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When students receive the same score on a test, does that mean they know the same amount about 
the topic? The answer to this question is more complex than it may first appear. This paper compares 
classical and modern test theories in terms of how they estimate student ability. Crucial distinctions 
between the aims of Rasch Measurement and IRT are highlighted. By modeling a second parameter 
(item discrimination) and allowing item characteristic curves to cross, as IRT models do, more 
information is incorporated into the estimate of person ability, but the measurement scale is no longer 
guaranteed to have the same meaning for all test takers. We explicate the distinctions between 
approaches and using a simulation in R (code provided) demonstrate that IRT ability estimates for 
the same individual can vary substantially in ways that are heavily dependent upon the particular 
sample of people taking a test whereas Rasch person ability estimates are sample-free and test-free 
under varying conditions. These points are particularly relevant in the context of standards-based 
assessment and computer adaptive testing where the aim is to be able to say precisely what all 
individuals know and can do at each level of ability. 
 

Introduction 

Suppose two students answer the same number of 
items correctly on a test. Does this mean that both 
students have the same grasp of the material? Despite 
the apparent simplicity of this question, there are three 
rather different ways this question can be answered and 
these differences have profound implications for how 
we interpret test results, particularly in the context of 
standards-based assessment and computer adaptive 
testing (CAT).  

The three different approaches correspond to 
Classical Test Theory (Crocker & Algina, 1986; 
Nunally & Bernstein, 1994), Rasch Measurement 
Theory (Bond & Fox, 2001; Bond, Yan, & Heene, 
2020; Borsboom, 2005; Fisher, 1991; Ludlow & Haley, 
1995; Masters, 1982; Michell, 1986, 1997, 1999;  

Wilson, 2005; Wright & Stone, 1979; Wright, 
1995), and Item Response Theory (Embretson & 
Reise, 2000; Hambleton & Jones, 1993; Hambleton, 
Swaminathan, & Rogers, 1991; Van der Linden, 2018). 
Each of these techniques has an extensive literature 
surrounding it; however, for the purposes of this 
paper, we will focus on the key features of each and 
directly compare how they attempt to answer the 
seemingly simple question posed above. We begin with 
a brief introduction to Classical Test Theory (CTT) to 
provide some historical grounding before turning the 
bulk of our attention to a comparison between two 
widely used, but philosophically very different, 
approaches to modern testing: Rasch Measurement 
and Item Response Theory (IRT). We conclude with a 
worked example in R to illustrate practical differences 
that can emerge as a result of our choice of approach 
to analyzing and interpreting student test scores. 
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Classical Test Theory 

The first approach used to determine how much 
each student knows about a topic is the most familiar 
and corresponds to what is known as Classical Test 
Theory (Crocker & Algina, 1986). From the CTT 
perspective, correctly answering 70 out of 100 items 
means the same thing for everyone; a score of 70. The 
number of items they answer correctly is known as 
their raw score. The raw score (X) in CTT is assumed 
to consist of a test-taker’s true ability (T) plus or minus 
some degree of measurement error (E). Error is 
anything that affects the observed score that is not a 
result of test-taker ability, such as lucky guessing 
causing an increase in raw scores or distractions in the 
testing environment interfering with the test taker 
showing their true ability and therefore reducing their 
raw score. The CTT model can be represented by the 
simple equation X = T + E.  

Under the CTT paradigm, the difference in 
knowledge between a person scoring 50 and a person 
scoring 60 is equivalent to the difference in knowledge 
between a person scoring 80 and a person scoring 90. 
In both cases there is a 10-point difference between 
test-takers and it implies that the amount of knowledge 
by which each pair differs is the same because the scale 
is assumed to be uniform; that is, the distance between 
each point on the scale is equivalent.  

CTT makes no inherent assumptions about the 
difficulty of the items that are sampled for a test. The 
items could all be easy, difficult, or a mixture. The 
notion is that every new test is a random sample of 
items from the broad domain of knowledge that they 
are assessing. Thus, in the CTT paradigm, two people 
correctly answering 70 out of 100 items could answer 
a different set of 70 items correctly and we would 
conclude that both had the same level of knowledge of 
the domain. This could happen even if the two test-
takers missed a completely different set of 30 items out 
of 100 from the domain.  

To illustrate, the circle in Figure 1 represents the 
broad domain of knowledge being tested (e.g., algebra). 
Each of numbers inside the circle represents a 
particular test item. As a worked example, consider two 
test takers A and B. Test-taker A answers the following 
items correctly (1, 4, 5, and 7). Test-taker B answers the 
following items correctly (1, 2, 6, and 8). Under CTT 
both participants would be said to have equal ability 

because they both answered four items correctly, 
despite the fact they were not the same four items. 
Thus, according to CTT the answer to the question at 
the heart of this paper is yes, two students can be said 
to have the same grasp of the material if they answered 
the same number of items correctly. 

