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Despite the sensitivity of fit indices to various model and data characteristics in structural equation 
modeling, these fit indices are used in a rigid binary fashion as a mere rule of thumb threshold value 
in a search for model adequacy. Here, we address the behavior and interpretation of the popular 
Comparative Fit Index (CFI) by stressing that its metric for model assessment is the amount of 
misspecification in a baseline model and by further decomposition into its fundamental components: 
sample size, number of variables and the degree of multivariate dependence in the data. Simulation 
results show how these components influence the performance of CFI and its rule of thumb in 
practice. We discuss the usefulness of additional qualifications when applying the CFI rule of thumb 
and potential adjustments to its threshold value as a function of data characteristics. In conclusion, 
we at a minimum recommend a dual reporting strategy to provide the necessary context and base for 
meaningful interpretation and even more optimal, a move to using CFI as a real incremental fit index 
intended to evaluate the relative effect size of cumulative theoretically motivated model restrictions 
in terms of % reduction in misspecification as measured by the baseline model. 
 

Introduction 
The evaluation of model fit remains a crucial yet 

controversial topic in the application of structural 
equation models. In line with concerns that a focus on 
mere statistical significance testing would lead to 
disregarding or changing relevant and theoretical sound 
models without proper justification for it (Bentler & 
Bonett, 1980), a whole range of alternative goodness-of-
fit indices is currently available for model evaluation 
beyond the traditional chisquare significance test of 
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exact fit. As part of the general trend to report multiple 
fit indices (e.g., Jackson et al., 2009; Ropovik, 2015), 
McDonald and Ho (2002) point out that “it is sometimes 
suggested that we should report a large number of these 
indices, apparently because we do not know how to use 
any of them” (p. 72). This statement highlights a 
common concern about current model evaluation 
practices that are characterized as thoughtless routine 
applications of binary (good/bad) rules of thumb for fit 
indices. 
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Different cut-off criteria or rules of thumb have 
been proposed over time (e.g., Bentler & Bonett, 1980; 
Hu & Bentler, 1999; Schermelleh-Engel et al., 2003). In 
particular, Hu and Bentler’s (1999) suggested criteria 
gained huge popularity. Yet, Hu and Bentler (1999) 
themselves stressed that “it is difficult to designate a 
specific cutoff value for each fit index because it does 
not equally well with various conditions” (p. 27). Their 
underlying simulation study was based on only a few 
conditions with either a simple or a complex structure 
with fixed values for a three-factor confirmatory factor 
analysis model with 15 manifest variables. Their note of 
caution resonates well with more recent findings in the 
literature where simulation studies have illustrated the 
sensitivity of fit indices and their rules of thumb to 
various data and model features such as sample size, 
model size and type, strength of relations within the 
measurement model, and violations of distributional 
assumptions (for a review, see e.g., Niemand & Mai, 
2018). Nevertheless, people have been universally 
applying the rules of thumb regardless of their own 
specific context, study design, data, or model. The main 
point of concern is exactly this thoughtless default way 
of applying rules of thumb (Marsh et al., 2004). One 
reason given for abiding by such a thoughtless rule-
based approach is that “researchers need them because 
it is unclear how one can reach qualitative judgements in 
their absence” (Lai & Green, 2016, p. 221). 

Overall, one major point of concern with respect to 
the application of SEM in practice is the lack of 
deliberate decision making in all parts of the process 
(McDonald & Ho, 2002). In order to make more 
informed decisions with respect to the use of fit indices 
it is important to know how these fit indices work. Yet 
what ‘good’ fit means and how fit indices map onto this 
meaning is not well understood (Lai & Green, 2016). 
Hence, if we would desire not mere mindless rule-
following but more deliberate practice when assessing 
model fit, we need to better clarify what type of fit each 
of the different indices stand for and to provide a better 
insight in their inner workings to understand why fit 
indices behave like they do. 

Here, we will try to make one step into that 
direction by focusing on the Comparative Fit Index 
(CFI) (Bentler, 1990), the most-used statistic among the 
class of comparative goodness-of-fit indices (for reviews 
covering time periods in the interval 1995-2013, see e.g., 
Jackson et al., 2009; McDonald & Ho, 2002; Ropovik, 

2015). A decomposition in the main components that 
play a role in the CFI’s baseline comparison allows to 
clarify CFI’s meaning and behavior, explain some of the 
mixed results in the SEM simulation literature regarding 
its sensitivity to model and data characteristics, and 
highlight the (limited) generalizability of common rules 
of thumb for CFI and factor analysis. We hope that this 
exposition can help guide the decision-making process 
in practice and lead to smarter, more deliberate 
inferences when interpreting the CFI for model fit 
evaluation. 

