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Although frequentist estimators can effectively fit ordinal confirmatory factor analysis (CFA) models, 
their assumptions are difficult to establish and estimation problems may prohibit their use at times. 
Consequently, researchers may want to also look to Bayesian analysis to fit their ordinal models. 
Bayesian methods offer researchers an effective means of estimating, testing, and interpreting ordinal 
CFA models. Unfortunately, there are few applied resources on the subject. The purpose of this 
article is to provide researchers with an introduction to the essential concepts, practice 
recommendations, and process of fitting ordinal CFA models using Bayesian analysis. Mplus 7.4 and 
data from the Pittsburg Common Cold Study 3 are used to example how researchers can set up their 
Bayesian models, conduct diagnostic checks, and interpret the results. This article also highlights the 
benefits and challenges of Bayesian ordinal CFA modeling. 

Confirmatory factor analysis (CFA) is typically 
conducted using Maximum Likelihood (ML) estimators 
that assume the observed data are continuous and 
multivariate normal (Flora & Curran, 2004; Jöreskog & 
Moustaki, 2001). However, since response variables are 
often measured using rating scales, normal-theory CFA 
assumptions go unmet at times (Flora & Curran, 2004; 
Jöreskog & Moustaki, 2001). Rating scales divide up a 
continuous scale into a few forced-choice response 
categories that are ordinally arranged relative to the 
underlying continuous response variable that the 
researcher wishes to address (Brown, 2015; DiStefano, 
2002). When the ordinality of rating scale data is ignored 
in a CFA study several unwanted problems may ensue. 
For example, Beauducel and Herzberg (2006) found that 
slope parameters tend to be attenuated when rating 
scales with six response options or less are treated as 
continuous in ML estimation while Bandalos (2014) 
found that standard errors tend to be negatively biased 
when rating scales with four response options or less are 
treated as continuous. Likewise, Holgado-Tello, 
Chacón–Moscoso, Barbero-García, and Vila-Abad 
(2010) found that the normal-theory χ2 statistic tends to 
be inflated when rating scales with five response options 
are treated as continuous.  

In general, researchers have looked to robust ML 
and limited-information estimators when the ordinal 
scale of one or more indicators is expected to influence 
a model (Bainter, 2017; Bandalos, 2014). Unfortunately, 
the assumptions of both estimator families are difficult 
to establish (Fox, 2010) and their use can be prohibited 
at times (e.g., convergence failures). Given such 
circumstances, researchers may also want to look to 
Bayesian methods to effectively estimate their ordinal 
models, which tends to have fewer limitations than ML 
and limited-information estimators (Depaoli & van de 
Schoot, 2017). Unfortunately, Bayesian methodology 
has made few inroads into the CFA literature, partly 
because there are few resources available to help applied 
researchers navigate a methodology that is largely 
unfamiliar to them and complex (Wagenmakers et al., 
2018). The purpose of this article is to provide 
researchers with an accessible overview and 
demonstration on estimating, evaluating, and 
interpreting ordinal CFA models using Bayesian 
methodology. 

Frequentist Estimators  

Various techniques have been developed to help 
address some of the challenges associated with fitting 
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CFA models when normal theory assumptions go unmet 
(e.g., bootstrapping; Loehlin, 2004). Particular emphasis 
has been placed on robust ML estimation, which 
attempts to repair the deleterious impact of multivariate 
nonnormality (Bandalos, 2014; Li, 2016). Although 
several variants exist, robust ML generally consists of a 
correction to the normal-theory χ2 using an estimate of 
excessive multivariate kurtosis – referred to as the 
scaling correction factor (Bryant & Sattora, 2012; Yuan, 
Bentler, & Zhang, 2005) – and a correction for kurtosis 
in the standard errors (Enders, 2010). However, there is 
some counterindication for the use of robust ML with 
ordinal indicators. Yang-Wallentin, Jöreskog, and Luo 
(2010, p. 398) noted that the use of normal theory 
estimators with ordinal indicators is theoretical 
unjustified and as the indicators become increasingly 
inconsistent with multivariate normality, simulation 
studies have found that robust ML estimators tend to 
produce inadmissible solutions, biased loading 
estimates, and inflated type I error rates (Rhemtulla, 
Brosseau-Liard, & Savalei, 2012; Yang-Wallentin et al., 
2010).  

Methodologists tend to encourage researchers to 
use limited-information estimators when CFA models 
include ordinally scaled indicators (e.g., Holgado-Tello 
et al., 2010). In particular, robust weighted least squares, 
robust unweighted least squares, and robust diagonally 
weighted least squares have been viewed favorably 
owing to their use of corrections similar to those in 
robust ML and their ability to model the ordinality of 
rating scale data (DiStefano & Morgan, 2014; Yang-
Wallentin et al., 2010). Although limited-information 
estimators tend to perform well (e.g., Rhemtulla et al., 
2012; Yang-Wallentin et al., 2010), they are not problem 
free. For example, limited-information estimators may 
perform poorly when cell counts are sparse (e.g., Forero 
& Maydeu-Olivares, 2009), a scenario relatively common 
in ordinal data. Accordingly, applied researchers would 
benefit from additional approaches that are not 
restricted by the same limitations as robust ML and 
limited-information estimation. 

Introduction to Bayesian Estimation 

Robust ML and limited-information estimators 
represent orthodox, or frequentist, approaches to 
estimation (Dienes, 2011). In frequentists estimation, 
unknown parameters are treated as fixed values that are 
estimable by identifying quantities that most likely 
explain the observed data (Myung, 2003). The likelihood 

of parameter θ given the observed data is commonly 
denoted as L(θ|data). In contrast, Bayesian estimation 
treats unknown parameters as random variables through 
the assignment of probability distributions, or priors, 
which quantify a researcher’s prior beliefs about the 
credibility of different values for θ (Kaplan & Depaoli, 
2012). The priors are weighted by the L(θ|data), or the 
evidence supplied by the data, to give researchers 
updated, or posterior probabilities that summarize the 
evidence for various values of θ (Enders, 2010; Kaplan 
& Depaoli, 2012; Kruschke, 2014). This core philosophy 
is known as Bayes’ Theorem (Lynch, 2007, p. 232):  

p(θ|data) ∝ L(θ|data) p(θ) (1)

where the posterior distribution p(θ|data) is 
proportional to the product of the likelihood L(θ|data) 
and prior distribution p(θ) (Enders, 2010; Lynch, 2007). 

Priors are a distinguishing feature of Bayesian 
statistics as well as a source of much controversy 
(Pawitan, 2001). Both the type of distribution and 
distribution parameters are set by the researcher, and 
based upon those choices, priors may be classified as 
noninformative, weakly informative or informative (Gelman, 
Stern, Carlin Dunson, Vehtari, & Rubin, 2014; Kaplan 
& Depaoli, 2012). Noninformative priors express a high 
degree of uncertainty over the plausible values for θ and, 
consequently, are expected to have trivial influence over 
the posterior, allowing the observed data to determine 
the posterior probabilities (Gelman et al., 2014; 
Kruschke, 2014). For example, in a CFA of the 
Parent/Caregiver Involvement Scale, Taylor and Bergin 
(2019) assigned a uniform prior over -∞ and ∞ on all 
interfactor correlations in order to give no more weight 
to one correlation estimate over another prior to 
introducing the evidence supplied by the data. It is worth 
cautioning though, noninformative priors may still have 
an unexpected influence over the posterior probabilities 
and so researchers need to carefully select and justify 
their priors, regardless of their level of informativeness 
(Depaoli & van de Schoot, 2017; Seaman, Seaman, & 
Stamey, 2012). 