 

Figure 1. Classical Test Theory – Item Pool and 
Example Scores from Two Test-Takers 

 

 

Rasch Measurement Theory 

The second approach used to determine how 
much each student knows about a topic corresponds 
to Rasch Measurement theory and it has some 
similarities to CTT, but also some important 
differences. There are three core features of Rasch 
Measurement that make it distinctive. First, the 
technique assumes that the construct under 
investigation (but not necessarily the observed data 
being analyzed) is normally distributed. Second is the 
proposition that derived measures should be “test-
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free” and “person-free”. Third is the belief that the 
objective of Rasch measurement is to construct a 
unidimensional scale and then test how well the data 
fits that model. Let us now further consider each of 
these core features.  

 

Constructs are assumed to be normally 

distributed 

From both a CTT perspective and Rasch 
Measurement perspective, if two students received the 
same raw score (e.g., 70 out of 100 items answered 
correctly), then the conclusion is yes, the two students 
can be said to have demonstrated the same level of 
knowledge about a topic. However, unlike CTT that 
assumes a uniform difference between every point on 
the raw score scale, the Rasch Measurement approach 
instead assumes that the distribution of knowledge 
underlying the raw score follows a normal curve – an 
assumption we make of most constructs in 
psychological research and one that underlies most 
statistical techniques that are widely used in psychology 
and education (Coolidge, 2012).  

Under Rasch Measurement, the assumption of 
normality manifests when raw scores (i.e., proportion 
of items correctly answered) are transformed with a 
logit transformation. The logit transformation is very 
straightforward and is found in Equation 1.1  

Equation 1. Logit transformation for person ability 

𝑡ℎ𝑒𝑡𝑎 = ln (
𝑝

1 − 𝑝
) 

where p is the proportion of items a person answered 
correctly on the test. 

What the logit transformation does is stretches out 
the tails of the distribution to approximate a normal 
curve and it puts score differences onto an equal 
interval scale so that the differences between student 
ability estimates (defined here as logit transformed 
scores known as theta) are more meaningful (Wright & 
Stone, 1979). Consequently, the difference in ability 
between a person with a theta ability estimate of 0 
logits and person with a theta ability estimate of 1 logit 

 
 

1 This version of the formula assumes that person ability and 
item difficulty are normally distributed. If that is not the case, 

is exactly the same as the difference in ability between 
a person with a theta ability estimate of 1 logit and a 
person with a theta ability estimate of 2 logits. The 
units are now equal interval in a way that raw scores are 
not. Stated differently, although CTT assumes a 
normal distribution underlying the raw scores, it treats 
differences in raw scores as if they were equal intervals 
at every point on the scale. In a normal distribution, 
however, the interval between scores at different 
points is not equal, it increases as scores approach the 
extremes of the distribution and decreases as scores get 
closer to the mean. CTT raw scores do not reflect this 
assumption of normality; Rasch ability estimates do. 

Because the only information we need in order to 
transform the raw data into a logit (aka theta or the 
person ability estimate) is the number of items 
answered correctly is, it represents what is known as a 
sufficient statistic (Anderson, 1977; Michell, 1997, 
1999; Rasch, 1960, 1966; Wright & Stone, 1979). What 
that means is that there is no other information we 
need in order to estimate person ability. Although 
ability estimates are sometimes refined through a 
process of iteration (e.g., maximum likelihood, 
unconditional estimation, etc.), from a practical 
standpoint, the initial estimate always starts with the 
simple formula shown above and the key point is that 
the raw score data provide us with sufficient statistics 
to perform the transformation.  

If we make the assumption, well supported by a 
century of educational and psychometric research, that 
ability/knowledge follows a normal curve, then we 
must conclude that the difference in knowledge between 
a student who answered 50 items correct and a student 
who answered 55 correct is actually less than the 
difference in knowledge between a student who answered 
90 correct and a student who answered 95 correct. 
Why? Because it takes more knowledge to answer five 
more items correctly when one is closer to the 
extremes of a distribution than when one is closer to 
the middle. Stated differently, a 5-point difference in 
raw scores (i.e., number of items answered correctly on 
the test) means different things at different points on 
the scale. So, while two people answering the same 
number of questions correctly may be said to have the 

then other computational formulas can be used to adjust for this 
(see Wright & Stone, 1979).  
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same knowledge/ability, the difference in 
knowledge/ability between a person who answers five 
fewer items correctly than a peer depends on where 
that difference took place on the distribution. Figure 2 
provides a worked example with five test-takers. 

