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Two approaches to causal inference in the presence of non-random assignment are presented: The 
Propensity Score approach which pseudo-randomizes by balancing groups on observed propensity 
to be in treatment, and the Endogenous Treatment Effects approach which utilizes systems of 
equations to explicitly model selection into treatment. The three methods based on these approaches 
that are compared in this study are Heckit models, Propensity Score Matching, and Instrumental 
Variable models. A simulation is presented to demonstrate these models under different specifications 
of selection observables, selection unobservables, and outcome unobservables in terms of bias in 
average treatment effect estimates and size of standard errors. Results show that in most cases Heckit 
models produce the least bias and highest standard errors in average treatment effect estimates. 
Propensity Score Matching produces the least bias when selection observables are mildly correlated 
with selection unobservables and outcome unobservables with outcome and selection unobservables 
being uncorrelated. Instrumental Variable Estimation produces the least bias in two cases: (1) when 
selection unobservables are correlated with both selection observables and outcome unobservables, 
while selection observables are unrelated to outcome unobservables; (2) when there are no relations 
between selection observables, selection unobservables, and outcome unobservables. 

J.S. Mill (1843) formulated that the basic criteria to 
establish a causal relation required that (a) a cause and 
effect vary in accordance with one another, i.e. a change 
in a cause corresponds to a change in effect; (b) a cause 
temporally precedes an effect in a sequence of events; 
and, (c) that alternate explanations as to how an event 
came about can be ruled out, i.e. no other thing could 
have plausibly produced the effect other than the cause.  

The first two criteria are easy to satisfy. We can 
quantify the relationship between two things by 
calculating their covariance and through design we can 
measure variables in subsequent occasions. It is with the 
third criteria that the complications arise. Ideally, the 
problem of the latter is solved by establishing a 
counterfactual (e.g., Morgan & Winship, 2014; Murnane 
& Willet, 2011; Pearl, 2000; Shadish, et al., 2002). That 
is, if we could establish a condition where we could 

observe both outcomes under the condition where the 
posited cause occurred and a condition where it did not, 
with all else equal, then we would have some validation 
in ruling out alternate explanations. In consideration of 
this C.S. Peirce (1883) began emphasizing the 
importance of randomization in the context of statistical 
inference, which was later formalized as an official 
component of experimental design by R.A. Fisher 
(1935). The idea underlying randomization is that by 
assuring each individual has a chance of being assigned 
to any one of the conditions, then we can consider our 
groups equal in expectation. This equality in 
expectations bolsters our ability to rule out alternate 
explanations and strengthens the claim that changes in 
the outcome are due to changes in the causal variable 
(Murnane & Willett, 2011).        
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Causal inference has a central role in educational 
research as the implementation of new practices, 
policies, and interventions require evidence that their 
implementation will lead to the results they claim. 
Educational settings are characterized by a multitude of 
aspects, some of which are observed and some of which 
are not. Furthermore, within the realm of educational 
research our data often come in the form of 
observational studies, which means the data are simply 
collected from intact samples acting in their own unique 
environments within their own specific contexts 
(Shadish, et al., 2002). This is problematic in terms of 
causal inference, because we are unsure of the selection 
mechanisms that place individuals into their respective 
groupings. This lack of clarity defies the idea that such 
groups are equal in expectation, because we have no 
evidence for random assignment, moreover, we have 
evidence to the contrary, thus precluding our readily 
given counterfactuals as offered via random assignment.  

Non-random assignment mechanisms can take on 
various forms. Two of the most pervasive within social 
research are (1) individuals self-select into one condition 
or another; and (2) due to one’s particular placement in 
the world they are more prone to be in certain 
conditions. An example of mechanism (1) could be an 
individual choosing to participate in a program for the 
benefits it offers them, while (2) could be a program that 
is applied to a community due to its characteristics which 
may be purposive or convenient. A purposive example 
of (2) may be a curriculum which is intentionally 
introduced into one school but not another under the 
belief that the school which receives the curriculum 
would get the most benefit from the curriculum. A 
convenience example of (2) may be introducing a 
curriculum to a school simply because one has affiliation 
with that school and not to another school because of a 
lack of affiliation. In cases where non-random selection 
into treatment is present, treatment assignment can’t be 
assumed as independent of the expected outcomes since 
both treatment assignment and outcomes share a mutual 
dependence on sample characteristics. For example, let’s 
say we wanted to evaluate the effectiveness of a program 
for increasing college enrollments. If this program was 
targeted at schools with a record of low college 
enrollments, it wouldn’t be appropriate to compare these 
schools to others which tend to have relatively high 
college enrollment rates. In this case, selection into the 
program and college enrollments following program 
implementation are confounded by pre-existing 

differences between schools receiving and those not 
receiving the program. When such mutual dependence 
exists amongst treatment assignment and the outcome 
of interest, we refer to treatment selection as 
endogenous. The presence of endogenous selection into 
treatment induces bias into our estimation of treatment 
effects in the outcome because our groups cannot be 
considered equal in expectation. Reducing this bias is an 
important activity for educational researchers in their 
endeavor to establish causal inference. 

Some of the factors underlying these selection 
mechanisms are observed while some are not, which is 
to say in some cases we can account for differences 
between groups through measured variables whereas in 
other cases we cannot.  Researchers have described the 
former as selection on the observables and the latter as 
selection on the unobservables (e.g., Greene, 2012; Guo 
& Fraser, 2010; Heckman & Robb, 1985; Morgan & 
Winship, 2014; Rosenbaum & Rubin, 1983). Selection 
on the unobservables is particularly problematic because 
it is hard to gauge what motivates such individual 
choices. Selection on the observables is less problematic, 
since we can account for factors leading to selection, we 
are better positioned to establish a pseudo-
randomization that allows us to conceptualize our 
groups as equal in expectation. This notion brings us to 
the concept of constructing counterfactuals to estimate 
a treatment effect. 

Defining counterfactuals and treatment effects is 
simple under the context of randomization where we can 
assume groups are equal in expectation (Murnane & 
Willet, 2011). Since randomization induces statistical 
independence between outcome and treatment 
assignment, we conceive of the individual level 
treatment as simply the hypothetical difference between 
the value they obtain within treatment versus control 
(Holland, 1986). Without random assignment we cannot 
assume independence between treatment selection and 
outcomes. Two broad frameworks (Guo & Fraser, 2010; 
Morgan & Winship, 2014) for handling this issue of non-
random assignment come from the econometric 
tradition (Angrist, et al., 1996; Heckman, 2005) and the 
statistical tradition (Rosenbaum & Rubin, 1983). 

