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Power analysis is a fundamental prerequisite for conducting scientific research. Without power 
analysis the researcher has no way of knowing whether the sample size is large enough to detect 
the effect he or she is looking for. This paper demonstrates how psychometric factors such as 
measurement error and equating error affect the power of statistical tests. The overall finding is 
that measurement error and equating error reduce power and inflate sample size requirements. It is 
recommended that researchers, where appropriate, incorporate these sources of error in conducting 
power analysis. If either of these two sources of error are present in the data but not accounted for 
in the power analysis, then power will be underestimated and sample size requirements will be 
underestimated. 
 

Power is the probability of detecting whether the 
population effect you are looking for is in your sample. 
The mathematical statistics of power analysis have been 
well documented in the literature (Cohen, 1969, 1988; 
Mood, Graybill, & Boes, 1974). There are two types of 
power analysis: a priori power analysis and post hoc 
power analysis. A priori power analysis is used to 
determine the sample size needed to achieve a specified 
power in a planned research study for a given expected 
effect size. Post hoc power analysis is a retrospective 
power analysis after the research has been completed. 
This paper is really about how researchers need to 
conduct a more thorough a priori power analysis by 
taking into account psychometric factors such as 
measurement error and equating error.  

The process of power analysis consists of deciding 
how big an effect you want to be able to detect and at 
what probability you want to detect it. One of the 
important uses of power analysis is to determine the 
sample size needed in a planned study. We want the 
sample size to be large enough to detect an effect that is 
substantively significant. Another way of saying this is 
that you want the sample size to be large enough to have 

the power you want to detect the effect you are looking 
for. Three decisions must be made before determining 
the sample size.  

First, the probability of rejecting a true null 

hypothesis H0 needs to be decided. This probability is 
denoted as   and is the probability of a Type I error. 
For illustrative purposes in this paper we use a two-
tailed t-test with α / 2 .025 . 

Second, the probability of rejecting a false null 
hypothesis 1 β  needs to be decided (i.e., statistical 
power). Power is defined as 1 minus β where β  is the 
probability of a Type II error. A Type II error is failing 
to reject a false null hypothesis. The usual convention is 
that power should be at least equal to .80. This 
convention is adopted in this paper. 

Third, the size of the effect you are trying to detect 
needs to be decided. As Cohen states, “neither the 
determination of power or necessary sample size can 
proceed without the investigator having some idea 

about the degree to which the H0 is believed to be false” 
(Cohen, 1992, p. 156). For illustrative purposes we will 
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use Cohen’s standardized effect size 2 1μ  - μ

δ = 
σ

 (Cohen, 

1969, p. 19), which is defined as the population mean 
difference between group 2 and group 1, divided by the 
pooled population standard deviation. The population 
effect size δ  is estimated in the sample by 
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Cohen has recommended a convention to aid 
researchers in conducting power analysis. His 
convention is that researchers should consider small, 
medium, or large effect sizes, which he operationally 
defines as δ  = .20, δ  = .50,S M and δ  = .80L  (Cohen, 
1969, p. 12). Cohen provided examples of these effect 
sizes (Cohen, 1988, p. 25–27, 79–80). For example, a 
small effect size is one that is meaningful but not visible 
to the naked eye such as the mean height between 15- 
and 16-year-old girls. A medium effect size is visible to 
the naked eye in the data such as the difference in mean 
height between 14 and 18 year-old girls. An example of 
a large effect size is the mean difference between 13- 
and 18-year-old girls. We will use Cohen’s conventions 
to illustrate the effect of sample design effects, 
measurement error, and equating error on power 
analysis.  

