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Education researchers often study count variables, such as times a student reached a goal, discipline 
referrals, and absences. Most researchers that study these variables use typical regression methods 
(i.e., ordinary least-squares) either with or without transforming the count variables. In either case, 
using typical regression for count data can produce parameter estimates that are biased, thus 
diminishing any inferences made from such data. As count-variable regression models are seldom 
taught in training programs, we present a tutorial to help educational researchers use such methods 
in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative 
binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count 
regression methods are introduced through an example using the number of times students skipped 
class. The data for this example are freely available and the R syntax used run the example analyses 
are included in the Appendix. 

Count variables such as number of times a student 
reached a goal, discipline referrals, and absences are 
ubiquitous in school settings. After a review of 
published single-case design studies Shadish and 
Sullivan (2011) recently concluded that nearly all 
outcome variables were some form of a count. Yet, 
most analyses they reviewed used traditional data 
analysis methods designed for normally-distributed 
continuous data. 

It is not surprising that most educational research 
uses errant analysis techniques for count data. It is 
seldom taught in education coursework, and methods 
surveys (Aiken, West, & Millsap, 2008; Little, Akin-
Little, & Lee, 2003; Perham, 2010) do not even ask 
about the use of count data. Nonetheless, using 
inappropriate regression methods can produce biased 
coefficients and standard errors, which can lead to 
errant conclusions. Consequently, for educational 
researchers to make the appropriate data-based 
decisions about positive and problem behaviors, as well 
as the effectiveness of interventions that target these 
areas, they must recognize and acknowledge the nature 

of the collected variables and use the appropriate data 
analytic tools. 

The purpose of this article is to assist educational 
researchers in understanding appropriate methods for 
count data, as well as being able to conduct 
independent analyses of such data. To that end, we 
discuss the nature of count data and present an 
example using freely available data. We provide the R 
(R Development Core Team, 2015) syntax to replicate 
and extend our analyses in the supplemental material. 
For those interested in using other software such (e.g., 
Stata, SAS) or extensions of the count models we 
discuss, Hilbe (2014) provides a book-length treatment 
on the topic as well as some worked examples. 

Count Variables  

Count variables share certain properties: (a) their 
values are always integers/whole numbers; (b) their 
lowest possible value is zero, so they can never be 
negative; and (c) they frequently appear to be positively 
skewed, with most values being low and relatively few 
values are high (Cameron & Trivedi, 1998). Figure 1a 
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shows a histogram of a typical count variable. 
Histograms of normally distributed and dichotomous 
(binomial) variables are shown in Figures 1b and 1c, 
respectively. 

To add to their complexity, some count variables 
have a considerable number of zero values (see Figures 
2b and 2c). This typically occurs when the variable is 

thought to be particularly deleterious (e.g., drug use, 
school expulsions), and very few observations exhibit 
the behavior. No matter how many zeros a count 

variable has, the plots in Figure 2 make it obvious that 
such data are not even symmetrical, much less normally 
distributed. 

Regression Models for Count Data 

A major assumption of typical multiple regression 
models is that the residuals follow a normal distribution 
(Cohen, Cohen, West, & Aiken, 2003). Typically, the 

residuals follow the distribution of the outcome 
variable, which for count variables is often neither 
normally distributed nor even not even symmetrical 
(see Figure 2). Moreover, the residual variance often 
increases as the predictor variables increases, which 
produces heteroscedasticity. Thus, using typical 
regression methods with count outcome variables can 

lead to parameter bias as well as standard error and 
confidence interval estimates of the wrong size. This 
can ultimately lead an educational researcher to make 

invalid inferences and poor decisions. Instead, 
regression models that account for the count nature of 
the outcome variable (and the subsequent nature of the 
model’s residuals) are more appropriate. 

Prior to the development of regression models for 
count data and their availability in common statistical 
programs, count variables were typically dealt with in 
two ways. First, people used typical linear models, 

 

Figure 1.  Histograms of variable distributions. 

Figure 2. Plots of count variable distributions. 
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surmising that the models were robust enough to 
handle any assumption violations caused by the count 
variables. Second, they transformed the count variables 
to make them fit more traditional models. Both 
approaches are problematic. 

There is a lengthy literature devoted to the 
robustness of traditional linear regression (e.g., multiple 
regression, ANOVA) to departures from normality.  
Although previous research has shown that the 
traditional regression model can produce unbiased 
regression coefficients with some non-normal 
distributions (e.g., Box, 1953; Cochran, 1947; Lix, 
Keselman, & Keselman, 1996), it tends to produce 
inflated standard errors. Moreover, the traditional 
regression model makes continuous predictions even 
though count outcomes are discrete.  Therefore, the 
residuals tend to be heteroscedastic, which violates a 
major assumption of the traditional regression model.   

There are a variety of transformations available for 
count data. One transformation involves dichotomizing 
the responses (e.g., yes-no/present-absent), which is 
then used in a logistic regression. Problems with 
dichotomizing variables are well known, however, and 
are seldom appropriate (MacCallum, Zhang, Preacher, 
& Rucker, 2002).  Another option is a nonlinear 
transformation (e.g., square root, logarithm) to make 
the variable more closely approximate a normal 
distribution. Unfortunately, such transformations often 
have little effect when the range of values is very 
narrow, do not handle having an excessive amount of 
small values well, and do not completely eliminate 
heteroscedasticity (Coxe, West & Aiken, 2009). The 
more general Box-Cox power transformations tend to 
work better, but they do not always fix the problems 
with normality and heteroscedasticity (Sakia, 1992). 
Moreover, any nonlinear transformation of the 
outcome comes at the cost of having a more difficult 
model to interpret (e.g., predicting the square root of 
times using a drug). This cost may acceptable when 
there are no known models to handle the outcome 
variable's native distribution. When models exist that 
can directly handle the variable's distribution, it is better 
to use them.  With the development of the generalized 
linear model, models now exist that can directly handle 
the distribution of the count variables. 

The generalized linear model (GLM; McCullagh & 
Nelder, 1989) is a framework designed to handle 
regression models for a variety of outcome variable 
types. All GLMs require two components: proper 

specification of residuals’ distribution and a function to 
link the outcome and the linear combination of the 
predictor variables. In a typical regression, the residuals 
follow is a normal distribution and the link is the 
identity function (i.e., multiply the regression by one). 
For a logistic regression, the residuals follow a binomial 
distribution and the link is the logit function. 

Count variables need to be modeled differently 
than either continuous or dichotomous variables 
(Cameron & Trivedi, 1998). Because of the different 
ways count variables can be distributed, there are 
multiple forms of the GLM for count data. In what 
follows, we discuss four common types of GLMs for 
count data, each of which is designed for a different 
type of count variable distribution.  