Note that test takers B and C both answered the 
same number of items correct (52) and therefore would 
be said to have the same knowledge/ability under both 
CTT and Rasch Measurement Theory. Test takers D 
and E also answered the same number of items 
correctly (90) and would be said to have the same grasp 
of the material under both CTT and Rasch 
Measurement Theory. Test taker B (52) answered two 
more items correctly than test-taker A (50) and test 
taker F (92) answered two more items correctly than 
test-taker E (90). Under CTT the difference in ability, 
as represented by their raw scores, between test-takers 
A and B (2 points) is the same as the difference in 
ability between test-takers E and F (2 points). Under 
Rasch Measurement theory, however, the difference in 
ability, as represented by their theta estimates, is much 
greater between test takers E and F (2.44 – 2.19 logits 
= .25 logits) than it is between test-takers A and B (.08 
– 0 logits = .08 logits). 

 

Derived measures should be “person-free” and 
“test-free” 

Under CTT, a person’s ability is dependent upon 
the difficulty of the items on the test. If an entire 
classroom of students takes a test that consists mainly 
of easy items, the students will receive high scores and 
we will likely conclude that they all have high 
knowledge of the subject. By contrast, if the same  

students take a test consisting mainly of difficult items, 
they will get lower scores and we will likely conclude 
that they have less knowledge of the subject. In that 
sense, the knowledge of a subject that we attribute to 
our test-takers is “dependent” on the difficulty level of 
the items found on the test.  

Under the Rasch measurement approach, the logit 
transformation creates an interval-level scale in which 
the construct is assumed to follow a normal 
distribution. If the observed data do not follow a 
normal distribution, this is dealt with by subtracting 
out the mean (i.e., centering the estimate) and 
correcting for spread in the data. By subtracting out the 
mean and variance, we are creating a person-free, test-
free measure. In addition, a key feature that makes the 
Rasch approach “test-free” and “person-free” is the 
idea that the rank ordering of the item difficulty will 
remain the same even when given a subset of more or 
less difficult items from the same scale. In that way, the 
estimate of test-taker knowledge does not depend on 
which specific items they receive. We expect all test-
takers will most likely get the easiest items correct first, 
followed by the next easiest items, etc. Thus, regardless 
of whether the participants received a test with easy 
items or difficult items, just by knowing how many 
items they answered correctly, we can be fairly 
confident about which items they got correct and which 
items they missed. The expectation of which items they 
will have answered correctly is based on our knowledge 
of their raw score and is stochastic (i.e., probabilistic) 
rather than deterministic (i.e., perfectly predictive) 
because people sometimes guess or miss items to 
which they know the answer because of contextual 
factors (e.g., nerves, distractions in the environment).

Figure 2. Uniform v. Normal Distribution with Worked Examples 
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Under the Rasch model, we can say with a high degree 
of likelihood which items were answered correctly just 
by knowing how many items a person got right. For 
example, if a test-taker correctly answered 4 out of 10 
items, the chances are that they correctly answered the 
4 easiest items on the test. How do we know which 
items were easiest? A common approach is to estimate 
it from the data by looking at the proportion of test 
takers who answered each item correctly, a statistic 
known as item difficulty. Then we can evaluate 
whether our test-taker who answered 4 items correctly 
answered the 4 easiest items, as we would expect, by 
quantitatively examining the fit between our expected 
results and those we observe. If the test-taker correctly 
answered one of the hardest items on the test, but 
missed an easier item, that would be very unexpected. 
If they correctly answered the four easiest items on the 
test and incorrectly answered the hardest items, that 
would be perfectly in line with our expectations.  This 
assumption about the order in which items should be 
correctly answered gives our scale an inherent meaning 
in a way that CTT does not.  

The invariant ordering of item difficulty is crucial 
to the process of scale development. If an item doesn’t 
fit this linear structure (e.g., people with low scores 
answer correctly, and those with high scores miss the 
item), then we can evaluate that with fit statistic. Fit 
statistics provide a quantitative expression of the 
discrepancies between expected performance on each 
item (based on participant ability) and that same 
participant’s observed performance on those same 
items. Fit statistics are how we evaluate whether we are 
actually constructing a measure – a scale that has 
known properties. And, what is more, by expecting an 
invariant ordering of item difficulty, this allows us to 
test the fit of the data to our model. We have a theory of how 
knowledge progresses. If our data or items don’t fit 
that theory, we need to revise the items, discard the 
items, or revisit the theory.  

By using objective measurement to construct a 
scale, we derive the advantage that no matter who takes 
the test, no matter what their knowledge level, the first 
item they get correct will always (most likely) be the 
easiest item on the test followed by the next easiest etc. 
While the ability of the group may move up and down, 
the order of the item difficulty is invariant.  

Under the Rasch model, the difficulty level of the 
items gets transformed via the same logit 

transformation because we assume that the difficulty 
of the items also follows a normal distribution. 
Equation 2 provides the formula used to derive item 
difficulty estimates:  

 
Equation 2. Logit transformation for item difficulty 

𝑑𝑖𝑓𝑓 = ln (
1 − 𝑝

𝑝
) 

 

where p is the proportion of people taking the test who 
correctly answered the item. 

