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Within psychology and the social sciences, Ordinary Least Squares (OLS) regression is one of the 
most popular techniques for data analysis. In order to ensure the inferences from the use of this 
method are appropriate, several assumptions must be satisfied, including the one of constant error 
variance (i.e. homoskedasticity). Most of the training received by social scientists with respect to 
homoskedasticity is limited to graphical displays for detection and data transformations as solution, 
giving little recourse if none of these two approaches work. Borrowing from the econometrics 
literature, this tutorial aims to present a clear description of what heteroskedasticity is, how to 
measure it through statistical tests designed for it and how to address it through the use of 
heteroskedastic-consistent standard errors and the wild bootstrap. A step-by-step solution to obtain 
these errors in SPSS is presented without the need to load additional macros or syntax. Emphasis is 
placed on the fact that non-constant error variance is a population-defined, model-dependent 
feature and different types of heteroskedasticity can arise depending on what one is willing to 
assume about the data. 
 

Virtually every introduction to Ordinary Least 
Squares (OLS) regression includes an overview of the 
assumptions behind this method to make sure that the 
inferences obtained from it are warranted. From the 
functional form of the model to the distributional 
assumptions of the errors and more, there is one 
specific assumption which, albeit well-understood in 
the econometric and statistical literature, has not 
necessarily received the same level of attention in 
psychology and other behavioural and health sciences, 
the assumption of heteroskedasticity.  

Heteroskedasticity is usually defined as some 
variation of the phrase “non-constant error variance”, 
or the idea that, once the predictors have been included 
in the regression model, the remaining residual 
variability changes as a function of something that is not 
in the model (Cohen, West, & Aiken, 2007; Field, 2009; 
Fox, 1997; Kutner, Nachtsheim, & Neter, 2004). If the 
model errors are not purely random, further action 

needs to be taken in order to understand or correct this 
source of dependency. Sometimes this dependency can 
be readily identified, such as the presence of clustering 
within a multilevel modelling framework or in 
repeated-measures analysis. In each case, there is an 
extraneous feature of the research design that makes 
each observation more related to others than what 
would be prescribed by the model. For example, if one 
is conducting a study of mathematics test scores in a 
specific school, students taking classes in the same 
classroom or being taught by the same teacher would 
very likely produce scores that are more similar than 
the scores of students from a different classroom or 
who are being taught by a different teacher.  For 
longitudinal analyses, it is readily apparent that 
measuring the same participants multiple times creates 
dependencies by the simple fact that the same people 
are being assessed repeatedly. Nevertheless, there are 
times where these design features are either not 
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explicitly present or can be difficult to identify, even 
though the influence of heteroskedasticity can be 
detected. Proceeding in said cases can be more 
complicated and social scientists may be unaware of all 
the methodological tools at their disposal to tackle 
heteroskedastic error structures (McNeish, Stapleton, & 
Silverman, 2017). In order to addresses this perceived 
need in a way that is not overwhelmingly technical, the 
present article has three aims: (1) Provide a clear 
understanding of what is heteroskedasticity, what it 
does (and does not do) to regression models and how it 
can be diagnosed; (2) Introduce social scientists to two 
methods, heteroskedastic-consistent standard errors 
and the wild bootstrap, to explicitly address this issue 
and; (3) Offer a step-by-step introduction to how these 
methods can be used in SPSS and R in order to correct 
for non-constant error variance. 

Heteroskedasticity: What it is, what it does and 
what it does not do 

Within the context of OLS regression, 
heteroskedasticity can be induced either through the 
way in which the dependent variable is being measured 
or through how sets of predictors are being measured 
(Godfrey, 2006; Stewart, 2005). Imagine if one were to 
analyze the amount of money spent on a family 
vacation as a function of the income of said family. In 
theory, low-income families would have limited 
budgets and could only afford to go to certain places or 
stay in certain types of hotels. High income families 
could choose to go on cheap or expensive vacations, 
depending on other factors not necessarily associated 
with income. Therefore, as one progresses from lower 
to higher incomes, the amount of money spent on 
vacations would become more and more variable 
depending on other characteristics of the family itself. 

Recall that if all the assumptions of an OLS 
regression model of the form 𝑌 ൌ 𝛽  𝛽ଵ𝑋ଵ 
 𝛽ଶ𝑋ଶ  ⋯  𝛽𝑋  𝜖 (for person 𝑖ሻ are satisfied 
(for a full list of assumptions see Chapter 4 in Cohen et 
al., (2017), the distribution of the dependent variable Y 
is 𝑌 ~ 𝒩ሺ𝛽  𝛽ଵ𝑋ଵ  ⋯  𝛽𝑋, 𝜎ఢ

ଶሻ,where 𝜎ఢ
ଶ is 

the variance of the errors 𝜖. One could calculate the 
variance-covariance matrix of the errors 𝜖 with themselves 
to analyze if there are any dependencies present among 
them. Again, if all the assumptions are satisfied, the 
variance-covariance matrix should have the form: 