Comparatively, weakly informative and informative 
priors are expected to have an impact on the posterior 
probabilities (Gelman et al., 2014). Weakly informative 
priors convey a substantial degree of uncertainty about 
θ but may supply enough information to keep estimates 
reasonable (Gelman et al., 2014; Taylor, 2019). For 
example, standardized loading estimates outside of -1 
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and +1 are unlikely and assigning a standardized 
indicator a uniform prior over the range of -2 to +2 
could be described as weakly informative since it only 
rejects posterior estimates outside of -2 or +2 and 
assigns equal probability to loading estimates between -
2 and +2 (Brown, 2015; Merkle & Rosseel, 2018). 
Informative priors on the other hand, allows researchers 
to substantially inform the posterior probabilities – 
though the influence of an informative prior diminishes 
as sample size increases (Kaplan & Depaoli, 2012; 
Lawson, 2013; Lynch, 2007). For example, Muthén and 
Asparouhov (2012) have pointed out that CFA models 
may benefit from placing small-variance (e.g., 0.001) 
normal priors on the cross-loadings with the mass 
centered over zero in order to accommodate for 
sampling error while keeping estimates aligned with a 
researcher’s belief that the parameters are essentially 
zero. 

Once a researcher specifies the priors, the 
posteriors probabilities are obtained so that the 
parameters can be defined (Lee, 2007). In ordinal CFA 
models, the goal is to obtain estimates from the joint 
posterior distribution p(τ, θ, ξ, Y*| data), where τ , θ, ξ,  
and Y* are the latent thresholds, model parameters, 
latent variables, and latent response variables, 
respectively (Lee, 2007; Natesan, 2015). However, since 
the joint distribution is intractable to solve, Gibbs 
sampling is typically used to approximate the posteriors 
(Lee, 2007; Lynch, 2007). Gibbs sampling is a type of 
Markov chain Monte Carlo (MCMC) technique that 
approximates the posterior probabilities by simulating 
values from the probability distribution of one set of 
components at a time (e.g., thresholds) given the state of 
all other components and sequentially improving the 
values towards a desired posterior distribution (Gelman 
et al., 2014; Lee, 2007). The collection of sequential 
draws is called a Markov chain (Kruschke, 2014). 
Random start values are assigned to the components in 
order to initiate the Markov chains and over a 
sufficiently large number of iterations the sequence 
converges, or samples from the desired posterior 
distribution (Lee, 2007). Once the Markov chains have 
converged, the parameters can be approximated by 
empirically summarizing the posterior distributions on a 
subset of the simulated values – since the initial iterations 
are not representative of their posterior distributions 
they are discarded as burn-in (Lee, 2007). For example, 
the mean of a simulated posterior distribution can serve 

as the Bayesian estimate of a loading parameter (Lee, 
2007).  

Benefits and Challenges of Bayesian Estimation 

Bayesian estimation promises several benefits over 
frequentist estimators, largely conferred through the use 
of priors. For example, the inclusion of increasingly 
informative priors has been associated with improved 
parameter estimates over that of ML and limited-
information estimators and priors have the advantage of 
allowing a researcher to incorporate their predictions 
into the estimation process (Depaoli & van de Schoot, 
2017; Natesan, 2015). Likewise, since priors alleviate 
Bayesian latent variable modeling of the identification 
restrictions that limit frequentists approaches, 
researchers can estimate models otherwise prohibited 
under ML and limited-information estimation (Muthén 
& Asparouhov, 2012). Perhaps foremost, frequentist 
estimators rely on asymptotic assumptions that 
researchers may not be able to establish while Bayesian 
approaches generally mitigate the reliance on large-
sample theory since MCMC algorithms allow the 
posterior distributions to be analyzed directly (Fox, 
2010; Lynch, 2007).  

Still, Bayesian methodology has made few inroads 
in the CFA literature. Some researchers are hesitant to 
adopt Bayesian methods due to the use of priors 
(Gelman, 2008), which has been criticized for 
introducing too much subjectivity into the research 
process (Lynch, 2007; Pawitan, 2001). Bayesian factor 
analysis is also not as accessible to applied researchers as 
frequentists estimators. For example, researchers are 
rarely trained on Bayesian statistics (e.g., Aiken, West, & 
Millsap, 2008) and few latent variable modeling 
programs offer Bayesian estimation and only Mplus 
(Muthén & Muthén, 1998-2015) and Amos (Arbuckle, 
2017) are capable of fitting Bayesian CFA models with 
ordinal indicators. Both are relatively recent software 
developments. Likewise, Bayesian modeling is relatively 
complex and there are few educational resources in 
general on Bayesian CFA and even fewer still on fitting 
ordinal models - this author is only aware of a few 
chapters in Lee (2007) that provides some instruction on 
the subject. Accordingly, there remains a need for 
applied resources that can help researchers capitalize on 
the advantages of Bayesian methodology in their ordinal 
CFA studies. 
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Empirical Example 

Participants 

To example the use of Bayesian CFA with 
ordinal indicators, the present article reports on a factor 
analysis of the ten item Perceived Stress Scale (PSS-10) 
using data from the Pittsburg Cold Study 3 (PCS-3; 
Laboratory for the Study of Stress, Immunity, and 
Disease, 2016). The Laboratory for the Study of Stress, 
Immunity, and Disease at Carnegie Mellon University 
collected responses to the items from 213 participants 
under the directorship of Sheldon Cohen, Ph.D (grant 
number NCCIH AT006694). Readers can access the 
data by downloading the file pcs3.data_012016.sav from 
the Common Cold Project website 
(www.commoncoldproject.com). Participants ages 
ranged from 18 to 55 years with a median age of 25. 
Approximately 57.7% (n = 123) were male while 42.3% 
(n = 90) were female. Nearly all of the respondents 
identified as White (66.7%, n = 142) or as Black (27.2%, 
n = 58). Approximately 23.0% (n = 49) had a high school 
education or less, 50.7% (n = 108) had completed some 
college or an associate degree, and 25.4% (n = 54) had a 
Bachelor’s degree or higher. Approximately 60.1% (n = 
128) were working full or part-time at the time of the 
study while 39.9% (n = 85) reported they were 
unemployed. Lastly, family income ranged from $2,500 
to $162,500 with a median income of $12,500.  