In large-scale scientific research, power analysis is 
far more complicated than indicated in Cohen’s books. 
In many large-scale research studies the samples are 
complex samples and are not simple random samples 
(SRS) as assumed by Cohen. Essentially, any factor that 
perturbs the sampling distribution of the test statistic 

2 1y y  will influence power. One factor that affects the 
sampling distribution is complex sampling (CS). The 
term complex sampling refers to sampling that may involve 
stratification, unequal probability of selection, and 
clustering. In general, stratification provides a small 
reduction in variance of the sampling distribution and 
sampling weights related to the unequal probability of 
selection causes a small increase. The biggest 
inflationary impact on the sampling distribution is 
usually the clustering. In complex sampling, data are 
often collected by sampling clusters first, then by 
sampling units within clusters. For example, in a 
randomized clinical trial of reading programs, schools 
may be randomly assigned to a treatment or control 
group. Then, within each school, a random sample of 
students will be selected for the study. Such research 

designs are called cluster-randomized designs. Another 
example would involve large-scale assessment field tests 
such as state testing programs. New items may be field-
tested in samples where schools are first sampled, then 
students within schools are tested. As is shown below, 
complex sampling often increases the variance of the 
sampling distribution of the test statistic, which reduces 
statistical power and concomitantly increases the 
sample sizes needed to detect the target effect size.  

A second factor that affects power analysis is 
measurement error. For example, measurements of 
blood pressure and glucose readings, survey 
instruments, behavioral observations, rating scales, and 
test scores all contain measurement error. Measurement 
error also reduces statistical power and increases sample 
size needed to detect the target effect size. 

Third, many outcome variables contain equating 
error, which reduces statistical power. This is especially 
true in psychological and educational tests. Equating 
error occurs when the scale used in the analysis (such as 
the posttest) has been equated to previous versions of 
the test (such as the pretest). As is shown in the next 
section, equating error also reduces statistical power and 
increases the sample size needed to detect the target 
effect size. 

Simple Random Samples 

Let’s assume that our sample is a simple random 
sample as assumed by Cohen (1969). Let ௩ܶሺݐ, γሻ be the 
Cumulative Distribution Function (CDF) of a non-
central t-distribution at t (ݐ ∈ ሺെ∞,൅∞ሻሻ  with degrees 
of freedom v and non-centrality γ (Chow, Shao, & 
Wang, 2002). In this paper we expand the traditional 
non-central t-distribution to accommodate design 
effects, measurement error, and equating error. We use 
the example of two independent samples. The formula 
will work for both equal and unequal variances but for 
simplicity we assume equal variances. The probability β  

associated with the difference 2 1μ  - μ  being different 
from 0, based on two true scores with distributions 
from ܰሺμଵ, σଵ

ଶሻ and ܰሺμଶ, σଶ
ଶሻ, for given significance 

level α is shown in equation (1). 

In equation (1), 2 1μ μ    is the true mean 
difference we wish to detect, α is the specified 
probability of a Type I error, β is the probability of a 

Type II error, 2
1σ  and 2

2σ   are the variances, 1n  is the 



Practical Assessment, Research & Evaluation, Vol 21, No 9 Page 3 
Phillips & Jiang, Measurement Error and Equating Error in Power Analysis 
                                                   

sample size for sample 1, and 1pn  is the sample size for 
sample 2, where p is the ratio of the sample size in group 
2 to group 1. When 2 2

1 2σ σ  , the degrees of freedom 
associated with equation (1) is provided by Satterthwaite 
(1946) as 

   
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and when 2 2
1 2σ σ  the degrees of freedom associated 

with equation (1) are 

1 1 2v n pn    (3)
The above non-central t-distribution can be used 

to replicate the sample size tables used by Cohen (1969) 
for various levels of  1 β   and δ by specifying α . Note 
that δ =  when 1 2 1σ σ  . An example of a 
replication is provided in Table 1 where the cells are the 

values of n for different values of 1 β  and δ given 
2 2
1 2σ σ 1.0   and 1.0p  . If the reader compares 

Table 1 to Cohen’s table the entries will either agree 
exactly or be off by no more than one. 

From Table 1 we can see the sample size 
requirements in a simple random sample to detect 
Cohen’s small, medium, and large effect sizes are 394, 
64, and 26, respectively. In the rest of this paper we use 
Table 1 as a baseline and expand on equations (1)–(3) 
to explore the impact of design effects, measurement 
error, and equating error on power analysis and the 
estimation of required sample sizes. We note that a 
power equal to .25 in Cohen’s Table 1 is not a value of 
power that researchers should aspire to use in practice. 
It represents a level of power associated with an 
inadequate sample size. Most researchers use power 
equal to .80 as a convention. 

