Le & Lindgren, 1988; 
Lienhardt, et al., 2005). It will be explained in more 
detail in the section of Description of Conditional Logistic 
Regression DIF Analysis as well as the demonstration 
section 

This paper is organized into the following six 
sections: (i) group non-equivalence: a description of the 
fundamental problem at hand, (ii) a review of logistic 
regression DIF analysis, (iii) a description of propensity 
score matching methods, (iv) a description of 
conditional logistic regression, (v) a demonstration of 
conditional logistic regression DIF analysis using 
propensity score optimal matching methods, and (vi) a 
general discussion.  

Group Non-Equivalence: A Description 
of the Fundamental Problem At Hand 

One major challenge for all conventional DIF 
analyses is that they can only detect DIF, but cannot 
disentangle, for example, the effect of translation or 
administration mode from other confounders, personal 
or contextual factors (Zumbo, 2007). For instance, 
researchers would not know if the DIF of an item were 
due to translation problem or other factors when they 
found existent differences in students’ learning 
motivation, parents’ education, and social economic 

                                                 
1A discordant pair is a pair of participants matched on the propensity 

scores, one from the focus group and the other from the reference group, 
whose outcome scores on an item are different. Similarly, in a discordant set 
the score from one participant of the focus group is different from the scores 

obtained from the matched participants of the reference group or vice versa.  

status. This is more likely the case in educational 
settings because a lot of confounders covary with 
outcome variables. Hence, a typical DIF analysis 
cannot help test developers to decide on whether they 
should throw away an item flagged as DIF due to, for 
instance, translation problems. Unlike randomized 
experimental studies, DIF studies are based on 
observational data. Randomized experimental design 
can create equivalent groups and balance out the 
confounders by the randomization process (i.e., 
random assignment). However, observational studies, 
such as DIF studies, typically do not have equivalent 
groups before the testing.   

The most common attempts to approximate group 
equivalence are matching and covariance adjustment. In 
the context of DIF, matching is a method of selecting 
units from the reference group who are similar to those 
in the focal group with respect to the observable 
covariates that are related to group membership 
mechanism. Herein, the reference group is equivalent 
to the control group and the focal group is equivalent 
to the treatment group in an experimental design. 
However, exact matching becomes onerous or even 
impossible when matching on a large number of 
covariates, especially when several continuous 
covariates are involved. This will result in the sparse 
data problem, that is, some units from the treatment 
group do not have matched units from the control 
group. Rosenbaum and Rubin (1983) described this 
problem and indicated the needs to find approximate 
matching methods instead of exact matching.  

Stratification is an alternative to matching. Using 
this method, groups are classified into several strata and 
in each stratum units from the focal group are 
comparable to the units from the reference group 
(Rosenbaum, 2002). While easier to implement than the 
exact matching methods, stratification methods may 
still produce extremely unbalanced groups within 
certain strata.   However, stratification may also run 
into the sparse data problem as exact matching 
methods.  Cochran (1965) pointed out that the number 
of strata (combinations of different values/categories 
of the covariates) grows exponentially when the 
number of covariates increases, even for binary 
covariates. For example, when we have ten binary 
categorical covariates, there will be 1024 strata (210). 
With so many strata, some of strata may only include 
units from the focal group, but not from the reference 
group or vice versa. Thus, it is impossible to directly 
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compare the two groups when one group contains no 
units within a stratum.   

  Another common strategy is the covariance 
adjustment, such as ANCOVA or regression analysis, 
of which conventional DIF methods allowing for the 
adjustment of confounders are an example (Zumbo, 
2007, 2008). While familiar to most researchers, these 
methods may not be able to give a reliable adjustment 
on the differences in the observed covariates when 
there are substantial differences in the distribution of 
these covariates between the two groups (Cochran, 
1957; Rubin, 2001). We will use a hypothetical example 
to illustrate this problem. To appropriately compare 
student mathematics performance in private versus 
public schools, we want to adjust for parent annual 
income. However, parent income in public schools 
ranged from $10,000 to $30,000 while in private 
schools it ranged from $40,000 to $60,000. Hence, the 
distributions of parent annual income for public and 
private schools do not overlap at all.  

Figure 1 illustrates how covariance adjustment 
does not work well for comparing the mathematics 
performance among students using the above 
hypothetical example. The two lines represent the 
groups. The X-axis in Figure 1 shows parent income, 

with an overall average of X  = $35,000. However, 

neither group contains observations at or around X . 
The dashed regression lines, extrapolated for the 
groups and based on the existent observations, are 
what we use to compare the two groups. The adjusted 
means of outcomes,  and  represent our best guess 

on what student average scores would be if the two 
groups had not differed on parent income. Since these 
estimates are based on extrapolations, the average 
group differences adjusted by parents’ income (  and 

) may be incorrect and cannot be trusted for having 
accurately removed the pre-treatment/pre-test 
difference. See Zumbo (2008, p. 45) for a similar 
example in the context of DIF analyses across testing 
language (English versus French). 

It is clear that there is a need to develop more 
precise methods of DIF that can help to control for 
confounders. Dorans and Holland (1993) suggested 
that propensity score matching might be a good 
solution instead of matching directly on multiple 
observed variables. Bowen (2011) conducted Mantel-
Haenszel DIF analyses after controlling for 
distributional differences using propensity scores. 
However, Bowen only used one covariate, total test 
scores, for estimating propensity scores. Lee and 
Geisinger (2014) adopted propensity scores to control 
for the contextual sources when examining gender 
DIF. Their study shows that the Mantel-Haenszel and 
logistic regression methods based on propensity scores 
detected less number of gender DIF items than do the 
conventional Mantel-Haenszel and logistic regression 
methods. They suggest that the propensity score 
approach is a promising strategy for studying the cause 
of DIF because it can be used for balancing pre-test 
differences between groups and achieving an effect 
akin to random assignment if the key covariates are 
collected. These previous studies, however, did not take 
into account of the dependence structure of matched 
pairs or matched sets in their DIF analyses, an issue we 
will address in the description of conditional logistic 
regression section. 

Review on Conventional Logistic 
Regression DIF Analysis 

A variety of analytical methods have been 
proposed for detecting DIF. Among them, logistic 
regression has been highly recommended because of its 
flexibility and can test both uniform and non-uniform 
DIF (Swaminathan & Rogers, 1990; Zumbo, 1999, 
2007, 2008). Conceptually, the conventional logistic 
regression DIF analysis is a procedure in which group, 
ability, and an interaction between group and ability are 
used to predict the probability of a correct answer to an 
item of a given sample. Most commonly, the grouping 
variable is binary, representing a participant’s group 

Figure 1. Covariance adjustment for comparing the
mathematics performance of students from public and
private schools with non-overlapping covariate distributions
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membership, while an examinee’s total test score is 
used as a proxy for ability. A typical practice in the DIF 
literature is to designate a reference group as the group 
who is suspected to have an advantage over a focal 
group, though this designation is arbitrary. Group 
membership is usually defined in terms of a focal group 
(G = 1) and a reference group (G = 0). 

Two types of DIF are usually distinguished: uniform 
DIF and non-uniform DIF (Mellenbergh, 1982). If the 
regression coefficient of the grouping variable is 
statistically significant, it suggests that the probability of 
answering the item correctly is different between these 
two groups after controlling for the ability; this is the 
so-called uniform DIF. The ability variable should always 
be statistically significant because examinees with a 
higher ability should have a higher probability of 
answering it correctly. If the regression coefficient of 
the group and ability interaction term is significant, we 
say that non-uniform DIF is present. This scenario 
suggests that the probability of getting the item correct 
is different between the two groups and the direction 
and/or magnitude of the differences may vary 
depending on participants’ abilities. One of the main 
advantages of using logistic regression for DIF 
detection is its ability to identify both uniform and non-
uniform DIF, a major advantage over other methods, 
such as Mantel-Haenszel test.  

The conventional logistic regression DIF analysis 
can be conducted in three steps, null model, which only 
has the total test scores, uniform model, which includes 
both the total test scores and the grouping variable, and 
non-uniform model, which adds the interaction of total test 
scores and grouping variable to the uniform model. Or 
one can go directly to use the last equation to test both 
uniform and non-uniform DIF simultaneously. The 
equations are as follows: 

ln
1

	

ln
1

 

ln
1

∗  

where pi is the proportion of examinees that answer the 
item i correctly; total indicates the total test scores for 
each participant; group is the dummy coded grouping 
variable (0 = reference group, 1 = focal group); and 
total*group indicates the interaction between the two. 
The coefficient b1 indicates the relation between a 
person total test score and the score on the item; b2 

shows the mean score difference between the two 
groups on the item; and b3 shows the interaction 
between the person’s total test score and the group 
membership. 