𝑉𝑎𝑟ሺ𝜖ሻ ൌ 𝔼ሺ𝜖𝜖′ሻ ൌ  

⎣
⎢
⎢
⎢
⎡
𝜎ଶ 0 ⋯ 0 0
0 𝜎ଶ ⋯ 0 0
⋮
0
0

⋮
0
0

𝜎ଶ ⋮ ⋮
0
⋯

⋱ 0
0 𝜎ଶ⎦

⎥
⎥
⎥
⎤

ൌ  𝜎ఢ
ଶ𝑰 (1)

where 𝔼ሺ⋅ሻ denotes expected value, ′ is the 
transpose operator and 𝑰 is an 𝑖 ൈ 𝑖 identity matrix. 
Notice, however, that one could have a more relaxed 
structure of error variances where they are all different 
but the covariances among the errors are zero. In that case, the 
variance-covariance matrix of the errors would look 
like: 

𝑉𝑎𝑟ሺ𝜖ሻ ൌ 𝔼ሺ𝜖𝜖′ሻ ൌ  

⎣
⎢
⎢
⎢
⎡
𝜎ଵ

ଶ 0 ⋯ 0 0
0 𝜎ଶ

ଶ ⋯ 0 0
⋮
0
0

⋮
0
0

𝜎ଷ
ଶ ⋮ ⋮

0
⋯

⋱ 0
0 𝜎

ଶ⎦
⎥
⎥
⎥
⎤

 (2)

And, finally, the more general form where both the 
variances of the errors are different and the covariances 
among the errors are not zero: 

𝑉𝑎𝑟ሺ𝜖ሻ ൌ 𝔼ሺ𝜖𝜖ᇱሻ ൌ   

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎ଵ,ଵ

ଶ 𝜎ଵ,ଶ ⋯ 𝜎ଵ,ିଵ 𝜎ଵ,

𝜎ଶ,ଵ 𝜎ଶ,ଶ
ଶ ⋯ 𝜎ଶ,ିଵ 𝜎ଶ,

⋮
𝜎ିଵ,ଵ

𝜎,ଵ

⋮
𝜎ିଵ,ଶ

𝜎,ଶ

𝜎ଷ,ଷ
ଶ ⋮ ⋮

𝜎ିଵ,ଷ
⋯

⋱ 𝜎ିଵ,

𝜎,ିଵ 𝜎,
ଶ ⎦

⎥
⎥
⎥
⎥
⎤

 (3)

Any deviations from the variance-covariance 
matrix of the errors as shown in Equation (1) results in 
heteroskedasticity, and the influence it exerts in the 
inferences from the regression model will depend both 
on the magnitude of the differences among the 
diagonal elements of the matrix as well as how large the 
error covariances are.  

From this brief exposition, several important 
features can be observed relating how 
heteroskedasticity influences the regression model: 

 Heteroskedasticity is a population-defined 
property. Issues that arise from the lack of 
control of heteroskedastic errors will not 
disappear as the sample size grows large (Long 
& Ervin, 2000). If anything, the problems 
arising from ignoring it may become aggravated 
because the matrices shown in Equations (2) or 
(3) would be better estimated, impacting the 
inferences that one can obtain from the model. 

 Heteroskedasticity does not bias the 
regression coefficients. Nothing within the 
definition of heteroskedasticity pertains to the 
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small sample estimation of the regression 
coefficient themselves. The properties of 
consistency and unbiasedness still remain intact 
if the only assumption being violated is 
homoskedasticity (Cribari-Neto, 2004). 

 Heteroskedasiticy biases the standard 
errors and test-statistics. The standard errors 
of the regression coefficients are a function of 
the variance-covariance matrix of the error 
terms and the variance-covariance matrix of the 
predictors. If 𝜎ఢ

ଶ𝑰  is assumed and it is not true 
in the population, the resulting standard errors 
will be too small and the confidence intervals 
too narrow to accurately reject the null 
hypothesis at the pre-specified alpha level (e.g. 
.05). This results in an inflation of Type I error 
rates (Fox, 1997; Godfrey, 2006). 

 Heteroskedasiticy does not influence model 
fit but it does influence the uncertainty 
around it. Within the context of OLS 
regression, the coefficient of determination 
𝑅ଶ is typically employed to assess the fit of the 
model. This statistic is not influenced by 
heteroskedasticity either, but the F-test 
associated with it is (Hayes & Cai, 2007). 

We now proceed with a simulated demonstration 
of how heteroskedasticity influences the uncertainty 
surrounding parameter estimates and test statistics for a 
given regression model. The ‘base’ model is 𝑌 ൌ 0.5 
0.5𝑋ଵ  𝜖. A simple way to generate heteroskedasticity 
is to ensure that the variance of the error term is, in 
part, a function of the predictor variables. For this 
particular case one can make the variance of the error 
term 𝜎ఢ

ଶ ൌ 𝑒భ to ensure it is both positive and related 
to the predictor. In order to make an accurate 
comparison with a model where the assumption of 
homoskedasticity holds, one needs to first simulate 
from the model where heteroskedasticity is present, 
take the average of the estimates of the error variance 
across simulation replications and use that as an 
empirical ‘population’ value of 𝜎ఢ

ଶ. The importance of 
this step is to demonstrate that it is not the size of 𝜎ఢ

ଶ 
what creates heteroskedasticity but the specific way in 
which the error structure is being generated. A hundred 
replications of this simulated demonstration were 
conducted at a sample size of 1000 to help emphasize 
the fact that even with a simple model (i.e. bivariate 

regression) and a large sample, heteroskedasticity is still 
an issue. 

