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A common methodological problem in the evaluation of the predictive validity of selection methods, 
e.g. in educational and employment selection, is that the correlation between predictor and criterion 
is biased. Thorndike’s (1949) formulas are commonly used to correct for this biased correlation. An 
alternative approach is to view the selection mechanism as a missing data mechanism. The aim of this 
study was to compare Thorndike’s formulas for direct and indirect range restriction scenarios with 
two state-of-the-art approaches for handling missing data: full information maximum likelihood 
(FIML) and multiple imputation by chained equations (MICE). We conducted Monte-Carlo 
simulations to investigate the accuracy of the population correlation estimates in dependence of the 
selection ratio and the true population correlation in an experimental design. For a direct range 
restriction scenario, the three approaches are equally accurate. For an indirect range restriction 
scenario, the corrections using FIML and MICE are more precise than when using Thorndike’s 
formula. The higher the selection ratio and the true population correlation, the higher the precision 
of the population correlation estimates. Our findings indicate that both missing data approaches are 
alternative corrections to Thorndike’s formulas, especially in the case of indirect range restriction. 

A common methodological problem in the 
evaluation of the predictive validity of a selection 
method (e.g., a psychometric test or an interview), is that 
of estimating the population correlation ρ between a 
selection method (predictor) and a certain criterion for 
success based on a sample of selected individuals. This 
so-called range restriction problem in correlation analysis 
arises because the observed selected sample is not 
random, and therefore not representative of the 
applicant population (Sackett & Yang, 2000; Thorndike, 
1949). As an inherent effect of the selection, values for 
the criterion variable are available only for selected 
applicants. This problem, for example, occurs in the 
evaluation of the predictive validity of an admission test 
in higher education, because data of academic success 
are only available for applicants who were admitted to 

the program. Another example is personnel selection, 
when we want to estimate the correlation between a 
knowledge test and job performance, but we only have 
job performance data from those individuals who were 
hired. Consequently, the Pearson correlation coefficient 
r obtained from a selected sample is a biased estimation 
of the population correlation ρ (Alexander, 1990; 
Bobko, 1983; Duan & Dunlap, 1997; Raju & Brand, 
2003; Sackett & Yang, 2000). Hence, this biased estimate 
r has to be corrected to provide a more valid estimate of 
ρ. 

Thorndike (1949), following Pearson (1903) and 
Lawley (1943), presented formulas to correct the biased 
sample correlation rXY between a predictor X and a 
criterion Y for the two most common selection 
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scenarios, typically in educational and employment 
selection: (A) The explicit or direct range restriction 
scenario (DRR), in which the selection is based directly 
on the predictor variable X, and (B) the incidental or 
indirect range restriction scenario (IRR), in which the 
selection is based on a third variable Z, different to the 
predictor of interest (for a detailed description of DRR 
and IRR scenarios see the next subsection ‘Range 
Restriction Scenarios: Direct and Indirect’). Thorndike’s 
formulas have been widely studied (Duan & Dunlap, 
1997; Holmes, 1990; Linn, 1983; Ree, Carretta, Earles, & 
Albert, 1994), and have often been applied to correct for 
range restriction, e.g. in predictive validity studies of 
large-scale testing programs such as the Graduate 
Record Examination (GRE) (Chernyshenko & Ones, 
1999), or the Graduate Management Admission Test 
(GMAT) (Sireci & Talento-Miller, 2006). Correcting for 
range restriction has also been applied in other fields, e.g. 
in predicting job performance (SjöBerg, SjöBerg, 
Näswall, & Sverke, 2012), or to predict scores on a 
practical driving-license test (Wiberg & Sundström, 
2009). Range restriction is also an important issue in 
validity generalization (Hunter, Schmidt, & Le, 2006; 
Murphy, 2003). 

An alternative approach correcting for range 
restriction is to view the selection mechanism as a 
missing data mechanism (Mendoza, 1993; Wiberg & 
Sundström, 2009), see subsection ‘Range Restriction as 
a Missing Data Mechanism’. There are many advantages 
to view the selection mechanism as a special case of 
missing data, as comprehensive statistical literature on 
dealing with missing data exists, and a variety of 
techniques and research results are available (Little & 
Rubin, 2002; Rubin, 1996, 2004; Schafer & Graham, 
2002). So far, this state-of-the-art approach in dealing 
with missing values has been very seldom used for range 
restriction problems (Pfaffel, Kollmayer, Schober, & 
Spiel, 2016; Wiberg & Sundström, 2009). Wiberg and 
Sundström (2009) applied this approach to data from a 
Swedish driving-license test to correct for a DRR 
scenario. Their findings indicate that the missing data 
approach provides an effective estimate of the 
population correlation. However, Wiberg and 
Sundström (2009) pointed out that simulations of 
different population correlations and different selection 
ratios are necessary to investigate the accuracy of the 
correction of the proposed missing data approach. 