In this case, the number of people who correctly 
answered a given item is a sufficient statistic for our 
transformation. That is, all we need to know is the 
percentage of people who answered a given item 
correctly and we can transform item difficulty to arrive 
at a logit value that can be placed on the same logit 
scale as person ability. As a consequence, the 
knowledge of the test-takers and the difficulty of items 
can be put onto the same item map, known as an Item 
map or Wright Map (Wilson, 2005). This lets us say 
things like “Eric has an ability (theta) of 1.2 logits and 
this item has a difficulty (diff) of .8 logits. Eric should 
get that item right”  

Under the Rasch Model, there is an expected 
distribution of item difficulty and person ability and we 
expect both of those distributions to follow a normal 
curve. An item is perfectly matched to the ability of a 
test taker when that test-taker has a 50% chance of 
answering that item correctly. The logit value in such a 
scenario would be ln  (50/50) = 0. Any deviations from 
0 logits become further stretched out the more out of 
balance the proportions become. Thus, participants are 
not being compared to how other participants scored, 
but they are being compared to the expected 
distribution of the scale. If an individual test-taker gets 
50% of the items correct, then they have a 0 logit score, 
right in the middle of what we expect based on a 
normal distribution of ability.  

Taking the equations for the person ability and the 
item difficulty together, we can describe test items and 
their characteristics graphically using what is called an 
Item Characteristic Curve (ICC). The ICC shows 
graphically, the probability of a person answering an 
item correctly given their ability level. The Y axis is the 
probability of answering correctly, and the X axis 
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represents the test-takers ability level. Each Curve 
represents an item, and in this way, we can evaluate the 
characteristics of a test item and how it will behave for 
a given test taker. In Figure 3 we can see that for the 
given item, the probability of answering the first item 
correctly increases with person ability, and the 
probability of answering the 2nd (dotted line) item 
correctly is lower than the solid line for any given 
person because the items have different difficulty levels 
(i.e., Item 2 is more difficult than Item 1). 

The Rasch model is represented mathematically in 
Equation 3. 

 

Equation 3. Generalized formula for the Rasch Model 

𝑃(𝑋𝑖𝑠=1|𝜃𝑠,𝑏𝑖) =
𝑒(𝜃𝑠−𝑏𝑖)

1 + 𝑒(𝜃𝑠−𝑏𝑖)
 

where 

𝑋𝑖𝑠 = response of person s to item i (0 or 1) 

𝜃𝑠 = ability level for person s 

𝑏𝑖 = difficulty of item i 

In essence, the probability that a person will answer 
an item correctly depends on two things: 1) their ability 
level  (theta)  and  2)  the difficulty of the item (b). If a 
person’s ability level exceeds the difficulty of the item,  

they will have a higher probability of getting the item 
correct. If their ability is less than the difficulty of the 
item, then their probability of correctly answering the 
item will be lower. 

 

Testing the fit of the data to the unidimensional 
model 

Under the Rasch Measurement approach, two test 
takers who both answered 70 items correctly, but who 
answered a different set of items correctly would 
receive the same ability estimate (it is, after all, just a 
logit transformation of the raw score); however, the 
Rasch model introduces us to something called “fit 
statistics” for each test-taker that allows us to see 
whether the items they answered proceeded in the 
order we expect based on the scale that was derived. If 
a test-takers has acceptable fit statistics, this means they 
answered the items that we predicted they would 
answer correctly, within some reasonable margin of 
error. In other words, they most likely correctly 
answered the easiest 70 out of 100 items on the test. 
By contrast, if our other test-taker answered many hard 
items correctly and missed many easy items but still 
scored 70 out of 100, then their fit statistics would 
indicate that the test-taker’s pattern of responses 
exhibited poor fit to the model of our linear scale and 
we would have cause to examine their data more 
closely. Figure 4 provides a worked example.

 

Figure 3. Item Characteristic Curve for two items of different difficulty. 
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Figure 4. Rasch Measurement – Item Pool and Example Scores from Two Test-Takers 

 

Let us reconsider the two test takers (A and B) 
discussed previously in the context of CTT. This time 
they are shown in Figure 4. Both get four items correct, 
but they get a different four items correct on our scale. 
Their Rasch ability estimates will be identical because 
that is simply a logistic transformation of their raw 
scores; however, their fit statistics will look quite 
different because the answered different items 
correctly. On the right we can see the two test takers 
with lines to the items that they answered correctly. We 
can think of fit statistics as an average or summary of 
how unexpected someone’s response pattern is. When 
someone answers questions correctly that are above 
their ability level, we would be surprised. If the 
questions are a little bit higher, our surprise would be  

low. If the questions are much higher, our surprise 
would be greater. In this figure, the vertical distance 
from each person to an item that is above their ability 
level indicates how ‘unexpected’ their response pattern 
is; this is indicated by the bolded vertical lines. When 
we average these lengths across items we see a greater 
amount of ‘unexpectedness’ for person B, indicating 
that their response pattern is a poorer fit to the scale.  