 Complex Random Samples 

Data in the social and behavioral sciences are often 
collected through complex sampling designs that 

Table 1. Replicating Cohen’s Sample Size Tables (Cohen, 1969, Table 2.4.1, Pages 52–53) 

            
1 –  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.20 1.40 

0.25 331 84 38 22 15 11 8 7 5 4 3 

0.50 770 194 87 49 32 23 17 14 9 7 6 

0.60 981 246 110 63 41 29 21 17 11 8 7 

0.67 1,143 287 128 73 47 33 25 19 13 9 7 

            

0.70 1,236 310 139 79 51 36 27 21 14 10 8 

0.75 1,390 348 156 88 57 40 30 23 15 11 9 

0.80 1,571 394 176 100 64 45 34 26 17 12 10 

0.85 1,797 450 201 114 73 51 38 30 19 14 11 

            

0.90 2,103 527 235 133 86 60 44 34 23 16 12 

0.95 2,600 651 290 164 105 74 55 42 27 20 15 

0.99 3,676 920 410 231 148 104 76 59 38 27 20 

2 2

     α α1 22 2 2 2, ,
2 21 1 2 1 1 1 2 1

Δ Δ
β , ,

σ σ σ // σ/ /
v p nv v

T t T t
n pn n pn

 

   
               

 (1)
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include stratification, weighting, and clustering. With 
stratification the population of units is grouped into 
homogenous subgroups (strata), and then units are 
sampled within the subgroups. Often some strata are 
oversampled and sample stratum weights are used to 
approximate a representative sample. Stratification 
generally provides a moderate reduction in the design 
effect and weighting causes a moderate increase. 
However, the effects on the error variance due to 
stratification and weighting are often overshadowed by 
a larger inflation in the error variance due to cluster 
sampling. In many sample designs, clusters of units are 
sampled first, then individual units are sampled within 
the selected clusters. An example of clustering is when 
experimental studies and clinical trials use group 
randomized designs where treatment and control 
conditions are randomly assigned to clusters of units 
rather than the units themselves. For example, in 
pharmaceutical and health research the clusters may be 
hospitals, HIV prevention programs, or family planning 
centers. In educational research the clusters may be 
schools; then students in schools are sampled. Cluster 
sampling can have many hierarchical levels such as 
sampling school districts, then schools, then 
classrooms, then students.  

A design effect (Deff) is the inflation in the error 
variance of your test statistic caused by the design of the 
sample. The design effect is the ratio of the error 
variance of a statistic with a complex sample to the error 
variance of the statistic with a simple random sample of 
the same size. The concept of the design effect 
originated with Cornfield (1951) when he compared the 
error variance of a simple random sample to a complex 
sample of the same sample size as a way to characterize 
the efficiency of sample design. Kish (1965) used the 
inverse of Cornfield’s ratio and named it the “design 
effect.” There are many factors that influence the design 
effect, including stratification, weighting and cluster 
sampling. Often stratification reduces the design effect 
and weighting increases the design effect. By far the 
largest increase in the design effect is caused by cluster 
sampling. Complex sampling and design effects are 
described in more detail by Cochran (1977), Levy 
(1999), and Lohr (1999).  

Complex sampling influences power analysis 
through the sample’s design effect. Power analysis and 
sample size estimation for clustered samples is well 
established in the literature (Raudenbush, 1997; 
Konstantopoulos, 2009; Hedges & Rhoads, 2009). If 

there is only one level of cluster sampling—such as 
when schools are sampled first, then students are 
sampled within schools—then the design effect is 
defined as  1 1 ρS SDeff n   . 

In this formula Sn  is the average cluster size and ρS  
is the intra-class correlation between students within 
clusters. The intra-class correlation is defined as 

2

2 2

σ
ρ

σ σ
B

S
B W




, where 2σ B  is the variance between schools 

and 2σW  is the variance within schools. In this design 
effect formula, we see that the two factors that influence 
the magnitude of the design effect are Sn and ρS . Larger 
cluster sizes and larger intra-class correlations will result 
in larger design effects. If ρ 0.0S  , which would occur 
in a simple random sample, then 1.0Deff   regardless of 

the size of Sn . If 1.0Sn  , which would occur if only 
one observation is sampled per cluster, then 1.0Deff   

regardless of the size of ρS .  