Poisson Model 

The most common type of distribution for count 
variables is a Poisson distribution, an example is shown 
in Figure 2a. The Poisson distribution is used because it 
is a probability distribution designed for non-negative 

integers. It is defined by a single parameter, λ, which 
estimates both the mean and variance of the 
distribution, thereby completely controlling the 
distribution’s shape. When λ is close to zero the 
distribution is very positively skewed, but as λ increases 
the distribution becomes less skewed and appears 
closer to a normal distribution (see Figure 3). 

Figure 3. Plots of Poisson variable distributions with 
different values of λ. 
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The major differences between a Poisson 
regression and its typical regression counterpart are 
twofold. First, the Poisson regression model assumes 
the residuals follow a Poisson distribution rather than a 
normal distribution. Second, predictor variables are 
linked to the outcome via a natural log transformation 
(Cameron & Trivedi, 1998), similar to what is done 
with logistic regression (Hosmer & Lemeshow, 2000). 
The log transformation guarantees that the regression 
model’s predicted values are never negative. 

For a simple Poisson regression, the model is 

lnሺߣ௜ሻ ൌ ௜ᇣᇧᇧᇤᇧᇧᇥߤ
୔୰ୣୢ୧ୡ୲ୣୢ	ୡ୭୳୬୲	

ሺ୘୰ୟ୬ୱ୤୭୰୫ୣୢ	ୠ୷	୐୧୬୩ሻ

ൌ ܽ ൅ ܾ ௜ܺᇣᇧᇤᇧᇥ
ୗ୲୰୳ୡ୲୳୰ୟ୪	
ሺ୓୰୧୥୧୬ୟ୪ሻ

 
(1)

 

where X is a predictor variable, i represents a 
group of observations with the same value on X, a and 
b are the intercept and slope, respectively, and μi is the 
expected value of the outcome variable for all 
respondents whose value on X is Xi. As the mean of a 
Poisson distribution is λ and the link function for a 
Poisson regression is the natural log, Equation (1) 
shows that the mean of the regression equation, μi, 
equals ln(λi). 

To return the outcome variable to its original 
count scale requires transforming the structural part of 
Equation (1) by the inverse of the link function. The 
inverse of the natural log function is the exponent 
function, giving 

࢏ࣅ ൌ ᇣᇧᇧᇧᇤᇧᇧᇧᇥሻ࢏ࣆሺ	ܘܠ܍
	ܜܖܝܗ܋	܌܍ܜ܋ܑ܌܍ܚ۾

ሺܔ܉ܖܑ܏ܑܚ۽ሻ

ൌ ࢇሺ	ܘܠ܍ ൅ ሻᇣᇧᇧᇤᇧᇧᇥ࢏ࢄ࢈
	ܔ܉ܚܝܜ܋ܝܚܜ܁

ሺ܌܍ܕܚܗ܎ܛܖ܉ܚ܂	ܡ܊	܍ܛܚ܍ܞܖ۷	ܓܖܑۺሻ

 
(2)

Negative Binomial Model 

The Poisson distribution assumes that the mean 
and variance of the variable are equal. Sometimes count 
variables do not meet this assumption, especially when 
there are more zeros or more high values than 
expected. This is called overdispersion and results in a 
variable’s variance (v) being much larger than its mean 
(λ). Overdispersion can be incorporated into the GLM 
regression by estimating the amount of extra variation. 
One way of doing this is by using a negative binomial 
(NB) distribution for the residuals. The NB distribution 
models variance as 

߭ ൌ ߣ ൅
ଶߣ

ߠ
 (3)

where θ is an overdispersion parameter (Jay & Peter, 
2007). 

Zero-Inflated Models 

When describing count variables, we stated that it 
is common for many of the respondents to have never 
have exhibited the behavior for outcomes that are 
particularly negative. The resulting variable’s 
distribution has many zeros and just a few other values 
(Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013; 
Atkins & Gallop, 2007). For such cases, there is a class 
of regression models that can account for the excess 
zeros, called zero-inflated models. 

Zero-inflated Poisson (ZIP) and zero-inflated 
negative binomial (ZINB) regression directly model the 
excessive number of zeros in the outcome variable. 
They do this by fitting a mixture model, which 
combines multiple distributions (Muthén & Shedden, 
1999). For ZIP and ZINB models, the outcome 
variable’s distribution is approximated by mixing two 
models and two distributions. This first model 
examines if the behavior ever occurred by using a 
logistic regression. Logistic regression is commonly 
used to predict a behavior’s occurrence, but with 
ZIP/ZINB models the logistic regression part of the 
model predicts non-occurrence (i.e., it predicts the 
zeros). The second model examines how frequently the 
behavior occurred, using either a Poisson or NB 
regression. The resulting zero-inflated models produce 
two sets of coefficients, one predicting if the behavior 
never occurred (logistic) and the other predicting how 
frequently the behavior occurred (Poisson or NB). 
Because mixture models are flexible, the predictors for 
the two parts of the model can be different. Thus, ZIP 
and ZINB models are particularly well suited for 
variables thought to be determined by two different 
processes–one that influences occurrence and the other 
that influences the frequency of occurrence. 

Parameter Estimation 

Typical regression models often use ordinary least 
squares to estimate the parameters. For count data, the 
regression model uses maximum likelihood (ML) to 
estimate the parameters. ML seeks to find values for 
the regression coefficients that have the highest 
probability (i.e., maximum likelihood) to have produced 
the observed data. Enders (2005) provides a particularly 
readable introduction to ML estimation. 
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ML usually requires an iterative set of procedures 
to find the parameter estimates, which can be 
problematic with models that use many predictor 
variables or have small sample sizes. If the ML 
estimation procedure converges, it means it found a 
unique set of values for each parameter, the 
combination of which returned the highest likelihood 
value of all parameter values examined. Thus, it will 
return parameter estimates, standard errors, and the 
maximum likelihood value. This likelihood value, or 
transformations of it, is used to compare the fit of 
competing models. For more information about the 
parameter estimation process for count regression, see 
Cameron and Trivedi (1998).    

Parameter Interpretation 

In typical regression, the two major parameters to 
interpret are the intercept and slope/regression 
coefficients. The intercept is the expected value of the 
outcome variable when all the predictor variables have 
a value of zero. Each regression coefficient represents 
the expected change in the outcome variable for a one-
unit change in the predictor variable, holding all the 
other predictor variables constant. 