Measure 

The Perceived Stress Scale (PSS-10) is a popular 
measure of the degree to which respondents view the 
stress in their lives as excessive (Cohen, Kamarck, & 
Mermelstein, 1983; Taylor, 2015). Six items address a 
respondent’s perceived helplessness towards their 
stressors and four items address a respondent’s 
perceived self-efficacy (Roberti, Harrington, & Storch, 
2006; Taylor, 2015). Respondents indicate on a scale 
ranging from 1 (Never) to 5 (Very often) how frequently 
in the past month their experience with stress have 
looked like the experiences described by the items. 
(Cohen et al. 1983). The PSS-10 is scored by reverse 
coding the four self-efficacy items and then summing 
across the items by subscale (Cohen et al., 1983; Taylor, 
2015). High scores on both the helplessness and self-
efficacy subscales are indicative of problematic levels of 
perceived stress (Taylor, 2015). Consistent with previous 
studies (e.g., Roberti et al., 2006), the estimated omega 

reliabilities for scores on the perceived helplessness and 
self-efficacy subscales were .853 and .777, respectively. 

Bayesian Data Analysis 

Mplus 7.4 (Muthén & Muthén, 1998-2015) was used 
to conduct a Bayesian analysis on the two factor model 
that purportedly underlies the PSS-10 (Taylor, 2015; 
Appendix B provides readers with a brief guide to fitting 
a similar model using the Metropolis algorithm in Amos 
25.0). Six items that appear to address perceived 
helplessness were regressed onto an initial latent factor 
while four items that appear to address perceived self-
efficacy were regressed onto a second latent factor 
(Taylor, 2015). In keeping with Gelman et al. (2014), 
analysis of the two factor model was organized around 
three steps (p. 3): 

1) Set up the full probability model, including the 
priors.  

2) Estimate the posterior distributions. 

3) Evaluate the appropriateness of the model and 
interpret the results. 

Step one. As indicated above, the posterior 
distributions are obtained by sampling sequentially from 
the conditional densities of each set of model 
components using an MCMC algorithm (Lee, 2007). For 
example, the successive samples for the set of threshold 
parameters τ are simulated from the conditional density 
p(τi+1 | data, Yi*, ξi, Λi, Φi, Θi) at iteration i+1 given the 
state of all other components in the model at iteration i, 
where Yi* are the values for the set of unobserved 
continuous response variables underlying the ordinal 
data, ξi denotes the latent variables, Λi denotes the 
loading parameters, Φi denotes the covariance matrix of 
the latent factors, and Θi denotes the residual covariance 
matrix (Song & Lee, 2001, p. 241). Both the probit and 
logit links have been used to simulate values from the 
condition densities of ordinal CFA models (e.g., 
Natesan, 2015; Taylor, 2019); however, the probit model 
may be substantively preferred over the logit since 
ordinal CFA models and the probit link both assume the 
ordinal endogenous variables are discrete forms of an 
underlying continuous response variable (Jöreskog & 
Moustaki, 2001; Kruschke, 2014). Only the probit model 
is available in Mplus 7.4 (Asparouhov & Muthén, 
2010b). 

In order for the MCMC algorithm to sample from 
the conditional densities, researchers must place priors 
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on the thresholds, factor loadings, and latent variance-
covariance matrix (Lee, 2007). Depaoli and van de 
Schoot (2017) and Berger (2006) summarized that 
researchers may want to select their priors using 
guidance from substantive experts, prior publications, 
Bayesian philosophies (e.g., objective versus subjective 
philosophies), or from relevant datasets (e.g., secondary 
data). In addition, some researchers opt to use their own 
data to inform their priors, for example, using 
frequentist estimates of their model parameters to 
construct priors for a subsequent Bayesian analysis 
(Berger, 2006; Depaoli & van de Schoot, 2017). 
However, data-dependent priors have garnered much 
criticism among Bayesians, largely on the grounds that it 
violates some of the tenets of Bayesian philosophy (e.g., 
Berger, 2006). The present work opted to use priors that 
demonstrate their practical role in ordinal CFA 
modeling. 

Generally, normal priors are placed on the loadings 
and thresholds while an Inverse Wishart (IW) prior is 
placed on the latent covariance matrix1 (e.g., 
Asparouhov & Muthén, 2010a; Lee, 2007; Natesan, 
2015). Asparouhov and Muthén (2010a) found that 
loading parameters tend to be biased under increasingly 
diffuse priors and Gibbs sampling, especially when 
sample sizes are small. Accordingly, the present work set 
the location and scale of the loading priors to zero and 
one in keeping with the findings of Asparouhov and 
Muthén, (2010a). A N(0, 1.00) prior is viewed as weakly 
informative since it places 95% of a prior’s mass on a 
standardized loading coefficient between ±1.96√1.0 
(Muthén & Asparouhov, 2012). Likewise, an IW(I, p + 
1) prior was placed on the latent covariance matrix, 
where I is the identity matrix and p is the number of 
latent factors in the model, which implies a uniform 
probability for all realistic interfactor correlation values 
(Asparouhov & Muthén, 2010a). The IW(I, p + 1) is a 
common weakly informative prior (Alvarez, Niemi, & 
Simpson, 2014) and is the default setting in Mplus 7.4 
(Asparouhov and Muthén, 2010b). Since a two factor 
model was fit to the data, a IW(I, 2 + 1) prior was placed 
on the latent covariance matrix. Lastly, since thresholds 
are generally not involved in model comparisons, Lee 
(2007) recommends assigning increasingly diffuse priors 

                                                 
 

1 Note, in Mplus 7.4 the residual covariance 
matrix Θ does not receive a prior since the residuals 

to these “nuisance parameters” (p. 157). Accordingly, 
the location and scale of the normal priors on the 
thresholds were keep at the default setting in Mplus 7.4 
of zero and 1010 (Asparouhov & Muthén, 2010b, p. 34). 

Step Two. Consistent with the recommendations 
of Lee (2007), Gibbs sampling was used to simulate 
values from the conditional densities of the two factor 
model, as implemented in Mplus 7.4 (see the Appendix 
for an example of the Mplus 7.4 syntax used in this 
study). Although Gibbs sampling may be preferred in 
the ordinal CFA literature, researchers may want to look 
to other samplers (e.g., Hamiltonian Monte Carlo; 
Bainter, 2017) if Gibbs sampling does not meet their 
estimation needs (e.g., poor convergence; Lynch, 2007). 
As an alternative, researchers typically look to 
Metropolis-Hastings, which samples from the full joint 
posterior distribution rather than the conditionals 
(Lynch, 2007). Metropolis-Hastings is usually less 
efficient and slower than Gibbs sampling, however, it is 
likely to work when Gibbs sampling does not (Lynch, 
2007). Metropolis-Hastings can be requested in Mplus 
7.4 by setting ALGORTHIM to MH (Muthén & 
Muthén, 1998-2015). 

Researchers must also select the number of draws 
to simulate from the posterior distributions. Research by 
Lee, Song, and Cai (2010) found that ordinal CFA 
models may converge after 15,000 iterations (p. 291). 
However, Lee et al. (2010) also indicated that the limited 
information provided by categorical indicators may 
necessitate lengthening the number of iterations in order 
for the chains to converge. For example, Depaoli and 
van de Shoot (2015) noted that increasingly complex 
models may need as many as a million post burn-in 
iterations to converge (p. 247) and an ordinal CFA study 
by Taylor (2019) used 100,000 post burn-in iterations to 
ensure adequate sampling from the posterior 
distributions. Consequently, the present study requested 
100,000 post burn-in iterations by specifying 
FBITERATION=200000 in the Mplus 7.4 syntax (see 
Appendix) – Mplus 7.4 discards the initial half of the 
iterations as burn-in (Muthén, 2010). 