Heckman’s Scientific Model of Causality and the 
Neyman-Rubin Statistical Model of Causality 

James Heckman (2005) names the econometric 
approach to causal modeling as scientific to clarify that 
scientific theory is being invoked in modeling causal 
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effects. Specifically, he makes an appeal to what in 
economic theory is known as ex ante and ex post 
evaluations (Harsanyi,1955; Vickrey,1960), and 
emphasizes that both types of valuation are incorporated 
into the theory of his model (Carneiro et al., 2001; 
Heckman, 2005; Heckman & Navarro, 2004). To clarify, 
ex ante refers to anticipated returns for an individual due 
to entering treatment, while ex post pertains to the actual 
outcomes that follow from being in treatment.  

This approach intends to account for the influence 
of the individual’s choice on treatment and outcome by 
separately modeling ex ante expectations and ex post 
realizations, then allowing them to relate to one another 
through their respective unobserved factors. In this way, 
the econometric model aims to utilize scientific theory 
(particularly, rational choice theory) to make the 
selection mechanisms explicit. In order to accomplish 
this, we incorporate parallel models for selection and 
outcomes. The account of selection is given in ex ante 
expectations of returns to participation in treatment, 
expressed as: 

𝐸ሾ𝑉ሺ𝑌ሺ𝑠, 𝜔ሻ, 𝑃ሺ𝑠, 𝜔ሻ, 𝐶௦ሺ𝜔ሻ, 𝜔ሻ|𝐼ఠሿ, 𝑠 ∈ 𝑆,  (1)
 

In short, this states that given some set of 
information, 𝐼ఠ, a person 𝜔, will evaluate (V) their 
potential outcomes of taking treatment s, 𝑌ሺ𝑠, 𝜔ሻ, the 
potential cost of doing so 𝑃ሺ𝑠, 𝜔ሻ, and the 
characteristics of the treatment as known to the subject 
𝐶௦ሺ𝜔ሻ. Actual realizations (ex post) are not necessarily 
known at the time of treatment and we assume that 
selection is made under some uncertainty in the 
subjective evaluations of returns and cost of being in 
treatment. What this allows is for treatment selection to 
be conditioned on an information set. By allowing for 
subjective information sets to influence treatment 
selection, we anticipate that unobserved characteristics 
are apt to be involved. The factors that enter into the ex 
ante evaluation of treatment selection and those that 
enter into the ex post realizations can be shared, but by 
using parallel models we allow for the influence of these 
factors to be separated out between the selection and 
outcome models. The modeling of the ex ante selection 
process and the ex post treatment effect in parallel 
resides in the covariation of the errors from the outcome 
and selection models. It is through this residual 
covariance that unobserved selection factors and 
unobserved influences on the outcome are taken into 
account. 

The primary distinction between the statistical 
approach and the econometric approach is due to the 
assumption that given a set of observable features 
determining selection, the outcome is rendered 
independent of treatment (Guo & Fraser, 2010), 
denoted ሺ𝑌 ⫫ 𝐷ሻ|𝑊, where Y is the outcome, D the 
treatment, and W a set of observable variables. This 
assumption refers to the notion of selection on the 
observables, which is a core assumption implicit in the 
Neyman-Rubin model (Guo & Fraser, 2010; Heckman, 
2005; Holland, 1986; Neyman, 1923; Rosenbaum & 
Rubin, 1983). This model comes out of the statistical 
literature and follows from treatment effect assumptions 
under randomization, but assumes that it corrects for 
selection bias by conditioning on observable features 
amongst groups thus allowing for a pseudo-
randomization by covariate balance. This presumed 
correction allows the statistical model to maintain the 
assumptions we can make under randomization into 
treatment. Namely, a set of counterfactuals can be 
defined in ex post outcomes as an averaged treatment 
effect between treatment and control which is invariant 
to assignment mechanism, i.e. regardless of how an 
individual comes to receive treatment the same outcome 
will result.  Also implicit in the statistical model is that 
social interactions don’t influence an individual’s 
outcomes, i.e. their outcome will not be altered due to 
the composition or size of the group receiving treatment. 
This point concerning the ignorability of social 
interactions relates to the stable unit treatment value 
assumption (SUTVA), which fundamentally expresses 
that an individual’s treatment effect will not depend on 
that of another (Rubin, 1986). 

Because the scientific model is arising directly from 
social sciences it aims to incorporate the subjective 
valuations of selection and outcomes thus doesn’t 
maintain SUTVA. The econometric model of causal 
inference incorporates a choice of treatment model into 
its identification strategy which derives from 
characteristics of the treatment for an individual, 
observed and unobserved costs/preferences in taking up 
treatment given some information set. In contrast to the 
statistical approach, which establishes its identification 
strategy on the pseudo-randomization of subjects to 
treatment via balancing observed covariates amongst 
groups. 
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In the following, we will present three related 
methods: propensity score methods for covariate 
balance, which are based in the statistical model; 
endogenous treatment effect models, which are based in 
the econometric model; and, instrumental variable 
estimation, which is also based in the econometric 
model, but to a weaker extent than the endogenous 
treatment model. Based on the conceptualizations of the 
models, a simulation study will be presented to 
demonstrate their expected performance under varying 
conditions of observable and unobservable influences 
on selection and outcomes. 

Analytic Models 

To start off let’s set out some basic terms that will 
be used throughout. First we have X and Z which are 
respectively observable determinants of outcome and 
selection, where they are not distinguished we will use 
W= (Z, X) to simply denote observable characteristics 
of a sample. Y is used to represent an outcome variable, 
D denotes selected/assigned treatment, U denotes 
unobservable influences on the outcome, and V 
unobservable influences in the treatment selection 
mechanism. To illustrate, if we observe that a student’s 
socio-economic status influences their academic 
achievement, then we would refer to this as an observed 
influence [X] on an outcome [Y]. Further, if we observe 
that a student’s socio-economic status influences the 
likelihood that they will participate in a program for 
improving their academic achievement, then we would 
refer to this as an observed influence on selection [Z] 
into treatment [D]. In the case where we make no 
distinction between the influence of socio-economic 
status on selection into a program vs. academic 
achievement, then we refer to this as the joint influence 
of socio-economic status on both selection into a 
program and academic achievement [W]. If unobserved 
parental motivation was increasing the likelihood that a 
student would participate in a program, then we would 
refer to this as unobserved influences on selection [V] 
into treatment [D]. If the unobserved engagement of a 
student with their studies was influencing their academic 
achievement, then we would refer to this as an 
unobserved influence [U] on the outcome [Y]. 
Graphically, observed variables are represented by 
boxes, and circles represent latent/unobserved variables, 
single headed arrows imply a directed regression path, 
and double headed arrows represent an undirected 
correlation. Figure 1 and 2 represent selection on the 

observables and selection on the unobservables 
respectively. 