For Poisson and NB regressions, the two major 
parameters to interpret are still the intercept and 
slope/regression coefficients. The interpretation is 
trickier than with typical regression models because of 
the log link function, which places the regression 
coefficients on the natural log scale. Exponentiating the 
regression coefficients places the predicted values for 
the outcome on its original scale (cf. Equation 2), but 
this does not completely solve the interpretation 
problem. A result of using the log link function is that 
it forces the continuous predictor variables to have a 
non-linear relationship with the outcome. Specifically, 
the Poisson and NB models really specify multiplicative 
regression models instead of additive ones. 

To aid in interpreting Poisson and NB models’ 
coefficients, Atkins and Gallop (2007) recommend 
different strategies. One strategy is to use the regression 
equation to generate predictions over a specified range 
of values of the predictor variables. Specifically, they 
recommend setting the predictor variables at multiple 
values of interest and examine how the expected values 
of the outcome variable change. For the predictor 

variables of major interest, they suggest using values 
across the middle 95% of their values. For predictor 
variables that are not of major interest (i.e., control 
variables, covariates) either set their values to the mean 
(if continuous) or the reference value (if categorical). 

A second interpretive strategy is to use the 
inherent multiplicative nature of the variable’s 
relationships to examine the percentage change in the 
expected counts, defined as 

Percentage Change in the Expected 
Counts = 100 × [exp(b × Δ)-1] (4)

where b is the regression coefficient from the Poisson 
or NB regression, and ∆ is the amount of change in the 
predictor (e.g., for one unit change, ∆ = 1). 

Because ZIP and ZINB regressions model two 
separate processes, they produce two sets of 
coefficients: one for the count part of the model and 
the other for the logistic part of the model. The 
coefficients for the count part of the model can be 
interpreted the same as for a typical Poisson or NB 
model. The coefficients for the logistic part of zero-
inflated models are on the logit scale  

logit ൌ ln ቀ
ߨ

1 െ ߨ
ቁ (5)

where π is the proportion of zeros. A common way of 
interpreting logistic regression models is to 
exponentiate the coefficients, which places the 
coefficients in an odds-ratio scale. An alternative 
approach is to use the inverse logit function to 
transform the resulting regression model, which places 
the outcome on the probability scale: 

inverse logit ൌ
exp ቀ ߨ

1 െ ቁߨ

exp ቀ ߨ
1 െ ቁߨ ൅ 1

 (6)

Model Comparison 

An important aspect of all regression models is to 
determine how well the model fits the data, either by 
comparing the actual values with the model- predicted 
values or by comparing a model to competing models. 
We demonstrate both approaches in the following 
example. 
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In typical regression, R2 is usually used as the 
measure of how close the actual values are to the 
predicted values. While pseudo-R2 values for count 
regression models exist, they have the same issues as 

pseudo-R2 for logistic regression, such as not really 
measuring variance and different formulae producing 
disparate values. Consequently, since there are a finite 
number of possible outcome values for count 
regression models, we examine model-data fit by 
examining the raw difference between the predicted 
counts and actual counts at each value of the outcome. 

When comparing competing models, information-
criterion based fit indices are useful (Burnham & 
Anderson, 2002). The basic principle of such fit 
measures is to select the simplest models that can 
describe the data well (Sherman & Funder, 2009). A 
commonly used measure from the information-
theoretic tradition is Akaike’s information criterion 
(AIC). AIC balances the model’s goodness-of-fit to the 
data and a penalty for model complexity. The general 
method for using the AIC is to choose the model that 
has the smallest AIC value. Individual AIC values are 
not directly interpretable because they contain arbitrary 
constants and are greatly affected by sample size. These 
artificial increases in AIC values can sometimes make it 
appear that multiple models ostensibly appear to have 
very similar AIC values, even though some models fit 
the data substantially better than others. The AIC 
values for a set of models can be transformed so that 
they sum to the value one, so can be treated like 
probabilities. These values are called Akaike weights 
and are typically interpreted as the probability that 
model a given model is the best model for the data out 
of all the compared models. 

Another model-fit measure that penalizes models 
for complexity is Schwartz’s Bayesian information 
criterion (BIC). While it is not technically related to 
information theory, it can still be useful in model 

selection. The general method for using the BIC is to 
choose the model that has the smallest BIC value. With 
small sample sizes the BIC tends to be overly-
conservative (i.e., prefer models with too few variables), 
but when the sample size is large it tends to select the 
correct model if a set of competing models includes the 
true model. 

Model Diagnostics. An important part of all 
regression analyses is to examine residual diagnostics, 
influential data points, and nonlinearity in the 
predictors (Andersen, 2012; Belsley, Kuh, & Welsch, 
2005). Many of the common tools to assess typical 
regression models have been extended to count 
regression, including standardized residuals, influence 
diagnostics (e.g., Cook’s D), and predictor nonlinearity. 

In our example, we graphically examined the 
residuals’ distribution and their relation to the predicted 
values. We used deviance residuals for all the models 
except zero-inflated, where we used Pearson residuals. 

To examine influential observations, we calculated 
Cook’s (1977) D values for each case based on each 
model. Cook’s D is an index that reflects the amount of 
influence each case has on the model parameter 
estimates. A common criterion used for identifying 
cases that could be influential is whether an 
observations’s D value is greater than 4/n (Cohen et al., 
2003). In addition, to assist with the identification of 
influential cases we plotted the D values for each 
observation and inserted a horizontal line at y = 4/n. 

Table 1. Variables Used in Count Regression Models (n = 889) 
Variable (Name in NELS Dataset)  Description Values

Skips (F1S10B)  Number of times student cut/skipped 
class (Outcome variable) 

0 = 0 times; 1 = 1‐2 times; 2= 3‐6 times; 3 = 7‐9 
times; 4= ≥ 10 times 

College (F1S51)   Plan on going to college  0 = No; 1 = Yes 
Male (BYS12)   Sex  0 = Female; 1 = Male 
Race (BYS31A)  Self‐described race 0 = White; 1 = Asian; 

2 = Hispanic; 3 = Black; 4 = Native American 
Achievement (BYTEXCOMP)  Standardized reading and math 

achievement test composite 
Continuous

Self Concept (BYCNCPT1)  Positive self concept, which is a 
composite of four items 

Continuous

SES (BYSES)  Socioeconomic status composite Continuous

Note. Continuous variables were mean centered for all analyses.
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To examine linearity, we created scatterplots of 
each predictor variable and the residuals. We looked for 
a similar distribution of residuals at each level of the 
predictor variables. Since this requires multiple plots 
for each model, we only show the results (and R 
syntax) for the negative binomial model. 