Step Three. Once the chains have finished 
iterating, researchers need to inspect the posterior 
solutions for conditions that may undermine the validity 

are a function of the loading coefficients rather than 
parameters (Muthén, 2016).  
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of their models, including (1) poor convergence, (2) 
elevated autocorrelation, (3) sensitivity to the priors, (4) 
poor representation of the posterior, and (5) model-data 
misfit (Depaoli & van de Schoot, 2017; Lee, 2007). 
Convergence for each parameter can be assessed by 
requesting multiple Markov chains and evaluating their 
consistency using the potential scale reduction factor 
(PSRF) and trace plots (Lee, 2007). Two chains were 
requested for each parameter in this study by specifying 
PROCESSORS=2 in the syntax (Muthén, 2010; see 
Appendix). The PSRF allows researchers to compare the 
between chain variability to the total chain variability on 
a given parameter (Asparouhov & Muthén, 2010b). If 
the between variability is relatively high (e.g., PSRF > 
1.10; Lee, 2007), convergence may be poor and 
extending the chains further may improve convergence 
(Depaoli & van De Schoot, 2017; Gelman et al., 2014). 
Trace plots can also be inspected for convergence 
(Kruschke, 2014). If multiple chains are requested, then 
the simulated values from each chain can be 
superimposed in a single trace plot to visually assess for 
consistency (Kruschke, 2014). The x-axis on a trace plot 
denotes iteration length and the y-axis denotes the 
parameter space a sampler simulates values from (Lynch, 
2007). If the chains exhibit consistent overlap and stable 
sampling from the same range of values over the course 
of the post burn-in iterations, then the parameter has 
likely converged to the target distribution (Kruschke, 
2014). For example, the Markov chains displayed in the 
trace plot at the top of Figure 1 exhibit considerable 
overlap and the trajectory of the chains remains 
consistent over the course of the iterations, indicating 
the parameter has converged to the posterior 
distribution (Kruschke, 2014).  

The post burn-in chains can also be displayed in a 
histogram in order to assess how well the posterior 
distribution is represented (Depaoli & van de Schoot, 
2017; Kruschke, 2014). If there are small change in the 
heights between adjacent frequency bars over the 
parameter space, which is denoted on the x-axis, then 
summary statistics of the posterior (e.g., mean, median, 
standard deviation) are expected to serve as good 
estimates of the model parameters (Depaoli & van de 
Schoot, 2017). The posterior distribution exampled at 
the top of Figure 1 shows gradual changes in the heights 
between adjacent frequencies bars across the parameter 
space, indicating the posterior distribution is represented 
well (Depaoli & van de Schoot, 2017). Had the 
histogram periodically exhibited appreciable differences 

between adjacent frequency bars, more iterations would 
have been warranted to improve the item’s Bayesian 
parameters (e.g., standard error; Depaoli & van de 
Schoot, 2017).  

Since MCMC algorithms simulate a new estimate 
using the current state of a chain, the values between 
iterations are interrelated and the MCMC chains are 
autocorrelated (Lynch, 2007). If autocorrelation is 
excessive the target distribution may be poorly 
represented (Kruschke, 2014; Muthén, 2010). For 
example, the variability of a posterior distribution tends 
to be underestimated (Lynch, 2007). Autocorrelation in 
the MCMC chains is typically checked using 
autocorrelation plots (see Figure 2). The y-axis on an 
autocorrelation plot denotes the estimated size of the 
autocorrelation between the simulated values at iteration 
i and n iterations ahead and the x-axis denotes lags, or 
the intervals between post burn-in draws where the 
autocorrelation was checked (Lynch, 2007). 
Autocorrelation is expected to decrease as the lags 
become increasingly large, indicating the chain 
eventually sampled well from the posterior distribution 
(Pullenayegum & Thabane, 2009). However, high 
autocorrelation (e.g., >.10; Muthén, 2010) across 
increasingly large lags may be problematic and more 
iterations may be needed to ameliorate the problem 
(Depaoli & van de Schoot, 2017). 

In order to test for model-data misfit, Lee (2007) 
has recommended using posterior predictive p-values 
(ppp). The ppp denotes the proportion of post burn-in 
iterations with a set of parameters that reflects the data 
poorly (Lee, 2007; Muthén & Asparouhov, 2012; Taylor, 
2015). If the ppp value is too low then the model under 
evaluation does not fit the data well (Lee, 2007). 
Currently, there is a paucity of information as to what 
constitutes a low ppp value; however, there appears to be 
some agreement that ppp values close to .50 imply good 
fit while values less than .05 may indicate poor fit (Lee, 
2007; Muthén & Asparouhov, 2012). If a model fits the 
data poorly, researchers may want to consider competing 
theoretical models. 

Lastly, the sensitivity of a model to the priors should 
also be assessed by comparing the posteriors under 
competing tenable priors (Depaoli & van de Schoot, 
2017; Gelman et al., 2014). Although problematic 
sources of sensitivity, such as poor convergence, should 
be addressed, the aim of a sensitivity analysis is to gain 
insight into the role of the priors in a given model 
(Depaoli & van de Schoot, 2017, Gelman et al., 2014). 
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To help researchers understand and report on the results 
of a sensitivity analysis, Depaoli and van de Schoot 
(2017) have suggested that changes between one and 
10% in the posterior parameter estimates due to changes 
in the priors may be viewed as a “moderate” impact 
while changes greater than 10% or changes in the 
substantive interpretations of a model may be viewed as 
a “large” impact (p. 254). 

Results 

Preliminary Analyses 

Prior to implementing a Bayesian analysis, 
researchers should screen their data for conditions that 
may be influential to their sampling models. In ordinal 
CFA studies, researchers can begin by investigating their 
indicators for low cell counts or elevated rates of missing 
data. Bayesian estimation assumes missingness is at least 
missing-at-random and priors can have an excessive 
influence over the posterior when cell counts are low 
(Buhi, Goodson, & Neilands, 2008; Gelman, 2013). 
There was no missing data on the PSS-10 in the PCS-3 
study, but inspection of the response frequencies 
revealed that more than 90% of the participants 
endorsed the lower three response options on all but two 
items2. Approximately, 85.92% of the respondents 
endorsed the lowest three response options on item six, 
which addresses how often a respondent has been 

                                                 
 
2 Note, the lower response options among the self‐

efficacy items refers to their reverse scores. 

nervous in the past month, and 68.54% endorsed the 
lowest three options on item seven, which addresses 
how often a respondent has been able to manage their 
responsibilities in the last month. Accordingly, there was 
a relatively high incidence of low or empty cells counts 
among higher bivariate response categories. Although 
sparse cell counts can negatively influence 
corresponding frequentist estimators, especially as the 
number of response options become increasingly low 
(e.g., Forero & Maydeu-Olivares, 2009), researchers can 
mitigate the problem in Bayesian estimation by placing 
moderately informative priors on any precarious 
parameters (Bainter, 2017).   