 

A Decomposition of the Comparative 
Fit Index 

In contrast to absolute fit or parsimony fit indices 
(e.g., Brown, 2015), the class of comparative fit indices 
promotes comparison in fit between a model of interest 
and a more restricted baseline model. This fit assessment 
strategy has its foundation with Bentler and Bonett 
(1980) and involves a continuum of models from the 
worst fitting null model to the perfect fitting or saturated 
model. The role of the comparative fit indices is to assess 
where the model of interest is located within this 
continuum.  

Within this class, Bentler’s (1990) Comparative Fit 
Index (CFI) is an “index to summarize the relative 
reduction in noncentrality parameter of two nested 
models” (p. 238). The noncentrality parameter 𝜆𝜆𝑚𝑚 of a 
model  𝑚𝑚 can be seen as an indicator of model 
misspecification as it quantifies the amount of deviation 
between the estimated χ2 value and the expected χ2 
value (i.e., df𝑚𝑚, the model’s degree of freedom) for the 
sample under the assumption that the model is correct: 
𝜆𝜆𝑚𝑚 =  χ𝑚𝑚2 − df𝑚𝑚. The value of CFI is then based on the 
ratio of misspecification of both models: 

 

CFI(𝑚𝑚,𝑏𝑏) = 1 − 𝜆𝜆𝑚𝑚
𝜆𝜆𝑏𝑏

= 1 − 𝜒𝜒𝑚𝑚2 −df𝑚𝑚
𝜒𝜒𝑏𝑏
2−df𝑏𝑏

            (1) 

 
where the subscript indicates whether the statistics are 
of the model of interest  𝑚𝑚 or the baseline model  𝑏𝑏. The 
one-minus-noncentrality-ratio is there to turn it from a 
relative misspecification measure into a relative 
goodness-of-fit measure. Note that the CFI is usually 
truncated to the [0, 1] interval, although technically 
values higher than one can arise if the model of interest 
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fits better in a noncentrality sense than the saturated 
model (e.g., perfect fit with less than full parameters) and 
values below zero can arise if the model of interest fits 
worse than the baseline model. 

Null baseline. A so-called null model in which all 
observed variables are uncorrelated has taken off as the 
default baseline model for popular applications of CFI. 
Following the idea of Bentler and Bonett (1980), the 
CFI(𝑚𝑚,0) can be referred to as an ‘index of information 
gained’ by the model of interest over the more restrictive 
null model. Hence, conceptually it is similar to an R-
square, a relative reduction in ‘unexplained’ variance, 
whereas a CFI(𝑚𝑚,0) could then be seen as a relative 
reduction in ‘unexplained’ variance-covariance. From 
here on we will drop the subscripts referring to the 
models being compared, if we talk about the CFI with 
the null model as default baseline. 

Rules of thumb. For determining whether a model 
shows adequate fit according to the CFI, different rules 
of thumb have been proposed. Early on up to the late 
90’s, values of at least .90 for comparative fit indices 
were assumed to indicate decent model fit (for a review, 
see McDonald & Ho, 2002). This rule of thumb has been 
mostly motivated based on experience by expert users: 
At CFI origins, “In our experience, models with overall 
fit indices of less than .90 can usually be improved 
substantially” (Bentler & Bonett, 1980, p. 600) or more 
recently, “In my experience, models with .90+ values for 
the CFI . . . can be quite acceptable models” (Little, 2013, 
p. 116). The currently most common CFI standard is 
based on the influential simulation study by Hu and 
Bentler (1999): “the results suggest that, for the ML 
method, a cutoff value close to .95 for . . . CFI . . . are 
needed before we can conclude that there is a relatively 
good fit between the hypothesized model and the 
observed data” (p. 1). As indicated earlier in the 
introduction, even about the core rule of thumb, stating 
CFI ≥ .95 for good model fit, there have been many 
cautionary notes and simulation studies have illustrated 
that its applicability varies depending on data and model 
characteristics. 

