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In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes 
increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of 
classification accuracy. Applied to subtests from an on-line final examination and from a highly 
regarded certification examination, this study shows that the conclusion also applies to the 
probabilities estimated from short subtests of mental abilities and that small samples can yield 
excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee 
feedback regardless of whether the test was originally designed to be unidimensional. 

Most tests are originally designed to provide only 
an overall score, but in recent years there has been a 
great deal of interest in also providing diagnostic 
feedback to the examinee. After studying for hours, 
spending a sum of money, and taking a long test, test 
takers understandably find it very unsatisfactory to 
receive just a single score, and especially if that score is 
simply categorized as failure. In that case, the test taker 
has no guidance for how to prepare for a retest. 

Current approaches to identifying relative strengths 
and weaknesses of a test-taker are often not satisfactory 
to the measurement community. Estimates of subtest 
ability typically contain a great deal of measurement 
error and subtests are rarely equivalent across forms.  
More importantly, improvement in a weak area may not 
be as useful for total score gains as improvement in a 
strength.  

An alternative form of feedback could change the 
focus from an examinee’s relative strengths and 
weaknesses to an examination of the probabilities of 
passing the entire test given their responses to items on 
subscales. For example: “Someone with your responses 
to algebra questions has a 40% chance of passing the 
test while someone with your responses to arithmetic 

questions has a 90% chance of passing.” Phrased 
another way, “If nothing changes, then based on your 
responses to algebra questions you have a 40% chance 
of passing and based on your responses to arithmetic 
questions, you have a 90% chance of passing.” This 
changes the focus of the feedback to better match the 
goal of the examinee – to pass or do well on the 
examination. This assumes, of course, that good 
probability estimates can be obtained. 

Two approaches to computing such subscale 
probabilities are naïve Bayes classifiers and Binary 
Logistic Regression. Both of these latent classification 
techniques are used in machine learning where there is 
a series of dichotomous observations (e.g. the presence 
or absence of words or right/wrong scoring of test 
questions) and a dichotomous classification (e.g. 
hire/don’t hire or pass/fail).  

While there is a rich literature on these methods as 
applied to machine learning, it is not known whether the 
learnings from this literature apply to educational 
assessment. This paper presents these two models, 
highlights what is known from machine learning, 
demonstrates these procedures with two very different 
cognitive tests, and examines whether expectations 
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from the machine learning literature also apply to 
cognitive assessment. 

Related literature 

Machine learning has been broadly defined as 
“computational methods using experience to improve 
performance or to make accurate predictions” (Mohri, 
Rostamizadeh & Talwalkar, 2012).  Perhaps the best 
known application in the assessment field is the use of 
computers to score written essays. An initial set of 
previously scored essays in response to a given prompt 
are used to train a model for that prompt. Often a 
second set is used to validate the model and then one or 
more human raters are replaced by the model (Shermis 
& Burstein, 2003). In this context, the words and 
phrases of the essays are observations and the presence 
or absence of certain words and phrases can be used to 
grade the materials.  Similarly, responses to test 
questions are observations and the presence or absence 
of a correct response can be used to help classify the 
test taker as being a member of one group (e.g. pass) or 
another (e.g. fail). In this paper, we will be concerned 
with right/wrong scoring and the probability of passing 
the overall test. This is a latent class model (Lazarsfeld 
and Henry, 1968) where the underlying trait (pass/fail) 
is dichotomous and the observations (right/wrong 
scored test questions) are also dichotomous.  

Two popular models from the machine learning 
literature are Bayes classifiers and Binary Logistic 
Regression. Vomlel (2004) and Rudner (2009) present 
Bayes classifiers as a measurement model.  Zwinderman 
(1991) and others discuss logistic regression as a 
measurement model and its relationship to the Rasch 
Model.  

The task is to calculate the probability of passing 
the entire test based on the responses to the individual 
items on a subtest. Under the Bayesian approach, we 
calculate the probability of being in group mk given the 
response vector, z, as. 