Although Bayesian analysis does not necessarily rely 
on large-sample theory (Lynch, 2007), researchers 
should not be cavalier about the distributional 
characteristics they introduce into their models. For 
example, Natesan (2015) found that ordinal CFA models 
under a logit link and normal priors produced 
diminished results when the data stemmed from a 
multivariate-skewed distribution. With limited-
information estimators, researchers have used tests for 
bivariate normality to evaluate the normality 
assumptions underlying their ordinal CFA models (e.g., 
Taylor, 2015) and researchers may want to consider the 
implications of the same information for their sampling 
models. Indeed, Gelman (2011) has advised Bayesians to 

Table 1. Polychoric correlations among the PSS-10 items 

Helplessness 1 2 3 4 5 6 7 8 9 
1. Upset    

2. Control .448   

3. Cope .343 .448  

4. Difficult .396 .586 .534  

5. Anger .478 .553* .339 .531  

6. Nervous .465 .578 .450* .485 .483  

Self-Efficacy          
7. On top .104 .451 .274 .404 .249 .307  

8. Irritate .236 .318 .205 .279 .302 .107 .280 
9. Going .246 .424 .162* .433* .236 .317* .587 .341 
10. Personal .069 .359 .250 .364 .176* .221 .590 .333 .479 
Note. Correlations denoted with * indicate the bivariate frequencies are inconsistent with the assumption of bivariate 
normality under the Benjamini–Hochberg Q method 
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consider the diagnostic tools available to them across 
estimation families. In the present study, the likelihood 
ratio test and the root mean square error of 
approximation (RMSEA), as implemented in LISREL 
9.20 (Jöreskog & Sörbom, 2015), were used to identify 
whether one or more associations among the items was 
inconsistent with bivariate normality. Although results 
from the likelihood ratio test suggested that six pairs of 
items violated the bivariate normality assumption (see 
Table 1), none of RMSEA tests were significantly 
different from 0.100, indicating that any nonnormality is 
unlikely to be problematic (Jöreskog, 2005). The present 
study also checked for outliers, but no problematic 
response patterns were observed. Consequently, the 
results here suggest further that the probit link may be a 
reasonable choice in this study. 

Bayesian Diagnostics  

Overall, the two factor model did not produce any 
diagnostic concerns. All parameters appear to have 
converged to their posterior distributions as evidenced 
by a high degree of agreement between the Markov 
chains. Specifically, all PSRF values were under 1.100, 
indicating that the post burn-in chains exhibited few 
differences (Asparouhov & Muthén, 2010b). For 
example, 95% of the values sampled from the posterior 
distribution of βUpset were between 0.505 and 0.931 for 
one chain and 0.503 and 0.934 for the second and both 
chains produced a median estimate of 0.706. Likewise, 
visual inspection of the trace plots revealed that the 
chains overlapped consistently and sampled from the 
same range of values over the course of the post burn-
in iterations for all parameters. A sample trace plot from 
this analysis is exampled at the top of Figure 1. Had the 
chains exhibited poor mixing or sampled poorly from 
the posterior distribution, convergence would have been 
questionable (Depaoli & van de Schoot, 2017). For 
illustrative purposes, the bottom of Figure 1 displays a 
trace plot with poor convergence from an analysis of the 
two factor model under 250 post burn-in iterations. 
Although the chains appear to trend together, they 
exhibit little overlap and both sample from different 
values of the parameter space over different intervals of 
the iterations, indicating that convergence is 
questionable and that more iterations are warranted 
(Depaoli & van de Schoot, 2017).  

The diagnostics also indicated that the relationships 
among the items are represented well by the two factor 
model. The two factor model produced a ppp of .147, 

indicating the hypothesized model fits the observed data 
well. Recall that ppp values less than .05 are evidence that 
a hypothesized model fits the data poorly (Lee, 2007). 
Also, relatively smooth changes between adjacent 
frequency bars across all histograms of the post burn-in 
chains suggests that the posterior distributions are 
adequately represented and that the Bayesian parameters 
are approximated well by the summary statistics 
(Depaoli & van de Schoot, 2017). A posterior 
distribution from this analysis is exampled at the top of 
Figure 1. Had one or more histograms exhibited 
inconsistencies over the sampling space, then parameter 
estimates based upon the irregular posteriors would 
likely have been less than ideal (Depaoli & van de 
Schoot, 2017). The bottom of Figure 1 illustrates a 
histogram that poorly represents a posterior distribution 
from a Bayesian analysis of the two factor model under 
250 post burn-in iterations. In light of the substantial 
changes in the height of adjacent frequency bars more 
iterations are likely needed to yield satisfactory Bayesian 
parameter estimates (Depaoli & van de Schoot, 2017). 

Unfortunately, the diagnostics did reveal elevated 
levels of autocorrelation for most of the chains (> .20) 
with some chains exhibiting large levels of 
autocorrelation (>.60). Researchers have generally been 
encouraged to address autocorrelation rather than 
dismiss it (e.g., Depaoli & van de Schoot, 2017; 
Kruschke, 2011a). Some of the reparative approaches 
focus on eliminating the sources of autocorrelation, such 
as eliminating model misspecification (Depaoli & van de 
Schoot, 2017), or attenuating the autocorrelation directly 
by extending the chains or using only every nth iteration 
in order to increase the independence between the 
simulated draws that are used to construct the posteriors 
(i.e., thinning; Kruschke, 2011b). Still others have 
suggested evaluating whether the parameters are 
sensitive to the high autocorrelation or not (e.g., Baldwin 
& Fellingham, 2013). Although low autocorrelation is 
desirable, if the model does not exhibit other diagnostic 
concerns, then high autocorrelation may not be 
problematic (Depaoli & van de Schoot, 2017). Since the 
two factor model behaved well across other diagnostic 
markers (e.g., PSRF values), the parameters were 
inspected for sensitivity to the autocorrelation by 
comparing the parameters before and after thinning the 
chains. THIN = 20 was added under the ANALYSIS 
command in the Mplus syntax in order to thin to every 
20th iteration (Muthén & Muthén, 1998-2015), requiring 
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the chains to run 4,000,000 iterations to accumulate the 
200,000 iterations requested. Although thinning the 
chains eliminated the autocorrelation (see Figure 2 for 
an example), the conclusions drawn from the model did 
not change and the parameter estimates exhibited little 
to no changes. Consequently, the elevated levels of 
autocorrelation appear to be inconsequential to the 
model. 