Description of Propensity Score 
Methods 

In a randomized experimental study, the random 
assignment tends to make the groups comparable 
(balanced over both observed and unobserved 
covariates); hence, any differences between the groups 
prior to treatment are only due to chance (Rosenbaum, 
2002).  However, quasi-experimental or observational 
studies are widely used to look for cause-effect 
relationships in psychology, education, social behavioral 
sciences, biology, and economics, whenever 
randomized experiments are not ethical or not feasible. 
When the assignment mechanism is non-random, it is 
difficult to judge whether differences in the outcomes 
are due to the treatment or pre-existing differences 
between groups. 

Propensity score matching was first proposed by 
Rosenbaum and Rubin (1983) and has become a 
popular method used in medical and economic 
research, lately extending its popularity into the fields 
of social, psychological and educational research 
(Austin, 2008; Thoemmes & Kim, 2011). Propensity 
score approach is used to approximate a randomized 
experimental study by reducing the pre-existing group 
differences in the data collected from quasi-
experimental or observational studies. That is, the 
purpose of using propensity score is to balance the 
characteristics of non-equivalent groups, so that 
treatment and control groups with the same value of 
propensity score have the same multivariate 
distribution of the observed covariates (e.g., 
Rosenbaum, 1995, 2002, 2010; Rosenbaum & Rubin, 
1983; 1985; Rubin, 2001; Schafer & Kang, 2008). To 
solve the sparseness problem raised by the 
conventional matching methods, propensity score 
methods create a single composite score from all 
observed covariates and match observations from two 
groups on the basis of one dimensional propensity 
scores alone.  

Formally, propensity score is defined as the 
conditional probability of assigning an individual to the 
treatment condition given a set of observed covariates. 
The expression for the propensity score is: 
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|  
where  denotes the propensity score for each 
individual i; Zi is an indicator for group 
variable/treatment conditions, and Zi =1 refers to 
participants belonging to the treatment group or focal 
group in DIF context; Xi is a vector of scores on the 
observed covariates (Rosenbaum & Rubin, 1983). 
Using conventional notation, the propensity scores are 
usually estimated by logistic regression: 

1|
1

 (1)

where	  is an intercept and  is a vector of 
coefficients of covariates (e.g., D’Agostino, 1998; 
Rosenbaum, 2010, p. 167; Rosenbaum & Rubin, 1983). 

The adjustment of group differences using 
estimated propensity scores is usually accomplished by 
using one or a combination of the four commonly used 
statistical methods: (a) matching, (b) stratification, (c) 
weighting, and (d) covariate/regression adjustment. 
The first two methods are conducted in two stages, 
adjusting for the covariates first, and then calculating 
the group difference/treatment effect, whereas the 
other two methods are used for the actual adjustment 
while determining the group difference/treatment 
effect. Both matching and stratification methods are 
described herein because they share some similarity, but 
only propensity score matching is demonstrated in the 
present study. 

Propensity Score Matching  

Propensity score matching is a good strategy when 
a great number of covariates are collected, especially 
the key ones that can assist in approximating the 
random assignment mechanism. There are a variety of 
methods for matching, but the most widely used are 
greedy (e.g., nearest neighbour) matching and optimal 
matching (Guo & Fraser, 2014; Pan & Bai, 2015). In 
greedy matching, a treated unit usually is first selected 
at random, and a control unit whose propensity score is 
closest to that of this treated unit is chosen for 
matching the treated unit. The process is then repeated 
until all treated units are matched with control units. 
After matching a pair is not considered for further 
matching in a manner similar to stepwise regression by 
forward selection. Optimal matching is similar to 
greedy matching, but matches can be redone in optimal 
matching if a more satisfactory match is found for a 
case. This algorithm helps to minimize the overall 
global propensity score distance by going back and 

forth to adjust at the pair level (Rosenbaum, 1991). The 
optimal matching was adopted for the present 
demonstration, but one should be aware of other 
options. Theoretically, optimal matching should 
perform better than greedy matching in terms of the 
overall global propensity score distance, but not 
necessarily the case in terms of achieving the minimum 
distance for each individual covariate. Researchers are 
encouraged to compare greedy and optimal matching 
methods in their practice as some researchers have 
shown that both of them may work well, but one may 
perform better than the other in certain conditions 
(e.g., Austin, 2014; Gu & Rosenbaum, 1993).  

The most commonly used optimal matching 
methods are optimal pair matching and optimal full 
matching. Both of them also have certain limitations. 
With pair matching, subjects are matched in pairs and 
the unmatched subjects are excluded from the analysis 
after matching, leading to a reduction in sample size. 
The sample size could be substantially reduced for the 
final analysis when the focal group is much smaller 
than the reference group, which may result in under-
representation of the original sample and lower power 
for significance tests.  

Since Rosenbaum (1991) introduced optimal full 
matching, many researchers have tried to examine its 
performance, applied this method to empirical data, 
and develop software program to extend its use. For 
example, Gu and Rosenbaum (1993) conducted a 
simulation study, Marcus (2000) applied it to the 
evaluation of the Head Start compensatory education 
program, and Hansen and Klopfer (2006) extended the 
full optimal matching using optmatch R package 
(Hansen, 2004; Hansen, Fredrickson, Buckner, 
Errickson, & Solenberger, 2016). In an optimal full 
matching, matched sets may contain a single treated 
unit and multiple matched control units (one-to-many) 
or many treated units with a single matched control 
unit (many-to-one). The propensity score distance in 
the one-to-many or many-to-one cases will be adjusted 
by weights based on the number of matched cases 
included (Rosenbaum, 1991; Rosenbaum, 2010, p.179-
183). With full matching, all subjects are used for 
matching, but the matching criterion may be looser 
than that of a pair matching, and hence the balance of 
the group distributions sometimes may not be as good 
as that obtained from a pair matching. So in practice, 
we should compare the balance of the group 
distributions obtained from both optimal matching 
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methods and choose the one with a relatively better 
balance.  

We also want to briefly describe stratification 
approach as it share some similarity with the full 
matching method. Using propensity score stratification 
method, subjects are ranked according to their 
estimated propensity scores and then are categorized 
into homogenous strata with similar propensity scores. 
A common approach is to divide subjects into five 
equally-sized subgroups using the quintiles of the 
propensity scores. The group difference/treatment 
effect is estimated within each stratum and then the 
overall group difference is computed based on a 
combination of the results from all the strata using 
weights. Rosenbaum and Rubin (1984) showed that 
approximately 90% of the selection bias due to 
confounders can be eliminated by stratifying on the 
quintiles of the propensity score when estimating a 
linear treatment. It should be noted that full matching 
can be considered as a special case of stratification with 
either one treated unit or one control unit in all the 
possible matched sets; the matched sets in full 
matching have been called in different terms, matched 
sets, matched clusters, subsets, strata or subclasses, in 
the literature. We do not include a demonstration of 
propensity score stratification in this paper because of 
space limitations. 

Description of Conditional  
Logistic Regression 

As we mentioned earlier, the regular logistic 
regression analysis is not appropriate for matched data, 
which has been largely documented in the literature of 
case-control studies. The matched sets (matched pairs 
or matched clusters) are analogous to paired, nested, or 
multilevel data. Hence, it is important to take account 
of this nested relationship or dependence structure in 
one’s data analysis. Unfortunately, a lot of previous 
studies neglected this dependence structure in their 
matched data and simply conducted regular regression 
analysis that assumes data independence. For data 
matched by pairs (e.g., optimal pair matching, greedy 
matching) or by sets/clusters (e.g., full matching), 
conditional logistic regression is more appropriate because it 
takes into account of the dependence structure in the 
data due to matched pairs or matched sets.  