Design effects can be complicated depending on 
the number of levels of clustering. For example, for two 
levels of cluster sampling, where schools are sampled 
first, then classrooms within schools, for students 
within classrooms the design effect is 

1 ( -1)ρ ( 1)ρC C C S SDeff n n c    .In this two-level 
formula, Cn  is the average number of students per 

classroom, Sc  is the average number of classrooms per 

school, ρ C  is the intra-class correlation within classes, 

and ρS  is the intra-class correlation within schools. 

For three levels of cluster sampling such as 
sampling school districts first, then schools within 
districts, then classrooms within schools, then students 
within classrooms, the design effect is 

1 ( -1)ρ ( 1)ρ ( 1)ρC C C S S C S D DDeff n n c n c s      . In 

this three-level formula, Cn  is the average number of 

students tested per class, Sc  is the average number of 

classes sampled per school, and Ds  is the average 
number of schools selected per district. The intra-class 
correlations areρ ,  ρ , C S andρD for classrooms, schools, 
and school districts, respectively. 

In this paper we use the design effect to illustrate, 
primarily, the effects of clustering but in general the 
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design effect will also include the impact of stratification 
and sample weighting due to unequal probability of 
selection. Regardless of the complexity of the clustering, 
stratification and weighting in the sample design, the 
design effect can be used to conduct power analysis and 
sample size determination. 

We can expand equations (1)–(3) to include the 
design effects from clustered sampling: 

 

   

α
2 2,

2 1 1 1 2 2 1

α1 2 2 2,
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(4)

with degrees of freedom under 2 2
1 2σ σ  

   

22 2
1 1 2 2

1 1
2 22 2

1 1 1 2 2 1

1 1 1 2

σ σ

σ / σ /

/ 1 / 1

Deff Deff
n pn

v
Deff n Deff pn

n Deff pn Deff

 
 

 


 

 (5)

and degrees of freedom when 2 2
1 2σ σ , 

1 1

1 2

2
n pn

v
Deff Deff

    (6)

Equations (4)–(6) can be used to estimate sample 
size requirements for complex samples. For our 

illustration we assume there is one level of school 
clustering, the test statistic is the true mean difference 

2 1μ μ  the average cluster sizes in both groups are 
equal to 21 students per school, and the intra-class 
correlations in both groups are equal to .15. Therefore, 
the design effects are 

 1 2 1 .15 21 1 4.0Deff Deff     . A design effect 

of 4.0 means the error variance of the test statistic is 
four times larger in the clustered sample than it would 
be with an SRS of the same size. Alternatively, the root 
design effect, 2.0Deff   indicates that the standard 
error of the test statistic is twice as large in the clustered 
sample as in a simple random sample of the same size. 
The sample sizes required for a design effect of 4.0 are 
presented in Table 2. 

One important observation in Table 2 is that the 
sample size requirements to detect δ .20,  δ .50,S M   

and δ .80L  for clustered samples, in this specific 
example, are approximately four times larger than the 
sample size requirements for a simple random sample. 
This is equal to the average of the design effects in 
group 1 and group 2. In general, the increase in the 
sample size caused by complex sampling can be 
approximated by 

2 2
1 1 22

2 2
1 2

σ σ

σ σCS SRS

Deff D f pef
n n

p

 
   

 (7)

Table 2. Sample Size Table for Clustered Samples with 1 2 4.0Deff Deff    

                      

1 –     0.10     0.20     0.30     0.40     0.50     0.60     0.70    0.80    1.00    1.20    1.40 

0.25 1,322 334 151 87 57 41 32 25 18 14 12 

0.50 3,077 773 346 196 127 90 67 53 35 26 21 

0.60 3,923 984 440 249 161 113 84 66 44 32 25 

0.67 4,570 1,146 512 290 187 131 98 76 50 36 28 

            

0.70 4,942 1,239 553 313 202 142 105 82 54 39 30 

0.75 5,557 1,392 621 351 226 159 118 91 60 43 33 

0.80 6,283 1,574 702 397 256 179 133 103 67 48 37 

0.85 7,187 1,800 802 453 292 204 151 117 76 55 41 

            