In the present paper, we apply this missing data 
approach to both a DRR scenario and an IRR scenario, 

and compare this approach with Thorndike’s (1949) 
correction formulas. First, we describe the mechanisms 
of loss of criterion data in the case of DRR and IRR 
scenarios and show the data matrix used for the 
correction. Second, we describe the theoretical 
assumptions necessary to apply a missing data approach 
to the two scenarios. Third, we investigate the accuracy 
of this proposed correction by conducting Monte Carlo 
simulations, which allow for a comparison of the 
corrected correlation with the true population 
correlation in an experimental design. Finally, the results 
of the comparison of the three approaches are discussed. 

Range Restriction Scenarios: Direct and Indirect  

The most straightforward selection scenario is the 
direct range restriction (DRR) scenario (Sackett & Yang, 
2000; Thorndike, 1949). Selection is based directly on 
the predictor variable X from the top down, assuming a 
positive relationship between predictor X and criterion 
Y. The predictor variable X can be either a single score, 
as in a single-selection method (e.g., a psychometric test), 
or a composite score derived from several selection 
methods (e.g., a psychometric test and a quantitative 
interview). In the case of a DRR scenario, the predictor 
variable itself is the selection variable, which is of interest 
in evaluating the predictive validity of a selection method 
or a composite score. For example, in higher education 
in Austria, prospective students are selected for various 
study programs solely on the basis of entrance 
examinations (e.g., Medical University of Vienna, 2015). 
In the case of DRR, values of X are available for all 
applicants whereas values of Y are only available for 
selected applicants. 

The indirect range restriction scenario (IRR) occurs 
when applicants are selected on another variable Z, 
which is usually correlated with X, Y, or both (Sackett & 
Yang, 2000). Suppose a selection procedure consists of 
a psychometric test X (predictor of interest) and a 
quantitative interview. For example, if we use the 
composite score as selection variable Z, and we want to 
evaluate the predictive validity of the psychometric test 
X, then we have an IRR scenario for X. Organizations 
often use a composite score for selection but would still 
like to know the predictive validity of each individual 
selection method in order to increase the predictive 
validity of the whole selection procedure, e.g., by 
removing or giving more weight to a particular selection 
method. In the case of IRR, values of X and Z are 
available for all applicants, whereas values of Y are 
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available for selected applicants only. In the Appendix, 
we present a numerical example of a selection scenario, 
in which prospective students completed an aptitude test 
and an interview. 

In both scenarios, we have missing values in the 
criterion variable Y for non-selected applicants. The 
amount of data loss depends on the selection ratio (SR), 
which is defined as the ratio of available places to the 
number of applicants. The SR ranges between 0 and 1, 
or between 0% and 100%. For example, if 200 study 
places are available and 500 applicants apply for them, 
the SR is 200 divided by 500 or 40%. The top 40% of 
applicants will be selected and 60% will not be selected. 
Hence, we have missing values of Y for 60% of the 
applicants. Figure 1 shows the data matrix observed 
under a DRR scenario and an IRR scenario (Chan & 
Chan, 2004; Li, Chan, & Cui, 2011). Xr, Yr, and Zr are   
the values of X, Y, and Z obtained from the selected 
(restricted) sample, Xu and Zu are the values of X and Z 
obtained from the unselected sample. Values of the 
criterion Y are not available for the unselected sample. 

Figure 1. Structure of the data matrix observed 
under a) a DRR scenario, and b) an IRR scenario. 

 

Due to the fact of selection, the observed 
correlation coefficient rXY underestimates the population 
correlation. The reduction of the correlation rXY is given 
by the reduction of the covariance (the numerator in 
Equation 1) relative to the reduction of the product of 
the sample standard deviations sX and sY (the 
denominator in Equation 1). 

ݎ ൌ
௩ሺ,ሻ

௦∙௦ೊ
                        (1)

For example, if we select the top 40% of applicants 
in a DRR scenario, the predictor X is restricted in range 
in the selected sample. If we look only at the standard 
deviation of X, we will see that the standard deviation of 
X in the selected sample (the top 40%) is smaller than 
for all applicants. After all, the reduction of the Pearson 
correlation increases as the SR decreases, assuming the 
correlation between X and Y does not equal zero. 

The most famous and widely used formulas to 
correct the biased correlation coefficient were presented 
by Thorndike (1949). The formula for the DRR scenario 
is (Sackett & Yang, 2000, p. 114):  

ݎ̂ ൌ
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                         (2)

where ̂ݎ is the point estimate of the population 
correlation, rXY is the uncorrected Pearson correlation 
coefficient obtained from the restricted sample, sX is the 
standard deviation of X for the restricted sample, and SX 

is the standard deviation of X for the unrestricted 
population. The core term for correcting rXY is the ratio 
SX/sX. The correction formula works because ̂ݎ> rXY if 
SX > sX. 

In the case of an IRR scenario, the correction 
formula is (Sackett & Yang, 2000, p. 115): 
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             (3)  

where rXY, rZX, and rZY are the Pearson correlation 
coefficients obtained from the restricted sample, and sZ 

and SZ are the standard deviations of variable Z for the 
restricted sample and the unrestricted population. Both 
correction formulas require linearity between X and Y, 
and homoscedasticity (the probability distribution of the 
error term is the same in the restricted sample and in the 
population). 