The power of the Rasch model lies in its ability to 
help us build a measurement scale and then check to 
see whether our data fit the model. That is, we can 
examine empirically whether test-takers are answering 
the items on our scale in the order we expect them to 
be able to answer them. If a person’s pattern of 
responses to items do not fit the model, we can 
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examine their response pattern further for things like 
cheating or malfeasant response and exclude them 
from further analyses if necessary. However, if there 
are many people whose patterns of responses exhibit 
poor fit to the model, then we ought to reconsider 
whether our scale is working the way we intend. 
Perhaps the scale doesn’t work well for a particular 
population of test-takers with certain characteristics. 
By contrast, if participants generally fit the model, then 
we can conclude that we have constructed a 
meaningful scale that will allow us to say exactly what 
people know and can do based on their responses to 
our items.  

 

Item Response Theory 

The third approach used to determine how much 
each student knows about a topic is radically different 
than the first two and is quite appealing intuitively. 
Recall the question we started with: If two test-takers 
both answer 70 items out of 100 correctly, do they 
exhibit the same level of knowledge in a domain? In 
the case of Item Response Theory (IRT), the answer is: 
it depends upon which items each of them answered 

correctly. Only if the test-takers answered the exact 
same items correctly can we claim that they have same 
knowledge. If one test taker missed an easy item but 
got a more difficult item correct, then they would be 
estimated to have a different level of knowledge than 
the person who got the 70 easiest items correct.  

Conceptually, we can think of this approach as 
weighting each of the items differently toward the total 
score. Thus, we can’t just add up the 70 items a student 
got correct, we need to multiply each of those items by 
a sort of weight first and then add them up and the 
final knowledge estimate is the “weighted” score, not 
the actual number of items the person answered 
correctly. However, rather than specifying these 
weights in advance based on some theory, the weights 
are empirically derived after the fact based on how the 
full sample of test-takers responded to each of the 
items and the characteristics of the items that are 
derived from that information. Figure 5 provides an 
illustrated comparison of the approach to knowledge 
estimation used by CTT, Rasch, and IRT. Note that in 
the figure below, items with larger circles contribute 
more information/weight to the derived score. 

 

 

Figure 5. Comparison of approach to person knowledge estimation between CTT, Rasch, and IRT 
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Is the Rasch Model just a one-parameter IRT 
Model? 

Equation 3 presents a generalized IRT formula 
that can contain up to three parameters.  

 

Equation 3. Generalized formula for IRT 

𝑃(𝑋𝑖𝑠=1|𝜃𝑠,𝑏𝑖,𝛼𝑖,𝑐𝑖) = 𝑐𝑖 + (1 − 𝑐𝑖)
𝑒𝑎𝑖(𝜃𝑠−𝑏𝑖)

1 + 𝑒𝑎𝑎𝑖(𝜃𝑠−𝑏𝑖)
 

where 

𝑋𝑖𝑠 = response of person s to item i (0 or 1) 

𝜃𝑠 = trait level for person s 

𝑏𝑖 = difficulty of item i 

𝑎𝑖 = discrimination for item i 

𝑐𝑖 = lower asymptote (guessing) for item i 

 

 If we take apart Equation 3 piece by piece the 
concepts these parameters represent are 

straightforward. To start, beta (𝑏), represents the item 
difficulty and, recalling the ICCs from Figure 3, larger 

𝑏′𝑠 are more difficult items (they move the ICC to the 

right), and smaller 𝑏’s are easier items (they move the 

ICC to the left) (see Figure 6A). Alpha (𝑎) represents 
the item discrimination, which represents how much 
the item discriminates between ability levels. 
Graphically, this is captured in the steepness of the 
ICC (see Figure 6B). Steeper ICCs mean that small 
differences in ability will have a large impact on the 
probability of answering correctly, within a small range 
of ability level whereas shallower curves will 
differentiate over a wider ability range, but with less 
precision between small differences in ability. Finally, c 
represents the pseudo guessing parameter and reflects 
the non-zero probability of getting an answer correct 
by chance. This parameter simply takes the left end of 
the curve and raises it some non-zero amount (Figure 
6C). The ICC demonstrates that no matter the level of 
ability of the test-taker, they will always have some, 
even small, chance of answering correctly.  