0.90 8,410 2,106 938 530 341 238 176 136 89 63 48 

0.95 10,400 2,603 1,159 654 420 293 217 167 108 77 58 

0.99 14,702 3,679 1,637 923 592 413 304 234 151 107 80 

Note: Given α .05, two-tailed 2 2
1 2-test, σ σ 1.0,t   and 1.0p   
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For example, the sample sizes required to detect 

δ .20,  δ .50,S M   and δ .80L  with 1 β .80   for the 
clustered sample are now 1,574, 256, and 103, 
respectively. The increases in the sample size 
requirements from those required in a simple random 
sample in Table 1 are 1,574/394 = 3.99 for δ .20S  , 

256/64 = 4.00 for δ .50M  , and 103/26 = 3.96 for 

δ .80L  .  The sample size in each case is increased by 
a factor approximately equal to 

2 2
1 2

2
1

1 2
2
2

4σ σ

σ σ

4
4.0

2

pDef e

p

f D ff 
 


 

 

The sample sizes in Table 2 illustrate that the 
design of the sample can dramatically impact the sample 
sizes needed in the research study. This is why the 
sample designs should be as efficient as possible. For 
example, if the researcher has the choice of collecting 
data on 1,000 students from 10 schools versus 1,000 
students from 20 schools, the second design is more 
efficient. The second design spreads the sample over 
more clusters, which reduces the cluster size and the 
design effect. 

Measurement Error 

In Section 3 we explored the impact of design 
effects when the outcome variable is measured without 
error. From a classical test theory true-score model 
point of view we treat the outcome measures as true 
scores. In this section we incorporate the reliability of 
the outcome measure into the power analysis. 

Measurement error occurs in all scientific 
disciplines. Possibly the first formal model for 
measurement error was developed by Gauss in 1809 
when he showed that the variation in astronomical 
measurements made by Galileo in the 17th century were 
due to imperfections in Galileo’s telescopes. He showed 
that the distribution of such random errors of 
measurement followed a normal distribution. The 
classical test theory model used in this paper uses the 
same normal distribution that Gauss used to explain 
Galileo’s errors in observations.  

In this paper we use the classical test theory 
reliability coefficient R1 for the outcome measure in 
group 1 and R2 for the outcome measure in group 2 as 
our index of measurement error (Crocker & Algina, 

1986; Lord, 1980; Lord & Novick, 1968). The reliability 
coefficient is the proportion of true score variance 
divided by the observed score variance in the outcome 
variable and can vary from 0.0 to 1.0. When the 
reliability coefficient equals 1.0, there is no 
measurement error in the outcome variable and we are 
using true measurements or true scores. If the reliability 
coefficient equals 0.0, then there is no measurement in 
the outcome variable and we are using random 
numbers. In practice, all outcome variables have some 
degree of unreliability. We show below that 
measurement error reduces power (Cleary & Linn, 
1969; Williams & Zimmerman, 1989) and increases 
sample size requirements beyond the inflation caused by 
cluster sampling. We can further expand equations (1)–
(3) to include reliability, R, as well as design effects: 
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and degrees of freedom under 
2 2
1 2

1 2

σ σ

R R
  

1 1

1 1 1 2 221 1
2

n pn

R Deff R R Deff R
v 

   
  (10)

 

To see the effect of reliability on sample size 
requirements in power analysis, we assume the reliability 
of the outcome measures are 1 2 .75R R   and the 
design effects in observed scores

 1 1 11 =3 251 .Obs R DefDe f Rff    an  2 22 2 =3. 51 2 .Obs R DefD Rf fe f   

Note that the true design effect in Table 3 and Table 4, 
below, is attenuated by measurement error in observed 
scores. Furthermore, when 1 2σ σ 1.0   and p=1, the 
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true effect size  is also attenuated by measurement 

error 1 2*
2

R R
d 


 . 

The sample sizes required for various levels of δ   
and are presented in Table 3. 

The impact of unreliability on sample size 
estimation can be seen by comparing the clustered 
sample of observed scores in Table 3 to the clustered 
sample of true scores in Table 2. In general, the sample 
size requirements are approximately estimated by 
equation (11). 