Count Regression Example 

Data 

Data for this example were taken from a subset of 
the National Education Longitudinal Study of 1988 
(NELS), provided by Keith (2006)1.  The variables used 
for this analysis are given in Table 1. We only used the 
observations with values for each of the variables. 

The outcome is the number of times a student 
cut/skipped class (skips), placed into one of five 
categories. A histogram of the skips variable is shown 
in Figure 7a, and indicates that the variable is not 
symmetrical, so cannot follow a normal distribution. 
Thus, because it is a count variable that is distinctly not 
normally distributed, it is a prime candidate for a count 
regression model. 

For this particular example, we were interested in 
predicting the number of skips by race, sex, positive 
self-concept, academic achievement, socioeconomic 
status (SES), and whether the student plans on going to 
college. We chose these variables as they represent a 
mixture of continuous and categorical predictor 
variables. To make interpretation easier, we mean 
centered the continuous variables (SES, self-concept, 
and academic achievement) and dummy-coded the 
categorical variables. 

Typical Regression 

As a baseline, we fit a typical regression model to 
the data, i.e., a model that assumes the residuals follow 
a normal distribution. Often, these regression 
parameters are estimated through ordinary least squares 
(OLS). With normally-distributed residuals, OLS and 
maximum likelihood (ML) parameter estimates are the 
same (Kutner, Neter, Nachtsheim, & Li, 2004). For 
consistency with the other models we fit, we used ML 
estimation for this model. 

                                                 
1 Data can be downloaded from https://baylor.box.com/countdata. The 
datafile’s name is count.dat. It is a comma-delimited file with a period (.) 
and 999.98 used as missing value indicators. 

The results are shown in the second column of 
Table 2. The intercept is 0.90. Be-cause of our 
predictor variable coding mechanisms and centering, 
the intercept in the model is interpreted as the 
predicted number of skips for a white female who does 
not plan to go to college and who had average levels of 
self-concept, academic achievement, and SES. 

The regression coefficients are interpreted as any 
other unstandardized coefficients from a typical 
regression. For example, the coefficient associated with 
going to college is −0.32, indicating that the average 
number of skips for those who plan on attending 
college is lower than the average for students not 
wanting to attend college, after controlling for all the 
other predictor variables. As another example, the 
regression coefficient associated with academic 
achievement is −0.01, meaning that for each one-unit 
increase in academic achievement, the average skip 
category decreases by 0.01 units.  

The typical regression model assumes that the 
residuals follow a normal distribution. A plot of the 
residuals for typical regression model is shown in 
Figure 4 and clearly shows they do not follow a normal 
distribution. Another plot that is useful to examine is to 
compare the residuals to the predicted values. There 
should be no relationship between these two values, so 
the LOWESS line should be horizontal and close to 
zero (for more about LOWESS lines, see Trexler & 
Travis, 1993). Figure 5 shows plots of the residuals vs. 
the predicted values. The typical regression shows a  

Figure 4. Residuals for typical regression model. A normal 
distribution is overlaid (dashed line) with the same mean 
and standard deviation of the residuals 
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slight pattern in the results as the LOWESS line is 
slated downward. The other models all have horizontal 
LOWESS lines, with the negative-binomial mode 
lhaving the lowest range of residual values. 

Plots of the Cook’s D values for each observation 
are shown in Figure 6. Overall, the NB model resulted 
in fewest influential cases (i.e., cases with D ≤ 4/n), 
indicating that each observation contributed equitably 
to the parameter estimates. As measures of model fit, 
AIC and BIC values are shown in the bottom of Table 
2. Figure 7a graphically shows how well the model 

predicts the count values by overlaying the predicted 
probabilities for each skip category on the frequency 
histogram of the actual skip data. It appears that the 
typical regression model under-predicts the 0 and 4 
skip categories, but over-predicts all the other 
categories. Figure 7b shows the actual and predicted 
values numerically, and echoes the over- and under-
predictions shown in Figure 7a. Thus, it appears that 
both model fit and model diagnostics converge in 
indicating that the typical regression model does not 
account for the count nature of the skip data very well. 

Table 2. Comparison of the Regression Models for the School Skip Data (n = 889). 

      ZIP ZINB 
Variable  Typical  Poisson  NB Count Logistic Count  Logistic

  Coefficients
Intercept  0.90  ‐0.19  ‐0.20 0.54 0.08 0.39  ‐0.21
Male  ‐0.03  ‐0.04  ‐0.03 ‐0.30 ‐0.65 ‐0.32  ‐1.02
Asiana  0.05  0.08  0.05 0.42 0.74 0.43  1.00
Hispanica  0.36  0.42  0.41 ‐0.07 ‐2.16 0.02  ‐15.36
Blacka  ‐0.06  ‐0.08  ‐0.10 ‐0.28 ‐0.54 ‐0.24  ‐0.65
Native 
Americana  0.03  0.06  0.04  0.08  0.04  0.08  0.08 
Collegeb  ‐0.32  ‐0.37  ‐0.37 ‐0.38 0.01 ‐0.40  ‐0.05
Self Concept  ‐0.03  ‐0.05  ‐0.05 0.06 0.29 0.05  0.38
SES  ‐0.07  ‐0.11  ‐0.13 ‐0.11 ‐0.01 ‐0.07  0.13
Achievement  ‐0.01  ‐0.01  ‐0.02 ‐0.01 0.01 ‐0.01  0.00

  Standard Errors
Intercept  0.11  0.12  0.16 0.15 0.35 0.20  0.52
Male  0.07  0.09  0.11 0.12 0.30 0.14  0.52
Asiana  0.14  0.19  0.23 0.25 0.43 0.30  0.59
Hispanica  0.11  0.12  0.16 0.16 1.35 0.18  939.35
Blacka  0.12  0.15  0.19 0.23 0.64 0.25  0.98
Native 
Americana  0.17  0.20  0.26  0.27  0.55  0.31  0.74 
Collegeb  0.11  0.11  0.15 0.14 0.36 0.16  0.49
Self Concept  0.05  0.06  0.07 0.07 0.18 0.08  0.25
SES  0.05  0.07  0.08 0.10 0.23 0.10  0.29
Achievement  0.00  0.01  0.01 0.01 0.02 0.01  0.03

  Likelihood
Log Likelihood  ‐1258  ‐1000  ‐958 ‐951 ‐948 
Model df  11  10  11 20 21 

  Fit Measures
AIC  2537  2021  1939 1942 1938 
AIC Weight  0.00  0.00  0.40 0.06 0.54 
BIC  2590  2069  1992 2038 2039 

Note.	Typical:	Model	assuming	normally‐distributed	residuals,	fitted	with	maximum	likelihood	estimation.	
NB:	Negative	binomial;	ZI:	Zero‐inflated.	AIC:	Akaike	information	criterion;	BIC:	Bayesian	information	
criterion.	
a.	Reference	category	is	White.	
b.	Reference	category	is	not	planning	on	going	to	college.
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Poisson Regression 

We fit the Poisson regression model using the 
same predictors of skips we used with the typical 
regression model. The results from the Poisson 
regression are shown in the third column of Table 2.  