ܲሺ݉௞	|ࢠሻ ൌ 	
ܲሺࢠ	|݉௞ሻ	ܲሺ݉௞	ሻ
∑ ܲሺࢠ	| ௝݉ሻ	ܲሺ ௝݉	ሻ௝

 

 
 

where P(z|mk) is the probability of the response vector 
for masters and for non-masters and P(mk) is the prior 
probability of group membership. P(z|mk) and P(mk) 
are learned from training data which could be gathered 
as part of a pretest or based on past data. In practice, 

P(z|mk) cannot be directly estimated. Values are 
needed for every possible response vector. For a test of 
length n, there are 2n possible vectors. Thus, for a 15 
item subtest, that would be 215 = 32,768 possible 
response vectors. Each possible vector needs a large 
number of respondents in each group in order to obtain 
stable conditional probability estimates. While such data 
gathering is impractical for a short cognitive test, it is 
impossible in text classification where a corpus might 
contain several thousand different words. 

One solution is to evoke the Naïve Bayes 
Assumption: 

ܲሺࢠ |݉௞ሻ ൌ 	ෑ ܲሺ࢏ࢠ	|݉௞ሻ
௜

 

 
where the subscript i denotes individual test questions 
and P(zi | mk) is the p-value conditioned on group 
members, i.e. the p-values for masters and the p-values 
for non-masters.  This assumption, which is shared with 
item response theory and confirmatory factor analysis, 
is also known as the local independence assumption, i.e. 
the items are independent of each. While this 
assumption might be an issue when analyzing questions 
based on the same reading passage, it is not usually a 
problem in assessment. 

The Naïve Bayes approach does not rely on the 
usual assumptions of item response theory (IRT). 
Unidimensionality and monotonically increasing 
probabilities are not assumed.  Questions measuring 
different skills can be combined and items that are 
harder for more capable individuals can be used. Most 
importantly, relative to IRT, sample sizes to train the 
model can be very small. Typically, a representative 
sample of only 30 to 50 masters and a similar number 
of non-masters are needed to compute stable 
conditional p-values. Because of the small number of 
non-masters, the American Board of Anesthesiologists 
cleverly uses a proxy for non-masters by subtracting a 
constant from the well-estimated probabilities for 
masters (Harman, 2014).  

In the machine learning literature, with its large 
number of “items”, the Naïve Bayes assumption is 
almost always violated. With text, for example, words 
often appear multiple times and often some words 
almost always appear with other words. The result is a 
pushing of the probabilities away from .5 and toward 
the tails, 0.0 and 1.0.  Suppose, for example, we have a 
classifier whose normalized probability for masters = .8. 
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When that item is repeated it counts twice in the 
calculation and its effective probability for masters 
becomes 

. 8ଶ

. 8ଶ ൅	. 2ଶ	
ൌ 	 .94 

 
The classifications (e.g. pass or fail) are not affected 

(Domingos & Pazzani, 1997). An examine whose true 
probability is .55 and whose calculated probability is .80 
will still receive the same mastery classification. 
However, often the probabilities can’t be trusted and a 
variety of approaches have been offered to improve the 
calculated probability estimates (Schneider, 2005; 
Zadronzny and Elkan, 2002).   

A natural question is whether the concern also 
holds true for cognitive tests. That question is answered 
in this paper using an approach outlined by Zadrozny 
and Elkan (2001, 2002). Actual probabilities are 
computed by placing groups of examinees into relatively 
homogeneous bins based on their calculated 
probabilities. Within each bin, the actual probability is 
the percent of people possessing the desired trait, e.g. 
passing the test. That value can be compared to the 
mean calculated probability within the bin to assess 
accuracy as a function of calculated probabilities. 
Regressing actual onto calculated probabilities yields a 
function that can be used to provide adjusted 
(corrected) probabilities. The use of bins to estimate 
actual probabilities was applied as part of this paper. 

A popular alternative to the Bayes classifier 
approach from the machine learning literature is the use 
of Binary Logistic Regression (Hosmer & Lemeshow). 
Under this model, the probability of being a master, 
given the response vector z is 

ܲሺ݉ଵ	|	ࢠ	ሻ ൌ 	
݁௚ሺ௭ሻ

1 ൅	݁௚ሺ௭ሻ
		

 

where g(z) = β0 + β1z1 + β2z2 + … + βjzj.  The 
probability of being a non-master, then is 

ܲሺ݉ଶ	|	ࢠ	ሻ ൌ 1 െ ܲሺ݉ଵ	|	ࢠ	ሻ ൌ 	
ଵ

ଵ	ା	௘೒ሺ೥ሻ
 . 