Sensitivity analysis. Since this factor analysis is 
largely testing whether the indicators are meaningful 
contributors to the measurement of perceived stress, the 
sensitivity of the posterior solutions to competing 
tenable priors was exampled by placing priors on the 
parameters that increasingly favor the null hypothesis. 
Specifically, the loading priors were changed to N(0, 
0.25) and N(0, 0.10) in turn to evaluate the sensitivity of 
the two factor model to weakly informative and 
informative priors that increasingly favor the null 
(Depaoli & Clifton, 2015). Under a weakly informative 
prior of N(0, 0.25), little to no meaningful changes were 

observed. The two factor model continued to fit the data 
well (ppp = .135), the substantive interpretations of the 
loading coefficients did not change, and the parameter 
estimates showed moderate changes ranging from 
1.580% to 6.295%. However, the substantive 
conclusions of the model changed as the 
informativeness of the priors increasingly favored the 
null. Under a prior of N(0, 0.10), the model exhibited 
dubious fit (ppp = .036), calling into question the 
tenability of prior probabilities that favor the null 
hypothesis. Consequently, the results here suggest the 
substantive interpretations of the model are stable and 
since informative priors are expected to influence the 
posterior, the results also do not suggest any undue 
influence of the priors.  

Localized strains. In addition to the Bayesian 
diagnostics, researchers should attempt to establish the 
credibility of any additional assumptions made in their 
models. In the present case, prior research has indicated 
that the PSS may exhibit one or more salient cross-

Figure 1. Trace plots of the Markov chains and posterior distributions for βUpset under 250 and 100,000 post burn-
in iterations. The blue and red lines in the trace plots represent two separate Markov chains while the black line 
running through the length of the chains represents the median of each posterior, or the Bayesian estimate for 
βUpset under 250 and 100,000 post burn-in iterations. 
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loadings (e.g., Smith, Rosenberg, & Haight, 2014) and 
Hsu, Skidmore, Li, and Thompson (2014) have warned 
that constraining meaningful cross-loadings to zero may 
produce biased loading coefficients. As suggested by 
Hsu et al. (2014), bias in the primary loadings was 
investigated by freeing all the cross-loadings with a low-
variance normal prior of N(0, 0.01) in keeping with the  
recommendations of Asparouhov, Muthén, and Morin 
(2015). Under the probit link and a standardized factor 
model, a N(0, 0.01) places 95% of the prior’s mass on 
standardized estimates between -0.20 and +0.20 
(Kruschke, 2014; Muthén & Asparouhov, 2012) and 
Muthén and Asparouhov (2012) have argued that the 
low variance prior may free up salient cross-loadings, 
keep trivial cross-loadings approximately zero, and keep 
the model identified. Note, freeing all cross-loadings 
would have been prohibited under frequentist 
estimation because the model would not be identified. 
As displayed in Table 2, the primary standardized 
loading estimates did not exhibit meaningful changes 
after freeing the cross-loadings and the cross-loadings 
produced trivial estimates. A sensitivity analysis also 
revealed that the outcomes did not change by varying the 
informativeness of the cross-loading priors from N(0, 
0.01) to N(0, 0.10). Accordingly, the cross-loadings were 
not retained in the final model. 

It is worth adding here that prior to interpreting the 
cross-loading model, the diagnostics were checked again 

and the loading and threshold parameters on item seven 
exhibited some evidence of marginal mixing. The top of 
Figure 3 displays a trace plot of a threshold parameter 
from item seven that examples the marginal mixing. 
Researchers have been encouraged to address less than 
ideal mixing in their Markov chains in order to ensure 
“accurate inference” (Wakefield, 2013, p. 127). Some of 
the recommended repairs include lengthening the chains 
(Wakefield, 2013), reducing misspecification (Depaoli & 
van de Schoot, 2017), modifying one or more priors 
(Bainter, 2017), and varying the start values (Depaoli & 
van de Schoot, 2017). Since the preliminary analysis 
revealed sparse cell counts on item seven and the 
Markov chains tended to sample from a relatively large 
range of values in the parameter space, which is 
indicative of sensitivity to low cell counts, the present 
work placed a weakly informative prior on the 
thresholds to facilitate sampling from a more reasonable 
range of estimates and thereby improve mixing (Bainter, 
2017). Specifically, 

[topR$1] (t1); 
[topR$2] (t2); 
[topR$3] (t3); 
[topR$4] (t4); 

was added to the MODEL command in the Mplus 
syntax, and  

t1-t4~N(0, 3.00); 

Figure 2. Autocorrelation plots for βControl before and after thinning the Markov chain. 
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was added to the MODEL PRIOR option3. Notably, 
the weakly informative threshold priors reduced the 
tendency for the Markov chains to sample from 
relatively extreme values in the parameter space and 
improved mixing, including for the loading coefficient. 
The bottom of Figure 3 displays an example of the 
improvement in mixing. Still, the results also indicated 
that the marginal mixing did not negatively impact the 
model. Changing the prior had a moderate impact on 
the parameter estimates at most, including among the 
threshold parameters on item seven, and produced no 
changes in the interpretations of the model. The cross-
loading model did not exhibit any additional diagnostic 
concerns (e.g., ppp = .257). 

Bayesian Interpretation of the Final Model.  
Since the two factor model performed well in this 

study, the posterior solutions were substantively 
interpreted. As displayed in Table 2, median values of 
the standardized posterior distributions suggests that the 
PSS-10 items tend to load relatively well onto their 
respective latent factors. Standardized loading estimates 

                                                 
 
3 Although N(0, 3.00) is in keeping with the wide range of 

threshold estimates researchers may encounter in their models 

ranged from 0.576 to 0.810 among the perceived 
helplessness items while estimates ranged from 0.442 to 
0.809 among the items assessing perceived self-efficacy. 
Moreover, none the 95% credible intervals (C.I.) 
included zero, indicating that all items credibly load onto 
their latent factor – the 95% C.I. denotes the interval 
over the parameter space where 95% of the posterior 
simulated estimates lie and had a 95% C.I. included zero 
it would have suggested that the null hypothesis was 
credible for the corresponding loading (Kruschke, 2013; 
Lynch, 2007). Item eight however, addressing a 
respondent’s recent experience with irritants, indicates 
there is a 95% chance that the true value lies between 
0.290 and 0.575. Since the interval provides some 
evidence that a trivial loading is credible (e.g., < .32; 
Tabachnick & Fidell, 2013), it calls into question the 
substantial contribution of the item eight. Lastly, a 
moderate association of .580, 95% C.I. [431, .708], 
between the latent factors indicates that the subscales 
likely address distinct aspects of a respondent’s 
perceived stress. 

(e.g., Rhemtulla et al., 2012), a range of weakly informative 
threshold priors were evaluated. 

Figure 3. The top trace plot displays marginal mixing for the threshold capturing the step between Never and 
Almost never on item seven. The bottom trace plot displays the mixing of the Markov chains for the same 
threshold with a N(0, 3.00) prior. 
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Discussion 

Researchers have generally looked to robust ML 
and limited-information estimators to fit their ordinal 
CFA models (Bainter, 2017; Bandalos, 2014). However, 
frequentist estimators make assumptions that may be 
intractable to establish (Fox, 2010) and are unlikely to 
allow researchers to fully address their research aims. 
Accordingly, this article has encouraged researchers to 
also look to Bayesian methods, which may offer a more 
tenable approach to ordinal CFA modeling. 
Unfortunately, there are few resources available that help 
applied researchers fit Bayesian CFA models. This article 
helps ameliorate that gap by providing researchers with 
an accessible overview and demonstration on estimating, 
evaluating, and interpreting ordinal CFA models using 
Bayesian methodology.  