The fundamental difference between the 
conventional/regular and the conditional logistic 

regression models is that the parameters in the 
conditional logistic regression are estimated using 
paired or clustered sample. The discordant pairs or 
clusters are used for the conditional likelihood 
estimations, while concordant pairs2 or clusters are 
disregarded as they cannot provide any information for 
the conditional likelihood estimation. Following 
Hosmer et al.’s notation, the conditional likelihood 
function for the pair matching is provided as follows 
(Hosmer, Lemeshow, & Sturdivant, 2013, p.247):  

1

1

1
 

where k indicates the pairs (k=1, 2, …, K); 	indicates 
whether the kth pair is discordant (0/1);   is an item 
score for a treated unit in the kth pair (0 or1) whereas 
1  is an item score for a control in the kth pair (0 
or 1);  is the transpose of , which is a vector of 
coefficients of covariates;  is a data 
vector/matrix of covariate(s), which is equal to the 
value of the treated minus that of the control. To apply 
this function in the context of DIF analysis, a treated 
unit is regarded as a subject from the focal group 
whereas a control is regarded as a subject from the 
reference group; the matrix  can be 
specified in the following expression, 

∗
∗ . Please note that this 

conditional likelihood function can be generalized for 
full matching. 

The conditional logistic regression allows one to 
take account of matched pairs or matched clusters 
while factoring out the nuisance parameters— the 
varying intercepts of the matched units of cases and 
controls. Some studies have shown that the use of a 
matched study design and conditional logistic 
regression analysis can increase efficiency of parameter 
estimates, compared to an unmatched design with 
regular logistic regression analysis (e.g., Breslow et al., 
1978; Hosmer, Lemeshow, & Sturdivant, 2013, pp.227-
267; Langholz, & Goldstein, 2001). Pike, Hill and 
Smith (1980) showed that the unconditional likelihood 
method, i.e., the regular logistic regression, might give 
biased estimates of odds ratios which were severely 
inflated compared to the conditional likelihood 

                                                 
2A concordant pair is a pair of participants matched on the propensity 

scores, one from the focal group and the other from the reference group, 
whose outcome scores on an item are the same.  
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method, i.e., conditional logistic regression. Breslow 
and Day (1980) also illustrated how the unconditional 
likelihood analysis of matched data could produce 
biased parameter estimates. The application of 
conditional logistic regression is illustrated in the step-3 
of the demonstration. 

A Demonstration of Conditional 
Logistic Regression DIF Analysis 
Using Propensity Score Approach 

Data Sources 

The data were retrieved from the TIMSS 2007. 
Canada was chosen for this demonstration as it is a 
bilingual country and students were allowed to choose 
the test language, either in English or French. Three 
provinces (British Columbia, Ontario, & Quebec) in 
Canada participated in TIMSS 2007. Quebec is a 
French speaking province, and British Columbia and 
Ontario are English speaking provinces even both 
English and French are official languages in Canada. 
Booklet one of the TIMSS 2007 Grade-8 mathematics 
test was used in this demonstration with 25 
dichotomous items and 4 polytomous items. A detailed 
demonstration was provided using items #13 and #5. 
Propensity score DIF methods will be explained in 
detail in the data analysis section. These two items were 
chosen because they demonstrated two scenarios: (i) 
propensity score methods agreed with the conventional 
DIF methods on the results, (ii) contradictory 
conclusions on DIF results showed between propensity 
score and conventional DIF methods. 

A total of 822 students were included in the final 
analysis; 54% are girls with a mean age of 14 
(SD=0.49). More students chose to write the English 
version of the test (541 English vs. 281 French). 
Language (English vs. French) was used as a grouping 
variable for the DIF analysis, which is called grouping 
variable or language variable interchangeably in this 
demonstration. In order for readers to follow the terms 
used in the output of MatchIt R package (Ho, Imai, 
King, & Stuart, 2011), we also used the terms, control 
and treatment groups, in the demonstration. Readers 
should connect these terms with the terms used in DIF 
analyses: English test takers were considered as a 
reference group, referred to a control group in the output of 
following analyses, while French test takers were 
considered as a focal group, referred to a treatment group in 
the output. All the test and questionnaires were 

developed in English and then translated to French. A 
detailed description of these variables can be found in 
TIMSS 2007 User Guide (Foy & Olson, 2009). The 
data can be accessed from TIMSS website 
http://timssandpirls.bc.edu/timss2007/idb_ug.html . 

Data analysis 

The R packages for propensity score matching 
require complete data set, with no missing values. In 
this demonstration, there was only a single student with 
missing values on the outcome variables (mathematics 
items), so that this student’s data were discarded from 
the analyses. The missing values in covariates were 
imputed using multiple imputations, but for the 
demonstration purpose, only one imputed data set was 
used for this study. Detailed information about how to 
deal with missing data can be found in Rubin (2006) 
and Little and Rubin (2014). Due to limited space, 
missing data issue was not addressed in this paper. 

Software program R 3.1.3 was used for all analyses. 
The procedures of conditional logistic regression DIF 
analyses based on the propensity score approach 
includes four steps: (i) selecting covariates, (ii) 
estimating propensity scores and then matching data, 
(iii) running conditional logistic regression DIF analyses 
using matched data, and (iv) conducting a sensitivity 
analysis to examine hidden bias. Optimal pair and full 
matching methods are demonstrated and reported. 
Appendix A provides the R-code of the demonstration. 
The 4-step procedure for Propensity Score Optimal 
Matching is described below. Items #13 and #5 used in 
the demonstration were released by TIMSS and are 
described in Appendix B, so that readers can see what 
these items are and have a better understanding from 
the content.  

Step-1 Selecting covariates. The decision of 
which covariates to include in an analysis is mainly 
based on researchers’ experiences, expert opinions, and 
literature review. It is a crucial step because the 
selection of covariates has a major impact on how well 
the propensity scores uncover the unknown 
mechanism of self-selection into groups. Propensity 
score approach has an underlying assumption, strong 
ignorability of treatment assignment, that is, treatment 
assignment and people’s responses are conditionally 
independent after controlling for the effects of a 
collection of covariates that determine the assignment 
mechanism (Rosenbaum & Rubin, 1983). Effective 
covariates are those that are more likely to balance out 
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the pre-test group differences, thus allowing for the 
possibility of making legitimate causal claim, as does 
with a randomized experiment. However, in reality one 
never knows the true causal effect and is unable to 
include all possible important covariates, so we can 
only obtain estimates of causal effect. 

There are some controversial issues surrounding 
the selection of covariates, including the belief that all 
available covariates should always be used for 
propensity score estimation, and that over-
parameterization is not a problem for propensity score 
estimation. However, some researchers have shown 
that the selection of covariates is a critical matter. Zhao 
(2008) found that over-parameterization can bias the 
parameter estimate of the grouping variable in the final 
analysis. Cuong (2013) showed that the inclusion of all 
covariates that were related to outcome or both 
outcome and grouping (assignment) variables improved 
the efficiency of the parameter estimate of grouping 
variable, but the inclusion of covariates that were only 
related to a grouping variable tended to increase the 
mean square error of that parameter estimate. Based on 
his findings, Cuong suggested to not include covariates 
that are only related to the grouping variable. Here, we 
recommend researchers to be aware of these issues 
when choosing covariates for propensity score 
estimation. 

In this demonstration, nine originally collected 
variables or derived indices by TIMSS were chosen 
from students’ background questionnaire and were 
used as the observed covariates for estimating the 
propensity scores. These covariates include number of 
books at home (nbook), use of calculator (calculator), parents’ 
education (parentEdu), availability of computer(computer), time 
on mathematics homework (timehw), positive affect to 
mathematics (affect), valuing mathematics (valuing), self-
confidence (slfconf), and perception about school safety (safty). 
These variables have been shown to be important 
factors related to student academic achievement in the 
literature (e.g., Shen, 2002; Robitaille & Garden, 1988; 
Wu & Erciken, 2006). For example, Leder and 
Grootenboer (2005) discussed how students’ affect 
(e.g., values, attitudes) is related to mathematics 
education. Liu, Wu, & Zumbo (2006) reported that 
most of these variables listed above were correlated to 
student mathematics achievement across six countries 
and the correlations varied across countries using 
TIMSS data. Similarly, Teodorović (2011) found that 
student individual variables as well as school factors, 

such as average parent education, time on tasks, 
classroom climate, school size, and school climate, had 
statistically significant effects on students’ achievement 
tests on mathematics. 