 From a mathematical perspective, it appears that 
the Rasch Model can be viewed as a one-parameter 
IRT model in which the item discrimination parameter 
is fixed to be equivalent for all items and the pseudo-
guessing parameter is not used. Indeed, many people 

refer to the Rasch Model as a one-parameter IRT 
model. However, there are deep philosophical 
differences between Rasch Measurement and IRT that 
are linked to the mathematics. Specifically, IRT is a 
statistical model in which the goal is to build a model 
that explains as much of the observed variance in the 
data as possible. By contrast, the goal of the Rasch 
model is to build a measurement scale that is invariant 
across test-takers and to then test whether the data fit 
that model. This philosophical and mathematical 
distinction between the approaches becomes evident 
as soon as a second parameter is introduced into the 
model, the reasons for which are described in the next 
section. 

 

Crossing the line: What happens when ICCs are 
allowed to cross?  

The second parameter in the IRT model is the 
item discrimination parameter. Item discrimination is 
also known as item-total correlation and represents the 
point-biserial correlation between the score on any 
given item (0 or 1) and the total score on the rest of the 
test. An item discrimination value of 1.0 for an item 
means there is a perfect correlation such that everyone 
who scored at the top half of the distribution of the 
test answered that item correctly and everyone at the 
bottom half of the test score distribution missed that 
particular item. Such an item yields a lot of information 
about test-takers’ ability. An item with a discrimination 
value of 0.0 means that there is absolutely no 
relationship between how people scored on that item 
and how they scored on the test overall and such items 
yield no useful information about a test-takers’ ability. 

One of the key critiques of the Rasch model is that 
it requires all items to be equally discriminating and are 
therefore equally weighted in their contribution to an 
ability estimate. In practice, this weighting is referred 
to as item discrimination, and it is rarely the case that 
item discrimination is estimated to be equal across all 
items. People will sometimes get items wrong that they 
would be expected to get right by chance, and 
sometimes tests are constructed with items that make 
this more common. For example, if a math equation 
was added into a reading test, you might not want that 
math item to contribute to a student’s measure of 
reading ability. From the IRT perspective, we can 
actually build a better predictive model if, rather than 
requiring   equal   item   discrimination,   we   estimate
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Figure 6. Worked example of parameter impacts on ICCs. 
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differences in item discrimination when constructing 
our test. Hence, the second parameter in the logistic 
model which gives us a 2-parameter IRT model.  

The 2-parameter model estimates values of item 
discrimination for each item based on the performance 
of a representative sample of test takers. The IRT 
approach makes the assumption that these parameter 
estimates will remain relatively stable across samples 
saying, in effect, that we don’t know what the true state 
of affairs is, but the best way to find out is to model 
the data that we have. We are building a model to fit our 
data. 

However, what happens when we model the 
discrimination parameter based on our data is that we 
get a situation in which we no longer have an invariant, 
and therefore universally meaningful, measurement 
scale. Specifically, when we model a second parameter 
statistically, we introduce a situation in which we allow 
the same item to mean different things for different test  

takers depending on the ability level of the test taker. 
That is, for a low ability person, a particular item might 
be incredibly difficult, but for a high ability test-takers, 
it might be one of the easiest items on the test. One of 
the ways this information is communicated is through 
what are known as Item Characteristic Curves (ICCs). 
An ICC shows the probability of a correct response to 
the item on the Y-axis and the ability level of the 
participant on the X-axis. 

Figure 7 shows ICCs for 4 items, each with a 
different difficulty level. In the top box of Figure 7, the 
Rasch ICC estimates assume the same level of item 
discrimination for all test-takers. In other words, it is 
assumed that for every item on the test, the highest 
ability test takers will have a better chance of answering 
the item correctly and test takers with lower ability will 
have lower than 50% chance of answering the item 
correctly. When the difficulty of the item is perfectly 
matched to the ability of the test-taker, the test-taker 
has a 50% chance of correctly answering the item. 

 

Figure 7. Item Characteristics Curves that allows ICCs to cross. 
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However, in the bottom half of the Figure 7, we 
can see the ICCs for an IRT scenario in which the item 
discrimination parameter is allowed to vary and ICCs 
for different items therefore cross. In the example 
shown, Item 1 does not have very good item 
discrimination statistics. The problem is that the 
minute you allow those item characteristic curves to 
cross, you are operating under a completely different 
set of premises and objectives that introduce the 
possibility that the underlying construct under 
investigation can take on multiple meanings depending 
on the ability level of the examinees. By examining 
where person ability intersects with probability of 
correct response in the examples presented in Figure 7, 
we can see that participants with low ability level (e.g., 
Person A) and high ability (e.g., Person C) both have a 
higher probability of correctly answering item 2 than 
answering item 1. On the other hand, participants with 
a moderate ability level (e.g., Person B) have a higher 
probability of answering item 1 than they do of 
answering item 2.  

The simple act of allowing the ICCs to cross 
exposes the fundamental difference between Rasch as 
a measurement model and IRT as a statistical model. 
Once the ICCs are allowed to cross, the scale that has 
been constructed no longer means the same thing for 
all test takers. The easiest and hardest items on the test 
are not the same across all test takers anymore. The 
moderate ability people have a different scale of easiest 
to hardest items than the high or low ability people do. 
And this poses a problem when it comes to trying to 
say what test takers know and can do based on the 
items they have answered correctly. 