As with the typical regression, the intercept 
represents the predicted number of skips for a white 
female who does not plan to go to college and who had 
average levels of self-concept, academic achievement, 
and SES. The intercept is −0.19, but the log link makes 
this value hard to interpret. This can be remedied by 
exponentiating the value. For this example, exp(−0.19) 
= 0.82, indicating that the average skip category for a 
white female who does not plan to go to college and 
who had average levels of self-concept, academic 

achievement, and SES is 0.82. This is between the 0 
and 1-2 skips categories, closer to the latter than the 
former. 

Figure 6. Plots of Cook’s D values for each regression 
model. Threshold is a dashed line 
 

Figure 7. Comparison of actual and predicted category 
counts 

Figure 5. Predicted values vs. residual plots. LOWESS 
lines are dashed 
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The coefficient associated with wanting to go to 
college is −0.37. As wanting to go to college is dummy-
coded, the negative sign indicates that the average 
number of skips for those who want to go to college is 
smaller than for those who do not want to go to 
college. Since exp(−0.37) = 0.69, the difference 
between the two groups is over two-thirds of a skip 
category. 

The method of interpreting dummy-coded 
categorical variables does not directly extend to 
continuous predictors. Previously, we discussed Atkins 
and Gallop’s (2007) recommendations for interpreting 
these variables. As the first is a common way to help 
interpret any regression model (Cohen et al., 2003), we 
only focus on the second: percentage change in the 
expected counts. 

The percentage change in the expected counts 
method of interpretation requires two values: the 
regression coefficient and the desired amount of 
change in the variable. For the academic achievement 
variable, the regression coefficient is −0.01. For the 
amount of change we use one SD, which is 9.98. 
Plugging those values into Equation (4) produces 

100 × [exp(−0.01 × 9.98) − 1] = −13.4 

meaning there is a 13.4% decrease in the expected skip 
category value for a one SD increase in academic 
achievement. 

To examine model fit, we first compared the AIC 
and BIC values for the Poisson model to those from 
the typical regression model (see Table 2). As the values 
are much smaller for the Poisson regression, this 
indicates the Poisson model provides an improvement 
over the typical regression model. Second, we 
compared the predicted skip category values against the 
actual values in Figure 7a and Figure 7b. The Poisson 
model appears to do a much better job capturing the 
skip data than the typical regression model across all 
skip value categories. 

Negative Binomial Regression 

The results from the negative binomial (NB) 
regression are shown in the fourth column of Table 2. 
The NB model is very similar to the Poisson model, 
thus the NB model’s coefficients are interpreted in the 
same way as the Poisson regression. The main 
difference between the NB and Poisson models is that 
the NB model allows for more variability (dispersion) 
in the outcome by not assuming the mean and variance 

of the residuals are the same. Consequently, the NB 
model estimates one extra parameter than the Poisson 
model: a overdispersion parameter (see Equation 3). 
The value for overdispersion parameter for the skip 
data is 1.11. Since the NB and Poisson models are so 
similar, it is not surprising that the regression 
coefficients for the two models are very close. The 
standard errors, however, are larger for the NB model 
reflecting its larger residual variance. 

The plots of the predictor variables against the 
standardized residuals are shown in Figure 8. Based on 
visual inspection, we determined that the residual 
distributions were approximately the same across levels 
of the predictor variables. We noticed that there were 
fewer observations in the lower tail of the self-concept 
distribution, which produces a slightly dissimilar 
pattern of residuals for that predictor variable. On the 
whole, the residual patterns across all predictor 
variables from the NB model were acceptable. 

 

Figure 8. Plots of negative binomial model predictors by 
residuals. 
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The AIC and BIC values for NB model are smaller 
than those for the Poisson model, indicating that the 
NB model fits the data somewhat better than the 
Poisson model. Although the amount is not that large, 
there appears to be enough overdispersion in the skip 
variable that the Poisson model was not able to capture 
the variance as well as the NB model. This result is 
echoed in Figure 7a and Figure 7b, which shows that 
the NB model provides more accurate predictions than 

the Poisson regression model for all skip categories 
except category three (7-9 skips). 

Zero-Inflated Regression 

T The results from the zero-inflated models are 
shown in Table 2. Each zero-inflated model has two 
sets of regression coefficients. Thus, the zero-inflated 
Poisson (ZIP) regression values are shown in columns 
five and six, while the values from the zero-inflated 
negative binomial (ZINB) regression models are shown 
in columns seven and eight. 

For each zero-inflated model’s set of coefficients 
in Table 2, the first column shows the count regression 
part, while the second column is the logistic regression 
portion of the model. The coefficients for the count 
part of the model can be interpreted the same as was 
done previously for the Poisson model. The 
coefficients for the logistic regression are on the logit 
scale, so exponentiating them transforms the values to 
odds ratios. Remember, with zero-inflated models the 
logistic part of the model predicts non-occurrence of 
the outcome. 

As an example interpretation, in the ZINB model 
the coefficients for planning on going to college are -
0.40 and −0.05 for the count and logistic parts of the 
model, respectively. Exponentiating the count 
coefficient gives 0.67. Consequently, holding all the 

other variables constant, students planning on going to 
college typically skip fewer classes than those not 
planning on going to college, and the difference is 
approximately the size of two-thirds of a skip category. 

Exponentiating the logistic coefficient gives 0.95, 
indicting that after holding all the other variables 
constant, students planning on going to college have 
slightly decreased odds of never having skipped a class 

than students not planning on going to college. 
Alternatively, by using Equation (6) the results indicate 
that the probability of not having skipped a class for 
students planning on going to college is 0.01 units 
lower than for students not planning on going to 
college. The interpretation of the logistic part of the 
model must be tempered, however, as an odds ratio of 
0.95 represent a small effect and the 95% confidence 
interval (0.76 - 1.13) contains 1.0 (i.e., no difference). 
Thus, it is likely that planning on going to college only 
has an influence on the number of skips, not whether a 
students has ever skipped a class. 