Step-2 Estimating propensity score and 
matching. For optimal matching, MatchIt R package 
(Ho, Imai, King, & Stuart, 2011) was used to estimate 
the propensity scores and to match the data. For 
optimal matching, the covariate balance was examined 
using two strategies: (1) graphs of propensity score 
distributions, and (2) percent bias reduction PBR 

100% where Bias = | Mean(X1)-

Mean(X0) |, Biaspre refers to Bias computed before 
matching, Biaspost refers to Bias computed after 
matching,  X0 denotes covariates before matching and  
X1 denotes covariates after matching. To use PBR, 
researchers need to calculate the mean difference 
between two groups before matching as well as that 
after matching in terms of each covariate and then 
compare these two mean differences for each covariate. 
PBR suggests the balance between two groups on a 
particular covariate is improved if the mean difference 
between two groups after matching becomes smaller. 

Step-3 Running conditional logistic regression 
DIF analyses. For optimal pair and full matching 
methods, conditional logistic regression models were used 
for the DIF analyses to take into account matched pairs 
obtained from pair matching or matched clusters 
obtained from full matching. It is important to note 
that the algorithm used in conditional logistic 
regression DIF for matched case-control studies differs 
from the regular logistic regression DIF as described in 
the review of conditional logistic regression. The R 

package Epi was used for the analyses (Carstensen, 
Plummer, Laara, & Hills, 2016). 

Step-4 Sensitivity analysis. The sensitivity 
analysis is conducted to check the hidden bias due to 
unobserved covariates that are related to treatment 
assignment mechanism. This analysis also indirectly 
tests the underlying assumption of propensity score 
approach, strong ignorability of treatment assignment. 
R package rbounds was used for the analyses (Keele, 
2014). The purpose of sensitivity analysis is to 
investigate how inferences about the treatment 
effects/group differences would be altered by hidden 
bias, and how large the differences would have to be in 
order to change the conclusion of the study. 
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Rosenbaum (1995, 2002) developed sensitivity tests for 
matched data, which can be expressed by the odds ratio 
of two subjects assigning to treatment groups 

/

/
Γ. 

Rosenbaum’s tests rely on the sensitivity parameter 
Γ, which measures the degree of departure from 
random assignment of treatment. Two subjects j and k 
with the same observed covariate Xi as well as the 
unobserved covariates Ui should have same 

probabilities of assignment ( , , i.e., Pr(Zj = 1｜Xj, 

Uj) = Pr(Zk = 1｜Xk, Uk). Correspondingly, a Γ value 
of one indicates that the study is free of hidden bias. 
However, with the same observed Xi but different 
unobserved Uj, the two subjects would have different 
probabilities of assignment and Γ would be a value that 
deviates from one. In a sensitivity analysis, one inquires 
how large can Γ be when the obtained conclusion 
begins to change. In other words, the question 
researchers want to ask is how much hidden bias there 
would need to alter our conclusion. A study is highly 
sensitive to hidden bias if the conclusion changes for Γ 
just rarely larger than one, and it is relatively insensitive 
to hidden bias if the conclusion changes for quite large 
values of Γ. 

A sensitivity analysis will consider a range of 
possible values of Γ, starting from one, and show how 
the conclusion will be changed when Γ is increased and 
reaches a certain value. The range of Γ values is usually 
examined with respect to an interval of the p-value. For 
Γ = 1, one obtains a single p-value, namely the p-value 
for a randomized experiment. For each Γ > 1, one 
obtains not a single p-value, but rather an interval of p-
values reflecting the uncertainty due to hidden bias. 
The particular Γ of interest is the value that turns the 
upper bound p-value from significant to non-significant 
at alpha = 0.05. The larger the upper Γ value is, the 
more robust the result is to hidden bias. However, 
there is no criterion to determine how large the Γ value 
is required for being considered a good cut-off. Keele 
(2010) suggested values between 1 and 2 for Γ in social 
sciences as most findings in social sciences are not 
robust to hidden bias with a larger magnitude. Detailed 
information about the algorithm for calculating upper 
bound p-value can be found in Rosenbaum (1995, 
2002) and Keele (2010). 

In application, Rosenbaum’s sensitivity analysis has 
some limitations. The method works well for 

dichotomous and continuous variables, but has not 
been generated to ordinal categorical variables. In 
addition, the current R packages can handle either pair 
matching or one-to-many matching, but the number of 
matched subjects needs to be a constant for all 
matched sets. In the optimal full matching method, the 
number of matched subjects can vary from case to 
case. Sensitivity analysis with currently available R 
packages still cannot handle the full matching case. 
Hence, we only demonstrated sensitivity analysis for 
the dichotomous variables with the optimal pair 
matching method in this demonstration. 

Results 

For the purpose of demonstration, the 4-step 
propensity score DIF analysis was illustrated using two 
items (items #13 and #5) from the grade 8 
mathematics test. A student's total score (the proxy 
variable for ability) was calculated by adding up all 
mathematics item scores except the one used as the 
outcome variable for the DIF analysis. 

Step-1 selecting covariates. As we mentioned in 
the description of this step, one should be cautious 
about the selection of covariates, which may affect the 
conclusion of DIF analysis. In this demonstration, we 
included nine covariates (see step-1 of data analysis 
section). These covariates were chosen based on the 
findings from the literature, which have been shown to 
be influential factors on students’ mathematic academic 
performance. The detailed description is provided in 
the step-1 of data analysis section. The purpose of DIF 
investigation in this study is to examine if the 
translation of the test language gave rise to DIF, had 
the two groups been comparable. In other words, we 
investigated whether the test translation caused 
differences on student mathematics performance given 
that students from two equally capable groups were 
comparable on their background variables. It should be 
noted that the importance of this step is not only about 
the validity of causal inference we are making, but also 
about the social consequences of the inference, which 
can affect education policy (e.g., dealing with 
achievement gaps if the translation was shown not an 
issue) or decisions on the test development (e.g., 
throwing or rewriting DIF items with a high financial 
cost).    

Step-2 Estimating propensity scores and 
matching data. In step-2, the propensity scores were 
estimated and then the data were matched (English vs. 
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French groups) by either optimal pair matching or 
optimal full matching. For optimal matching, the 
propensity score estimation is embedded in the R 
package MatchIt (Ho, Imai, King, & Stuart, 2011). An 
add-on package optmatch (Hansen, 2004; Hansen, 
Fredrickson, Buckner, Errickson, & Solenberger, 2016) 
will be automatically loaded when performing optimal 
matching in MatchIt. The R code for conducting 
optimal matching is provided in Appendix A. 

Optimal pair matching. Because this step is very 
important for the propensity score matching methods, 
the R code of MatchIt is also provided in Figure 2 in 
addition to Appendix A. Optimal pair matching in this 
demonstration is performed with MatchIt by setting 
method=“optimal” and “ratio=1” in the R code (Figure 
2.a). In addition, distance = "logit" indicates that logistic 
regression is used for this analysis because the outcome 
variable is dichotomous. Figure 3 and the upper body 
of Table 1 present the balance check for the optimal 
pair matching method. Figure 3 shows the distributions 
of estimated propensity scores before as well as after 
matching using both histogram and jitter graph. In the 
histogram, the distributions of two groups were not 
comparable before matching and many English test 
takers (denoted by “raw control” in the graph) had 
lower propensity scores. After matching, there was still 
some noticeable discrepancy between the distributions 
of two groups though the distribution of English group 
(“matched control”) became similar to that the French 
group (“matched treated”), which indicates that the 
covariate balance was less than satisfactory. 

In the jitter graph, each circle represents a case’s 
propensity score. The absence of cases in the 
uppermost “unmatched treatment units” class (i.e., 
French group) indicates that there were no unmatched 
treatment units. The two middle classes, “matched 
treatment units” and “matched control units”, showed 
a close match between French and English groups. The 
last class shows the unmatched control units (English 
group); these units were excluded from the further 
analyses. Among a total of 541 subjects who took the 
English version test, only 281 subjects were matched 
with the French group (treatment group). 

The upper part of Table 1 presents the percentage 
of bias reduction (PBR) for optimal pair matching. It 
shows that nearly half of the covariates had a large 
magnitude of bias reduction (above 70% reduction) 
and a few covariates had a medium level of reduction 

 
 

 

Figure 3. Propensity score distributions before and after 
the pair optimal matching
Note. “Treated” denotes French test takers; “Control” denotes 
English test takers

 

 

(40%-70% reduction). One covariate, computer, had a 
negative PBR value indicating that the differences 
between the two groups became even larger after 
matching. However, the increase was fairly small in 
magnitude. One covariate, selfconf, has a small 
magnitude of increase in bias, but its PBR cannot be 
computed because the bias before matching is zero and 
hence cannot be used as the denominator for 
computing PBR. 