These visually represent that in the covariance 
matrix for the model we have freely estimated 
covariances amongst these features. Since our 
unobservables represent the errors in our treatment and 
outcome, one can gather that when selection on 
observables is present it implies that such error is 
attributed to observed variables, namely the observed 
selection determinants.  

Propensity Score Balancing 

Within Propensity Score methods no distinction is 
made between observed features bearing upon treatment 
versus outcome, hence propensity score methods 
assume that once observed differences between 
treatment groups are accounted for then the outcome 
can be rendered independent of the treatment. For 
example, once we account for differences in socio-
economic status amongst individuals in a program vs. 
those not in that program, we also account for the 
influence of socio-economic status on the academic 
achievement outcomes when evaluating the effects of 
the program on academic achievement. This is referred 
to as the conditional independence assumption, i.e. 
ሺ𝑌ଵ, 𝑌଴ሻ ⫫ 𝐷|𝑃ሺ𝑊ሻ. This expresses that the outcome 
within each treatment group is independent of treatment 
when conditioned on the observables (W). The 
propensity score P(W) is given as the probability of 

Figure 1. Graphical Representation of Selection on 
the observables 
 

 

Figure 2. Graphical Representation of Selection on 
the unobservables 
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being in D=1 given the observed W, it is this 
conditioning on the propensity score which supports the 
conditional independence assumptions in the propensity 
balancing approach. Further, the unobserved factors of 
selection are independent of the unobserved factors in 
outcomes within each group when conditioned on the 
observed W, 𝑈௩ ⫫ ሺ𝑈ଵ, 𝑈଴ሻ|𝑊. This can be stated as an 
assumption on the ignorability of unobserved factors. 
From the above example, this assumption would imply 
that once we account for socio-economic status all other 
potential confounding factors can be ignored. An 
implicit requirement in such an assumption is that the 
unobservables take on an independent, identical random 
distribution across treatment groups. One can see that 
within this framework the observable factors are doing 
all the work in correcting for selection bias and strong 
(and often inaccurate) assumptions are being made 
concerning the unobservables. This strong reliance on 
the observed variables inspired the phrase “selection on 
the observables” (Heckman and Robb, 1985). The figure 
below represents selection on observables as is done 
within the propensity score framework, within a model 
covariance matrix representation we find that Cov(W,U) 
≠ 0 and Cov(W,V) ≠ 0, while Cov (U,V)=0. 

In application, the steps taken to implement a 
propensity score method begin with estimating the 
propensity scores from a selection model, e.g. based on 
socio-economic status what is the probability that an 
individual will enter the program or not. Generally, a 
logistic or probit model will be used to estimate this 

                                                 
1This issue was demonstrated in a prior simulation 
study presented by Scott et al. at AERA 2016; details 
are available upon request (pws5@pitt.edu) 

probability. The propensity score can then be 
implemented in various ways (Guo & Fraser, 2010). The 
primary considerations about propensity score methods 
most useful for our purposes is that (1) propensity score 
methods function as selection on the observables thus 
neglect the unobserved characteristics of selection into 
treatment; and, (2) for propensity methods to succeed 
we require that adequate and appropriate overlap exist in 
propensity scores between the two groups. 
Consideration (2) is most problematic under situations 
where there is particularly high selectivity into treatment1 
such that groups are highly dissimilar in terms of factors 
determining selection, and (1) proves problematic in the 
case where one fails to account for the proper selection 
factors, i.e. when unobservables are driving selection. 

Endogenous treatment effects (Heckit Models) 

The endogenous treatment effects (Cameron & 
Trivedi, 2005; Greene, 2000; Woolridge, 2010) model 
has been dubbed Heckit models to reflect their creation 
by James Heckman (1976) and as one may have guessed 
these models relate to the Heckman scientific model of 
causal inference. These models were originally 
developed by Heckman to correct for sample selection 
bias where an observation would be missing unless an 
individual had selected into a situation. The classic 
example being the analysis of women’s wages in the 
labor force during the 1970’s (Heckman,1976); namely, 
wages would only be observed for women participating 
in the labor force, which would be further based on 
other factors determining whether a woman would enter 
the workforce or not. 

Similar to propensity score methods such as 
matching, the Heckit method conditions expected 
outcomes on observable variables and treatment to 
derive a probability of selection into treatment. The 
differences, however, being that Heckit methods 
separate out determinants of selection (Z) from 
determinants of outcomes (X) allowing any or all 
predictor variables to be in involved with both X and Z. 
For example, we would first determine the probability 
that an individual would participate in a program given 
their socio-economic status then further consider what 
is the influence of socio-economic status on academic 
achievement. Heckit methods invoke a requirement that Figure 3 Propensity Score Balancing Methods
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a model should relate outcome unobservables to choice 
of treatment to correct sample selection bias. For 
example, if unobserved student engagement 
differentially influences those who participate in a 
program vs. those who do not, then it makes sense to let 
unmeasured variance vary depending on whether an 
individual enters the program or not. Conceptually, the 
outcome expectations within this framework are 
expressed as: 

𝐸ሺ𝑌ଵ|𝑋, 𝑍, 𝐷 ൌ 1ሻ ൌ  𝜇ଵሺ𝑋ሻ ൅ 𝐸ሺ𝑈ଵ|𝑋, 𝑍, 𝐷 ൌ 1ሻ (2)

𝐸ሺ𝑌଴|𝑋, 𝑍, 𝐷 ൌ 0ሻ ൌ  𝜇଴ሺ𝑋ሻ ൅ 𝐸ሺ𝑈଴|𝑋, 𝑍, 𝐷 ൌ 0ሻ (3)

It can be seen here that variation in the expectations 
of the outcome are due to variations of group specific 
unobserved factors which are conditioned on the X, Z, 
and D. This simply presents the unobserved influence 
on the outcome as the remaining unexplained variance 
once we account for the observed influences on the 
outcome [X], the observed determinants of selection [Z], 
and treatment assignment [D].To represent this as a 
function of the propensity score we must adopt an 
assumption that the unobservables are independent of 
the propensity scores,  ሺ𝑈ଵ, 𝑈଴, 𝑈௩ሻ  ⫫ 𝑃ሺ𝑋, 𝑍ሻ. From 
the example above, this would mean that the student’s 
unobserved engagement and the parent’s unobserved 
motivation influence program selection and academic 
achievement above and beyond the observed influence 
of socio-economic status on both selection into the 
program as well as academic achievement. This 
assumption allows the formulation of our expectations 
in terms of propensity scores. First we construct our 
expectations on the outcome unobservables using the 
selection unobservables 𝑈௩ ൌ 𝐷 െ 𝑃ሺ𝑋, 𝑍ሻ: 