Final M When examining fit across all five of the 
models, the AIC values and AIC weights favor the 
ZINB and NB over the other three models, while the 
BIC favors the NB model. As the ZINB model 
requires twice as many parameters as the NB model, 
the NB model is the more parsimonious model. Thus, 
it appears that accounting for the overdispersion is 
sufficient to capture the excess number of zero values. 

Support for the NB model over the ZINB model 
is bolstered by Figure 7a and Figure 7b. The NB model 
does as good of a job as the ZINB model in capturing 
the first two and last two skip categories, and does a 
slightly better for the third category (3-6 skips). 

Table 3. Results for Final Count Regression Model (Negative Binomial) 
        95% Confidence Interval for exp(B) 

Variable  B  SE  exp(B)  Lower Bound  Upper Bound 
Intercept  −0.16  0.14  0.85  0.65  1.13 
SES  −0.18  0.08  0.84  0.71  0.98 
Achievement  −0.02  0.01  0.99  0.97  1.00 
Collegea  −0.37  0.15  0.69  0.51  0.93 

Note. B: Unstandardized coefficient; SE: Standard error; exp(B): Exponentiated regression coefficient. Log Likelihood: −963
(df = 5); AIC: 1935; BIC: 1959. 
a. Reference category is not planning on going to college.
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All the models fit thus far assume that all the 
predictor variables are needed. An examination of the 
values in Table 2 indicates this is likely not the case. 
Specifically, it appears that only the academic 
achievement and planning on going to college variables 
might be needed. Consequently, we pruned the model 
removing each variable singly and in sets. 

The BIC indicted that the model with only the 
achievement and college plans variables fit the best, 
while the AIC indicated that achievement, college 
plans, and SES should be kept. We opted to keep 
achievement, college plans, and SES in the model. The 
results for the final, pruned NB binomial model are 
shown in Table 3. 

Discussion 

Count outcome variables are very common in 
many areas of education research. Older traditions of 
dichotomizing or transforming the outcome variable 
can produce estimation and interpretive problems. This 
tutorial introduced methods to analyze count data using 
the general linear model framework, which is a robust 
way to handle count outcomes in regression. We 
discussed four ways to model count data in regression, 
and then demonstrated the analysis of the data. R 
syntax for all the analyses is given in the Appendix. 

Extensions of Count Regression Models 

We ignored two related areas that are growing in 
this field. The first is including count data in a 
multilevel framework. Often, data that interests 
education researchers is multilevel in nature, as when 
using data from students coming from the same 
classroom or school (Graves & Frohwerk, 2009). 
Analyzing such nested data can be tricky when the 
variables are continuous, much less when they are 
counts. Nonetheless, recent work in this are has shown 
how to include count outcomes when the data is nested 
(Atkins et al., 2013; Gelman & Hill, 2006). 

The second is including count data in a repeated 
measures framework. While this situation could be 
considered a type of nested data, it is more frequently 
used with single case designs. We stated in the 
beginning of this article that Shadish and Sullivan’s 
(2011) single-case design (SCD) review showed that 
nearly all outcome variables used with SCDs are count 
variables. As with multilevel data, extending count 
regression models to SCDs is a difficult endeavor. 
Nonetheless, there are some promising signs that this, 

too, can be included in the educational researcher’s data 
analysis tools (e.g. Shadish, Zuur, & Sullivan, 2014). 
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Appendix 

R Syntax 

Import Data 

# import data 
nels.data <- read.table("count.dat", sep=",", na.strings = c(".","999.98"), header=TRUE) 
# subset variables of interest from NELS data 
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nels.var <- c("F1S10B","BYS12","BYS31A", "BYCNCPT1", "BYSES", "BYTXCOMP", "F1S51") 
# create new dataset with only variables of interest 
count.data <- nels.data[nels.var] 
# change names of variables 
names(count.data) <- c("skipped", "sex", "race", "self.con1", "ses", "achievement", 

"F1S51") 
# change sex so that female = 0 
count.data$male <- ifelse(count.data$sex==2, 0,count.data$sex) 
# recode college plans variable to 0 = no, 1= yes, 
count.data$college <- count.data$F1S51 
count.data$college[count.data$F1S51==1] <- 0 
count.data$college[count.data$F1S51==2 | count.data$F1S51==3 | count.data$F1S51==4 | 

count.data$F1S51==5] <- 1 
# make race variable a factor and name the levels 
count.data$race <- factor(count.data$race, levels=1:5, labels=c("asian", "hispanic", 

"black", "white", "nat.american")) 
# make white the comparison race group 
count.data$race <- relevel(count.data$race, ref = 4) 
# create new dataset without missing data 
count.data <- na.omit(count.data) 
# mean center continuous variables 
count.data$self.con1.m <- scale(count.data$self.con1, center = TRUE, scale = FALSE) 
count.data$ses.m <- scale(count.data$ses, center = TRUE, scale = FALSE) 
count.data$achievement.m <- scale(count.data$achievement, center = TRUE, scale = FALSE) 

Fit Regression Models 

# normal theory regression using maximum likelihood 
skip.normal <- glm(skipped ~ male + race + college + self.con1.m + ses.m + achievement.m, 

data = count.data, family = gaussian) 
# summary of results 
summary(skip.normal) 
# poisson regression 
skip.pois <- glm(skipped ~ male + race  + college + self.con1.m + ses.m + achievement.m, 

data = count.data, family = poisson) 
# summary of results 
summary(skip.pois) 
 
# load MASS package 
library(MASS) 
# negative binomial regression 
skip.nb <- glm.nb(skipped ~ male + race + college + self.con1.m + ses.m + achievement.m, 

data = count.data) 
# summary of results 
summary(skip.nb) 
# overdispersion 
summary(skip.nb)$theta 
 
# load pscl package 
library(pscl) 
# zero-inflated Poisson regression 
# the | seperates the count model from the logistic model 
skip.zip <- zeroinfl(skipped ~ male + race + college + self.con1.m + ses.m + 

achievement.m | male + race + college + self.con1.m + ses.m + achievement.m, data = 
count.data, link = "logit", dist = "poisson", trace = TRUE) 

# summary of results 
summary(skip.zip) 
 
# load pscl package 
library(pscl) 
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# zero-inflated negative binomial regression 
# the | seperates the count model from the logistic model 
skip.zinb <- zeroinfl(skipped ~ male + race + college + self.con1.m + ses.m + 

achievement.m | male + race + college + self.con1.m + ses.m + achievement.m, data = 
count.data, link = "logit", dist = "negbin", trace = TRUE, EM = FALSE) 

# summary of results 

summary(skip.zinb) 