  

Figure 2. R code for step-2: optimal pair matching and 
optimal full matching 
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Table 1. Percentage of Bias Reduction (PBR) Using the Optimal Pair and Full matching 

Optimal Pair Matching 

  Before Matching After Matching 

  Mean Treated Mean Control Mean Difference Mean Control Mean Difference 
Bias Percentage  
Reduction (%) 

distance 0.430 0.296 0.134 0.390 0.040 70.3 

nbook 1.722 2.381 -0.658 1.843 -0.121 81.6 

calculator 2.466 2.141 0.326 2.413 0.053 83.6 

parentEdu 3.238 3.218 0.020 3.221 0.018 12.4 

computer 3.626 3.669 -0.043 3.673 -0.046 -8.1 

timehw 0.989 1.198 -0.209 1.100 -0.110 47.1 

affect 1.231 1.100 0.132 1.196 0.036 72.9 

valuing 1.765 1.784 -0.019 1.776 -0.011 42.6 

slfconf 1.392 1.392 0.000 1.377 0.014 - 

safty 1.463 1.390 0.073 1.424 0.039 46.1 

Optimal Full Matching with One-to-Many 

Before Matching After Matching 

 
Mean Treated Mean Control Mean Difference Mean Control Mean Difference 

Bias Percentage 
Reduction (%) 

distance 0.430 0.296 0.134 0.388 0.043 68.2 

nbook 1.722 2.381 -0.658 1.883 -0.161 75.6 

calculator 2.466 2.141 0.326 2.395 0.071 78.1 

parentEdu 3.238 3.218 0.020 3.226 0.012 40.2 

computer 3.626 3.669 -0.043 3.670 -0.043 -0.9 

timehw 0.989 1.198 -0.209 1.080 -0.091 56.6 

affect 1.231 1.100 0.132 1.178 0.053 59.5 

valuing 1.765 1.784 -0.019 1.766 -0.001 97.5 

slfconf 1.392 1.392 0.000 1.378 0.014 - 

safty 1.463 1.390 0.073 1.418 0.044 39.1 

Optimal Full Matching with a Combination of One-to-Many & Many-to-One 

Before Matching After Matching 

 
Mean Treated Mean Control Mean Difference Mean Control Mean Difference 

Bias Percentage 
Reduction (%) 

distance 0.430 0.296 0.134 0.427 0.003 97.6 

nbook 1.722 2.381 -0.658 1.729 -0.007 99.0 

calculator 2.466 2.141 0.326 2.484 -0.018 94.5 

parentEdu 3.238 3.218 0.020 3.288 -0.049 -142.3 

computer 3.626 3.669 -0.043 3.617 0.010 77.5 

timehw 0.989 1.198 -0.209 1.051 -0.062 70.2 

affect 1.231 1.100 0.132 1.199 0.032 75.3 

valuing 1.765 1.784 -0.019 1.768 -0.003 86.6 

slfconf 1.392 1.392 0.000 1.388 0.003 - 

safty 1.463 1.390 0.073 1.478 -0.016 78.4 

Note. The full names of nine covariates are as follows: number of books at home (nbook), use of calculator (calculator), parents’ 
education (parentEdu), availability of computer(computer), time on mathematics homework (timehw), positive affect to mathematics 
(affect), valuing mathematics (valuing), self-confidence (slfconf), and perception about school safety (safty). 
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Optimal full matching. Optimal full matching can be 
performed with MatchIt by setting method=”full” in the R 
code (Figure 2). Researchers can choose one-to-many 
(one treated unit to multiple controls) or a combination 
of one-to-many and many-to-one (multiple treated 
unites to one control unit). An example of the matched 
sets in a full matching (one-to-many & a combination) 
can be found in Appendix C. For instance, in Appendix 
C the matched set #4 included one treated unit and 
five control unites when using one-to-many full 
matching, but includes five treated units and one 
control when using full matching (a combination of 
one-to-many and many-to-one). 

In this demonstration, when setting 
max.controls=5, we put an upper restriction on the 
number of controls to include in any matched set. 
When setting min.controls=1 and max.controls=5,  
users will get one-to- many matching, which allows 
matched sets with different ratios, 1:1. 1:2, 1:3, 1:4 or 
1:5. The R code is provided in Figure 2.b. When setting 
min.controls=1/5 and max.controls=5, one can get a 
combination of one-to-many and many-to-one 
matched units and put an upper restriction of five on 
the maximum treated and control units in this example, 
which allows matching sets with different ratios, 1:1. 
1:2, 1:3, 1:4, 1:5, 2:1, 3:1, 4:1 or 5:1. The R code is 
included in Figure 2.c. 

Without defining max.controls and min.controls in R 
code, the default is a combination of one-to-many and 
many-to-one, but there are no upper restrictions. 
Hansen and Klopfer (2006) recommended to set the 
upper restrictions because researchers could control the 
variability of an estimate on the matching and the 
estimation algorithm would be faster. Researchers 
should decide on the upper restrictions based on the 
sample characteristics (e.g., sample sizes) and compare 
balance results using different ratios of treated units 
and controls. 

 Figure 4 and the middle part of Table 1 present 
the balance check for the one-to-many matching. 
Figure 5 and the lower part of Table 1 present the 
balance check for the optimal full matching method 
with a combination of one-to-many and many-to-one 
matching. Because all the data points were used for 

matching in the optimal full matching method, there 
are no instances of the “unmatched control units” 
class. The jitter graphs show that all subjects were 
matched, with the lower propensity scores more piled 
up among the matched control units (English group). 

Although both Figures 4 and 5 show a great deal 
of improvement in covariate balance between groups 
after matching, Figure 5 shows a better match when 
using a combination of one-to-many and many-to-one 
matching, which is also echoed the percentage of bias 
reduction (PBR) in the lower part of Table 1. The 
results of PBR showed that six out of nine covariates 
had a large magnitude of bias reduction (above 70% 
reduction), two of them had above 90% reduction 
(99.0% for nbook; 94.5% for calculator), one covariate, 
parentEdu, had a small magnitude of decrease though 
the PBR value looks large. Similar to pair matching, the 
PBR could not be computed for selfconf as the bias 
before matching is zero. Hence, optimal full matching 
with a combination of one-to-many and many-to-one 
was adopted in our following DIF analyses.  

Figure 4. Propensity score distributions before and after 
the full optimal matching with one-to-many matched cases 
Note. “Treated” denotes French test takers; “Control” denotes English test takers



Practical Assessment, Research & Evaluation, Vol 21, No 13 Page 13 
Liu, Zumbo, Gustafson, Huang, Kroc & Wu Investigating Causal DIF 
                                                   

 In summary, the results of balance check 
suggested that optimal full matching with a 
combination of one-to-many and many-to-one 
performed much better than optimal pair matching and 
reduced more biases on all covariates. In real practice, 
researchers could choose the optimal full matching in 
the following data analyses. However, we included both 
matching methods herein for the purpose of 
demonstration. Researchers should be aware that the 
results of pair matching may differ from those of full 
matching because of its less satisfactory balance. In the 
next step, DIF analyses were conducted to demonstrate 
the two scenarios described earlier: consistent and 
inconsistent results between conventional DIF and 
propensity score DIF methods. 