Figure 1 demonstrates the inflation of Type 1 error 
rates when traditional confidence intervals are 
calculated in the presence of heteroskedasticity. The 
horizontal axis shows 100 confidence intervals and the 
vertical axis the estimated regression coefficients, with 

Figure 1. Coverage probability plots showing 95% 
confidence intervals for the cases of 
homoskedasticity and heteroskedasticity. Red lines 
highlight confidence intervals where the true 
population parameter 𝛽ଵ ൌ 0.0 is not included.  
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the true population value for 𝛽ଵ ൌ 0.0 marked by a 
horizontal, bolded line. If the confidence intervals did 
not include the population regression coefficient, they 
were marked in red. For the top panel (where all the 
assumptions are satisfied) we can see that only 5 
confidence intervals do not include the value 0.0, as 
expected by standard statistical theory. The bottom 
panel, however, shows a severe inflation of Type 1 
error rates, where almost half of the calculated 
confidence intervals do not include the true population 
parameter. Since there is nothing within the standard 
estimation procedures that accounts for this added 
variability, the coverage probability is incorrect. 

Figure 2 presents the empirical sampling 
distribution of the regression coefficients for both the 
homoskedastic and heteroskedastic cases. In this case, 
the data-generating model is ൌ 0.5  0.5𝑋ଵ  𝜖. 

The red dotted line shows the theoretical t 
distribution of the regression coefficients with 998 
degrees of freedom overlaid on top of the simulated 
sampling distribution. In both cases we can see that the 
peak of the distributions falls squarely on top of the 
population parameter of 0.5, showing that the 
estimation is unbiased in both cases. Notice, however, 
how the tails under the heteroskedastic model are much 
heavier than what would be expected from the 
theoretical t distribution, which almost perfectly 
overlaps the simulated coefficients in the 
homoskedastic case. This additional, unmodelled 
variability is what causes the Type 1 error rate inflation. 
The red, dotted line almost falls entirely inside the light 
blue distribution at the bottom panel. This shows an 
underestimation of the variance that is not present on 
the top panel, where both the red and blacklines 
overlap almost perfectly. 

Detecting and assessing heteroskedasticity 

For OLS regression models, the usual 
recommendation advocated in introductory textbooks 
to detect heteroskedasticity is to plot the sample 
residuals against the fitted values and see whether or 
not there is a “pattern” in them (Cohen et al., 2007; 
Fox, 1997; Kutner et al., 2004; Montgomery, Peck, & 
Vining, 2012; Stewart, 2005).  If the plot looks like a 
cloud of random noise with no pattern, the assumption 
of homoskedasticity likely. If any kind of clustering or 
trend is detected, then the assumption is suspect and 
needs further assessment.  

Figure 3 presents the classical scenario contrasting 
homoskedasticity to heteroskedasticity in residual plots. 
On the top panel, no distinctive trend is recognizable 
and corresponds to the data-generation process where 
the errors are independent from one another. The 

 

Figure 2. Sampling distribution of the regression 
coefficient 𝛽ଵ under homoskedasticity and 
hetersokedasticity. The red, dotted line shows the 
theoretical t distribution overlaid on top of the empirical 
sampling distribution (in light blue) of the estimated 
regression slope. 
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bottom panel, however, corresponds to the model 
where 𝜎ఢ

ଶ ൌ 𝑒భ, .so one can see that, as the predicted 
values of Y become larger, the residuals also increase 
because the errors themselves are, in part, a function of 
predictor variable 𝑋ଵ. The idea of allowing the errors to 
be a function of the predictor variables or, at least, to 
be correlated with them is central to the underlying 
intuition of what is classically understood as 
heteroskedasticity for linear regression. 

Graphical approaches to explore model 
assumptions are very useful to fully understand one’s 
data and become acquainted with some of its intrinsic 
characteristics. Nevertheless, they still rely on 
perceptual heuristics that may not necessarily capture 
the full complexity of the phenomena being studied or 
that may lead the researcher astray if she or he feels a 
pattern or trend has been discovered when there is 
none. Consider Figure 4 below.  At first glance, it looks 
remarkably similar to the top panel in Figure 3, where 
no discernible pattern is present. However, it may come 
as a surprise that the data-generating model is, in fact, a 
multilevel model. This data set was simulated as having 
30 Level 1 units (i in Equation 4) clustered along 30 
Level 2 units (j in Equation 4) for a total sample size of 
900. The overall model looks as follows: 

𝑌 ൌ 0.5  ሺ0.5ሻ𝑋ଵ  𝑢  𝜖 (4)

with 𝜖~𝒩ሺ0, 0.3ሻ and  𝑢~𝒩ሺ0, 0.7ሻ such that the 
intra-class correlation, ICC, is 0.7. 

Everything in this new, clustered model is as close 
as could be reasonably made to match the models 
simulated in the previous section, with the exception of 
the induced intra-class correlation. Given that residual 
plots may provide one piece of the puzzle to assess 
heteroskedasticity but cannot be exhaustive, we would 
like to introduce 3 different statistical tests from the 
econometrics literature which are seldom used in 
psychology or the social sciences in order to 
complement the exploration of assumption violations 
within OLS regression. 