Furthermore, under the IRT model, items that 
have low discrimination count less towards an ability 
estimate. Therefore, ability itself is no longer the only 
trait that is behind a respondent’s answer to an item. 

Advocates of IRT sometimes argue that the 
assumption that there is no guessing or that guessing 
does not influence student ability is also untenable in 
most multiple choice settings. The 3 parameter logistic 
model (3PL) allows for an adjustment to student ability 
estimates based upon the likelihood that guessing is 
involved on any given item. The 3rd parameter is the 
offset or probability of just getting the item right, 
meaning that no matter your ability level, you always 
have a non-zero chance of getting an item correct. 
After all, lucky guesses are part of multiple-choice 

exams. That is why the lower asymptote doesn’t 
approach 0 for some items (e.g., Item 2 in Figure 7). 
The Rasch rebuttal to this argument is that people 
guess, items do not guess (Wright, 1988). Thus, if 
guessing is the issue, this is better evaluated by using 
the fit statistics rather than by introducing another 
parameter into the statistical model.  

 

Specific Objectivity - Revisited 

In the Rasch formulation, observed responses act 
as a sufficient statistic for estimating person ability and 
for estimating item difficulty. Raw scores contain all of 
the necessary information and fit statistics tell you 
whether something is unusual in your data. Within the 
context of the IRT two parameter model, however, it 
is not enough to know how many items a person got 
correct, we need to know which items they answered 
correctly. In that sense, the raw score is no longer a 
sufficient statistic. It does not provide all of the 
necessary information that allows us to estimate ability 
under the model. Two people with the same raw score 
could have different ability estimates because they may 
have answered different items correctly; specifically, 
they will have answered items with different 
discrimination indices correctly.  

Because we now need to know the discrimination 
index of the item in order to estimate person ability, 
the person ability estimates no longer possess the 
mathematical property of “specific objectivity” 
(Wright & Stone, 1979). This means that person ability 
cannot be estimated independently of item difficulty. 
This violation comes with the consequence that we can 
no longer be assured that our ability estimates fall upon 
a linear equal interval scale – they are now sample 
dependent to some extent. It is this very point – the 
loss of the raw score as a sufficient statistic – that is the 
main source of controversy between proponents of 
Rasch measurement and proponents of IRT. 

 

Simulated Comparison in R 

How much difference is there really between IRT 
ability estimates and Rasch ability estimates of student 
knowledge? The answer varies with each dataset and 
can range from almost no perceptible difference 
(Wright, 1995), to rather large and meaningful 
differences. To better illustrate these differences, we 
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have constructed a simulation in the R statistical 
program in which Rasch ability estimates and IRT 
person ability estimates were compared. For this 
example, we simulated scores for 30 people with 
normally distributed ability, and 15 items with 
difficulties ranging from easy to difficult. Then we took 
a single person from this sample and estimated their 
ability using both the Rasch Measurement approach 
and the two-parameter IRT model. All items are scored 
dichotomously (right/wrong). Next, we simulated 
eight new data sets with the only constraints being that 
each of the items retained the same proportion of 
correct and incorrect responses (i.e., item difficulties), 
while allowing their discrimination parameters to vary. 
In reality, this constraint would never be met, but we 
enforce it here for simplicity.  

In each of these simulations we also add in the 
response pattern from a single person (i.e., we will call 
them our target individual) to the simulation run and 
estimated their ability in the context of the new dataset. 
This approach allows us to demonstrate how Rasch 
ability estimates remain very stable, while IRT ability 
estimates can vary substantially. In Figure 8, each of 
the eight simulation runs is show in a horizontal row 
(demarcated by color). Each small circle is the IRT 
ability estimate for one person of the 31 people in the 
sample. The large solid square shows the Rasch ability 
estimate for our target individual throughout the 
simulations, which remains almost completely 
stationary. In contrast, the large circle shows our target 

individual’s ability estimate under the IRT 
parameterization. Code for this simulation are available 
at:  

https://github.com/anomalosepia/irtSimsupp/tree/
master 

The simple simulation results in Figure 8 highlight 
a key difference between Rasch and IRT models. As 
we can see in Figure 8, the resulting person ability 
estimates for the same individual can vary substantially 
depending on the item discrimination values in the 
simulated dataset. By contrast, the Rasch model does 
not depend on this information and the person ability 
estimates are stable and unaffected by differences in 
item discrimination. Thus, the Rasch estimate is test-
free and person-free in a way that the IRT estimate is 
not. Stated differently, the exact same person with the 
exact same response pattern is thrown into eight 
different datasets. Under the Rasch approach, because 
the raw score is a sufficient statistic with which to 
estimate person ability, our estimate of that person’s 
knowledge is the same across datasets. The fit statistics 
will vary for that person, but the ability estimate will 
remain stable. By contrast, the IRT ability estimate is 
heavily influenced by the item discrimination 
parameters in the dataset, effectively weighting 
information from items differently depending on their 
item discrimination parameter. This has the practical 
effect of making our estimate of person ability (what a 
student knows), dependent on the performance of the 
other people taking the test since the item  

 

Figure 8. Comparison of Rasch v. IRT person ability estimates for a single person relative to different item 
characteristics. 