 

Step-3 Run conditional logistic regression DIF 
analyses. For the matched data, the conditional logistic 
regression method was conducted for the DIF analyses 
using Epi R package (Carstensen, Plummer, Laara, & 
Hills, 2016). A detailed example of R code and output 
are provided in Figure 6. In Figure 6.a, the conditional 

logistic regression is conducted by the code 
“clogistic()”; “Y5” is the name of the outcome variable; 
the model is specified by “language * total”, which is 
equivalent to “language + total + language * total” in R 
code of Figure 6.b; “subclass” is the indicator of 
matched sets of matched units; “match.data” is the 
name of the matched data set. The variable “subclass” 
was generated during the process of matching using 
MatchIt R package and was automatically include in the 
matched data “match.data”. In Figure 6.c, the output of 
conditional logistic regression is provided: the estimates 
of regression coefficients are provided in second 
column, the odds ratios are in the third column, and 
then followed by the standard error of the estimates, z-
scores and p-values. In addition, the conventional 
logistic regression DIF analysis and the logistic 
regression DIF analysis with covariance adjustment 
were also conducted in this illustration in order to 
compare them with the propensity score methods. 

a. Simplified R code 

C5 <- clogistic ( Y5~ language * total, strata = subclass, data = 
match.data) 

b. R code with the names of all variables 

C5 <- clogistic (Y5~ language + total + language * total, strata = 
subclass, data = match.data) 

c. Output: 

 coef exp(coef) se(coef) z p 
language 0.0796 1.083 0.214 0.372 0.71 
total 1.3793 3.972 0.155 8.879 0 
language*total -0.059 0.943 0.267 -0.221 0.82 

Figure 6. An example of R code for conditional logistic 
regression analysis 
Note. R code from (a) and (b) are equivalent; Users can choose one of them in 
practice. 

Senario-1: Consistent results among all DIF 
methods. To provide a visualization tool for DIF 
analysis, we showed how to plot logistic curves to 
compare two groups. Figure 7 shows logistic curves 
generated using the original data in a conventional 
logistic regression analysis. The left panel of Figure 7 
shows that the French group has a higher probability of 
getting the correct answer on item #13, and that the 
two logistic curves do not appear to interact within the 
score range, which may indicate a uniform DIF.  

 

 
Figure 5. Propensity score distributions before and after 
the full optimal matching with both one-to-many and 
many-to-one matched cases 
Note. “Treated” denotes French test takers; “Control” denotes English test 
takers 
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Table 2 presents the DIF results for the same item 
using original data and matched data. The results 
showed that all the methods agreed with one another. 
The regression coefficient of “language” was 
statistically significant across all methods, suggesting 
the existence of uniform DIF. 

Senario-2: Inconsistent results between 
conventional and propensity score DIF methods. 
The right panel of Figure 7 shows that, for item #5, the 
two logistic curves of a conventional logistic regression 
are only slightly apart, which suggests that this item is 

less likely to be DIF. Table 4 presents the DIF results 
for item #5 using original data and matched data by 
both pair and full matching methods. Table 5 presents 
the results using covariance adjustment.  

The results obtained from a conventional logistic 
regression indicate a uniform DIF (language: beta=0.359, 
p=0.039; language*total: beta=-0.127, p=0.566). The 
results obtained from the covariance adjustment 
method indicate no DIF (language: beta=0.339, 
p=0.078; language*total: beta=-0.112, p=0.618).  

 

Table 2. Results of DIF Analyses for Item #13 with Raw and Matched Data  
Conventional Logistic Regression (Raw Data, n=822)  
  Estimate exp(coef) s.e. z value Pr(>|z|) 
language 0.979 2.662 0.175 5.598 < 0.001 *** 
total 1.056 2.875 0.110 9.620 < 0.001 *** 
language*total 0.379 1.461 0.225 1.689 0.091 
Conditional Logistic Regression DIF (pair matching, n=306) 
language 0.981 2.67 0.221 4.43 < 0.001 *** 
total 0.783 2.19 0.206 3.80 < 0.001 *** 
language*total 0.410 1.51 0.324 1.26 0.210 
Conditional Logistic Regression DIF (full matching, n= 714) 
language 0.687 1.99 0.195 3.53 < 0.001 *** 
total 0.947 2.58 0.127 7.45 < 0.001 *** 
language*total 0.321 1.38 0.251 1.28 0.2  

Note. Significance codes:  *** = p-value ≤ 0.001; ** = p-value ≤  0.01;  * = p-value < 0.05; n denotes the actual sample size used for the analyses. 

 

Table 3. Results of DIF Analysis for Item #13 Using Logistic Regression with Covariance Adjustment 

  Estimate exp(coef) s.e. z value Pr(>|z|) 

language 0.984 2.675 0.191 5.160 < 0.001 *** 
total 0.962 2.617 0.121 7.945 < 0.001 *** 

language*total 0.415 1.514 0.228 1.821 0.069 

nbook 0.131 1.139 0.074 1.767 0.077 

calculator 0.217 1.243 0.096 2.267 0.023 * 

parentEdu -0.053 0.948 0.093 -0.571 0.568 

computer 0.233 1.262 0.147 1.582 0.114 

timehw -0.215 0.807 0.130 -1.656 0.098 

affect 0.013 1.013 0.108 0.123 0.902 

valuing 0.223 1.250 0.187 1.191 0.234 

slfconf 0.071 1.073 0.134 0.527 0.598 

safty -0.010 0.990 0.123 -0.083 0.934 
Note. Significance codes:  *** = p-value ≤ 0.001; ** = p-value ≤  0.01;  * = p-value < 0.05 The full names of nine covariates are as follows: number of books at home 
(nbook), use of calculator (calculator), parents’ education (parentEdu), availability of computer(computer), time on mathematics homework (timehw), positive affect 
to mathematics (affect), valuing mathematics (valuing), self-confidence (slfconf), and perception about school safety (safty). 
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The overall results for item #5 obtained from 
conditional logistic regression suggest no DIF (Table 5) 
though using pair matching the language variable 
showed statistically significant result (beta=0.534, 
p=0.045). We treated it as a no DIF case because the p-
value was on the borderline and the sensitivity analysis 
in the next step also showed this marginal significance 
result would be easily changed, had some unobserved 
covariates included. Using full matching, the results of 
conditional logistic regression in Table 4 showed no 
DIF (language: beta=0.08, p=0.71; languag*total: beta=-
0.059, p=0.82).  

Step-4 Conducting sensitivity analysis to 
examine hidden bias. As we indicated earlier, the 
sensitivity analysis for full matching is still not available 
in the existing R package. Only the sensitivity analysis 
(Rosenbaum, 2002) was conducted to check hidden 
bias using rbounds R package (Keele, 2010, 2015) for 
pair matching. The analysis for binary outcome is based 
on McNemar test. The R code used for sensitivity 
analysis is provided as follows, binarysens(X, Gamma = 3, 
GammaInc = 0.2), where X contains outcome (Y) and 
grouping variables (Tr) for the matched pairs,  the 
upper limit of Gamma is three and the increment of 
Gamma is 0.2. In this demonstration, the outcome Y  

Table 4. Results of DIF Analyses for Item #5 with Raw Data and Matched Data  
Conventional Logistic Regression (Raw Data, n=822)  
  Estimate exp(coef) s.e. z value Pr(>|z|) 
language 0.359 1.432 0.174 2.063 0.039 * 
total 1.418 4.129 0.129 10.985 < 0.001 *** 
language*total -0.127 0.881 0.222 -0.574 0.566  

Conditional Logistic Regression DIF (pair matching, n=268) 
language 0.534 1.707 0.266 2.01 0.045 * 
total 1.865 6.455 0.327 5.70 < 0.001 *** 
language*total -0.405 0.667 0.372 -1.09 0.28  

Conditional Logistic Regression DIF (full matching, n=691) 
language 0.080 1.083 0.214 0.372 0.71  
total 1.379 3.972 0.155 8.879 < 0.001 *** 
language*total -0.059 0.943 0.267 -0.221 0.82  

Note. Significance codes:  *** = p-value ≤ 0.001; ** = p-value ≤  0.01;  * = p-value < 0.05; n denotes the actual sample size used for the analyses. 