Range Restriction as a Missing Data Mechanism 

As an inherent effect of the selection, we have 
missing values in the criterion variable Y, as shown in 
Figure 1. Therefore, it seems reasonable to view the 
range restriction problem as a missing data mechanism 
(Mendoza, 1993; Wiberg & Sundström, 2009). First, we 
give a brief overview of the three established missing 
data mechanisms in order to locate the range restriction 
problem in this line of research. After that, we introduce 
two state-of-the-art techniques for dealing with missing 
data. 

Rubin (1976) outlined a theoretical classification 
scheme for missing data problems that is widely used in 
the scientific literature today. His so-called missing data 
mechanisms are theoretical assumptions necessary for 
analyzing missing data (Enders, 2010). Three 
mechanisms describe the relationship between the 
probability of missing values and measured variables 
(Little & Rubin, 2002): (1) MCAR means missing 
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completely at random, i.e. the probability of missing data 
on a variable Y is unrelated to other measured variables 
and is unrelated to the values of Y itself. (2) MAR means 
missing at random, i.e. the probability of missing data on 
a variable Y is related to some other measured variable 
(or variables) in the analysis model but not to the values 
of Y itself. MAR is more general and often more realistic 
than MCAR. Modern missing data methods generally 
assume the MAR mechanism. (3) MNAR means missing 
not at random, i.e. the probability of missing data on a 
variable Y is related to the values of Y itself, even after 
controlling for other variables. 

We consider the two selection scenarios discussed 
here (DRR and IRR) to be MAR, because there is no 
relationship between the probability of missing values 
for Y and the values of Y after partialling out other 
variables. The probability of missing data for Y depends 
on X (in a DRR scenario), or on Z (in an IRR scenario), 
but not on the values of Y itself. 

Over the past few decades, methodologists have 
suggested various techniques for dealing with missing 
data, but several of them (e.g., listwise or pairwise 
deletion, and single imputation) are no longer considered 
state-of-the-art because they have potentially serious 
drawbacks (Enders, 2010). For example, single 
regression imputation overestimates correlations and 
attenuates variances and covariances even when the data 
are MCAR (Enders, 2010; Schafer & Graham, 2002). 
The problem is that all imputed values fall directly on the 
regression line and therefore lack variability. Single 
imputation techniques are not suitable for many reasons, 
especially with regard to estimating correlation 
coefficients. There are two approaches that 
methodologists currently regard as state-of-the-art 
(Schafer & Graham, 2002): (1) Full information 
maximum likelihood (FIML), and (2) multiple 
imputation (MI). Both missing data approaches make 
the same assumptions with regard to the missing data 
mechanism (MAR), have similar statistical properties, 
and frequently produce equivalent results (Enders, 2010; 
Graham, Olchowski, & Gilreath, 2007). 

Full information maximum likelihood is a technique 
for estimating the most plausible parameters that 
produce the best fit to the data by maximizing the log-
likelihood function. In other words, the goal is to 
identify those population parameter values that have the 
highest probability of producing the data of a certain 
sample. The basic estimation process in the case of 
missing data is largely the same as in the context of 

complete data. The first step is to specify the distribution 
of the population data, which in the social and 
behavioral sciences is commonly assumed to be 
multivariate normally distributed (Enders, 2010). 

Finding those parameters that maximize the log-
likelihood function is possible with iterative 
optimization algorithms, e.g. the expectation 
maximization (EM) algorithm, the Newton-Raphson 
method, or Bayesian simulation. The EM algorithm, or 
more broadly the generalized expectation maximization 
algorithm (GEM), is most important for missing data 
analyses. For readers interested in the mathematical 
details of EM-based maximum likelihood estimation, we 
refer to Dempster, Laird, and Rubin (1977), and Meng 
and Rubin (1993). An extension to non-normal data and 
missing values in covariates is possible under the broad 
class of generalized linear models (Ibrahim, Chen, 
Lipsitz, & Herring, 2005). For an overview of likelihood-
based techniques with mathematical descriptions, see the 
book by Little & Rubin (2002). 

The second state-of-the-art approach is multiple 
imputation, which has emerged as a flexible alternative 
to the likelihood-based approach for a wide variety of 
missing-data problems (Schafer & Graham, 2002; van 
Buuren, 2012). A multiple imputation analysis consists 
of three distinct phases: the imputation phase, the 
analysis phase, and the pooling phase. The imputation 
phase generates m complete datasets with plausible 
estimates of the missing values based on one dataset with 
missing values. Each of the complete datasets contains 
different estimates of the missing values, but identical 
values for the observed data. In contrast to single 
imputation, multiple imputation builds the uncertainty 
with regard to parameter estimates into the imputation 
model, meaning that the estimates of the missing values 
vary among the m complete datasets. In the analysis 
phase, conventional statistical methods can be applied to 
each complete dataset with each statistical method 
performed m times, once for each complete dataset. The 
pooling phase combines the m parameter estimates into 
a single set of parameter estimates. A pooled parameter 
estimate is typically the arithmetic average of the m 
estimates from the analysis phase (Rubin, 2004). 