If we would desire more deliberate practice when 
assessing model fit using CFI values, then knowing the 
inner workings of this measure is an essential 
requirement. So how does this CFI really work? 
Additionally, can knowledge of its inner workings indeed 
shed some light on the performance of the CFI rules of 
thumb under various data characteristics? 

CFI as a relative measure with a variable metric 
space  

Equation 1 clarifies that the CFI is a relative 
measure with its denominator set by the noncentrality of 
the baseline model. Now suppose there is a line that 
represents the CFI metric. The metric space endpoints 
are set by the null and saturated model. The length of 
the line is determined by the noncentrality of the null 
model, as the noncentrality for the saturated model is 
zero. Given the formulation of CFI, this metric space 
serves as standard for comparison. Conceptually, the 
length of the line, the CFI metric space, has an influence 
on the behavior of CFI. Having more space, will allow 
for a finer grained differentiation. Having less space, 
makes the CFI to become less useful. The rationale is 
that in general it is harder to differentiate between 
models as they are becoming more similar. When placing 
a model of interest in the metric space, it will always be 
closer related to both the null and the saturated model 
as the line becomes shorter. As a consequence, a 
comparison in terms of CFI values is no longer based on 
the same standard when the denominator, the baseline 
noncentrality, is different among the cases being 
compared. 

As an example to drive this idea home, consider the 
following two cases for which the size of the CFI metric 
space is different. The baseline noncentrality in the first 
case is 𝜆𝜆0 = 25. Within this space two models with 
slightly different noncentrality values can be placed. 
Overall their values only differ by 2 units, with 𝜆𝜆1 = 1 
and 𝜆𝜆2 = 3 being the noncentrality value of the first and 
second model, respectively. Translating this to CFI 
values, this results in values of CFI(1,0) = .96 and CFI(2,0) 
=.88. Now consider the second case in which there is a 
shorter metric space with baseline noncentrality 𝜆𝜆0 = 5. 
Here as well, we have two models that only differ by 2 
noncentrality units, now with 𝜆𝜆1 = .2 and 𝜆𝜆2 = 2.2. 
However, translating this to CFI interval, values of 
CFI(1,0) = .96 and CFI(2,0) = .56 are obtained. This 
example demonstrates the impact of widely differing 
metric spaces as defined by the baseline noncentrality. 
The difference in CFI-fit between the two models is 
huge between the two cases whereas the difference in 
terms of absolute misspecification as expressed by the 
noncentrality index is exactly the same. Sampling 
variability can also be expected to have a huge impact in 
the second case, a small difference in noncentrality value 
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can lead to widely differing CFI values when baseline 
noncentrality is small. Thus, the main conclusion is that 
we cannot interpret a CFI-value of a model or 
differences in CFI between models without considering 
the fit of the CFI baseline model for the same sample 
data. This is similar advice as with any ratio or risk 
measure, you cannot ignore the numerator and 
denominator when interpreting a percent; Or more 
colloquially speaking, whereas a small percent of 
everything is a lot, a large percent of nothing, is still 
nothing. 

Null model baseline noncentrality as key factor  

For the default CFI with a null model as baseline, 
the null model noncentrality 𝜆𝜆0 is the key to CFI 
behavior and interpretation as it sets the metric space 
that serves as standard for comparison. With F being the 
ML discrepancy fit function (e.g., Bollen, 1989) between 
the observed and null-model-implied covariance 
matrices S and 𝚺𝚺�0, the null model noncentrality can be 
rewritten and simplified as follows to identify its key 
components: 

 

𝜆𝜆0 = max(𝜒𝜒02 − df0, 0) 

     = max(𝐹𝐹�𝐒𝐒,𝚺𝚺�𝟎𝟎�(𝑛𝑛 − 1) − df0, 0)            (2) 

     = max(− log|𝐑𝐑|(𝑛𝑛 − 1) − 𝑝𝑝(𝑝𝑝 − 1)/2, 0) 

 

where R is the observed correlation matrix, 𝑛𝑛 the sample 
size, and 𝑝𝑝 the number of manifest variables (for the 
derivation, see Appendix A). 

Equation 2 clarifies that the CFI metric space is a 
function of correlation (i.e., generalized variance as 
expressed by the determinant of the data correlation 
matrix), sample size, and number of variables. Notice 
that all three core components of the null model baseline 
noncentrality are completely data dependent. In an ideal 
situation with a lot of correlation in your data, large 
sample sizes and not too many variables, CFI would 
allow you to make a fine-grained differentiation between 
models in terms of relative noncentrality. These ideal 
conditions are quite in line with common sense 
guidelines for the application of SEM. There are some 
more general intuitions that can be derived a priori from 
this decomposition that can be linked to findings in the 
SEM model fit literature. 