Specifically, this article outlined and illustrated a 
Bayesian analysis of an ordinal CFA model using 
Gelman et al.’s (2014) three step framework. First, 
researchers need to judiciously select their sampling 
models. In this article a probit function with normal 
priors was illustrated but researchers may also want to 
consider alternative sampling models that better fit their 
research needs. For example, some researchers have 
opted to use a logit model rather than a probit (e.g., 
Natesan, 2015) and in such cases researches can look to 
odds ratios rather than z-scores to guide the 
characteristics of their priors, for which there is 
considerable guidance (e.g., Sullivan & Greenland, 
2012). Second, researchers need to select an MCMC 
algorithm to approximate the posterior solutions. 
Although Gibbs sampling has been widely used in the 
ordinal CFA literature (e.g., Natesan, 2015), other 

samplers, such as Metropolis-Hastings, are available and 
should be consider if Gibbs sampling encounters 
problems (Lynch, 2007). Lastly, researchers must check 
the validity of the solutions and report their diagnostic 
findings along with their substantive interpretations 
(Depaoli & van de Schoot, 2017), a practice that appears 
to be routinely ignored by applied researchers across 
 estimator families (e.g., Gelman, 2011; Jackson, 
Gillaspy, & Pure-Stephenson, 2009; van de Schoot, 
Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 
2017). As indicated in this article, Bayesian models 
should minimally be inspected for convergence 
problems, problematic autocorrelation, undue influence 
of the priors, poor representation of the posterior, and 
model-data fit (Depaoli & van de Schoot, 2017). 

As alluded to earlier in this work, Bayesian 
estimation will likely yield the same results as frequentist 
estimators when sample sizes are large or priors are 
highly diffuse (Enders, 2010). Recall that priors are 
weighted by the evidence supplied by the data and if the 
evidence outweighs the priors due to large samples or 
noninformative priors, then the posterior will largely be 
a product of the likelihood (Lynch, 2007). Consequently, 
researchers may wish to avoid the challenges associated 
with Bayesian estimation if frequentists estimators can 
return the same results. However, Bayesian 
methodology confers several benefits that might bear 
upon a researcher’s modeling decisions, regardless of the 
weight of the likelihood. For one, Bayesian approaches 
can estimate substantively valuable models that are 
prohibited under ML and limited-information 
estimators (e.g., convergence failures; Depaoli & Clifton, 
2015). For example, this study was able to estimate a two 

Table 2. Standardized Bayesian loading parameters and associated 95% credible intervals 
 Hypothesized Model Low-Variance Cross-loading Model 
Items  βHelplessness (C.I.) βSelf-Efficacy (C.I.) βHelplessness (C.I.) βSelf-Efficacy (C.I.)

1. Upset .576 (.449, .681) .644 (.498, .766) -.089 (-.213, .035)
2. Control .810 (.725, .875) .769 (.656, .863) .063 (-.037, .165)
3. Cope .597 (.473, .699) .608 (.458, .737) -.021 (-.147, .105)
4. Difficult .760 (.659, .837) .721 (.591, .828) .058 (-.051, .168)
5. Anger .690 (.584, .775)  .725 (.598, .831) -.047 (-.161, .067)
6. Nervous .705 (.603, .788) .722 (.595, .827) -.026 (-.139, .086)
7. On top  .809 (.703, .893) .004 (-.104, .112) .781 (.647, .886)
8. Irritate  .442 (.290, .575) .070 (-.068, .205) .397 (.214, .562)
9. Way   .736 (.623, .826) .027 (-.090, .144) .721 (.574, .844)
10. Personal  .701 (.579, .801) -.037 (-.152, .080) .738 (.589, .860)

rξ1ξ2 .580 (.431, .708) .569 (.385, .720) 
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factor model with all the cross-loadings freed in order to 
test for bias in the primary loading coefficients (Hsu et 
al., 2014). The same test could not have been 
implemented using a frequentist estimator because the 
model would not have been identified. Also, Bayesian 
methods are capable of addressing conditions that may 
otherwise diminish results under a frequentist estimator, 
such as ameliorating the negative impact of sparse call 
counts (Bainter, 2017). Perhaps foremost though, 
Bayesian methodology allows researchers to rely less on 
large-sample theory compared to frequentist estimators 
since MCMC algorithms allow researchers to analyze the 
posterior distributions directly (Lynch, 2007). 

Unfortunately, no article can address all the issues 
applied researchers may encounter while fitting their 
Bayesian models. For example, this work does not 
provide a background on Bayesian philosophy, which is 
very much a part of the Bayesian landscape. Readers are 
encouraged to look to the references used throughout 
this work to study Bayesian methodology further. 
Readers are particularly encouraged to see Gelman et al. 
(2014), Kruschke (2014), Lee (2007), and Lynch (2007). 
Also, while Bayesian estimation is a powerful approach 
to modeling, researchers should also be aware of its 
limitations. Perhaps foremost to this work, little 
methodological research has been conducted to guide 
the valid use of Bayesian analysis in ordinal CFA studies. 
For example, Bayesian tests for model fit remains a 
highly underdeveloped area in ordinal CFA modeling. 
Only the ppp has been widely adopted and it remains 
unclear how well it performs across increasingly diverse 
models (e.g., CFA models with mixed item formats). 
Accordingly, researchers need to be aware that practice 
recommendations are likely to continue to evolve as 
more simulation and applied works emerge. 

Conclusion 

Educational and psychological scientists tend to 
receive little training in Bayesian statistics (e.g., Aiken, 
West, & Millsap, 2008) and there is a paucity of resources 
available to help researchers capitalize on the benefits of 
Bayesian methodology in their CFA studies. This gap has 
been improving somewhat with the introduction of 
Bayesian estimation in common SEM software and an 
increase in Bayesian texts that provide thorough 
instruction and practice recommendations (e.g., Depaoli 
& van de Schoot, 2017; Lee, 2007). Still, more resources 
and applied examples are needed and this article helps 
speak to that need by focusing on the use of Bayesian 

methodology in ordinal CFA studies. Foremost, this 
article provides readers with an example that illustrates 
essential Bayesian concepts and demonstrates the 
framework researchers should follow to fit their own 
ordinal models. Lastly, while this work encourages 
researchers to capitalize on the advantages of Bayesian 
methodology, readers are also advised to thoroughly 
address the validity of their Bayesian models. 
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Appendix A 

Comments are provided after the !s to provide some instruction on the syntax. However, researchers are 
advised to also view A Summary of the Mplus Language found at https://www.statmodel.com/language.html for a more 
thorough understanding of the syntax presented here:  

 
TITLE: Ordinal CFA with Bayesian Estimation 
DATA:  

FILE IS = ; !Location of the data file is specified here. 
VARIABLE:  
 !Users must name the columns of data in their file. 
 NAMES ARE upset control cope difficult outside nerv  
 topR irritateR  goingR confidentR; 
 !Variable listed after CATEGORICAL ARE are treat as ordinal variables. 
 CATEGORICAL ARE upset control cope difficult outside nerv  
 topR irritateR  goingR confidentR;  
ANALYSIS:  

ESTIMATOR = BAYES; !Must specify BAYES here to run Bayesian estimation. 
FBITERATION=200000; !Indicates the number of MCMC iterations to be used. 
POINT=MEDIAN; !Statistic used to as point estimate for the posterior distributions. 
PROCESSORS=2; !Specifies the number of MCMC chains to run. 