Multiple imputation is typically (but not necessarily) 
performed within a Bayesian framework, in which the 
parameters are drawn from their respective posterior 
distributions. In the case of incomplete multivariate 
normal data, calculating the posterior distribution is 
possible with the data augmentation algorithm (Schafer, 
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1997; Tanner & Wong, 1987). A general approach that 
can also handle non-normal data with missing values in 
the covariates is multivariate imputation by chained 
equations (MICE), also known as fully conditional 
specification (FCS) (Raghunathan, Lepkowski, van 
Hoewyk, & Solenberger, 2001; van Buuren, 2007, 2012). 
The imputation model is specified as a regression model 
for each incomplete variable involving the other 
variables as predictors. For example, the MICE 
algorithm is implemented in the R software package 
mice (van Buuren & Groothuis-Oudshoorn, 2011). 
Imputation techniques for numerous types of missing 
data problems receive excellent treatment in the book by 
van Buuren (2012). 

To sum up, in both range restriction scenarios, we 
consider the missing data mechanism to be missing at 
random (MAR). In the case of MAR, the population 
parameters can be estimated based on the available data. 
Full information maximum likelihood estimation as well 
as multiple imputation meet the assumptions for 
handling the missing values in the criterion variable. 
Hence, the two approaches seem to be effective at 
providing unbiased estimates for the population 
correlation, and therefore good alternatives to 
Thorndike’s correction formulas. 

Aim of this Study 

The aim of this study was to compare the accuracy 
of the corrections made using three approaches – (1) 
Thorndike’s well known and most commonly applied 
correction formulas for DRR (Equation 2) and IRR 
(Equation 3), (2) full information maximum likelihood 
estimation, and (3) multiple imputation by chained 
equations – for direct and indirect range restriction 
scenarios depending on the selection ratio and the true 
population correlation. 

Method 

Procedure 

We conducted two Monte Carlo simulations (DRR 
and IRR scenarios) using the program R-Statistics (R 
Core Team, 2014) to investigate the accuracy of the 
corrections made using the three approaches:  
(1) Thorndike’s correction formulas for DRR and IRR, 
(2) full information maximum likelihood estimation, and 
(3) multiple imputation by chained equations. The 
Monte Carlo simulations were conducted with 5,000 

trials for each of the two scenarios. The simulation 
procedure consisted of the following four steps. 

Step 1 – Data simulation: We generated 5,000 
unrestricted data sets (sample size N = 500) drawn from 
a multivariate normal distribution by varying the Pearson 
correlation coefficient between X and Y from .10 to .90. 
Additionally, in the case of IRR we varied not only the 
correlation coefficient between X and Y but also the 
correlations between Z and X, and Z and Y from .10 to 
.90. 

Step 2 – Selection: We simulated the selection for nine 
selection ratios ranging from 10% to 90% with step 
width 10%, which corresponded to a proportion of 
missing values in Y from 90% to 10%. We selected those 
cases with the highest values in X (DRR) or with the 
highest values in Z (IRR) respectively. The percentage of 
selected cases depended on the selection ratio. Values in 
Y for non-selected cases were converted into missing 
values. The restricted sample created in this way was 
saved into a new data set and was used in applying the 
correction. 

Step 3 – Correction: The three approaches were 
applied to the data set of the restricted sample (missing 
values in Y). 

Step 4 – Analysis of parameter estimates: We compared 
the estimated correlation of the three approaches with 
the correlation obtained from the unrestricted 
population. In order to investigate the accuracy of the 
correction, we calculated the residuum of the population 
correlation estimate ̂ݎ െ ρ. 

Correction 

In order to correct for direct and indirect range 
restriction scenarios, the three approaches were applied 
to the restricted sample. In the first approach, we used 
Thorndike’s correction formulas for DRR (Equation 2) 
and IRR (Equation 3). The results of these formulas are 
the estimates of the population correlation. Second, we 
used full information maximum likelihood estimation 
using the R package mvnmle (Gross & Bates, 2012), 
which provides a ML estimation for multivariate normal 
data with missing values. Third, we used multiple 
imputation by chained equations to replace the missing 
values of the criterion variable before estimating the 
population correlation. We used the R package mice (van 
Buuren & Groothuis-Oudshoorn, 2011) with the default 
specifications for the prior distributions and the Markov 
Chain Monte Carlo simulation, but we changed the 
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number of imputations m from 5 (default) to 20. 
Conventional wisdom suggests that multiple imputation 
analysis requires about m = 5 imputations (Rubin, 2004; 
Schafer, 1997). This number of imputations was derived 
solely by considering the relative efficiency (Enders, 
2010; Rubin, 2004). Contrary to this conventional 
wisdom, simulations studies show that only analyses 
based on m = 20 imputations yield comparable power to 
a maximum likelihood analysis and are therefore 
sufficient for many situations (Graham et al., 2007). 