 

https://github.com/anomalosepia/irtSimsupp/tree/master
https://github.com/anomalosepia/irtSimsupp/tree/master
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discrimination parameter is empirically derived from 
the other test-takers. Because the inclusion of the item 
discrimination parameter is necessary for us to be able 
to estimate person ability, it is not a sufficient statistic. 
That is, a test-taker’s raw score is not enough to tell us 
what they know and can do. Unfortunately, because it 
is not a sufficient statistic, we have violated the 
requirements of specific objectivity and we can no 
longer be sure that our new scale contains equal 
intervals between points on the ability spectrum. 
Rather, we have an ordinal scale. 

 

Conclusion 

In conclusion, let us return to the simple question 
that we started with. If two students receive the same 
score on the same test, do they know the same 
amount? The answer to that question depends on what 
assumptions you are willing to accept in your approach 
to computing student scores. There are strengths and 
limitations to each approach, and we would all do well 
to understand the limits of our preferred model. 
Whether we realize it or not, our choice of technique 
for analyzing data carries with it a host of philosophical 
implications that we must be prepared to accept – at 
least tentatively.  

Classical Test Theory provides us with a simple way to 
get a rough approximation of student knowledge. It is 
limited by the fact that the measurement scale is ordinal 
at best, meaning that differences between scores are 
not equivalent. It does not assume that ability follows 
a normal distribution. And it provides us with no 
expectations about what items will be answered 
correctly in what order by test-takers. Further, the 
scores on the tests are completely dependent upon the 
performance of other test-takers and the difficulty level 
of the items on the test.  

Rasch Measurement provides us with a technique for 
transforming an ordinal scale into an interval scale that 
is based on the assumption of normality. Differences 
in ability estimates between test-takers scoring at the 
extremes of the distribution have a different meaning 
than differences in scores between test-takers at the 
middle of the distribution. Further, the Rasch model 
yields ability estimates that are independent of the 
difficulty of the test and the ability of the other test 
takers. The model puts person ability and item 
difficulty on the same scale and therefore provides us 

with expectations about which items are therefore 
most likely to be answered correctly by any given test-
taker. We can test the fit of the data to the 
unidimensional model by an analysis of fit statistics and 
make revisions accordingly.  

The power of the Rasch model is not so much found 
in the use of its ability estimates. After all, those will 
correlate very highly with CTT raw scores since they 
are just a logistic transformation. Rather, the true 
power of the Rasch model comes from its fit statistics, 
which allow us to evaluate whether or not we have truly 
built a linear scale that works the same way for all test 
takers, thereby facilitating meaningful interpretation of 
the test results. Under the Rasch model, test scores 
have a consistent meaning for all test takers in a way 
that they do not if one is using CTT or IRT models. 
And that is what sets the Rasch model apart as a 
measurement model rather than a statistical model. 

IRT allows us the flexibility to incorporate more 
information into our parameter estimate. Rather than 
appealing to assumptions about item discrimination, it 
models item discrimination based on the data from the 
participants and incorporates that information into the 
student ability estimates. However, such enhanced 
modeling comes at a cost. As soon as the item 
characteristic curves are allowed to cross (i.e., item 
discrimination is not constant across items), our scale 
no longer has the same meaning for all test takers so 
we really cannot say what students know and can do at 
each level of person ability. Further, we are no longer 
assured of equal interval measurement (i.e., we can 
throw out the assumption of normality of the 
construct) and our estimates are no longer person-free 
or test-free because they lack specific objectivity. The 
estimates are, in effect, a version of weighted scores 
from CTT in which more discriminating items are 
weighted more heavily. It is a statistical correction to 
CTT, but IRT does nothing to help advance the 
construction of a scale that can be more meaningfully 
interpreted across test takers.  

The issue of which technique to choose is related 
to what you are trying to accomplish and the choice 
has consequences. If what you are trying to do is to use 
the maximum amount of information in your data to 
create ability estimates for individuals based on their 
response to test items, recognizing that the items are 
not equally discriminating and that guessing may occur, 
then a 2 or 3PL model may be a reasonable choice. If 
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what you want to do, however, is create a truly linear, 
equal interval measurement scale that works the same 
way for all test takers and that will allow for statements 
about what students at any given ability level know and 
can do, as is the goal of standards based assessment 
and CAT, then only the Rasch model will suffice. 
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