Model Fit 

# AIC values 
AIC(skip.normal) 
AIC(skip.pois) 
AIC(skip.nb) 
AIC(skip.zip) 
AIC(skip.zinb) 
 
 
# AIC weights 
compare.models <- list( ) 
compare.models[[1]] <- skip.normal 
compare.models[[2]] <- skip.pois 
compare.models[[3]] <- skip.nb 
compare.models[[4]] <- skip.zip 
compare.models[[5]] <- skip.zinb 
compare.names <- c("Typical", "Poisson", "NB", "ZIP", "ZINB") 
names(compare.models) <- compare.names 
compare.results <- data.frame(models = compare.names) 
compare.results$aic.val <- unlist(lapply(compare.models, AIC)) 
compare.results$aic.delta <- compare.results$aic.val-min(compare.results$aic.val) 
compare.results$aic.likelihood <-  exp(-0.5* compare.results$aic.delta) 
compare.results$aic.weight <- 

compare.results$aic.likelihood/sum(compare.results$aic.likelihood) 
# BIC values 
AIC(skip.normal, k = log(nrow(count.data))) 
AIC(skip.pois, k = log(nrow(count.data))) 
AIC(skip.nb, k = log(nrow(count.data))) 
AIC(skip.zip, k = log(nrow(count.data))) 
AIC(skip.zinb, k = log(nrow(count.data))) 
 
# observed zero counts 
# actual 
sum(count.data$skip < 1) 
# typical 
sum(dnorm(0, fitted(skip.normal))) 
# poisson 
sum(dpois(0, fitted(skip.pois))) 
# nb 
sum(dnbinom(0, mu = fitted(skip.nb), size = skip.nb$theta)) 
# zip 
sum(predict(skip.zip, type = "prob")[,1]) 
# zinb 
sum(predict(skip.zinb, type = "prob")[,1]) 
 
Diagnostics 
# normal residuals density plot 
plot(density(residuals(skip.normal))) 
# histogram plot with fitted probabilities 
# predicted values for typical regression 
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normal.y.hat <- predict(skip.normal, type = "response") 
normal.y <- skip.normal$y 
normal.yUnique <- 0:max(normal.y) 
normal.nUnique <- length(normal.yUnique) 
phat.normal <- matrix(NA, length(normal.y.hat), normal.nUnique) 
dimnames(phat.normal) <- list(NULL, normal.yUnique) 
for (i in 1:normal.nUnique) { 

phat.normal[, i] <- dnorm(mean = normal.y.hat, sd = sd(residuals(skip.normal)),x = 
normal.yUnique[i]) 

} 
# mean of the normal predicted probabilities for each value of the outcome 
phat.normal.mn <- apply(phat.normal, 2, mean) 
# probability of observing each value and mean predicted probabilities for 
#count regression models 
phat.pois <- predprob(skip.pois) 
phat.pois.mn <- apply(phat.pois, 2, mean) 
phat.nb <- predprob(skip.nb) 
phat.nb.mn <- apply(phat.nb, 2, mean) 
phat.zip <- predprob(skip.zip) 
phat.zip.mn <- apply(phat.zip, 2, mean) 
phat.zinb <- predprob(skip.zinb) 
phat.zinb.mn <- apply(phat.zinb, 2, mean) 
# histogram 
hist(count.data$skip, prob = TRUE, col = "gray90", breaks=seq(min(count.data$skip)-0.5, 

max(count.data$skip)+.5, 1), xlab = "Skips Category", ylim=c(0,.8)) 
# overlay predicted values 
lines(x = seq(0, 4, 1), y = phat.normal.mn, type = "b", lwd=2, lty=1, col="black") 
lines(x = seq(0, 4, 1), y = phat.pois.mn, type = "b", lwd=2, lty=2, col="gray20") 
lines(x = seq(0, 4, 1), y = phat.nb.mn, type = "b", lwd=2, lty=3, col="gray40") 
lines(x = seq(0, 4, 1), y = phat.zip.mn, type = "b", lwd=2, lty=4, col="gray60") 
lines(x = seq(0, 4, 1), y = phat.zinb.mn, type = "b", lwd=2, lty=5, col="gray80") 
# legend 
legend(1, 0.7, c("Typical (Normal)","Poisson", "Negative Binomial", "Zero-Inflated 

Poisson", "Zero-Inflated Negative Binomial"), lty=seq(1:5), col = 
c("black","gray20","gray40","gray60","gray80"), lwd=2) 

# predicted vs. residual plots 
# typical 
plot(predict(skip.normal, type="response"), residuals(skip.normal), main="Typical 

Regression", ylab="Residuals", xlab="Predicted", ylim=c(-2,5)) 
abline(h=0,lty=1,col="gray") 
lines(lowess(predict(skip.normal,type="response"),residuals(skip.normal)), lwd=2, lty=2) 
# poisson 
plot(predict(skip.pois,type="response"),residuals(skip.pois), main="Poisson Regression", 

ylab="Residuals", xlab="Predicted", ylim=c(-2,5)) 
abline(h=0,lty=1,col="gray") 
lines(lowess(predict(skip.pois,type="response"),residuals(skip.pois)),lwd=2, lty=2) 
# negative binomial 
plot(predict(skip.nb,type="response"),residuals(skip.nb), main="Negative Binomial 

Regression", ylab="Residuals", xlab="Predicted", ylim=c(-2,5)) 
abline(h=0,lty=1,col="gray") 
lines(lowess(predict(skip.nb,type="response"),residuals(skip.nb)), lwd=2, lty=2) 
# ZIP 
plot(predict(skip.zip,type="response"),residuals(skip.zip), main="ZIP Regression", 

ylab="Residuals", xlab="Predicted", ylim=c(-2,5)) 
abline(h=0,lty=1,col="gray") 
lines(lowess(predict(skip.zip,type="response"),residuals(skip.zip)),lwd=2, lty=2) 
# ZINB 
plot(predict(skip.zinb,type="response"),residuals(skip.zinb), main="ZINB Regression", 

ylab="Residuals", xlab="Predicted", ylim=c(-2,5)) 
abline(h=0,lty=1,col="gray") 
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lines(lowess(predict(skip.zinb,type="response"),residuals(skip.zinb)),lwd=2, lty=2) 
 
A Cook’s D computation function is built into R for the typical, Poisson, and negative binomial regression models, 
but not zero-inflated models. Consequently, we wrote an iterative function to compute the D values for each case in 
the zero-inflated models. 
	