The first and perhaps most classic test is the 
Breusch–Pagan test (Breusch & Pagan, 1979) which 
explicitly assesses whether the model errors are 
associated with any of the model predictors. For 
regression models of the form 𝑌 ൌ  𝛽  𝛽ଵ𝑋ଵ 
𝛽ଶ𝑋ଶ  ⋯  𝛽𝑋  𝜖 the test looks for linear 
relationship between the squared error term 𝜖 and the 
predictors. So a second regression of the form 𝜖

ଶ ൌ
 𝛼  𝛼ଵ𝑋ଵ  𝛼ଶ𝑋ଶ  ⋯  𝛼𝑋  𝑢 is run and 
the null hypothesis 𝐻: 𝛼ଵ ൌ 𝛼ଶ ൌ ⋯ ൌ 𝛼 ൌ 0 is 
tested. This is equivalent to testing the null hypothesis 
of whether or not the 𝑅ଶ of this second regression 
model is 0. The test statistic of the Breusch–Pagan test 
is 𝑛𝑅ଶ  (where n is the sample size) and, under 
homoskedasticity, follows an asymptotic 𝜒ଶdistribution 
with  𝑝 െ 1 degrees of freedom. 

 

 

Figure 3. Residuals vs fitted values for cases of 
homoskedasticity and heteroskedasticity 
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An immediate drawback of the Breusch–Pagan 
test is that it can only detect linear associations between 
the model residuals and the model predictors. In order 
to generalize it further, the White test (White, 1980) 
looks at higher-order, non-linear functional forms of 
the X terms (i.e. quadratic and cross-product 
interactions among the predictors). In this case, the 
regression for the (squared) error terms would look like 
𝜖

ଶ ൌ  𝛼  𝛼ଵ𝑋ଵ  𝛼ଶ𝑋ଶ  ⋯  𝛼𝑋  𝛾ଵ𝑋ଵ
ଶ 

𝛾ଶ𝑋ଶ
ଶ  ⋯  𝛾𝑋

ଶ  𝛿ଵሺ𝑋ଵ𝑋ଶሻ  𝛿ଶሺ𝑋ଵ𝑋ଷሻ 
⋯  𝛿ଶିଵሺ𝑋ିଵ𝑋ሻ   𝑣 . The null hypothesis and 
test statistic of this test are calculated in the same way 
as the Breusch-Pagan test. Although the White test is 
more general in detecting other functional forms of 
heteroskedasticity, important limitations need to be 
considered. The first is that if many predictors are 
present, the regression of the linear, quadratic and 
interaction terms in the same equation can become 
unwieldy and one can quickly use up all the degrees of 
freedom present in the sample. A second important 
caveat is that the White test does not exclusively test 
for heteroskedasticity. Model misspecifications could 
be detected through it so that a statistically significant 
p-value cannot be used as absolute evidence that 
heteroskedasticity is present. An important instance of 
this fact is when interactions, polynomial terms or 
other forms of curved relationships are present in the 
population that may not be accounted for in 
traditionally linear regression equations. Unmodelled 
curvilinearity would result in a non-random pattern on 
the residual plot and, hence, may point towards 
evidence of heteroskedasticity. However, it is important 
to emphasize that accounting for non-constant error 
variance is never a fix for a misspecified model. 
Researchers need to consider what kind of patterns in 
residual plots or statistically-significant White tests 
should be used as evidence of model misspecification 
or heteroskedasticity, depending on the data-generating 
model presupposed by the theoretical framework from 
which their hypotheses arise. 

The final test is the Breusch–Godfrey test 
(Breusch, 1978; Godfrey, 1978) of serial correlation, 
which attempts to detect whether or not consecutive 
rows in the data are correlated or not. Classical OLS 
regression modelling assumes independence of the 
subjects being measured so, in any given dataset 
(assuming rows are participants and columns are 
variables) there should only be relationships among the 
variables, not the participants. If there are relationships 

among the participants beyond what is being modelled 
in the regression equation (such as having clustered 
data as shown in Equation (4) and Figure 4) the same 
issues of the underestimation of standard errors apply. 
Similar to the previous two methods, the essence of the 
Breusch–Godfrey test is running a regression on the 
residuals of the original regression of the form 𝜖 ൌ
 𝛼  𝛼ଵ𝑋ଵ  𝛼ଶ𝑋ଶ  ⋯  𝛼𝑋  𝜌ଵ𝜖ିଵ 
𝜌ଶ𝜖ିଶ  ⋯  𝜌𝜖ି   𝑤, obtaining this new 
model’s 𝑅ଶ and using the test statistic 𝑛𝑅ଶ  against a 
𝜒ଶ distribution with  𝑝 െ 1 degrees of freedom. A 
statistically significant result would imply that some 
type of row-wise correlation is present.  

Table 1 summarizes the results of each test when 
assessing whether or not heteroskedasticity is present in 
the two data-generating scenarios used above (i.e. the 
more ‘classical’ approach where the error variance is a 
function of the predictors, 𝜎ఢ

ଶ ൌ 𝑒భ, and the 
clustering approach, where a population intra-class 
correlation of 0.7 is present). It becomes readily 
apparent that each test is sensitive to a different type of 
variance heterogeneity in the regression model. 
Whereas the Breusch-Pagan and White tests can detect 
instances where the variance is a function of the 
predictors, the Breusch–Godfrey test misses the mark 
because this data-generation process does not induce 

Figure 4. Residuals vs fitted values for a multilevel 
model with random intercept. Intra class correlation, 
ICC=0.7 
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any relationship between the simulated participants (i.e. 
the rows), only the variables (i.e. the columns). 