Logistic regression does not rely on the usual 
assumptions of models based on ordinary least squares. 
Linearity, normality, homoscedasticity, and 
measurement level are not assumed. It does, however, 
require the absence of multicollinearity and relatively 
large datasets, two to six times the data required for 

simple regression based on ordinary least squares. 
Multicollinearity will not be a problem for most 
properly assembled cognitive assessments. Rarely can 
the performance on one item be accurately predicted 
from the results of two or more other items. The sample 
size issue is addressed in this paper. 

The practical issue with logistic regression is model 
specification. An underspecified model will produce 
biased estimates and an over specified model will have 
less precise estimates. This will be a function of the size 
of the subtest, the size of the sample, and the 
relationship of the items within the subtest. 

Binary logistic regression and Bayes classifiers are 
often compared. Logistic regression is often called a 
discriminative classifier and Bayes a generative classifier. 
Logistic regression directly estimates P(mk | z) whereas 
Naïve Bayes generates P(mk | z) from P(z| mk) and 
P(mk). In their seminal study comparing Logistic 
Regression and Naive Bayes classifiers, Ng & Jordon 
(2002) draw several important conclusions based on 
mathematical derivations. Through an analysis of 15 
different datasets, they then provide empirical support 
for those conclusions. Specifically, they show 

1. With large numbers of training samples, logistic 
regression classifiers have less classification 
error than Naïve Bayes classifiers, although that 
difference is not very large 

2. As training sample size increases, Naïve Bayes 
classifiers converge to their highest accuracy 
level faster than logistic classifiers. 

Thus, Bayes initially does better, but as the number 
of training examples increases, Logistic Regression 
classifiers eventually catch up and overtake Bayes 
classifiers in terms of the percent of cases properly 
classified. Other studies directly comparing Bayes and 
Logistic Regression classifiers with multiple datasets 
and finding the same results include Halloran (2009) 
and Sam, Karthi and Anu (2015). 

Research questions  

While much about logistic regression and Bayes 
classifiers is known and accepted as fact in machine 
learning applications, we do not know if these same 
facts hold true for use with cognitive tests. Relative to 
most datasets in machine learning, cognitive tests, and 
especially content based subtests, have few items and 
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probably less of a local independence problem. Thus, 
this paper asks:  

1. For large calibration samples, do logistic 
regression and Bayes classifiers provide accurate 
classifications and accurate probability estimates 
for educational tests and subtests? 

2. How does the classification accuracy and 
probability estimate accuracy vary as a function 
of sample size for education tests and subtests? 

Method 

Data from two different standardized examinations 
were used, one is the final and only examination for an 
on-line course (Test A), the other is a well-known and 
highly-respected certification examination (Test B). For 
each test, the data included each respondent’s 
right/wrong responses and whether or not the 
individual passed the examination. With the large 
number of examinees taking these tests, there will be 
more than enough data to compute stable accuracy 
estimates. 

Descriptive statistics are shown in Table 1. The on-
line course examination, Test A, is composed of 46 
questions, has a marginally adequate reliability, and a 
pass rate of about 50%. The certification test, Test B, is 
composed of 235 operational questions, has good 
reliability, and a low pass rate of approximately 60%. 

Table 1. Descriptive statistics for Test A and Test B 

Purpose 

Test A  Test B 

On‐line  
course 

Certification 

N items  46  235 

Mean  27.78  155.63 

Standard deviation  6.50  21.20 

Cronbach’s alpha  .807  .900 

     

N examinees  3,091  17,579 

% passing  47%  59% 

 

Statistics concerning the subtests are shown in 
Table 2. The Cronbach alpha reliabilities and difficulties 
of the subtests are not consistent, and as expected with 
the smaller number of items, some of the reliabilities are 
low. The subtests vary from 5 to 21 items. The percent 

of bivariate item correlations after controlling for total 
score that are greater than .2, shown in the last column, 
is one measure of the severity of violating the local 
independence assumption. Thus, subskills 2 and 3 for 
Test A appear to have both a few number of items and 
probable notable violations of local independence.  
While Test B has eight subtests, for simplicity only the 
five subtests the fewest number of items were chosen 
for this analysis. The subtests reliabilities for Test B are 
extremely low, especially given their lengths. 