For example, in Table 3 the sample sizes required 

to detect δ .20,  δ .50S M  and δ .80L  with 1 β .80    
for observed scores are now 1,704, 276, and 110. The 
increases in the sample size requirements beyond the 
requirements of a simple random sample of true scores 
are 1,704/394 = 4.32 for δ .20S  , 276/64 = 4.31 for 

δ .50M  , and 110/26 = 4.23 for δ .80L   . The sample 
size requirements due to the combined effect of 
complex sampling and unreliability are increased by 
approximately a factor of / 4.33obsDeff R  .   

The above results show that measurement error in 
the outcome variable reduces the power of the statistical 
test, which then requires a larger sample size to detect a 
given effect size. The takeaway in Section 3 is that 
sample designs should be as efficient as possible. 
Similarly, the takeaway in this section is that outcome 
variables should be as reliable as possible. 

Equating Error 

Equating error is ubiquitous in educational and 
psychological testing. The need to equate scores on one 
test to those on another test often comes about because 
of the need to create new versions of the test which are 
not perfectly parallel in difficulty. Equating and the 
associated equating error occurs in practically every test 
used in the social sciences. The role of complex 
sampling and measurement error has been addressed in 
the research literature but there is very little coverage of 
the role of equating error. We will therefore provide the 
necessary derivations to show how equating error 
influences power analysis. Since this is not a 
comprehensive paper on equating error we will only use 
one of the classical test theory models of equating error 
for illustrative purposes. More comprehensive 

       2 2
1 1 1 1 1 2 22 2

2 2,
1

2

2
,

σ σ

σ σ

1 1
CS OBS SRS TRUE

R R Deff R R R Deff R

p
n

p
n

     
  

  
 (11)

 

Table 3. Sample Size Table for Clustered Samples with 
1 2 4.0Deff Deff   and  1 2 .75R R   

d

 0.09 0.17 0.26 0.35 0.43 0.52 0.61 0.69 0.87 1.04 1.21 

            

1 -  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.20 1.40 

0.25 1,432 361 162 93 61 43 33 26 18 14 12 
0.50 3,333 836 374 212 137 96 72 56 37 27 21 
0.60 4,249 1,065 475 269 173 122 90 70 46 33 26 
0.67 4,949 1,240 553 313 201 141 105 81 53 38 29 

            
0.70 5,353 1,341 598 338 218 152 113 87 57 41 31 
0.75 6,019 1,507 672 380 244 171 126 98 64 46 35 
0.80 6,806 1,704 759 429 276 193 143 110 72 51 39 
0.85 7,785 1,949 868 490 315 220 162 125 82 58 44 

            
0.90 9,110 2,280 1,015 573 368 257 190 146 95 67 50 
0.95 11,266 2,819 1,255 708 454 316 234 180 116 82 61 
0.99 15,926 3,984 1,773 999 641 446 329 252 163 114 85 

Note: Given α .05, .two-tailed 2 2
1 1 2 2-test, / / 1.33,t R R   and 1.0p   
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presentations of equating error (including item response 
theory equating error) can be found in Kolen and 
Brennan (2004). 

Let’s say that we plan to conduct an experiment to 
assess the efficacy of a new reading program for grade 
3 students. At the end of year one, a sample of students 
are administered a reading test X in grade 3. In year two, 
half of the schools are randomly assigned to the new 
intensive reading program (treatment group) and half 
are assigned to the traditional reading program (control 
group). The study plans to administer a different test Y 
at the end of year two. Both test X and test Y measure 
the same reading content but because they consist of 
different items we expect they will vary in difficulty. In 
order to compare the results of test X to Y test we want 
both tests to be on the same scale, which means they 
need to be statistically equated. We create an equating 
sample of 400 students in year one in which a subset of 
200 students are administered test Y and a randomly 
equivalent subset of 200 students are administered test 
X. The subsets of students will constitute the equating 
sample in an equating design referred to as the randomly 
equivalent groups design (Kolen & Brennan, 2004). We 
let the linear equating function be 

ˆ

ˆ .

x x
x

y y

x

y

x

y

s s
y x y y

s s

s
A x y

s

s
B

s

   
        
   

 



 (12)

In equation (12) x  and y  are the sample means in 
the equating sample, and xs and s y are the sample 

standard deviations of X and Y in the equating sample, 
respectively. Â   and B̂  are the intercept and slope of the 
linear relationship between Y and X. The equating 
process has now created a new set of scores for test Y. 