Analysis 

In order to investigate and to compare the accuracy 
of the three correction methods, we analyzed the 
residual density of the population correlation estimates. 
Accuracy is defined as the closeness of the estimated 
value to the true value of the parameter being estimated 
(Ayyub & McCuen, 2011). The concept of accuracy 
encompasses both trueness and precision, and therefore 
provides important quantitative information about the 
goodness of the correction. The trueness is also known 
as bias or systematic error, and the precision as random 
error. If the residual value ̂ݎ െ ρ	is close to zero, 
then a correction method provides a very good 
estimation of the population correlation. We used the 
arithmetic mean of the residuals (over the 5000 Monte 
Carlo trials) as a measure of trueness, and the standard 
deviation of the residuals as a measure of precision. 
Figure 2 shows a graphical illustration of trueness and 
precision. A positive mean of the residuals represents an 
overestimation of the population correlation, while a 
negative mean of the residuals represents an 
underestimation. A smaller value for the standard 
deviation of the residuals represents a lower shape of the 
density, which means the estimate of the population 
correlation is more precise. 

Figure 2. Graphical illustration of the concept of 
accuracy (trueness and precision). 

 

In order to investigate the effect of the population 
correlation between predictor X and criterion Y on the 
accuracy of the correction, we partitioned the true 
population correlation coefficients into three levels: a 
weak correlation (from .10 to <.40), a moderate 
correlation (from .40 to <.70), and a strong correlation 
(from .70 to .90). With regard to the comparison of the 
three approaches, it is primarily of interest, whether the 
strength of the population correlation has a differential 
effect on the accuracy of the three approaches. In other 
words, is there an interaction between population 
correlation and approach? If the effect is not 
differentiated, we should observe the same changes in 
the accuracy of the estimates depending on the 
population correlation for each approach. 

Results 

Figure 3 shows 12 examples of histograms of the 
residuals of the population correlation estimate ̂ݎ. The 
histograms are arranged as follows: In the vertical 
direction, the three approaches Thorndike, MICE and 
FIML; in the horizontal direction, the two scenarios 
DRR and IRR for two selection ratios of 30% and 50%. 
In both scenarios, the residuals ̂ݎ െ ρ are 
symmetrically distributed around zero, and the standard 
deviations of the residuals are smaller for a selection 
ratio of 50% than for a selection ratio of 30%. Thus, the 
trueness of ̂ݎfor the three approaches is very high, and 
the precision increases as the selection ratio increases. In 
the DRR scenario, there are no significant differences 
between the standard deviations of the residuals of the 
three approaches (Bartlett’s test for equal variances: all 
p’s > .05). In the IRR scenario, the standard deviations 
of the residuals of the three approaches are lower in 
comparison to the standard deviations of the residuals in 
the DRR scenario. Thorndike’s correction formula for 
an IRR scenario is less precise than the correction with 
MICE or FIML (all p’s < .001), but there are no 
significant differences in the standard deviations 
between MICE and FIML (for more detailed 
information, Table 1 shows the mean values and the 
standard deviations of the residuals for all nine selection 
ratios). 
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Figure 3. Distribution of the residuals for the 
population correlation estimates for the three 
approaches (Thorndike, MICE, FIML), for DRR and 
IRR, and for selection ratios of 30% and 50%. 

 

As seen in Figure 3, the precision of the population 
correlation estimate decreases as the selection ratio 
increases. In order to take a closer look at this 
relationship, we examined the type of relationship 
between the standard deviation of the residuals and the 
selection ratio. Figure 4 shows that the standard 
deviation of the residuals experiences positive 
acceleration as the selection ratio decreases. For an IRR 
scenario (Figure 4b), the standard deviation of the 
residuals increases faster for Thorndike's correction 
formula than for the two missing data approaches MICE 
and FIML. For both scenarios, this relationship can be 
statistically modeled by an exponential function (R2  
.983, p < .001, see Table 2). The results show that the 
precision of the population correlation estimates 
decreases exponentially as the selection ratio decreases 
(i.e., as the selection ratio becomes smaller).   

 

  

Table 1. Accuracy of the population correlation estimates depending on the selection ratio for direct and 
indirect range restriction scenarios. 