Table 1. P-values (p) for each type of the different tests 
assessing two types of heteroskedasticity 

Heteroskedasticity 
Breusch‐
Pagan  White 

Breusch‐
Godfrey 

Classic  <.0001  <.0001  0.1923 

Clustering  0.4784  0.5883  <.0001 

When one encounters clustering, however, the 
situation reverses and now the Breusch–Godfrey test is 
the only one that can successfully detect a violation of 
the constant variance assumption. Clustering induces 
variability in the model above and beyond what can be 
assumed by the predictors, therefore, neither the 
Breusch-Pagan nor the White test are sensitive to it. It 
is important to point out, however, that for the 
Breusch–Godfrey test to detect heteroskedasticity, the 
rows of the dataset need to be ordered such that 
continuous rows are members of the same cluster. If 
the rows were scrambled, heteroskedasticity would still 
be present, but the former test would be unable to 
detect it. Diagnosing heteroskedasticity is not a trivial 
matter because whether one relies on graphical devices 
or formal statistical approaches, a model generating the 
differences in variances is always assumed and if this 
model does not correspond to what is being tested, one 
may incorrectly assume that homoskedasticity is 
present when it is not. 

Fixing heteroskedasticity Pt. I: Heteroskedastic-
consistent standard errors 

Traditionally, the first (and perhaps only) approach 
that most researchers within psychology or the social 
sciences are familiar with to handle heteroskedasticity is 
data transformation (Osborne, 2005; Rosopa, Schaffer, 
& Schroeder, 2013). The logarithmic transformation 
tends to be popular along with other “variance 
stabilizing” ones such as the square root. 
Transformations, unfortunately, carry a certain degree 
of arbitrariness in terms of which one to choose rather 
than others. They can also fundamentally change the 
meaning of the variables (and the regression model 
itself) so that the interpretation of parameter estimates 
is now contingent on the new scaling induced by the 
transformation (Mueller, 1949). And, finally, it is not 
difficult to find oneself in situations where the 
transformations have limited to no effect, rendering 
invalid the only method that most researchers are 

familiar with to tackle this issue. We will now present 
two distinct, statistically-principled approaches to 
accommodate for non-constant variance that, with very 
little input, can fundamentally yield more proper 
inferences and change very little in the way of analysis 
an interpretation of regression models. 

The first approach are heteroskedastic-
consistent standard errors (Eicker, 1967; Huber, 
1967; White, 1980) also known as White standard 
errors, Huber-White standard errors, robust standard 
errors, sandwich estimators, etc. which essentially 
recognize the presence of non-constant variance and 
offer an alternative approach to estimating the variance 
of the sample regression coefficients. 

Recall from Section 1, Equation (3) that if the 
more general form of heteroskedasticity is assumed, the 
variance-covariance matrix of the regression model 
errors follows the form: 

𝑉𝑎𝑟ሺ𝜖ሻ ൌ 𝔼ሺ𝜖𝜖ᇱሻ ൌ   

⎣
⎢
⎢
⎢
⎢
⎡

𝜎ଵ,ଵ
ଶ 𝜎ଵ,ଶ ⋯ 𝜎ଵ,ିଵ 𝜎ଵ,

𝜎ଶ,ଵ 𝜎ଶ,ଶ
ଶ ⋯ 𝜎ଶ,ିଵ 𝜎ଶ,

⋮
𝜎ିଵ,ଵ

𝜎,ଵ

⋮
𝜎ିଵ,ଶ

𝜎,ଶ

𝜎ଷ,ଷ
ଶ ⋮ ⋮

𝜎ିଵ,ଷ
⋯

⋱ 𝜎ିଵ,

𝜎,ିଵ 𝜎,
ଶ ⎦

⎥
⎥
⎥
⎥
⎤

ൌ 𝛀 

Call this matrix 𝛀. For a traditional OLS 
regression model expressed in vector and matrix form 
𝐲 ൌ 𝐗𝛃  𝛜 the variance of the estimated regression 
coefficients is simply 𝑉𝑎𝑟൫𝛽መ൯ ൌ 𝜎ఢ

ଶሺ𝐗ᇱ𝐗ሻିଵ with 𝜎ఢ
ଶ 

defined as above. When heteroskedasticity is present, 
the variance of the estimated regression coefficients 
becomes: 

𝑉𝑎𝑟൫𝛽መ൯ ൌ ሺ𝐗ᇱ𝐗ሻିଵሺ𝐗ᇱ𝛀𝐗ሻ ሺ𝐗ᇱ𝐗ሻିଵ (5)

Notice that if 𝛀 ൌ  𝜎ఢ
ଶ𝑰 like in Equation (1), then 

the expression for Equation (5) reduces back to 
𝑉𝑎𝑟൫𝛽መ൯ ൌ 𝜎ఢ

ଶሺ𝐗ᇱ𝐗ሻିଵ. It now becomes apparent that 
to obtain the proper standard errors to account for 
non-constant variance, the matrix  𝛀 needs to play a 
role in their calculation. 