# plot Cook's D for the typical regression 
plot(cooks.distance(skip.normal), main="Cook's D Estimates", ylab="Cook's D", 

xlab="Observation") 
abline(h=(4/nrow(count.data)), col="red", lwd=2) 
 
# plot Cook's D for the Poisson model 
plot(cooks.distance(skip.pois), main="Cook's D Estimates", ylab="Cook's D", 

xlab="Observation") 
 
# plot Cook's D for the negative binomial model 
plot(cooks.distance(skip.nb), main="Cook's D Estimates", ylab="Cook's D", 

xlab="Observation") 
abline(h=(4/nrow(count.data)), col="red", lwd=2) 
 
# compute generalized Cook's D for zero-inflated models 
g.cooks.zi<-function(model){ 

n <- nrow(count.data) 
cooks <- as.matrix(rep(0,nrow(count.data))) 
for (i in 1:n){ 

if(model=="ZIP"){ 
skip.zip.red <- zeroinfl(skipped ~ male + race + self.con1.m + ses.m + 

achievement.m + college | male + race + self.con1.m + ses.m + achievement.m + 
college, data = count.data[-i,], 
link = "logit", dist = "poisson", trace = TRUE) 
cooks[i]<-t(rbind(as.matrix(skip.zip.red$coefficients$count), 

      as.matrix(skip.zip.red$coefficients$zero))- 
      rbind(as.matrix(skip.zip$coefficients$count), 
      as.matrix(skip.zip$coefficients$zero)))%*% 
      (-(skip.zip$optim$hessian))%*%(rbind( 
      as.matrix(skip.zip.red$coefficients$count), 
      as.matrix(skip.zip.red$coefficients$zero))- 
      rbind(as.matrix(skip.zip$coefficients$count), 
      as.matrix(skip.zip$coefficients$zero))) 

} 
    if(model=="NB"){ 
      skip.zinb.red <- zeroinfl(skipped ~ male + race + self.con1.m + ses.m + 

achievement.m + college | male + race + self.con1.m + ses.m + achievement.m + 
college, data = count.data[-i,], link = "logit", dist = "negbin", trace = TRUE, EM 
= FALSE) 

    cooks[i]<-t(rbind(as.matrix(skip.zinb.red$coefficients$count), 
    as.matrix(skip.zinb.red$coefficients$zero), 
    as.matrix(skip.zinb.red$theta))- 
    rbind(as.matrix(skip.zinb$coefficients$count), 
    as.matrix(skip.zinb$coefficients$zero), 
    as.matrix(skip.zinb$theta)))%*%  

(-(skip.zinb$optim$hessian))%*%(rbind( 
    as.matrix(skip.zinb.red$coefficients$count), 
    as.matrix(skip.zinb.red$coefficients$zero), 
    as.matrix(skip.zinb.red$theta))- 
    rbind(as.matrix(skip.zinb$coefficients$count), 
    as.matrix(skip.zinb$coefficients$zero), 
    as.matrix(skip.zinb$theta))) 
} } 
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   return(cooks) 
} 
 
# generate and plot Cook's D for the zero-inflated Poisson model 
cooks.out<-g.cooks.zi(model="ZIP") 
plot(cooks.out ,xlab="Case Number", ylab="Cook's D") 
abline(h=(4/nrow(count.data)), col="red") 
 
# generate and plot Cook's D for the zero-inflated negative binomial model 
cooks.out <- g.cooks.zi(model="ZINB") 
plot(cooks.out ,xlab="Case Number", ylab="Cook's D") 
abline(h=(4/nrow(count.data)), col="red") 
 
# linearity plots for negative binomial model 
plot(as.factor(count.data$male),resid(skip.nb),xlab="Sex (0 = Female, 1 = Male)", 

ylab="Residuals") 
plot(count.data$race,resid(skip.nb),xlab="Race",ylab="Residuals") 
plot(count.data$self.con1.m,resid(skip.nb),xlab="Self-concept", ylab="Residuals") 
plot(count.data$ses.m,resid(skip.nb),xlab="SES", ylab="Residuals") 
plot(as.factor(count.data$college),resid(skip.nb),xlab="Plan on Going to College (0 = No, 

1 = Yes)", ylab="Residuals") 
plot(count.data$achievement.m,resid(skip.nb),xlab="Academic Achievement", 

ylab="Residuals") 

Select Final Model 

# define the NB models to compare 
cand.models <- list( ) 
cand.models[[1]] <- glm.nb(skipped ~ male + race + college + self.con1.m + ses.m + 

achievement.m, data = count.data) 
cand.models[[2]] <- glm.nb(skipped ~ male + race + college + self.con1.m  + 

achievement.m, data = count.data) 
cand.models[[3]] <- glm.nb(skipped ~ male + race + college  + ses.m + achievement.m, data 

= count.data) 
cand.models[[4]] <- glm.nb(skipped ~ male + race + self.con1.m + ses.m + achievement.m, 

data = count.data) 
cand.models[[5]] <- glm.nb(skipped ~ male  + college + self.con1.m + ses.m + 

achievement.m, data = count.data) 
cand.models[[6]] <- glm.nb(skipped ~  race + college + self.con1.m + ses.m + 

achievement.m, data = count.data) 
cand.models[[7]] <- glm.nb(skipped ~ male + race + college + self.con1.m + ses.m, data = 

count.data) 
cand.models[[8]] <- glm.nb(skipped ~  race + college +  ses.m + achievement.m, data = 

count.data) 
cand.models[[9]] <- glm.nb(skipped ~  college +  ses.m + achievement.m, data = 

count.data) 
cand.models[[10]] <- glm.nb(skipped ~  college +   achievement.m, data = count.data) 
cand.models[[11]] <- glm.nb(skipped ~  college , data = count.data) 
 
# name the models 
model.names <- c("Full", "SES", "SlfCon", "College", "Race", "Sex", "Ach", 

"Sex.SlfCon","Sex.SlfCon.Race", "Sex.SlfCon.Race.SES", "Sex.SlfCon.Race.SES.Ach") 
names(cand.models) <- model.names 
 
# calculate and combine AIC, AIC weights, and BIC 
results <- data.frame(models = model.names) 
results$bic.val <- unlist(lapply(cand.models, BIC)) 
results$bic.rank <- rank(results$bic.val) 
results$aic.val <- unlist(lapply(cand.models, AIC)) 
results$aic.delta <- results$aic.val-min(results$aic.val) 
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results$aic.likelihood <-  exp(-0.5* results$aic.delta) 
results$aic.weight <- results$aic.likelihood/sum(results$aic.likelihood) 
# sort models by AIC weight 
results <- results[rev(order(results[, "aic.weight"])),] 
esults$cum.aic.weight <- cumsum(results[, "aic.weight"]) 
 
# final model 
skip.final.nb <- glm.nb(skipped ~  college +  ses.m + achievement.m, data = count.data) 
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