𝐸ሺ𝑈ଵ|𝑋, 𝑍, 𝐷 ൌ 1ሻ ൌ  𝐸ሺ𝑈ଵ|𝑈௩  ൒  െ𝜇௩ሺ𝑋, 𝑍ሻሻ
ൌ 𝐾ଵሺ𝑃ሺ𝑋, 𝑍ሻሻ 

 

(4)

𝐸ሺ𝑈଴|𝑋, 𝑍, 𝐷 ൌ 0ሻ ൌ  𝐸ሺ𝑈଴|𝑈௩  െ 𝜇௩ሺ𝑋, 𝑍ሻሻ
ൌ 𝐾଴ሺ𝑃ሺ𝑋, 𝑍ሻሻ 

(5)

The selection unobservables expresses the 
unexplained variance after accounting for selection 
into treatment, this is key as it allows the unexplained 
variance in selection into treatment to be carried over 
into the outcome model. The variables denoted by K 
are what we call control functions, these play a key 
role in the Heckit methods (Maddala,1983). Control 
functions operate by modeling endogeneity into the 
residual terms of the outcome model to control for 

bias. From the above we recast our expectations to 
incorporate control functions which depend only on 
the propensity of selection:  

𝐸ሺ𝑌ଵ|𝑋, 𝑍, 𝐷 ൌ 1ሻ ൌ 𝜇ଵሺ𝑋ሻ ൅ 𝐾ଵሺ𝑃ሺ𝑋, 𝑍ሻሻ (6)

𝐸ሺ𝑌଴|𝑋, 𝑍, 𝐷 ൌ 0ሻ ൌ 𝜇଴ሺ𝑋ሻ ൅ 𝐾଴ሺ𝑃ሺ𝑋, 𝑍ሻሻ (7)

These functions imply a more general approach to 
selection bias where selection is due to both observable 
and unobservable factors. Because the unobservables are 
functionally modeled on the basis of the propensity 
scores, the stronger our prediction of selection is, the 
more optimally the control functions can perform as 
they are better informed about the selection 
mechanisms. From our example above, this implies that 
once we account for the influence of socio-economic 
status on selecting into a program and academic 
achievement, any remaining unobserved factors, such as 
student engagement and parental motivation, are 
incorporated into the evaluation of the program’s effect 
on academic achievement.  

In this way, the Heckit methods incorporate both 
selection on the unobservables and observables. Thus 
we state the selection and error covariance terms in the 
following ways: Cov (U, V) ≠ 0, Cov (Z, U) ≠ 0, and 
Cov(Z,V) ≠ 0. This allows, from our example, that 
parental motivation and student engagement be related 
[Cov (U, V) ], as well as socio-economic status being 
related to both student engagement [Cov (Z, U)] and 
parental motivation [Cov(Z,V)]. Figure 4 gives a 
visualization of such a model.  

  

Figure 4. Heckit Endogenous Treatment Method 
(aka method of Control Functions) 
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The models used in analysis are formulated as such: 
we have an outcome model where y is a function of the 
observed covariates, the odds of selection (δ) into 
treatment t, and the unobserved residuals, 

𝑦௝ ൌ 𝒙௝𝜷 ൅ 𝛿𝑡௝ ൅ 𝑈௬ೕ
, (8)

where the tj is conceptualized as resulting from a 
latent variable which accounts for both observed and 
unobserved influences on selection into treatment 

𝑡௝
∗ ൌ  𝒛𝒋ϒ ൅ 𝑈௩ೕ

 (9)
in a manner such that: 

𝑡௝ ൌ ൜
1,    𝑖𝑓   𝑡௝

∗ ൐ 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

Which expresses, if there are factors influencing 
selection into treatment, these will be accounted for 
when evaluating treatment effects on the outcome, and 
not otherwise. 

We further assume that 𝑈௬ೕ
~ 𝑁ሺ0, 𝜎ଶሻ and 

𝑈௩ೕ
~ 𝑁ሺ0,1ሻ, with 𝜌 ൌ 𝐶𝑜𝑣ሺ𝑈௬ೕ

 , 𝑈௩ೕ
ሻ. ρ serves to 

indicate the extent to which sample selectivity is of 
concern and as such establishes the value reflected in δ. 
In the presence of a ρ=0 we have no evidence for sample 
selection and our results will reduce to the OLS estimate 
of the treatment effect. Thus when fitting such models 
it is essential to check the hypothesis test for whether 
ρ=0 or not. The Heckit method, as mentioned, is 
founded in the concept of control functions. Another 
familiar econometric approach is the instrumental 
variable method given in the following section. The 
major distinction between the control function and 
instrumental variable methods is that the Heckit method 
handles endogeneity by directly imposing a model onto 
the error structure such that selection and outcome 
errors are related to one another while instrumental 
variables account for error in the treatment selection due 
to a presumable exogenous source. 

Instrumental Variable Estimation (IVE) 

The instrumental variable approach (Angrist et al., 
1996; Heckman & Vytlacil, 1999; Imbens & Angrist, 
1994) also separates out observables except it only 
concerns the influence of observables on increasing the 
likelihood of selection into treatment. Note, one can 
incorporate observables into the outcome model but 
these should be independent of observable influences on 
the outcome. In other words, Z is excluded from the 

outcome model. More specifically, the assumption 
underlying IVE is that the instrument Z influences the 
outcome only through the causal variable (i.e., 
treatment). To exemplify, let’s consider the situation 
where schools will only be invited to participate in a 
program for increasing college enrollment if they are 
within so many miles of the organizations main office.   
In this case, it is fair to assume that miles from an 
organization would then predict selection into 
treatment, but not necessarily increases in college 
enrollments. However, given that the program does 
indeed boost college enrollments, then by extension 
miles from the organization would also predict higher 
enrollments but only by way of increased likelihood of 
program participation. In the propensity score balancing 
method and the Heckit control function method, P(X, 
Z) arises directly from setting D as a function of X & Z 
( with X,Z=W in the case of propensity balancing) such 
that  P(X,Z)= Pr(D=1|X,Z). Instrumental variable 
approaches differ in that the P(X, Z) come about as a 
function of the instrument Z alone, so P(X,Z)= 
Pr(D=1|Z). The X are held separately as covariates 
which bear upon outcomes but not on selection into 
treatment once the instrument is construed in the form 
of the propensity In terms of the unobservables, we now 
require an equivalence in the treatment and control 
group unobservables on the outcomes, U1 = U0, and a 
correlation between treatment and U0, here we can state 
that the selection unobservables covary with the 
outcome unobservables which are unconditioned on Z, 
i.e. there is selection on the unobservables but the 
selection only influences the outcome via the 
relationship between Z and D. The propensity score is 
now seen as a valid instrument in so far as the instrument 
explains treatment and, given selection, the outcome 
unobservables are not conditioned on the propensity 
instrument: 