Table 5. Results of DIF Analysis for Item #5 Using Logistic Regression with Covariance Adjustment 
  Estimate exp(coef) s.e. z value Pr(>|z|) 
language 0.339 1.403 0.192 1.765 0.078  
total 1.351 3.863 0.141 9.609 <0.001 *** 
language*total -0.112 0.894 0.225 -0.498 0.618  

nbook -0.040 0.961 0.077 -0.526 0.599  

calculator 0.111 1.118 0.100 1.116 0.265  

parentEdu 0.062 1.064 0.098 0.638 0.524  

computer 0.090 1.095 0.150 0.604 0.546  

timehw 0.085 1.089 0.134 0.636 0.525  

affect -0.134 0.875 0.113 -1.187 0.235  

valuing -0.331 0.718 0.187 -1.773 0.076  

slfconf 0.398 1.489 0.143 2.793 0.005 ** 

safty -0.024 0.976 0.128 -0.192 0.848  
Note. Significance codes:  *** = p-value ≤ 0.001; ** = p-value ≤  0.01;  * = p-value < 0.05 
The full names of nine covariates are as follows: number of books at home (nbook), use of calculator (calculator), parents’ education (parentEdu), availability of 
computer(computer), time on mathematics homework (timehw), positive affect to mathematics (affect), valuing mathematics (valuing), self-confidence (slfconf), and 
perception about school safety (safty). 
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Figure 7. Fitted Logistic Regression Curves in 
Conventional Logistic Regression DIF Analyses for Items 
#13 and #5, respectively, for French vs. English Groups 
of Test-takers 

denotes student responses (correct=1, incorrect=0), 
and the grouping variable Tr denotes language groups 
(English vs. French). Only group difference (English 
vs. French) was examined with respect to the outcome 
variable. Normally, one starts from a significant upper 
bound p-value and continue until the Γ value turns the 
upper bound p-value from significant to non-
significant. The larger Γ value indicates the group 
difference (treatment effect in clinical trials) is more 
resistant to hidden bias. This is based on the 
assumption that the treatment effect is statistically 
significant to begin with. 

The upper body of Table 6 presents the results for 
item#13 with Γ values from 1 to 3 in 0.2 unit 
increments. Because all the results suggest the presence 
of uniform DIF (i.e., a significant group difference), the 
sensitivity analysis starts with a significant p-value.  

 Referring to Table 6, the group difference 
becomes non-significant between Γ=2.0 and Γ=2.2 
(two-tailed α=0.05 level). To attribute DIF to 
unobserved covariates rather than language group 
difference (i.e., translation effect), the unobserved 

covariates would need to produce more than 2-fold 
increase in the odds of language group membership. In 
other words, a change of around 1.2 on the odds of 
treatment assignment will change the DIF results from 
significant to non-significant. This indicates that the 
conclusion of DIF for item #13 would be relatively 
hard to be altered by accounting for some presently 
unobserved covariates. 

The lower body of Table 6 presents the results for 
item #5 with Γ values from 1 to 2 in an increment of 
0.1. The group difference becomes non-significant 
between Γ=1.0 and Γ=1.1 (two-tailed α=0.05 level). A 
change of less than 0.1 on the odds of treatment 
assignment will change the DIF results from significant 
to non-significant. This indicates that DIF for item #5 
could be quite easily altered by accounting for some 

Table 6. Results for Sensitivity Analysis with an 
Increment of 0.2 in Gamma for Item #13 and with an 
Increment of 0.1 in Gamma for Item #5 

Items #13 
Gamma Lower bound Upper bound 

1.0 0.000 0.000 
1.2 0.000 0.000 
1.4 0.000 0.000 
1.6 0.000 0.003 
1.8 0.000 0.014 
2.0 0.000 0.045 
2.2 0.000 0.106 
2.4 0.000 0.201 
2.6 0.000 0.320 
2.8 0.000 0.449 
3.0 0.000 0.574 

Items #5 
Gamma Lower bound Upper bound 

1 0.039 0.039 
1.1 0.013 0.098 
1.2 0.004 0.191 
1.3 0.001 0.312 
1.4 0.000 0.447 
1.5 0.000 0.578 
1.6 0.000 0.693 
1.7 0.000 0.785 
1.8 0.000 0.855 
1.9 0.000 0.906 
2 0.000 0.940 

Note: Gamma is odds of differential assignment to treatment due to 
unobserved factors 
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unobserved covariates. This echoed the conclusion 
about no DIF obtained from propensity score 
approaches. 

General Discussion 

The identification of DIF items is important in the 
fields of assessment, testing, and psychometrics when 
developing a new test, adapting a test to another culture 
or language, comparing students’ academic 
performance across regions or countries, or comparing 
paper-and-pencil to computerized tests. However, 
conventional DIF methods can only tell whether DIF 
exists or not, but cannot rule out other confounding 
sources of DIF (e.g., students’ motivation, parents’ 
income, or other school factors) from our primary 
focus (e.g., translation or test administration mode). 
Hence, it is difficult for researchers or test developers 
to decide whether or not to retain the DIF item or 
throw it away. 

The present paper extended the previous logistic 
regression DIF method and demonstrated the 
application of propensity score methods in DIF 
analysis. In educational tests, for example, there are 
many factors related to students’ academic 
performance, which can be potential sources of DIF in 
addition to translation. Using propensity score 
matching techniques, we can match students on a 
variety of confounding variables. While these matches 
may not be exhaustive, we were at least able to control 
a great deal of confounding sources of DIF and focus 
on the DIF effect of our interest.    

Propensity score methods were used for making 
two groups more comparable in terms of a variety of 
confounding variables before the DIF analysis. 
Propensity score methods (optimal pair and full 
matching) were demonstrated step by step and the R 
code for each method was provided in the Appendix A. 
The demonstration was conducted to investigate 
whether the translation of an English test to a French 
test resulted in DIF. These results were compared to 
those produced by the conventional logistic regression 
DIF analysis as well as the logistic regression DIF 
analysis with covariance adjustment.  

Two items are chosen to demonstrate two 
scenarios: (i) consistent results among all DIF analysis 
methods, and (ii) inconsistent results between the 
conventional and propensity score DIF analysis 
methods. The results obtained from propensity score 

approaches allowed us to approximate the causal effect 
of DIF given that two groups were more comparable 
after matching. However, propensity score approach 
may not work well in some situations. For example, in 
this demonstration the pair matching did not achieve a 
good balance of covariates between two groups and, 
hence, resulted in a different conclusion on DIF from 
that of full matching for item #5. Remember that the 
pair matching showed much less satisfactory balance 
than did the full matching, so the uniform DIF result 
obtained from the pair matching might be due to a 
relatively less balance in covariates. We demonstrate 
this complexity of DIF results with a purpose to 
remind researchers of being aware of two issues in 
practice: (a) researchers may reach different conclusions 
by using different propensity score matching methods, 
and (b) unsatisfactory balance of matching may result 
in questionable results. Hence, including important 
covariates and achieving a good balance of covariates 
between two groups are essential to estimate causal 
effects.    

In addition, there is an important issue that has not 
been fully discussed in the literature for the use of 
propensity score matching on observational study. That 
is, what kind of grouping variables should be used for 
estimating causal DIF? In our demonstration, it makes 
sense for us to match groups on covariates and make 
groups comparable before examine DIF because our 
primary interest is whether the test translation leads in 
DIF when two groups are comparable on all other 
factors. However, it may not make much sense for 
researchers to match on covariates to investigate, for 
instance, gender DIF or ethnicity group DIF. The 
purpose of matching on covariates is to eliminate pre-
test group differences, to purify the sources of DIF, 
and make a causal claim about DIF. However, a 
grouping variable, such as gender or ethnicity, is a 
characteristic of groups that cannot be manipulated. In 
addition, gender and ethnicity are proxy variables, 
which encompass a large number of characteristics of 
individuals as well as social and/or cultural factors. 
Researchers probably expect to see some gender 
differences on a particular test and may want to know 
what factors result in gender differences on the test 
instead of matching on these factors that are part of the 
characteristics of gender group.  Therefore, researchers 
should be cautious about the constitution of the 
grouping variable of interest when using propensity 
score matching to make causal claims.           
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There remain issues regarding propensity score 
approach to DIF. First of all, the present 
demonstration did not consider the multilevel structure 
inherent in the data collection when estimating the 
propensity scores. Most data collected for international 
assessments are multilevel, students are nested in 
schools or are nested in their neighborhood. However, 
the application of propensity score methods in 
multilevel models is more complicated and the existent 
statistical programs still cannot handle multilevel data 
for propensity score DIF analysis. We could have 
written our own program for conducting multilevel 
matching methods, but the data set used for the 
demonstration had a special issue, which made this 
moot: the assignment of the language version of tests 
was done at the school level for most schools; hence, 
the school indicator (cluster id) used in multilevel 
modeling would be a perfect predictor for the 
propensity score estimation. Therefore, we did not 
consider multilevel models in this context. We note, 
however, that these models should be considered if the 
assignment had been done at individual level.  

Second, the algorithm of conditional logistic 
regression for the polytomous outcome variables has 
not been developed yet, so conditional logistic 
regression can only be applied to dichotomous 
outcome variables. The conditional logistic regression 
analysis can provide results with more precision 
because it can take account of the dependence structure 
of pairs or matched sets when using the pair or full 
optimal matching methods, which is analogous to 
multilevel modeling. Further research on workable 
algorithms for the implementation of conditional 
logistic regression for polytomous variables is 
encouraged.  