Table 2. Subscore statistics 

Test  Subskill 
N 

items 
Reliability 

Mean % 
correct 

% 
rxy.z>.2 

A  1  16  .536  72%  0% 
2  5  .341  60%  70% 
3  6  .227  46%  53% 
4  19  .730  55%  0% 

B  1  19  .163  72%  0% 
2  21  .279  64%  0% 
3  21  .164  74%  0% 
4  21  .361  64%  0% 
5  12  .269  63%  0% 

 

Binary logistic regression and Naïve Bayes 
classifiers were applied to the subtest data. SPSS was 
used to apply the Binary Logistic Regression (BLR) and 
the freeware MDT Tools (Rudner, 2010) were used to 
apply Naïve Bayes (NB). Because the literature suggests 
sensitivity to sample size, random samples of 50, 100, 
200, 500, and 1000 examinees were drawn for 
calibrating the BLR and NB models. Conditional 
probabilities were computed based on the masters and 
non-masters within each calibration sample. Thus, for 
test A with its 47% pass rate, the calibration sample of 
approximately 24 of the 50 examinees were used to 
compute the conditional p-values for masters for the 
first run.  For each run, the remaining examinees not in 
the calibration sample were used as validation samples. 
Thus, the calibration and validation samples were 
independent, although, for the purpose of evaluating 
accuracy, this is not a requirement as long as the 
regression model is properly specified (Zadrozny & 
Elkan, 2002).   

In order to compute actual probabilities and then 
compare actual to calculated, examinees were placed 
into one of twenty-one bins based on their calculated 
probabilities. The first and last bins were p=.025 in 
width (i.e. p< .025 and p> .975) and the rest were p=.05  
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in width (e.g. .025 to .0749 and .075 to .1249). The first 
and last bins were smaller because classifiers are able to 
identify clear masters and clear non-masters. It is not 
unusual for 10 to 20 percent of the examinees to be 
classified into each of the bins at the tails.  

Other approaches to forming bins, including the 
Pool Adjacent Violators (PAV) algorithm (Ayer, Brunk, 
Ewing, Reid, & Silverman, 1955) and forming 
overlapping bins of 100 respondents after sorting in a 
manner analogous to moving averages, were tried and 
rejected. All approaches yielded similar results, so the 
simplest approach was used. What was critical was the 
bins were homogenous in terms of their probabilities, 
the probabilities were monotonically increasing, and 
that the samples sizes were adequate to form stable 
estimates. 

Results 

Ideally, the calculated probabilities should equal the 
actual probabilities. That is, the mean estimated 
probability for each bin should equal the actual percent 
of examinees in the bin that passed. The figures below 
present the relationships between calculated and 
predicted probabilities. On all the figures the 45-degree 
dotted line represents x=y, the line of perfect calculated 
probabilities.  

Figures 1 and 2 show the relationship between 
actual and calculated probabilities for each subtest using 
BLR and NB classifiers and a relatively large calibration 
sample size of 500 examinees. All subtests have great 
accuracy.  The worst, as indicated by deviations from 
the 45-degree line, are Subtest 2 of Test A which has 5 
items, using BLR, and subtest 3 of Test B which has 21 
items, using NB. Note that subtests 2 and 3 of Test A, 
which have the highest potential of violating local 
independence where extremely accurate using NB. 

The accuracy for these two runs are summarized in 
Tables 3 and 4. The Accuracy column refers to the 
percent of examinees that are correctly classified and is 
computed as the number of test takers with a 
probability greater than .5 that passed plus the number 
of test takers with a probability less than .5 that failed 
divided by the total number of examinees. Subtests are 
not expected to accurately predict who passes the 
overall test. For any test, there are usually test takers that  

 

 

do well on one subtest and poorly on the others and it 
is for that reason diagnostic feedback is needed. 
Further, if a subtest predicted overall success with high 
accuracy, there would be no need for the other subtests. 