𝐸ሺ𝑈଴|𝑃ሺ𝑋, 𝑍ሻ, 𝑋ሻ ൌ 𝐸ሺ𝑈଴|𝑋ሻ  (11)

and 

𝑈௩ ⫫ ሺ𝑈ଵ െ 𝑈଴ሻ|𝑋 (12)

The proposition given in (12) is simply stating that 
given X, treatment unobservables are independent of the 
difference between the outcome unobservables in 
treatment and control, it is from this assumption that we 
base the assumption that U1 = U0. In other words, once 
we account for miles from an organization, any other 
confounding influences on increasing college enrollment 
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will be the same regardless of whether a schools 
participates in the organizations program or not. The 
idea is that the instrument is an adequate means of 
explaining out any unobserved selection bias bearing 
upon the treatment outcome, hence in the outcome 
model it is only the control unobservables that are 
present.  

In practice we can use a 2 stage least squares 
estimation for instrumental variables which follows as 
such: 

Stage 
1 

𝐷 ൌ  ϒଵ𝑍௜ ൅  𝑈௩    𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔    
 𝑃ሺ𝐷 ൌ 1|𝑍ሻ 

(13)

 

Stage 
2 

𝑌௜ ൌ 𝛽ଵ𝑃ሺ𝐷 ൌ 1|𝑍ሻ ൅ 𝛽ଶ𝑋௜ ൅ 𝑈௜    
 𝑤ℎ𝑒𝑟𝑒  𝑈଴ ൌ 𝑈ଵ 𝑎𝑠 𝑈௩ ⫫ ሺ𝑈ଵ െ 𝑈଴ሻ|𝑋 

(14)

Below is a figure conceptually presenting the 
instrumental variable approach, we have removed the X 
covariates influence on the outcome as they are not a 
part of the mechanism for controlling out selection bias. 

Since the treatment effect we receive from this only 
pertains to those whose selection into treatment is 
influenced by the instrument, this is called a local average 
treatment effect (LATE) (Imbens & Angrist, 1994). The 
above figure illustrates that within the instrumental 
variable approach we have Cov(Z, V) ≠ 0, Cov(U,V) ≠ 
0, and Cov(Z,U) = 0. The covariance between U and V 
arises from the entry of P(Z) into the outcome equation. 
In this way we see that there is an alignment of 
instrumental variables and control functions within the 
econometric approach as they are accounting for 
selection of unobervables. Because of the system of 
equations approach, as used in both control functions 
and instrumental variables, we will find that there is 
higher estimation error due to the fact that we carry error 

over from one estimating equation into another. The 
propensity balance approach does better at minimizing 
error because in using the propensity for balancing 
covariate between groups it reduces the group 
differences prior to estimation. 

Hypotheses 

Following from these conceptualization, we 
forward some hypotheses about the expected 
performance of the different methods under varying 
conditions of selection mechanism (observable and 
unobservable) and unobserved influences on the 
outcome. The different conditions will be reflected in 
the covariance matrices generating the data for 
demonstrating expected performance of the different 
analytic models. As a general point we hypothesize that 
Heckit models will, for the most part, do best at 
recovering treatment effects, because the Heckit models 
are the most generalized methods amongst the different 
models under consideration. It will also be noted that 
because this method will do well at reducing bias in most 
cases it will come at the expense of increases in error of 
estimation, this relates to the bias and variance tradeoff 
(e.g. Friedman, Hastie, & Tibshirani, 2001). 

Our hypotheses of bias in estimation derive directly 
from the structure of the covariance amongst observed 
selection mechanisms (Z), unobserved influences on the 
outcome (U), and unobserved selection mechanisms (V). 
Table 1 below gives a concise presentation of our 
hypotheses. 

In sum, when there are no covariances present we 
anticipate ordinary least squares (OLS) to do better at 
recovering treatment effects, because OLS assumes 
independence of errors as reflected in the independent 
covariance structure. In the presence of an unstructured 
covariance (i.e. all covariances are non-zero), we expect 
Heckit methods to perform best regardless of 
correlation magnitude, due to the explicit modeling of 
error covariance. When the observed selection variable 
(Z) is unrelated to the outcome unobservables (U) but 
related to the selection unobservables (V), we will expect 
IVE to perform best regardless of correlation 
magnitude, this hypothesis is due to the IVE assumption 
that the outcome will be rendered independent of the 
selection observables (instrument Z) once the treatment 
assignment is conditioned on the instruments. When the 
unobserved selection (V) and outcome (U) features are 
uncorrelated but the selection observables (Z) relate to 
both selection (V) and outcome unobservables (U) we 

Figure 5. Instrumental Variable Estimate 
(conventional method for LATE) 
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expect propensity score balancing to perform better, 
except when the correlations are high, in which case we 
expect Heckit models to perform better. The reasons for 
this are discussed above, but in general, this is based in 
the requirement of overlap in propensity scores amongst 
groups required by propensity balancing approaches, 
such non-overlap is anticipated by the Heckit methods. 
A final example shows a correlation between selection 
(V) and outcome unobservables (U), a zero correlation 
between selection observables (Z) and unobservables 
(V), and a correlation between selection observables (Z) 
and outcome unobservables (U). This latter example 
would reflect a situation where selection bias is present, 
however, our selection observables are doing poorly at 
explaining selection. Because the Heckit models are 
doing more in way of handling selection on the 
unobservables than the other models we anticipate its 
superior performance regardless of magnitude in 
correlation. 