The rationale behind how to create these new 
standard errors goes as follows. Just as with any given 
sample, all we have is an estimate 𝛀  that will be needed 
to obtain these new uncertainties. Recall that the 
diagonal of the matrix expressed in 𝜎ఢ

ଶሺ𝐗ᇱ𝐗ሻିଵ provides 
the central elements to obtain the standard errors of 
the regression coefficients. All that is needed is to take 
its square root and weigh it by the inverse of the
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sample size. Now, since 𝛀  originates from the residuals 
of the regression model (as estimates of the population 
regression errors), the conceptual idea behind 
heteroskedastic-consistent standard errors is to use the 
variance of each sample residual 𝑟 to estimate the 
variance of the population errors 𝜖 (i.e. the diagonal 
elements of 𝛀). Now, because there is only one residual 
𝑟 per person, per sample, this is a one-sample estimate, 
so 𝑉𝑎𝑟ሺ𝜖̂ሻ ൌ ሺ𝑟 െ 0ሻଶ/1 ൌ 𝑟

ଶ (recall that, by 
assumption, the mean of the residuals is 0). Therefore, 
let 𝛀 ൌ 𝑑𝑖𝑎𝑔ሺ𝑟

ଶሻ and back-substituting it in Equation 
(5) implies 

𝑉𝑎𝑟൫𝛽መ൯ ൌ  ሺ𝐗ᇱ𝐗ሻିଵሺ𝐗ᇱ𝑑𝑖𝑎𝑔ሺ𝑟
ଶሻ 𝐗ሻ ሺ𝐗ᇱ𝐗ሻିଵ (6)

Equation (6) is the oldest and most widely used 
form of heteroskedastic-consistent standard errors and 
has been shown in Huber (1967) and White (1980) to 
be a consistent estimator of 𝑉𝑎𝑟൫𝛽መ൯ even if the 
specific form of heteroskedasticity is not known. There 
are other versions of this standard error that offer 
alternative adjustments which perform better for small 
sample sizes, but they all follow a similar pattern to 
what is shown in Equation (6). The key issue is to 
obtain a better estimate of 𝛀  so that the new standard 
errors yield the correct Type I error rate. MacKinnon 
and White (1985) offer a comprehensive list of these 
alternative approaches as well as recommendations of 
which ones to use under which circumstances. 

Figure 5 presents a simulation of 100 
heteroskedastic-consistent confidence intervals 
obtained from applying Equation (6) to the two 
different types of heteroskedasticity highlighted in this 
article: the ‘classic’ heteroskedasticity, where the 
variance of the error terms is a function of a predictor 
variable (i.e. 𝜎ఢ

ଶ ൌ 𝑒భ) and the ‘clustered’ 
heteroskedasticity, where a population ICC of 0.7 is 
present in the data. The latter case would mimic the 
real-life scenario of a researcher either ignoring or 
being unaware that the data is structured hierarchically 
and analyzing it as if it were a single-level model as 
opposed to a two-level, multilevel model. Compare 
Figure 5 to the bottom panel of Figure 1. It becomes 
immediately apparent that heteroskedastic-consistent 
standard errors (and the confidence intervals derived 
from them) perform considerably better at preserving 
Type I error rate when compared to the naïve approach 
of ignoring non-constant error variance. Moreover, it is 
important to highlight that, in spite of the different 

heteroskedastic-generation processes, the robust 
correction was able to adjust for them and yield valid 
inferences without necessarily having to assume any 
specific functional form for them. This stems from the 
fact that all the information regarding the variability of 
the parameter estimates is contained within both the 
design matrix X' X and the matrix  Ω defined above.  

 

Figure 5. Coverage probability plots showing 
heteroskedastic-consistent, 95% confidence 
intervals for both classical (i.e. 𝜎ఢ

ଶ ൌ 𝑒భሻ and 
clustered (i.e. ICC=0.7) heteroskedasticity. Pink 
lines highlight confidence intervals where the true 
population parameter 𝛽ଵ ൌ 0.5 is not included.
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If one operates on these two matrices directly, it is 
possible to obtain asymptotically efficient corrections 
to the standard errors without the need for further 
assumptions. Other alternative approaches such as the 
use of multilevel models do require the researcher to 
know in advance something about where the variability 
is coming from like a random effect for the intercept, a 
random effect for a slope, for an interaction, etc. 
(McNeish et al., 2017). If the model is misspecified by 
assuming a certain random effect structure for the data 
that is not true in the population, the inferences will 
still be suspect. This is perhaps one of the reasons of 
why popular software like HLM provides default 
output not correctly specified. Ultimately, whether one 
opts to analyze the data using robust standard errors or 
an HLM model depends on the research hypothesis 
and  whether or not the additional sources of variation 
are relevant to the question at hand or are nuisance 
parameters that need to be corrected for. 

Fixing heteroskedasticity Pt II: The ‘wild 
bootstrap’ 

Computer-intensive approaches to data analysis 
and inference have gained tremendous popularity in 
recent decades given both advances in modern 
statistical theory and the accessibility to cheap 
computer power. Among these approaches, the 
bootstrap procedure is perhaps the most popular one, 
since it allows for proper inferences without the need 
of overly strict assumptions. This is one of the reasons 
for why it has become one of the ‘go-to’ strategies to 
calculate confidence intervals and p-values whenever 
issues such as small sample sizes or violations of 
parametric assumptions are present. A good 
introduction to the method of the bootstrap can be 
found in Mooney, Duval, and Duvall (1993).  