    DRR  IRR 

SR  Accuracy  Thorndike  MICE  FIML  Thorndike  MICE  FIML 

.1 

M  ‐.032  ‐.062  ‐.029  ‐.029  ‐.040  ‐.017 

SD  .237  .227  .238  .168  .126  .131 

.2 

M  ‐.013  ‐.027  ‐.012  ‐.011  ‐.016  ‐.006 

SD  .142  .141  .142  .103  .081  .080 

.3 

M  ‐.006  ‐.014  ‐.005  ‐.006  ‐.009  ‐.002 

SD  .104  .105  .104  .076  .060  .059 

.4 

M  ‐.004  ‐.009  ‐.004  ‐.004  ‐.005  ‐.002 

SD  .080  .081  .080  .060  .047  .046 

.5 

M  ‐.003  ‐.006  ‐.002  ‐.003  ‐.004  ‐.001 

SD  .064  .065  .064  .048  .038  .037 

.6 

M  ‐.001  ‐.003  ‐.001  ‐.002  ‐.003  ‐.001 

SD  .052  .053  .052  .039  .031  .030 

.7 

M  ‐.001  ‐.002  .000  ‐.001  ‐.001  .000 

SD  .042  .043  .042  .031  .025  .024 

.8 

M  .000  ‐.001  .000  ‐.001  ‐.001  .000 

SD  .033  .034  .033  .024  .019  .018 

.9 

M  ‐.001  ‐.001  .000  .000  .000  .000 

SD  .023  .023  .023  .017  .013  .013 

Note. DRR = direct range restriction, IRR = indirect range restriction, SR = selection ratio, M = mean of the residuals of the 
population correlation estimate (trueness), SD = standard deviation of the residuals of the population correlation estimate (precision), 
Thorndike = Thorndike’s correction formulas (Equation 2 and Equation 3), MICE = multiple imputation by chained equations, 
FIML = full information maximum likelihood estimation.



Practical Assessment, Research & Evaluation, Vol 21, No 6 Page 8 
Pfaffel, Schober, Spiel, Correction for Range Restrictions 
                                                   

Figure 4. Exponential relationship between the 
selection ratio and the standard deviation of the 
residuals of the population correlation estimates for 
the three approaches (Thorndike, MICE, and FIML), 
for a) a DRR scenario, and b) an IRR scenario. 

 
Table 2. Nonlinear regression analysis of the standard 
deviation of the residuals on the selection ratio. 
  DRR  IRR

b0  b1  R2  b0  b1 R2

Thorndike  0.257  ‐2.668  .984  0.184  ‐2.620 .985
MICE  0.251  ‐2.603  .986  0.145  ‐2.633 .990
FIML  0.258  ‐2.673  .983  0.146  ‐2.684 .987

Note. Nonlinear regression analysis of the model function:
SD ൌ ܾ݁భୗୖ, SD = standard deviation of the residuals of the 
population correlation estimate (precision), SR = selection ratio, b0 
and b1 = regression coefficients, DRR = direct range restriction, 
IRR = indirect range restriction, Thorndike = Thorndike’s 
correction formulas (Equation 2 and Equation 3), MICE = 
multiple imputation by chained equations, FIML = full 
information maximum likelihood estimation. 
 

In order to investigate the effect of the true 
population correlation between predictor and criterion 
on the accuracy of the population correlation estimates, 
we compared the means and standard deviations 
depending on three levels of the true population 
correlation. For both scenarios, there is no relevant 
effect of the true population correlation on the trueness 
of the correlation estimates, but there is an effect on the 
precision. Figure 5 and Figure 6 show the standard 
deviations of the residuals in dependence of the selection 
ratio, the true population correlation, and the three 
approaches. In addition to the effect of the selection 
ratio, the precision of the population correlation 
estimates increases as the true population correlation 
increases: for a DRR scenario F(80, 2) = 9.603, p < .001, 
η୮ଶ	= .21, and for an IRR scenario F(80, 2) = 7.254, p = 
.001, η୮ଶ	= .16.  

With regard to the comparison of the three 
approaches, the true population correlation has no 
differential effect on trueness and precision. In other 

words, there is no significant interaction between 
population correlation and approach, F’s(80, 4) < .01, p’s 
> .99. For a DRR scenario, the precision of the three 
estimates is equal for weak, moderate, and strong true 
population correlations (see Figure 5). For an IRR 
scenario, as shown in Figure 6, the higher standard 
deviations of Thorndike's correction result from the fact 
that Thorndike's correction is less precise (compare with 
Figure 4b), but these differences are not affected by the 
true population correlation. As shown in Figure 6, the 
precision of Thorndike's estimate in the case of a 
moderate correlation corresponds to the precision of the 
estimates of MICE and FIML in the case of a weak 
correlation. However, this effect is small for selection 
ratios beyond 30%. 

 

 

Figure 5. Effect of a a) weak, b) moderate and c) 
strong true population correlation on the precision 
of the population correlation estimates of the three 
approaches (Thorndike, MICE, FIML) for a DRR 
scenario. 
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Figure 6. Effect of a a) weak, b) moderate and c) 
strong true population correlation on the precision 
of the population correlation estimates of the three 
approaches (Thorndike, MICE, FIML) for an IRR 
scenario. 

Discussion 

Range restriction is a common methodological 
problem in the evaluation of the predictive validity of a 
selection method. The correlation obtained from the 
selected sample is a biased estimate of the population 
correlation. An alternative approach to Thorndike’s 
correction formulas is to view the selection mechanism 
as a missing data mechanism. The aim of this study was 
to compare the accuracy of the estimates of the 
population correlation for three approaches: 1) 
Thorndike’s (1949) correction formulas, 2) multiple 
imputation by chained equations (MICE), and 3) full 
information maximum likelihood estimation (FIML) for 
direct (DRR) and indirect (IRR) range restriction 
scenarios. 