Methods: Simulation 

Purpose behind simulation 

A simulation study is presented here to demonstrate 
the performance of the aforementioned analytical 
models under consideration. Namely, the aim is to 
demonstrate how the different models perform in terms 
of how well they recover the treatment effect under 
different conditions of selection bias as reflected in 
different specifications of the correlation matrix for the 

                                                 
2 Codes used in simulation are available upon request  

observed selection (Z), unobserved selection (V), and 
unobserved outcome (U) components. The different 
correlation specifications refer to different mechanisms 
of selection on observables and unobservables. It is 
worth noting that in a true to life situation one would 
likely have several observed and unobserved variables 
influencing both selection and variation in the outcome. 
For the sake of simplicity in demonstrating these 
models, only a single variable is incorporated in 
generating data to represent each aspect under 
consideration. One can consider Z, V, & U as theoretical 
factors underlying observed selection and confounding 
in the outcome, similar in nature to latent variables. Of 
course, the correct and complete specification of 
selection mechanisms is unlikely be known with absolute 
certainty in real life, thus it is imperative that one apply 
some combination of conceptual understanding of their 
research situation and an empirical exploration of 
sample data to determine the most plausible selection 
mechanisms underlying one’s research context. 

Procedures2 

All data generation and analyses were conducted via 
Stata 14 (StataCorp, 2015). Data were generated using 
the corr2data command, and the Monte Carlo 
simulation study was conducted with the simulate 
command. A total of N=1,000 cases were produced in 
each simulated dataset and the simulations were 
conducted over R=1,000 replications for each model 
under each correlation matrix specification. Data were 

Table 1. Hypothesized preferred methods under varying conditions of covariance structure 
Corr (U,V) Corr (Z,V) Corr (Z,U) Method Hypothesized to yield Least Biased Treatment 

Effect Estimate 
ρ = 0 ρ = 0 ρ = 0 Ordinary Least Squares Regression (OLS) 
ρ = 0.30 ρ = 0.30 ρ = 0.30 Endogenous Treatment Effect Model (Heckit) 
ρ = 0.60 ρ = 0.60 ρ = 0.60 Endogenous Treatment Effect Model (Heckit) 
ρ = 0.30 ρ = 0.30 ρ = 0 Instrumental Variable Estimation (IVE) 
ρ = 0.60 ρ = 0.60 ρ = 0 Instrumental Variable Estimation (IVE) 
ρ = 0 ρ = 0.30 ρ = 0.30 Propensity Score Matching (PSM) 
ρ = 0 ρ = 0.60 ρ = 0.60 Endogenous Treatment Effect Model (Heckit) 
ρ = 0.30 ρ = 0 ρ = 0.30 Endogenous Treatment Effect Model (Heckit) 
ρ = 0.60 ρ = 0 ρ = 0.60 Endogenous Treatment Effect Model (Heckit) 
Note: 
U= Unobserved Influences on the Outcome 
V= Unobserved Selection Mechanisms 
Z = Observed Selection Mechanisms 
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generated from a multivariate normal distribution using 
a correlation matrix with error added into the outcome 
using a random normal distribution with mean 0 and 
variance of 1 to avoid perfect prediction. The treatment 
effect was modeled as the mean difference in the 
outcome between treatment and control. Following 
Cohen’s (1988) criteria, the correlation value of r = 0.3 
is used to represent a moderate relationship, 
corresponding to r2 = 9% variance explained, while a 
correlation value of r= 0.6 is used to capture a strong 
association, corresponding to four-times as much 
variance explained as the moderate relation, i.e. r2= 36%. 

From the correlation matrix we produced three 
terms, Z, V, and U, referring to the observables in the 
selection model (Z), the unobservables in the selection 
model (V), and the unobservables in the outcome model 
(U). Non-zero correlations between Z, V imply that 
observed selection mechanisms are confounded with 
unobserved selection mechanisms. For example, 
consider the situation where parents of high achieving 
students are given the option to enroll their children in 
an enrichment program. When unmeasured parental 
motivation (V) leads both to a child being enrolled in an 
enrichment program (i.e., parental selecting child into 
treatment) as well as higher measured academic 
performance (Z) of the child (i.e., criteria making child 
eligible for treatment) we have a confounding of 
observed with unobserved selection mechanisms. Non-
zero correlations between (U, V) pertain to the situation 
where unobserved selection mechanisms induce 
cofounding in the outcome variable regardless of 
treatment assignment. For example, students are offered 
an after school program to help them secure financial 
aid; If students’ unmeasured ambition made them more 
likely to enter the program (i.e. self-select into treatment 
(V)) as well as securing more financial aid (i.e., the 
ambitious students would naturally secure more financial 
aid (U)), then we’d suggest that some unobserved 
characteristic is creating a confound between both 
selection into treatment as well as expectation on the 
outcome. Non-zero correlations between (Z, U) indicate 
a situation where some observed differences between 
groups is making them unequal in expectation on the 
outcome. For example, various schools have 
implemented programs to increase college enrollments, 
but the implementation of these programs is more likely 
to occur in low-income schools (Z) (i.e., low income 
rates are measured). If lower income students are less 
compelled to enroll in college (U) (i.e., with or without 

the program they will be less likely to enroll in college), 
then we would say that observable selection mechanisms 
are confounding outcomes with selection into treatment. 
The nine correlation conditions are as follows 

 Corr (U,V) Corr (Z,V) Corr (Z,U) 

A 0 0 0 
B1 0.30 0.30 0.30 
B2 0.60 0.60 0.60 
C1 0.30 0.30 0 
C2 0.60 0.60 0 
D1 0 0.30 0.30 
D2 0 0.60 0.60 
E1 0.30 0 0.30 
E2 0.60 0 0.60 
 

From this we generated the treatment D of 
individuals by first creating a probability scale using  

𝑝 ൌ
exp ሺ𝑍 ൅ 𝑉ሻ

ሺexpሺ𝑍 ൅ 𝑉ሻሻ ൅ 1
 (15)

then assigning an individual to D = 1 if p > 0.50 and 
D=0 if p <= 0.50. From here we constructed the 
outcome as 

𝑌௜ ൌ 2𝐷௜ ൅ 𝑈௜ ൅ 𝜀௜ ,
𝑈௜~ 𝑁 ሺ0,1ሻ  &   𝜀௜ ~ 𝑁ሺ0,1ሻ

(16)

Analytic Plan 

The treatment effect to recover is (Y1 - Y0 = 2), 
parameter recovery will be gauged in the form of mean 
bias over R replications, 𝑀𝑒𝑎𝑛 𝐵𝑖𝑎𝑠 ൌ ሾሺ2 െ 𝛽መሻ/𝑅. We 
also present the distribution (Mean and Standard 
Deviation) of the standard errors across the 1,000 
replications for each model by correlation matrix 
condition to give researchers a sense of how much error 
in estimation they may anticipate when using the given 
models under the different correlation conditions. Along 
with this we also give an 90% capture interval that shows 
at its upper bound the 95th percentile for treatment effect 
estimates and at its lower bound the 5th percentile 
treatment effect estimate for each of the models per 
correlation configuration over the 1,000 replications.  