Instead of reporting y scores we will report 
xy  scores, 

which are observed scores on test Y converted to the 
scale of test X. The y scores contain measurement error, 
but the xy  scores contain both measurement error and 
equating error. The equating error in 

xy  is caused by the 

error in estimating Â   and B̂   in the equating sample. 
The linear equivalent of the mean of Y is 

xy , which is 
the mean of Y re-expressed on the X scale. Based on 
Taylor series linearization (Wolter, 1985) we can think 
of our test statistic 

xy  as a function g such that

 ˆ ˆˆ ˆ, ,xy g A B A By y    . 

The error variance in xy can be approximated by 
equation (13). Equation (13) shows that the error 
variance 2σ

xy  of our test statistic xy in group 2 has two 

components. The first component is 2 2ˆ σyB  , which is the 

square of the standard error of the mean, 2σ̂y , rescaled 

by B̂  to be on the X scale. The second component is 
equating error variance 2s E , which results from the 

estimation of Â  and B̂  in the equating sample. 
Equation (13) shows that equating error variance is an 
integral part of the variance of the sampling distribution 
of the test statistic 

xy in group 2.  

It should be noted that the size of standard error 
of equating is determined in the equating sample and is 
influenced by the reliability of the tests in the equating 
sample as well as the sample size of the equating sample. 
Less reliable tests will have larger standard errors of 
equating and smaller sample sizes and design effects in 
the equating sample will result in larger standard errors 
of equating. However, once the equating is completed, 
then the standard error of equating, derived from the 
equating sample, becomes a permanent margin of error 
in the scale of the equated test. In subsequent analyses 
of the equated test, the standard error of equating 
(obtained from the equating sample) is a part of the 

2

2 2

2
,

2 2 2 2 2
,

2 2 2 .
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(13)
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error component of sampling distribution of the test 
statistic. 

Equations (1)–(3) can again be expanded to include 
the impact of equating error in addition to sample 
design effects and test reliability: Equation (14) is an 
expansion of equation (1) with degrees of freedom 

shown in equation (15) when 
2 2
1 2

1 2

σ σ

R R
 . Under  

2 2
1 2

1 2

σ σ

R R
 , the degrees of freedom are: 

1 1

1 1 1 2 221 1
2

n pn

R Deff R R Deff R
v 

   
  (16)

With equations (14)–(16) we can see how equating 
error variance affects power calculations and sample 
size estimation. For illustrative purposes we assume the 
reliabilities of the outcome measures are 1 2 .75R R     

and 1 2 4.0Deff Deff  . Furthermore, we assume there 
is no equating error in group 1 but there is equating 
error in group 2; therefore, 

1 2

2 2s 0.0,  s 0.0025E E   . 

Note that the square root of the equating error variance 

2

2s 0.0025E   is the standard error of equating 
2

s 0.05E  , 

or 1/20th of a standard deviation unit. The sample sizes 
required for various levels of 1 β  and δ are presented 
in Table 4. 

The impact of equating error on sample size 
estimation can be seen by comparing the clustered 
sample of observed scores with equating error in Table 
4 to the simple random sample of true scores in Table 
1. The sample size requirements are estimated by 
equation (17). 

For example, in Table 4 the sample sizes required 
to detect δ .20,δ .50,S M  and δ .80L   with 1 β .80   
for observed scores are now 3,345, 299, and 113. The 
increases in the sample size requirements caused by the 
combined effects of complex sampling, unreliability and 
equating error, beyond the requirements of a simple 
random sample of true scores, are 3,345/394 = 8.49 for
δ .20S   , 299/64 = 4.67 for δ .50S  , and 113/26 = 4.35 
for δ .80L   . As can be seen, the increase in the sample 
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size requirements when equating error is introduced is a 
function of the sample size.  

Equating error increases the sample size 
requirements disproportionately for small values of δ . 
For example, for 1 β .80  and δ .20S  , the sample size 
is 8.49 times larger than the sample required for a simple 
random sample. On the other hand, for 1 β .80  and

δ .80L  , the sample size is 4.35 times larger than the 
sample required for a simple random sample. In fact, 
for very small values such as δ .10   it is not possible 
to have a sample size large enough to detect δ  with 
power equal to .80. 