The results show that the two missing data 
approaches perform effectively and provide unbiased 

estimates for both scenarios, though the correction for 
an IRR scenario is more precise than for a DRR scenario. 
For a DRR scenario, the three approaches are 
equallyaccurate. However, for an IRR scenario the 
correction using MICE or FIML is more precise than 
the correction using Thorndike’s formula. An important 
finding is that the precision of the population correlation 
estimates decreases exponentially as the selection ratio 
decreases. Consequently, the confidence intervals of the 
point estimates are very wide for small selection ratios. 
This effect is of particular importance in the evaluation 
of the predictive validity in highly selective selection 
scenarios. In addition, if the population correlation 
between predictor and criterion is weak, then the 
prediction is less precise than in the case of a moderate 
or a strong population correlation. On the basis of our 
findings, we do not recommend corrections for range 
restriction for selection ratios lower than 30%, which 
translates into more than 70% missing values. The 
confidence interval of the population correlation 
estimate should be considered in evaluating the 
predictive validity. On the one hand, a cautious 
interpretation of correlations corrected for range 
restriction is necessary to avoid invalid conclusions 
about the predictive validity of a selection method. On 
the other hand, no range restriction correction is more 
likely to result in an invalid conclusion. 

Our findings show that MICE and FIML provide 
similar results, and both approaches make the same 
assumptions with regard to the missing data mechanism. 
However, the two approaches differ in dealing with 
missing values, which may be relevant to the decision on 
their use in evaluation studies. In contrast to maximum 
likelihood estimation, multiple imputation generates 
several complete datasets with plausible estimates of the 
missing values. After the imputation phase, conventional 
statistical methods can be used on each complete 
dataset. This makes it easier to apply subsequent 
statistical analyses even when a user does not have 
profound knowledge about the handling of missing 
values. In addition, the imputation model may differ 
from subsequent analysis models. Typically, the 
imputation model includes many variables of the data 
set, whereas the analysis model includes a subset of these 
variables. In contrast, FIML generates the population 
estimates based only on the variables of interest from the 
analysis model. However, including some additional 
variables relevant to missing data to improve the 
estimation of the missing values is not an inherent 
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advantage of multiple imputation, because these 
additional variables can be also included in the maximum 
likelihood model (Graham, 2003). If the imputation 
model includes variables that are not part of maximum 
likelihood analysis, then the two approaches can yield 
different estimates. The decision of which approach to 
use should depend on the user’s knowledge and 
experience in dealing with missing values. 

Some limitations of our study need to be 
considered. We investigated the accuracy of the 
estimates for one total sample size. As is known from 
previous studies of Thorndike’s correction formulas 
(Dunbar & Linn, 1991), the sample size of the selected 
sample, which results from the total sample size in 
combination with the selection ratio, affects the 
precision of the population correlation estimate. 
Therefore, one important research question is how small 
the total sample size as well as the size of the selected 
sample can be while still allowing for unbiased and 
precise corrections for direct and indirect range 
restrictions. In our simulation study, we assumed that 
the variables are multivariate normally distributed, which 
is routinely the assumption in social and behavioral 
sciences (Enders, 2010). Multiple imputation assumes 
multivariate normality, but this missing data approach 
can provide valid estimates even when this assumption 
is violated (Demirtas, Freels, & Yucel, 2008). However, 
this assumption is robust for a large sample size and a 
low percentage of missing values. Further studies should 
investigate violations of the assumption of normality 
(e.g., skewness) in combination with the total sample 
size. 

In summary, this simulation study shows that 
multiple imputation by chained equations and full 
information maximum likelihood estimation are 
accurate approaches correcting for DRR and IRR 
scenarios. Therefore, both approaches seem to be 
promising alternatives to Thorndike’s correction 
formulas, especially in the case of indirect range 
restriction scenarios.   
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Appendix  

The following example illustrates the steps for estimating the predictive validity with full information maximum 
likelihood estimation (FIML) and multiple imputation by chained equations (MICE) using the R packages mvnmle 
and mice. We designed a small dataset (N = 50) to mimic a student selection scenario in which prospective 
students completed an aptitude test and an interview. The criterion measure is an achievement score after two 
semesters (e.g. average of grades). The college admitted those students who scored at least 100 in the aptitude 
test. The new interview was presented to the prospective students, but was not used for selection. After the two 
semesters, the college wants to evaluate the predictive validity of both selection methods. Thus, we have a direct 
range restriction scenario on the test scores and an indirect range restriction scenario on the interview scores. 
We assume that this sample is drawn from a multivariate normal distribution. 

Without any correction, we observe a Pearson correlation coefficient between test scores and 
achievement scores of r = .28, and between interview scores and achievement scores of r = .34. We know that 
these correlations are biased. Next, we present the steps that need to be taken in R Statistics to estimate the 
unbiased population correlation with FIML and with MICE. After installing the R packages mvnmle 
(https://cran.r-project.org/web/packages/mvnmle/index.html) and mice (https://cran.r-
project.org/web/packages/mice/index.html ) from the Comprehensive R Archive Network (CRAN), load the 
packages: 

 
R> library(mvnmle) 
R> library(mice) 
 
The data frame dataset contains three variables: test (aptitude test scores), interview (interview 

scores), and achievement (criterion scores). Missing values are labeled as NA. 
 