Results 

Table 2 gives the results from the simulation for 
each of the nine correlation conditions per each of the 
four models. The results yielded here align with the 
hypotheses we presented at the end of our introductory 
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section, except in the case of no covariances where we 
assumed OLS would exhibit the best performance. What 
we find instead is that IVE is producing the least bias. 
These results are sensible when we consider that the 
instrument Z is determining treatment D but not 
influencing the outcome Y, which is a fundamental 
assumption of IVE. Consequentially, we may observe 
increased error in the IVE produced from the fact that 
error is being carried over from stage 1 to stage 2. If we 
reference again the notion of the bias-variance tradeoff 
we may anticipate that this increased variance may be 

resulting in a decrease in the bias of the estimation of the 
treatment effect. In table 2, one can observe that while 
OLS exhibits an average bias that is about 7.7 times 
greater than that exhibited by IVE, it is also yielding an 
average standard error that is only about 2/3 of that as 
produced by IVE. One can see this reflected in the 
interval as well where OLS is producing a much tighter 
bound than IVE, a span of about .25 of a unit as 
opposed to .38, i.e. IVE produces a 90% capture interval 
that is about 1.5 times wider than that produced by OLS 
under an independent covariance structure. In the table, 

Table 2. Detailed Results from the Simulation 

  OLS      Heckit  PSM   IVE 

  Bias 
M 
(SD) 

SE 
M 
(SD) 

90% 
interv
al 

Bias 
M 
(SD) 

SE
M 
(SD) 

90% 
interva

l 

Bias
M 
(SD) 

SE
M 
(SD) 

90% 
interva

l 

Bias 
M 
(SD) 

SE
M 
(SD) 

90% 
interv
al 

Matrix A             
ρ (U, V) = 0 
ρ (Z, V) = 0 
ρ (Z,U) = 0 

‐.023 
(.076) 

.108 
(.002) 

1.85, 
2.10 

.228 
(.593) 

.618* 
(.185) 

1.25, 
3.21 

‐.079 
(.130) 

.208 
(.045) 

1.71, 
2.24 

‐.003 
(.115) 

.159 
(.003) 

1.81, 
2.19 

Matrix B1             
ρ (U, V) = 0.3 
ρ (Z, V) = 0.3 
ρ (Z,U) = 0.3 

.361 
(.078) 

.110 
(.002) 

2.23, 
2.49 

‐.063 
(.406) 

.466* 
(.106) 

1.37, 
2.69 

.460 
(.155) 

.192 
(.052) 

2.20, 
2.71 

.972 
(.106) 

.143 
(.003) 

2.80, 
3.15 

Matrix B2             
ρ (U, V) = 0.6 
ρ (Z, V) = 0.6 
ρ (Z,U) = 0.6 

.444 
(.087) 

.113 
(.002) 

2.30, 
2.58 

‐.118 
(.224) 

.272* 
(.028) 

1.53, 
2.27 

.858 
(.271) 

.265 
(.120) 

2.40, 
3.31 

1.697 
(.092) 

.120 
(.003) 

3.55, 
3.85 

Matrix C1             
ρ (U, V) = 0.3 
ρ (Z, V) = 0.3 
ρ (Z,U) = 0 

.517 
(.078) 

.112 
(.002) 

2.38, 
2.65 

‐.134 
(.366) 

.436* 
(.093) 

1.34, 
2.51 

.635 
(.155) 

.199 
(.053) 

2.37, 
2.89 

‐.003 
(.106) 

.145 
(.003) 

1.82, 
2.17 

Matrix C2             
ρ (U, V) = 0.6 
ρ (Z, V) = 0.6 
ρ (Z,U) = 0 

1.093 
(.087) 

.121 
(.002) 

2.95, 
3.23 

‐.195 
(.165) 

.215 
(.015) 

1.54, 
2.08 

1.727
(.271) 

.304* 
(.140) 

3.27, 
4.18 

‐.002 
(.092) 

.127 
(.003) 

1.85, 
2.15 

Matrix D1             
ρ (U, V) = 0 
ρ (Z, V) = 0.3 
ρ (Z,U) = 0.3 

‐.158 
(.078) 

.111 
(.002) 

1.71, 
1.97 

.240 
(.411) 

.479* 
(.115) 

1.59, 
2.92 

‐.154 
(.155) 

.189 
(.050) 

1.58, 
2.10 

.972 
(.106) 

.149 
(.003) 

2.80, 
3.15 

Matrix D2             
ρ (U, V) = 0 
ρ (Z, V) = 0.6 
ρ (Z,U) = 0.6 

‐.641 
(.087) 

.113 
(.002) 

1.22, 
1.50 

.197 
(.205) 

.234 
(.020) 

1.85, 
2.53 

‐.789 
(.271) 

.254* 
(.111) 

0.76, 
1.67 

1.697 
(.092) 

.135 
(.003) 

3.55, 
3.85 

Matrix E1             
ρ (U, V) = 0.3 
ρ (Z, V) = 0 
ρ (Z,U) = 0.3 

.483 
(.076) 

.105 
(.002) 

2.36, 
2.61 

‐.085 
(.526) 

.515* 
(.144) 

1.24, 
2.91 

.487 
(.130) 

.203 
(.046) 

2.28, 
2.71 

1.064 
(.115) 

.156 
(.003) 

2.87, 
3.26 

Matrix E2             
ρ (U, V) = 0.6 
ρ (Z, V) = 0 
ρ (Z,U) = 0.6 

.995 
(.076) 

.093 
(.002) 

2.87, 
3.12 

‐.111 
(.288) 

.302* 
(.058) 

1.48, 
2.35 

1.075
(.130) 

.166 
(.042) 

2.86, 
3.30 

2.130 
(.115) 

.146 
(.004) 

3.94, 
4.32 
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least bias models are put in bold, highest error models 
are asterisked, and every interval containing the 
treatment effect value is italicized. 