Third, sensitivity analysis program is still not 
available for polytomous outcome variables. 
Rosenbaum’s sensitivity analysis methods work well for 
dichotomous or continuous variables only. In addition, 
the existent sensitivity analysis programs still cannot 
handle the situation when the ratio of the number of 
subjects between two groups varies across matched sets 
as in the full optimal matching.     

Despite it is still in the stage of development, the 
propensity score DIF approach can provide researchers 
and test developer with a more precise tool for 
examining causal DIF. In particular, it can aid in 
making a more accurate decision about retaining or 
removing possible biased items. 
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Appendix A. R-code for Estimating Propensity Score and DIF Analysis Using 
Optimal Propensity Score Matching  

# Upload R packages. 
install.packages(c("MatchIt","Epi", "rbounds","ggplot2")) 
install.packages("optmatch") #If having trouble to open "MatchIt", download this package 
 
library(MatchIt) # used for optimal matching  
library(Epi)   # used for conditional logistic regression analysis 
library(rbounds) # used for sensitivity analysis 
library(ggplot2) # used for plotting logistic curves 
library(optmatch) # used only when having trouble to open “MatchIt”   
 
#~~~~~~~~~~~~~~~~# 
##  Read data into R ## 
#~~~~~~~~~~~~~~~~# 
setwd("C:/Dropbox")  # set up your own working directory  
timss<-foreign::read.spss("timss.sav", to.data.frame=TRUE)   # read SPSS data into R; name the data “timss” 
table(timss$ITLANG)   # ITLANG = language (English=0; French=1) 
            # We followed the names of variables used in the original TIMSS data. 
## We only provided R code for item #5 here. 
##  item #13 has the same procedure, so one only needs to change Y5 and Ztot5 to Y13 and Ztot13. 
 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
##    Conventional Logistic Regression DIF Analysis   ## 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
## In the following DIF analysis, raw total scores were transformed to z-scores before analyses. 
## Ztot5 denotes transformed total scores of item #5. 
ft5raw<-glm(Y5~ITLANG*Ztot5, data=timss, family=binomial)   
                    # glm() is a R package for generalized linear modeling 
                    # ITLANG*Ztot5 is equivalent to ITLANG+Ztot5+ITLANG*Ztot5.  
                    # “family=binomial” indicates that the outcome variable is binary and logistic regression is used here.   
summary(ft5raw)  # The code provides output. 
 
## Covariance adjustment Logistic regression DIF analysis 
ft5cv<-glm(Y5~ITLANG*Ztot5+BS4GBOOK+BS4MHCAL+BSDGEDUP+BSDGCAVL     
           +BSDMTMH+BSDMPATM+BSDMSVM +BSDMSCM+BSDGPBSS, data=timss, family=binomial) 
summary(ft5cv)  
 
#~~~~~~~~~~~~~~~~~~~~~~~# 
##        plot logistic curves       ## 
#~~~~~~~~~~~~~~~~~~~~~~~# 
# giving label to "language" 
timss$Language <- factor(timss$ITLANG, labels = c("English", "French")) 
                     # Change the numeric value (0,1) to labels ("English", "French") for grouping variable  
                     # and rename it from “ITLANG” to “Language”. 
 
# saving predicted probability values from the conventional DIF analysis   
fit5<-fitted(ft5raw) 
 
# plot item #5     
# note that there should be an underscore between goem and line; between scale and linetype; linetype and manual 
# note that underscore between scale and y and continuous                                                    
ggplot(timss, aes(x=Ztot5, y=fit5, colour=Language, linetype = Language)) + 

  geom_line(size = 1.2)  +                                     # “size” is to decide on the thickness of the line  
  ylab(expression("Pr (" * Y[5] == 1 * ")"))   +    # This will give the label on y-axis. 
  xlab("Standardized Total Scores (Item #5)") +            # This will give the label on x-axis. 
  scale_linetype_manual(values = c(French = "solid", English = "dashed")) +   
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                                                                                        # making the solid and dashed lines 
  theme(legend.justification = c(-1.1,2.2), legend.position = c(0.3, 0.7)) +   
                                                                                         # fixing the legend position in the graph 
  scale_y_continuous(limits = c(0, 1.0))                          # setting up the scale of 0-1 for y-axis 

 
 
############################################# 
# #         Propensity Score Optimal Matching              ## 
############################################# 
 
#  Step-2: Match Data and check balance # 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
## Run MatchIt R package 
## optimal pair matching (one-to-one) 
m.out<-matchit(ITLANG~ BS4GBOOK+BS4MHCAL+BSDGEDUP+BSDGCAVL+BSDMTMH+BSDMPATM 
                 +BSDMSVM+BSDMSCM+BSDGPBSS, data=timss, method="optimal", distance="logit", ratio=1) 
 
## optimal full matching (one-to-multiple) 
# m.out<-matchit(ITLANG~BS4GBOOK+BS4MHCAL+BSDGEDUP+BSDGCAVL+BSDMTMH 
#                        +BSDMPATM+BSDMSVM+BSDMSCM+BSDGPBSS, data=timss,  
#                              distance = "logit", method="full", min.controls=1, max.controls=5) 
 
## optimal full matching (a combination of one-to-multiple and multiple-to-one) 
# m.out<-matchit(ITLANG~BS4GBOOK+BS4MHCAL+BSDGEDUP+BSDGCAVL+BSDMTMH 
#                        +BSDMPATM+BSDMSVM+BSDMSCM+BSDGPBSS, data=timss,  
#                              distance = "logit", method="full", min.controls=1/5, max.controls=5) 
 
summary(m.out)                          # the output will provide the percentage of bias reduction (PBR)  
match.data<-match.data(m.out)  # save the matched data to a file named “match.data” 
 
# graphic check on the distribution balance for propensity score matching: 
plot(m.out,type="jitter") 
plot(m.out, type="hist")       
 
## check the matched sets  
match.data$subclass <- as.factor (match.data$subclass) 
table(match.data$ITLANG, match.data$subclass)  
 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#  
#   Step-3: Run conditional logistic regression DIF analysis for matched data  # 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
# Using Epi R pacakge 
c5<- clogistic(Y5~ ITLANG * Ztot5, strata = subclass, data = match.data); c5 
                    # “subclass” is an indicator/variable of matched sets. 
                    # “subclass” is generated by MatchIt R package and automatically included in match.data. 
 
 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
#     Step-4 : Sensitivity Analysis       # 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~# 
 
match.data$Tr<-match.data$ITLANG    # change the grouping variable name ITLANG to Tr in order to                             
                                                                # fit to this package 
match.data$Y<-match.data$Y5     # Similarly, change the outcome name Y5 to Y 
 
X<-list(mdata = match.data, x=1)     
       # x=1 is an arbitrary code to make sure X with enough elements to meet the requirement of rbound package.  
 
binarysens(X, Gamma = 2, GammaInc = 0.1)  
        # set up the upper limit for Gamma = 2 and the increment value = 0.1 
        # Researchers can change these values.  
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Appendix B. Mathematics Items Used in the Demonstration  

(IEA, 2007, TIMSS User Guide for the International Database: Released Items, Mathematics – Eighth Grade) 

Item #5.  

What is the perimeter of a square whose area is 100 square meters? Answer:                       . 

 (Original item id in TIMSS: M022055; Content domain: geometry; Cognitive domain: Applying) 

Item#13  

The figure shows a shaded triangle inside a square.  

 

What is the area of the shaded triangle?  Answer:                       . 

 

(Original item id in TIMSS: M022243; Content domain: geometry; Cognitive domain: Apply) 

 

Appendix C. An Example of the Number of Matched Units in Each Matched Set 
Using Full Matching (one-to-many & a combination of one-to-many and many-to-

one) 

One-to-many Combination 
Matched set Treatment Control Treatment Control 

1 1 1 1 5 
2 1 1 1 5 
3 1 1 1 3 
4 1 5 5 1 
5 1 1 1 5 
6 1 2 2 1 
7 1 5 1 5 
8 1 5 1 5 
9 1 1 1 4 
10 1 1 1 2 
  ⋮ ⋮ ⋮ ⋮  ⋮ 
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