A very important aspect to consider when using 
the bootstrap is how to re-sample the data. For simple 
procedures such as calculating a confidence interval for 
the sample mean, the usual random sampling-with-
replacement approach is sufficient. For more 
complicated models, what gets and does not get re-
sampled has a very big influence on whether or not the 
resulting confidence intervals and p-values are correct. 
When heteroskedasticity is present this becomes a 
crucial issue because a regular random sampling-with 
replacing approach would naturally break the 
heteroskedasticity of the data, imposing 
homoskedasticity in the bootstrapped samples and 
making the bootstrapped confidence intervals too 

narrow (MacKinnon, 2006). We would essentially find 
ourselves again in a situation similar to the bottom 
panel of Figure 1. In order to address the issue of 
generating multiple bootstrapped samples that still 
preserve the heteroskedastic properties of the residuals, 
an alternative procedure known as the wild bootstrap 
has been proposed in econometrics (Davidson & 
Flachaire, 2008; Wu, 1986). 

There is more than one way to bootstrap linear 
regression models. Residual bootstrap tends to be 
recommended on the literature (c.f.(Cameron, Gelbach, 
& Miller, 2008; Hardle & Mammen, 1993; MacKinnon, 
2006) and proceeds with the following steps: 

(1) Fit the regular regression model 𝑌ప ൌ  𝑏 
𝑏ଵ𝑋ଵ+𝑏ଶ𝑋ଶ  ⋯  𝑏𝑋 . 

(2) Calculate the residuals 𝑟 ൌ 𝑌 െ  𝑌ప  

(3) Create bootstrapped samples of the residuals 𝑟 
and add those back to 𝑌ప  so that the new bootstrapped 
𝑌 is now 𝑌 ൌ 𝑌ప   𝑟 

(4) Regress every new 𝑌 on the predictors 
ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋ሻ and save the regression coefficients 
each time. 

Notice how, in accordance to the assumptions of 
fixed-effects regression, the variability comes 
exclusively from the only random part of the model, 
the residuals. Every new 𝑌 exists only because new 
samples (with replacement) of residuals 𝑟 are created at 
every iteration. Everything else (the matrix of 
predictors 𝐗 and the predicted 𝑌ప) are exactly the same 
as what was estimated originally in Step 1. From this 
brief summary we can readily see why this strategy 
would not be ideal for models that exhibit 
heteroskedasticty. The process of randomly sampling 
the residuals 𝑟 would break any association with the 
matrix of predictors 𝐗 or among the residuals 
themselves, which are both intrinsic to what it means 
for an OLS regression model to be heteroskedastic.  

Although the details of the wild bootstrap are 
beyond the scope of this introductory overview 
(interested readers can consult Davidson and Flachaire, 
2008), the solution it presents is remarkably elegant and 
relatively straightforward to understand. All it requires 
is to assume that the regression model is expressed as  

𝑌 ൌ  𝛽  𝛽ଵ𝑋ଵ  𝛽ଶ𝑋ଶ  ⋯  𝛽𝑋  𝑓ሺ𝜖ሻ𝑢  
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where 𝑓ሺ𝜖ሻ is a transformation of the residuals 
and the weights 𝑢 have a mean of zero. By choosing 
suitable transformation functions 𝑓ሺ∙ሻ and weights 𝑢 , 
one can proceed with the usual four steps for residual 
bootstrapping and obtain inferences that still account 
for the heteroskedasticity of the data. 

Figure 6 presents the classical case for 
heteroskedasticity with wild-bootstrapped 95% 
confidence intervals. Just as with the case of 
heteroskedastic-consistent standard errors, it preserves 
Type I error rates much better than the naïve approach 
of ignoring sources of additional variability. We do not 
present the case for clustered heteroskedasticity 
because it requires extensions beyond the technical 
scope of this article. Interested readers should consult 
Modugno and Giannerini (2015) for how to extend the 
wild bootstrap to multilevel models.  

Implementing the fixes: R and SPSS. 

The two methods previously described are freely 
available in the R programming language using the 
hcci package for the wild bootstrap through the 
Pboot function and estimatr package for 

heteroskedastic-consistent standard error through the 
lm_robust function. In both cases all that is 
required from the user is to specify the model as an lm 
object and pass it on the respective functions. The code 
for the figures in this article use functions present in 
them and is freely available in the first author’s personal 
github account for further use by researchers (link 
included at the end of the article). For the tests, the 
Breusch-Godfrey test and Breusch-Pagan test can be 
found in the lmtest package using the bgtset and 
bptest functions respectively. The White test can be 
found in the het.test package through the 
whites.htest function. 

Contrary to what has been mentioned in the 
literature (see Table 1 in Long and Ervin (2000), for 
instance) a little known fact is that SPSS is also capable 
of implementing a limited version of these two 
approaches without the need to import any external 
macros or without requiring any additional 
programming. It merely requires an alternative 
framework to estimate regression models that may be  
unfamiliar to psychologists or other social scientists at 
first glance, but which is mathematically equivalent to 
OLS linear regression under the assumption of 
normally-distributed errors. 