 

 

Figure 1. Calibration accuracy by calculated 
probabilities for subtests of Test A and calibration 
sample sizes of 500 examinees 

 
The statistic of interest is the root mean square 

error (RMSE) which is a measure of the quality of the 
probabilities whereas Accuracy is a measure of the 
quality of the classification. RMSE compares the actual 
and mean calculated probabilities averaged over the 
twenty-one bins and weighted by the number of 
examinees in each bin.  
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Figure 2. Calibration accuracy by calculated 
probabilities for subtests of Test B and calibration 
sample sizes of 500 examinees 

For a sample size of 500, BLR and NB have about 
the same classification accuracy. For every subtest of 
Test A and for 3 of the 5 subtests of Test B, BLR does 
a better job of estimating probabilities, although all of 
the error values for both methods are very small. 

Table 3. Accuracy for Test A, calibration size 500 

Subtest 
Logistic Regression  Naive Bayes 

Accuracy  RMSE  Accuracy  RMSE 

1  80%  .053  80%  .070 
2  72%  .050  72%  .058 
3  68%  .053  68%  .062 
4  86%  .034  87%  .064 

 

Table 4. Accuracy for Test B, calibration size 500 

Subtest 
Logistic Regression  Naive Bayes 

Accuracy  RMSE  Accuracy RMSE 

1  64%  .073  64%  .044 
2  68%  .081  69%  .059 
3  64%  .056  66%  .069 
4  71%  .038  72%  .048 
5  68%  .034  69%  .063 

 

Calibrating with 100 examinees, however, results in a 
different finding. As shown in Figures 3 and 4, BLR 
does not work as well as NB for Test A when the 
calibration sample size is 100. With BLR, subtests 3 and 
4 of Test A are fine, but the calculated probabilities are 
not accurate for subtests 1 and 2.  As shown in Table 5, 
the classification accuracies are about the same, but NB 
has less error in the calculated probabilities on all four 
subtests. 

Figure 3. Calibration accuracy by calculated 
probabilities for subtests of Test A and calibration 
sample sizes of 100 examinees 
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Table 5. Accuracy for Test A calibration size 100 

Subtest 

Logistic 
Regression 

Naive Bayes 

Accuracy  RMSE  Accuracy  RMSE 

1  75%  .151  79%  .076 
2  72%  .170  72%  .070 
3  68%  .084  67%  .070 
4  82%  .116  85%  .066 

 

Similar results are found for Test B when 
calibrating on 100 examinees. While both BLR and NB 
yield inflated calculated probabilities for values below .5 
and deflated probabilities above .5, NB outperforms 
BLR for every subtest. 

Figure 4. Calibration accuracy by calculated 
probabilities for subtests of Test B and calibration 
sample sizes of 100 examinees 

 

Figure 5 and Table 7 present the accuracy as a 
function of sample size for BLR and NB applied to 
subtest 1 of Test A. There is no accuracy plot for a 

calibration size of 50 for BLR because all the examinees 
had calculated probabilities less than .025 or greater 
than .975.  

Table 6. Accuracy for Test B calibration size 100 

Subtest 
Logistic Regression  Naive Bayes 

Accuracy  RMSE  Accuracy RMSE 

1  63%  .144  61%  .095 
2  62%  .234  65%  .101 
3  58%  .185  63%  .147 
4  64%  .203  71%  .090 
5  57%  .202  69%  .077 

 

The data supports Ng and Jordan’s (2002) finding 
that, as the size of the training group increases, NB 
initially classifies more accurately but BLR catches up 
and performs better with larger samples (see Table 7). 

 

Figure 5. Accuracy as a function of calibration 
sample size, Test A, Subtest 1 
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A similar trend is found for the accuracy of the 
probabilities. The regression lines in Figure 5 all become 
closer to the 45-degree line, i.e. more accurate, as the 
calibration sample sizes increase. 