  ALGORITHM = GIBBS(PX1); !Specifies the type of MCMC algorithm to be used.  
   BSEED = 3; !Random seed to start the MCMC chains. 
MODEL:   

Helpless BY upset* control cope difficult outside nerv  
(b1 b2 b3 b4); !text in parentheses are parameter labels. 

 F1@1; !Standardizing the model places priors on the z-score scale. 
Efficacy BY topR* irritateR  goingR confidentR (b6 b7 b8 b9 b10); 
F2@1; 
F1 WITH F2 (cov1);  

MODEL PRIORS: 
b1-b10~N(0, 1); 

 cov1 ~IW(1, 3); 
OUTPUT: 

STANDARDIZED; 
TECH8; !Will display the potential scale reduction factor. 

PLOT: 
TYPE=PLOT3; !Supplies the posterior histograms, trace and autocorrelation plots. 
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Appendix B 

Brief Guide to a Bayesian Estimation of the PSS-10 in Amos 25.0 
I. Prepare the data for analysis. 

1. In Amos 25.0 select File from among the main menus and choose Data Files. 
 2. In the Data Files window click on File Name and locate and select the data file to be analyzed. 
 3. In the Data File window check Allow non-numeric data. 
 4. Click OK.  

  
 
II. Assign a coding rule. 
 1. Among the main menus select Tools and then choose Data Recode. 

2. Under the Original variables box select the first PSS-10 item, pss.upset. 
3. On the Recoding rule drop-down menu below, choose Ordered-categorical to specify that the data are ordinal 
(Arbuckle, 2017). 
4. Repeat step three for the remaining PSS-10 items and close the window. 
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III. Request Estimate means and intercepts.  
 1. Among the main menus select View and then choose Analysis Properties. 
 2. In the Analysis Properties window check Estimate means and intercepts. 
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IV. Graph the hypothesized model. 
1. Note, the indicators pers, way, irrit, and ontop in the figure below are the reversed scored variables pss.pers_r, 
pss.way_r, pss.irrit_r, pss.ontop_r in the pcs3.data_012016.sav file. 

 2. Fix the factor variance parameters to one to standardize the model. 
 3. And free the loading coefficients fixed to one by default in Amos 25.0 (Arbuckle, 2017).  
 4. Save the path diagram. 

  
 
V. Initiate the MCMC algorithm available in Amos 25.0. 

1. Note that the Calculate Estimates button is not available. Amos users must click on  to start the Metropolis 
algorithm as implemented in Amos 25.0 (Arbuckle, 2017).  
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VI. Request posterior medians and 95% credible intervals.  
 1. Among the main menus in the Bayesian SEM window click View and select Options. 
 2. Under the Display tab in the Bayesian Options window check the Median option.  

3. Check the Credible interval option as well and change the interval from 50 to 95 to request 95% credible 
intervals for each parameter.  

  
 

VII. Setting the number of MCMC iterations. 
 1. To set the number of MCMC iterations, click on the MCMC tab in the Bayesian Options window. 

2. Since Amos 25.0 allows up to the first 25% of iterations to be discarded as burn-in (Arbuckle, 2017), set 
the Max observations to retain in future analyses to 133334 in order to request 100,000 post burn-in iterations.   

 3. Close both the Bayesian Options and the Bayesian SEM windows. 

 4. Click on  to restart the Metropolis algorithm under the 133,334 iterations requested.  
5. Navigate back to the MCMC tab in the Bayesian Options window and change the Number of burn-in 
observations to 33333 (Arbuckle, 2017). 
6. Close the Bayesian Options window.  
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VIII. Setting the priors. 
 1. To set the priors right click on the first parameter and select Show prior. In the  

Prior window researchers can set the prior distribution by selecting either a Uniform, Normal, or Custom 
prior from the drown-down menu and setting the hyperparameters. 
2. The default diffuse prior in Amos 25.0, a uniform over the interval -3.4E+38 and 3.4E+38 (Arbuckle, 
2017), was placed on all parameters in the model, which appears to work well for the two factor model in 
Amos 25.0.4 
3. Leave the Prior window up and select the parameters successively in the Bayesian SEM window to view or 
alter the priors in turn. 

   
 
 
 
 
 
 
 
 

                                                 
 

4 Although weakly informative priors were used to estimate the two factor model under Gibbs sampling, it is 
currently unclear how increasingly informative priors behave under the MCMC algorithm implemented in Amos 
25.0. Accordingly, highly diffuse priors were placed on all parameters in the model. 
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IX. Convergence 
1. Once the Metropolis algorithm reaches 100,000 post burn-in iterations, researchers should check the PSFR 
value for convergence, which is displayed near the top of the Bayesian SEM window next to the smiley emoji. 

In the present case, the PSRF value is . Since the value is less than the default cutoff of 1.002 in 
Amos 25.0 (Arbuckle, 2017), the chains are likely sampling from the target distributions.  
2. To check convergence using trace plots, in the Bayesian SEM window right click on the first parameter and 
select Show posterior. 
3. In the Posterior window, click the Trace button and a trace plot of the posterior will  

 appear for the parameter you selected. 
4. While the Posterior window is up, select the parameters in turn in the Bayesian SEM window to view the 
trace plots in the order you select them. Since all trace plots for the two factor model appear to sample 
consistently from the same range of values over the course of the iterations, the chains are likely sampling 
from their target distributions.  
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X. Adequate Sampling from the Posterior 
1. To check how well the chains represent the posterior, click the Histogram button in the Posterior window 
and a histogram of the Markov chain for a selected parameter will appear.  
2. While the Posterior window is still up, select the parameters in the Bayesian SEM window in turn to view 
the posterior histograms in the order you select them. Since the histograms from the two factor model 
exhibited gradual changes in the height of adjacent frequency bars over the parameter space, the chains likely 
represent the posterior distributions well. 
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XI. Autocorrelation. 
1. To check for problematic autocorrelation, click the Autocorrelation button in the Posterior window and an 
autocorrelation plot of the Markov chain for a selected parameter will appear.  
2. While the Posterior window is still up, select the parameters in the Bayesian SEM window in turn to view 
the autocorrelation plots in the order you select them. Since the autocorrelation was low with increasing lags 
for all parameters, the chains are likely sampling well from their target distributions.  
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XII. Model-data Fit. 
1. To check for model-data fit, select View among the main menus in the Bayesian SEM window and click on 
Fit Measures. The Fit Measures window will display a ppp value. Since the hypothesized model produced a ppp 
value higher than .05, the two factor model appears to fit the data well.  
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XIII. Interpret the Bayesian Output. 

   