Researchers in the social sciences are probably 
familiar with logistic regression as one instance of a 
family of models known as generalized linear models. 
Nelder and Wedderburn (1972), the inventors of these 
models, introduced the idea of a ‘link function’ to 
further extend the properties of linear regression to 
more general settings where the dependent variable 
might be skewed or discrete or the variance of the 
dependent variable may be a function of its mean. For 
instance, if we go back to the example of logistic 
regression, the distribution of Y is assumed to be 
binomial with trial of size 1 (i.e. a Bernoulli 
distribution) and the link function is the logit. What 
may be surprising in this case is that a generalized linear 
model with an identity link function and an assumed 
normal distribution for the dependent variable is 
mathematically equivalent to the more traditional OLS 
regression model. The fitting process is different 
(maximum likelihood VS least-squares) and the types of 
statistics obtained by each method may change as well 
(e.g. deviance VS 𝑅ଶ for measures of fit; z-tests VS t-
tests for performing inference on regression 
coefficients, etc.). Nevertheless, the parameter 
estimates are the same and, for sufficiently large sample 

 

Figure 6. Coverage probability plots showing wild-
bootstrapped 95% confidence intervals for classical 
(i.e. 𝜎ఢ

ଶ ൌ 𝑒భሻ heteroskedasticity. Pink lines 
highlight confidence intervals where the true 
population parameter 𝛽ଵ ൌ 0.5 is not included.  
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sizes, the inferences will also be the same. SPSS does 
not have an option to obtain heteroskedastic-consistent 
standard errors in its linear regression drop-down 
menu, but it does offer the option in its generalized 
linear model drop-down menu so that, by fitting a 
regression through maximum likelihood, we can 
request the option to calculate the same robust 
standard errors used in this article. A tutorial with 
simulated data will be presented here to guide the 
reader through the steps to obtain heteroskedastic-
consistent standard errors. We will use a sample dataset 
where the data-generating regression model is 𝑌 ൌ
0.5  ሺ0.5ሻ𝑋ଵ  𝜖 In this model, 𝑋ଵ~𝑁ሺ0,1ሻ , 
𝜖~𝑁ሺ0, 𝑒భሻ and the sample size is 1000. 

(1) Once the dataset is loaded, go to the 
“Generalized Linear Models” sub-menu and click on it. 

 (2) Under the “Type of Model” tab ensure that 
the ‘custom’ option is enabled and select ‘Normal’ for 
the distribution and ‘Identity’ for the link function. 

(3) The next steps should be familiar to SPSS users 
In the ‘Response’ tab one selects the dependent 
variable…in the ‘Predictors’ tab one chooses the 
independent variables or ‘Covariates’ in this case (there 
is only one for the present example) and the ‘Model’ 
tab helps the user specify main-effects-only models or 
main effects with interactions. We are specifying “Main 

effects” because there is only one predictor with no 
interactions. 

(4) The final (and most important) step is to make 
sure that under the ‘Estimation’ tab the ‘Robust 
estimator’ option for the Covariance Matrix is selected. 
This step ensures that heteroskedastic-consistent 
standard errors are calculated as part of the regression 
output . 

Below we compare the output of the coefficients 
table from the standard ‘Linear regression’ menu (top 
table) to the output from the new approach described 
here, where the model is fit as a generalized linear 
model with a normal distribution as a response variable 
and the identity link function (bottom table): 

In both cases, the parameter estimates are exactly 
the same ሺ𝑏 ൌ 0.709, 𝑏ଵ ൌ 0.858ሻ but the standard 
errors are different. The heteroskedastic-consistent 
standard error for the slope is .1626 whereas the regular 
one (assuming homoskedasticity) is .0803. The standard 
error estimated using the new, robust approach is 
almost twice the size of the one shown using the 
common linear regression approach. This reflects the 
fact that more uncertainty is present in the analysis due 
to the higher levels of variability that heteroskedasticity 
induces. The Wald confidence intervals also mirror this 
because they are wider than the t-distribution ones 
from the regular regression approach.  
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SPSS does not implement any of the tests 
described in this article for heteroskedasticity as 
defaults. Either external macros need to be imported or 
R would need to be called through SPSS to perform 
them. Nevertheless, the Breusch-Pagan test can be 
obtained if the following series of steps are taken. We 
will assume the reader has some basic familiarity with 

how to run linear regression in SPSS. We will use the 
same dataset as before where classic heteroskedasticity 
is present. 

(1) Run a regression model as usual and save the 
unstandardized residuals as a separate variable. 
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(2) Compute a new variable where the squared 
unstandardized residuals are stored. Remember to add 

a name to the new variable in the ‘Target Variable’ 
textbox. 
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 (3) Re-run the regression analysis with the same 
predictors but instead of using the dependent variable 
Y, use the new variable where the squared 
unstandardized residuals are stored. 

 (4) An approximation to the Breusch-Pagan 
statistic would be the F-test for the R2 statistic in the 
ANOVA table of this new model. If the test is 
statistically significant, there is evidence for 
heteroskedasticity. 

Model 

Unstandardized Coefficients

t Sig.

95.0% Confidence Interval for B

B Std. Error Lower Bound Upper Bound

1 (Constant) .709 .083 8.567 <.001 .547 .872 

X1 .858 .084 10.271 <.001 .694 1.022 
 

 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test

Lower Upper Wald Chi-Square df Sig. 

(Intercept) .709 .0803 .552 .867 77.956 1 <.001 

X1 .858 .1626 .539 1.176 27.845 1 <.001 
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Note 

R code for figures and analysis can be found in 
  https://raw.githubusercontent.com/OscarOlvera/R-code-for-publications/master/heteroskedasticity  
The SPSS data and code can be found in https://pareonline.net/sup/v24n1.zip   
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