Sample size 𝑛𝑛. Originally, comparative fit indices 
were conceptualized as ‘indices of information gained’ 
and should be independent of sample size (Bentler & 
Bonett, 1980). However, previous studies (e.g., Heene et 
al., 2011; Hu & Bentler, 1999; Marsh et al., 2004; Shi et 
al., 2019) as well as the decomposition show that CFI is 
clearly dependent on sample size. In this case, with 
higher sample sizes resulting in higher baseline 
noncentrality values and better expected performance. 

Number of variables 𝑝𝑝. In the literature (e.g., Shi et al., 
2019) a general trend has been reported that more 
variables complicate the use of CFI and its default rule 
of thumb. At first sight the decomposition supports this 
notion as more variables leads to lower baseline 
noncentrality making model differentiation more 
difficult. However there is a confounding factor that is 
easily forgotten, the determinant |𝐑𝐑| is also a function of 
the number of variables 𝑝𝑝, and with more variables more 
non-zero correlations can in principle occur in the 
correlation matrix R. Hence, the number of variables 
only has a clear negative effect on CFI if 𝑝𝑝(𝑝𝑝 − 1)/2 the 
degrees of freedom of the null model outweighs the 
contribution by −log|𝐑𝐑|(𝑛𝑛 − 1). 

In the extreme theoretical situation in which only 
additional uncorrelated variables are added this will be 
always the case, as this has no impact on the latter factor. 
Yet the more correlation the added variables contribute 
the faster the negative effect of the number of variables 
disappears (i.e., the logdeterminant factor increases 
nonlinearly). Hence, it should thus not be surprising that 
Shi et al. (2019) found that, for correctly specified 
models, the effect of 𝑝𝑝 on performance of CFI’s rule of 
thumb was dependent on the size of the factor loadings 
they used. Hence, CFI also follows the general principle 
that having more signal in the data facilitates matters, 
whereas adding more noise further confounds matters. 

Data correlation R. As already indicated in the 
previous paragraph, the more the data is unlike the null 
model, the higher the baseline noncentrality and the 
easier CFI can differentiate between models. The study 
by Heene et al. (2011) also showed that performance of 
CFI’s rule of thumb is dependent on used factor 
loadings. It should also not be surprising that 
performance issues became more severe as the sample 
size decreased (Heene et al., 2011), as there is a 
synergistic interaction between 𝑛𝑛 and −log|𝐑𝐑| as 
reflected by the prominent role of their product in the 
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decomposition. Given the formulation, a decrease in 
both components will provide the smallest metric space, 
providing worse conditions for model differentiation. 

Now that we have identified the core components 
that play an integral part in the baseline comparison for 
CFI we will first zoom in further on CFI in relation to 
different data characteristics, by assessing the impact of 
sampling variability on the proposed metric space 
principle and the extent to which this relates to the 
general applicability of the common rule of thumb for 
CFI. Secondly, we will follow up on an additional 
qualification on when the general CFI rule of thumb can 
be used. We end the paper with a more general 
discussion on implications of these results and with 
recommendations for the use of CFI and its common 
rule of thumb in practice. 

 

Sampling variability & CFI 
At population level, CFI is determined by the 

population model noncentrality 𝜆𝜆𝑚𝑚
(Σ)and the population 

null baseline noncentrality 𝜆𝜆0
(Σ). When the estimated 

model is the true population model, 𝜆𝜆𝑚𝑚
(Σ) shows perfect 

fit (𝜆𝜆𝑚𝑚
(Σ) = 0) and consequently the population CFI will 

always equal one. This means there is only systematic 
variation in 𝜆𝜆0

(Σ), caused by variation in the components 
that make up the CFI metric space. Even though this 
does not have a direct influence on the CFI value at 
population level, it will set the basis for sample 
performance of CFI: a larger null baseline noncentrality 
𝜆𝜆0

(Σ) provides a more solid basis for model 
differentiation. In practice, the two noncentralities at 
sample level 𝜆𝜆𝑚𝑚

(𝑆𝑆) and 𝜆𝜆0
(𝑆𝑆) will be prone to sampling 

variability and potentially also sample bias. Depending 
on the extent that both noncentralities are somewhat 
differently affected, this could lead to differences in 
results compared to our expectations. 