R> dataset <- data.frame( 
R> "test"=c(99,109,104,104,98,77,96,107,90,…), 
R> "interview"=c(19,19,13,18,14,13,16,12,11,…), 
R> "achievement"=c(NA,4.0,2.7,3.1,NA,NA,NA,2.4,NA,…)) 
 
R> dataset 
 

test interview achievement
1 99 19 NA
2 109 19 4.0
3 104 13 2.7
4 104 18 3.1
5 98 14 NA
6 77 13 NA

…  
 
The number of the missing values can be counted and visualized with the md.pattern() function of the 

mice package as follows: 
 
R> md.pattern(dataset) 
 

test interview achievement
25 1 1 1 0
25 1 1 0 1

0 0 25 25
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There are 25 (out of 50) rows that are complete (last column), and all missing values are in the variable 
achievement. Estimating the correlation matrix of the dataset using FIML can be done with a call to mlest() and 
by converting the estimated covariance matrix in the correlation matrix as follows:  

 
R> fiml <- mlest(dataset) 
R> cov2cor(FIML$sigmahat) 
 

[,1] [,2] [,3]
[1,] 1.0000000 0.2557806 0.5097006
[2,] 0.2557806 1.0000000 0.4315233
[3,] 0.5097006 0.4315233 1.0000000
 
The symmetric correlations matrix shows correlations between test and achievement [1,3] = .51, between 

interview and achievement [2,3] = .43, and between test and interview [1,2] = .26. Creating complete datasets 
with MICE can be done with a call to mice() as follows: 

 
miceimp <- mice(dataset, meth=c(”norm”,”norm”,”norm”), m = 20, seed = 6000) 
 

where the multiple imputed dataset is stored in the object miceimp of class mids. Imputations are generated 
according to the method “norm” (normal distribution), which is specified for each column. The number of multiple 
imputations is equal to m = 20. Note that we used a fixed seed value in this example, so that the exact values 
can be reproduced. The complete() function extracts the 20 complete datasets of the miceimp object. Next, 
we calculate the correlation matrix for each of the complete datasets using the cor() function. The pooled 
correlation matrix is the arithmetic mean of the 20 correlation matrices. Van Buuren (2012) suggests a Fisher-z 
transformation when pooling correlation coefficients (for transforming and re-transforming the correlation matrix, 
we used the functions fisherz() and fiherz2r() from the psych package).  

 
R> for(k in 1:20){ 
R>      corMatrix = corMatrix + fisherz(cor(complete(miceimp,k))) 
R> }  
R> fisherz2r(corMatrix/20) 
 

test interview achievement 

test NaN 0.2557759 0.4995916 
interview 0.2557759 NaN 0.4343833 
achievement 0.4995916 0.4343833 NaN 
 
The correlation matrix shows a correlation estimate between test and achievement of .50, and between 

interview and achievement of .43. Table A1 summarizes the uncorrected and corrected correlations. 
Subsequently, you will find the final R script for this example including all data for copy and paste. 

 
Table A1. Correlations of the student selection data. 

 ρො୲ୣୱ୲,	ୟୡ୦୧ୣ୴ୣ୫ୣ୬୲ ρො୧୬୲ୣ୰୴୧ୣ୵, ୟୡ୦୧ୣ୴ୣ୫ୣ୬୲ 
uncorrected .28 .34 
FIML .51 .43 
MICE .50 .43 

 

# run 
# Load packages 
library(mvnmle) 
library(mice) 
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library(psych) 
 
# Dataset 
dataset <- 
data.frame(“test”=c(99,109,104,104,98,77,96,107,90,107,120,98,92,118,101,81,10
0,109,106,103,101,97,119,95,98,107,110,90,107,108,93,110,99,100,106,89,91,98,1
11,84,111,115,92,95,76,102,96,98,98,86), 
“interview”=c(19,19,13,18,14,13,16,12,11,16,15,12,16,13,16,14,20,18,16,20,20,2
0,19,20,19,16,17,18,16,18,18,19,11,13,13,10,15,14,15,19,16,20,14,13,14,13,17,1
6,16,12), 
“achievement”=c(NA,4.0,2.7,3.1,NA,NA,NA,2.4,NA,3.9,3.3,NA,NA,4.0,2.6,NA,4.0,3.
8,2.8,3.5,2.5,NA,3.5,NA,NA,2.0,4.0,NA,3.7,4.0,NA,4.0,NA,4.0,3.0,NA,NA,NA,2.9,N
A,3.5,4.0,NA,NA,NA,3.1,NA,NA,NA,NA)) 
 
dataset # Print dataset 
 
# Show missing data pattern 
md.pattern(dataset) 
 
# Correlation matrix without correction (biased estimates) 
cor(na.omit(dataset)) 
 
# Full information maximum likelihood (FIML) 
fiml <- mlest(dataset) 
cov2cor(FIML$sigmahat) 
 
# Multiple imputations by chained equations (MICE) 
miceimp <- mice(dataset, meth=c(”norm”,”norm”,”norm”), m = 20, seed = 6000) 
for(k in 1:20){ 
   corMatrix = corMatrix + fisherz(cor(complete(miceimp,k))) 
} 
fisherz2r(corMatrix/20) 
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