Table 7. Accuracy as a function of sample size for Test 
A, Subtest 1 

Sample 
size 

Logistic Regression  Naive Bayes 

Accuracy  RMSE  Accuracy  RMSE 

50  72%  .286  79%  .083 
100  75%  .156  79%  .076 
200  78%  .088  79%  .073 
500  80%  .053  80%  .070 
1000  80%  .050  80%  .065 

 

Similar results were found for Subtest 1 of Test B. 
The regression lines in Figure 6 all become closer to the 
45-degree line, i.e. more accurate, as the calibration  
 

Figure 6. Accuracy as a function of calibration 
sample size, Test B, Subtest 1 
 

sample sizes increase. The regression lines for NB and 
the associated RMSE values show better accuracy for 
the NB probabilities until the sample size, for this test, 
is 1000. BLR with a sample size of 1000 outperforms 
all other models. 
 
Table 8. Accuracy as a function of sample size for Test 
B, Subtest 1 

Sample 
size 

Logistic Regression  Naive Bayes 

Accuracy  RMSE  Accuracy RMSE 

50  62%  .370  59%  .159 
100  63%  .144  61%  .095 
200  62%  .102  62%  .064 
500  64%  .073  64%  .044 
1000  64%  .032  65%  .040 

 

Discussion 

Binary Logistic Regression and Naïve Bayes 
classifiers were applied to subtests from an on-line final 
course examination and from a highly-respected 
certification examination. Consistent with the findings 
in the machine learning literature, Naïve Bayes 
classifiers initially outperform logistic regression 
classifiers in terms of classification accuracy, as well as 
the accuracy of the probabilities, as calibration sample 
size increases. With large calibration sample sizes 
Logistic Regression outperforms Naïve Bayes.  

In addition to calibration sample size, accuracy is 
also a function of subtest length. Accuracy does not 
appear to be related to subtest reliability, difficulty, or 
local dependency. Accuracy does vary by test length, 
although not as dramatically as one might expect. With 
adequate calibration sample sizes, the calculated 
probabilities were all very accurate.  

One concern that motivated this study was whether 
the probabilities were sufficiently accurate for use as 
feedback to test takers. It is known from the machine 
learning literature when analyzing large bodies of text 
that Bayes classifiers tend to push probabilities toward 
the tails when there are violations of the local 
independence assumption, which is almost always the 
case. With relatively short subtests in this study, there 
was no pushing toward the tails, even with subtests 
having local dependencies. 

Based on the literature and this study, it is clear that 
Naïve Bayes is the model of choice when the sample 
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sizes are relatively small.  The calculated probabilities 
and the classification accuracies are good. An important 
finding is that Naïve Bayes probabilities were accurate 
for all subtests when the calibration sample size was 
100, i.e. approximately 50 per group.  Except for one 
subtest, excellent results were also obtained with a 
calibration sample size of 50. With larger calibration 
samples, logistic regression out performs Naïve Bayes, 
but the difference is not overwhelming. With large 
calibration samples, either model could be used. 

If one is concerned about providing very accurate 
probabilities, then one could transform the calculated 
probabilities based on the regression of actual percent 
of masters on the mean calculated probabilities.  
However, this would probably require 300 or more 
examinees to properly form bins and at 300 examinees 
the calculated probabilities will often be sufficiently 
accurate. A ten percent error in the reported 
probabilities would not make a difference for most test 
takers. 

A major advantage of the Naïve Bayes approach is 
the fact that accurate estimates can be obtained with 
very small calibration sample sizes. This is not surprising 
because the Bayes approach is only trying to trying to 
obtain accurate estimates for a limited number of data 
points. In this study only two groups, masters and non-
masters, were estimated. The small calibration sample 
size makes the approach feasible for smaller testing 
programs and in all cases, it makes pilot data collection 
relatively easy.  

Another advantage of the Naïve Bayes approach 
that there is no unidimensionality assumption. Items 
from different content areas can be combined and once 
calibrated can yield accurate classification probabilities. 
One possibility is to use a small sample of items as a 
placement test or as a routing test in an intelligent 
tutoring system.    

One possible limitation of the Naïve Bayes 
approach is the lack of the parameter invariance 
property which makes it is relatively easy to always place 
item parameters on the same scale. However, 
conditional p-values obtained from non-equivalent 
groups can be placed on the same scale (see Guo, 
Talento-Miller, and Rudner, 2009). This allows items to 
be combined to yield a subtest with known 
characteristics and allow probabilities to be computed 
based on a single reference group. Another approach 
might be to convert IRT parameters to conditional p-

values based on the cut score and a fixed ability 
distribution. 
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