Unlike sampling error and measurement error, 
equating error is not reduced by increases in sample size. 
Therefore, in larger sample sizes equating error has a 
proportionally larger impact on the variance of the 
sampling distribution. In practice this means that as the 
sample size grows, sampling and measurement 
contribute smaller and smaller components of error 
variance. Equating error, on the other hand, becomes 
the dominant component of error variance in the 
sampling distributions with large samples. This is 
because equating error variance is a constant 
component in the variance of the sampling distribution 
regardless of sample size. In fact, equating error 

variance is the lower limit of the variance of the 
sampling distribution. Even if the variance due to 
sampling and measurement becomes essentially zero in 
very large samples, the equating error variance remains 
unchanged. 

Conclusion 

This paper discusses how sample design effects, 
measurement error, and equating error affect power 
analysis. It has been shown that all three sources of error 
reduce power and increase sample size requirements to 
detect the target effect size. All three sources of error 
reduce power by increasing the variance of the sampling 
distribution of our test statistic. Complex sampling 
increases the variance of the sampling distribution 
through the design effect of the sample. Measurement 
error increases the variance of the sampling distribution 
by increasing the observed variance of the population. 
Finally, equating error reduces power by adding a 
constant error component to the sampling distribution. 
In general, equating error has been an unrecognized 
source of instability in many statistical research studies 
and has received minimal attention in the research 
literature (Phillips, Doorey, Forgione, & Monfils, 2011). 

Reviews of the literature show that many published 
research studies have low statistical power. For 

Table 4. Sample Size Table for Clustered Samples with
1 2 4.0Deff Deff  , 1 2 .75R R  , and 

1 2

2 2s 0.0, s 0.0025E E   

            d            
  0.09 0.17 0.26 0.35 0.43 0.52 0.61 0.69 0.87 1.04 1.21 

                      

1 -  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.20 1.40 
0.25 2,434 402 170 95 62 44 33 26 18 14 12 
0.50 83,835 1,100 418 225 142 99 73 57 37 27 21 
0.60 * 1,535 550 291 182 126 93 71 47 34 26 
0.67 * 1,927 657 343 214 147 108 83 54 39 29 

            

0.70 * 2,183 722 374 232 159 117 89 58 41 31 
0.75 * 2,662 832 426 262 179 131 100 65 46 35 
0.80 * 3,345 971 489 299 204 148 113 73 52 39 
0.85 * 4,440 1,157 570 346 234 170 130 83 59 44 

            
0.90 * 6,641 1,434 685 411 277 200 152 97 68 51 
0.95 * 15,007 1,964 888 522 348 250 189 120 84 62 
0.99 * * 3,620 1,401 785 511 363 272 171 118 87 

Note: Given α .05, .two-tailed 2 2
1 1 2 2-test, / / 1.33,t R R   and 1.0p    “*” indicates the sample size requirement 

approaches infinity. 
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example, Cohen (1962) found a median power of .48 
for a medium effect sizes, and Sedlmeier & Gigerenzer 
(1989) found a median power of .37 for medium effect 
sizes.  Low power means the study has a reduced chance 
of detecting a true effect (Type II error). This paper 
shows that when the outcome variables are unreliable 
and contain equating error, power can be substantially 
lower than we think. This implies that the research 
literature may be populated by even more Type II errors 
than we realize. If important error components in the 
variance of the sampling distribution are ignored, the 
researcher may substantially underestimate sample size 
requirements.  

Practitioners should realize that the components of 
error variance covered in this paper are generally 
present in most research studies in the social sciences. 
Ignoring the components of error variance does not 
make them go away. For example, let’s say a researcher 
does an a priori power analysis and concludes he/she 
needs a sample size of 394 students in both the control 
group and the treatment group to have a power equal to 
.80 to detect a small effect (see Table 1). The researcher 
may not be aware that the sample has a design effect of 
4.0, the test scores have a reliability of .75 and the test 
scale has an equating error equal to .05 (these are the 
examples used in this paper).  In order to have a power 
equal to .80 to detect a small effect size, the researcher 
actually needs a sample size equal to 3,345, not 394 (see 
Table 4). Ignoring the components of error variance in 
an a priori power analysis can result in a substantially 
under powered research study.  
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