As indicated before we do see that despite the 
general superiority in performance of the Heckit model 
across conditions, it should also be noted that the Heckit 
models often produce the highest standard errors. The 
only case where this is not the case is when we have 
moderately high correlations between the selection 
observables and unobservables, moderately high 
correlations between the outcome and selection 
unobservables, but no correlation between the selection 
observables and the outcome unobservables. In this case 
propensity score balancing exhibits not only the highest 
error but also the greatest bias. This relates to propensity 
score balance relying on a reduction of selection bias by 
controlling selection observables out of the outcome. 
The fact that Heckit models are allotting more error to 
decrease bias is also reflected when considering that 
under all conditions these models are capable of 
capturing the treatment effect in their 90% capture 
interval. Under the specification of the independent 
correlation matrix every model captures the treatment 
effect within their 90% capture intervals, this isn’t 
entirely surprising given that we already accept under 
such conditions of independence of selection and error 
covariance that bias doesn’t pose a threat to our analyses. 
Across conditions we also observe that OLS is yielding 
the lowest standard errors, and in the case of relatively 
modest selection on the observables has a comparatively 
similar bias as that produced by propensity score 
balance, thus in the condition when propensity score 
balance was slated to perform best it appears to only be 
performing slightly better than OLS. Of course, it should 
be noted here that we have one factor for observable 
selection which is being included as a covariate in the 
OLS, so essentially the OLS is serving the same covariate 
balance correction as a propensity score would be. This 
result is not particularly useful when considering a 
multitude of observed selection characteristics, where it 
might be presumed that a propensity score would likely 
be preferable. 

Discussion 

As indicated by simulation results, in many cases the 
Heckit model will be acceptable, but it is important to 
regard this in light of the amount of estimation error 
permitted. Note that in the case of the independent 
correlation structure (i.e., no issue with selection bias) 

that it performs poorly producing both high bias and 
error. Thus, when implementing the Heckit models one 
will want to insure that there is indeed an issue with 
sample selectivity. Stata will output a Wald test for the 
independence of the selection and outcome equations 
(i.e. a test on whether ρ as discussed in the section on 
Heckit models is equal to zero), if this test is non-
significant then Heckit models will yield poor results. 
Generally speaking, there is no model which is the best 
in all conditions, rather some become preferable under 
different conditions and as mentioned before one will 
need to evaluate the most plausible situation pertaining 
to their given sample.   

One further point is that all of these models rely on 
correctly specifying the selection variables. It is not to be 
mistaken that models which incorporate unobservables 
do so in a vacuum, the unobservable factors are 
accounted for by conditioning on the observables, and 
the better we account for our selection factors the more 
information we will have to work with. As with any 
analysis one must always begin by closely exploring their 
research context to guide them in their choice of analytic 
methods.  

In general, when self-selection is a problem such 
that an unmeasured characteristic, such as motivation, is 
likely to lead to differences in outcomes between groups 
regardless of treatment one would opt for a Heckit 
model. Also, when there are marked observed 
differences between treatment groups Heckit models are 
also preferable. If, however, there are only moderate 
differences between treatment groups, such that decent 
overlap can be found between the treatment groups, 
then a Propensity Score Balancing Method would be 
preferable. Instrumental Variable Estimation (IVE) is 
preferable when observed differences in groups are 
influencing selection into treatment but are not 
confounded with the outcome (i.e., performance on the 
outcome depends on selection into treatment, though 
individuals would not be considered equal in expectation 
nor equally likely to uptake treatment). Though in the 
context of this paper we focus on treatment groups in 
the traditional experimental design context, it is worth 
noting that IVE could also be used when the treatment 
of interest is not categorical in nature. For example, if 
one wished to evaluate how variation in the length of a 
school day affected college enrollment rates for recent 
high school graduates, they could instrument school day 
lengths from different high schools on some observed 
factors believed to predict variation in school day 
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lengths. Additionally, it is worth noting that with IVE 
There is a theoretical burden that the research must bear 
when justifying their choice of instrument. One must be 
able to argue that an instrument only influences an 
outcome through its relationship to the treatment of 
interest.   

Upon deciding amongst the above discussed 
approaches for causal inference with observational 
studies for evaluating a program’s effects, Stata v.14 
(2015) & onward provides ready-made commands for 
applying these methods. Table 3 summarizes the usage 
of these commands. 

This paper sought to discuss various topics 
underlying our way of conceptualizing causality in such 
a way that would lend itself to quantitative modeling. On 
the basis of these conceptualizations we presented some 
models for causal inference and demonstrated them 
under different conditions through simulation. Namely, 
if one has adequate observed variables to achieve good 
balance between two groups, then a propensity score 
method would be a good option that is well aligned to 
the notion of random assignment in experimental 
design. If, however, one is concerned that unobserved 

factors influencing selection into treatment may be 
confounding the analysis of treatment effects, then they 
may wish to incorporate Heckit Models. As a caveat, 
Heckit Models have new layers of complexity, and one 
should understand that though these models will reduce 
bias in the treatment effect estimate they will do so at the 
expense of inducing more error into estimation, i.e. 
though treatment effect estimate will be more valid, 
standard errors are apt to be inflated. In the case where 
one can identify a good instrument such that it predicts 
selection into treatment but has no direct influence on 
the treatment effect, then IVE will give one the 
opportunity to estimate a treatment effect with low bias 
and less error in estimation. It is, however, important to 
note that this estimate should be interpreted as a 
treatment effect which pertains specifically to those 
influenced by the instrumental variable. Hopefully, this 
paper offers the reader new insights into the nature of 
causality and gives some guidance in model selection for 
causal inference that is most plausible given one’s 
specific research context. 

Table 3. Summary of Stata commands for the different methods 

Method  Stata Command  Example Notes 

Propensity Score 
Balancing * 

 

teffects psmatch (Y) (D W)  
 

teffects ipw (Y) (D W) 
 

Predict Program Selection (D) from 
Socio‐Economic Status (W), then 
balance groups on this propensity to 
analyze Program effects on Academic 
Achievement (Y) 

No distinction between predictors 
of outcome vs. predictors of 
selection, both are entered into the 
treatment selection model 

Heckit Models  etregress (Y X) (D Z)  Predict Program Selection (D) from 
Socio‐Economic Status (Z), then 
incorporate this into a model analyzing 
the Program effects on Academic 
Achievement (Y), while controlling for 
the unique influence of Socio‐Economic 
Status (X) on Academic Achievement 
above and beyond its influence on 
Program Selection (D). 

Heckit models allows predicting 
variables to serve as predictors for 
both selection & outcomes 

Instrumental 
Variable 
Estimation (IVE) 

ivregress 2sls Y X (D=Z)  Predict Program Participation (D) from 
School’s Proximity to an Organization’s 
Main Office (Z), then analyze Program 
effects on College Enrollment (Y) while 
controlling for Prior College Enrollment 
(X).** 

With IVE, selection predictors 
correlate with outcome predictors, 
and should not be entered into the 
outcome equation 

Notes:  
*psmatch & ipw are just two options, the reader is encouraged to explore other options as given in the Stata documentation   

 
** this assumes that Proximity (Z) influences Program participation (D), but that Proximity (Z) only influences Enrollments (Y)  by 
influencing Program Participation (D) 
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