Monte Carlo Simulation Design 

We considered a simple one-factor data-generating 
population model with equal factor loadings implying 
equal correlations between all items. The focus was on 
the use of correctly specified models, as it seems that the 
goal of most people is not to falsify their model, but to 
find an adequate model as starting point for further 

analysis (e.g., Ropovik, 2015). Given this focus on 
adequate model fit, it would be good to know whether 
CFI’s rule of thumb can meet its purpose in the ideal 
case of a correctly specified model. 

Experimental Factors. The conditions studied are 
related to the three components of the baseline 
noncentrality provided by the decomposition of CFI: 
sample size 𝑛𝑛, number of variables 𝑝𝑝, and data 
correlation R. 

First, sample size is varied (𝑛𝑛 ∈ {100, 200, 500, 
1000}). More information is present with increasing 
sample size, such that there is less uncertainty in making 
inferences about model fit. Minimum sample size 
requirements around 150-200 have been proposed for 
SEM (e.g., Barrett, 2007; Boomsma, 1985; Kenny, 2015; 
Muthén & Muthén, 2002), yet in practice about 1 in 5 
studies uses sample sizes below 200 (MacCallum & 
Austin, 2000) and around 8-18% uses sample sizes 
below 100 (Jackson et al., 2009). 

Second, the number of variables is varied (𝑝𝑝 ∈ {4, 
8, 12, 24}), as previous research has shown that the 
number of variables does have an influence on model 
evaluation (e.g., Moshagen, 2012; Shi et al., 2019; Shi et 
al., 2018). 

Third, the degree of data correlation as expressed 
by |𝐑𝐑| is varied through the chosen data-generating 
population model. The use of the one factor 
homogeneous factor loading model as population model 
allows to make this determinant a direct function of one 
correlation number 𝑟𝑟, where |𝐑𝐑| = [1 + (𝑝𝑝 − 1)𝑟𝑟][1 − 
𝑟𝑟](p−1) (e.g., Graybill, 1983) with 𝑟𝑟 ∈ {.1, .2, .3, .5, .7, .9}. 
According to Brown (2015), in practice standardized 
factor loadings of at least .3 or .4 are considered the 
norm for a meaningful interpretation, which 
corresponds in our simulation setup to values of 𝑟𝑟 = .09 
and 𝑟𝑟 = .16, respectively. Hair et al. (2006) are stricter 
and require factor loadings to be above .5 or even .7 in 
the context of validation studies, which corresponds to 
values of 𝑟𝑟 = .25 and 𝑟𝑟 = .49. 

Experimental Design. These three experimental 
factors are combined into a full factorial simulation 
design leading to 𝑛𝑛(4) × 𝑝𝑝(4) × 𝑟𝑟(6) = 96 experimental 
conditions. Within each condition, 1000 sample 
covariance matrices S were drawn from a Wishart 
distribution, S ∼ W(Σ, df), where Σ is the model’s 
population covariance matrix and df the model’s degrees 
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of freedom. The model was then refitted to each of the 
generated samples. The simulation and analyses were 
conducted in R (R Core Team, 2020) through custom 
scripts in combination with the lavaan package for R 
(Rosseel, 2012). 

Outcome measures. For each sample, the sample non-
centrality of the baseline model and of the fitted model 
– being the numerator and denominator of the CFI, 
respectively – are computed. The CFI of the fitted model 
is assessed and used to decide whether or not the fitted 
model is judged to be of good fit according to the .95 
rule of thumb (i.e., CFI < .95 leads to rejection of the 
model). 

Monte Carlo Simulation Results 

Full results of the 96 experimental conditions of the 
Monte Carlo simulation study are reported in table-

format in Appendix B. In what follows, we will report 
on general trends for the respective outcome measures 
and zoom into specific conditions when relevant. 

 Null baseline noncentrality 𝜆𝜆0
(𝑆𝑆). Given that 

noncentrality parameters are shifted-versions of the 
chisquare statistic (i.e., 𝜆𝜆0 = 𝜒𝜒02 −  df0), the same 
sampling distributions would apply under asymptotical 
theory given regularity conditions (e.g., Steiger et al., 
1985), implying a central or noncentral chisquare 
distribution depending on whether or not the model is 
correctly specified. Yet note that for the null baseline 
model it has been found that a noncentral chisquare 
distribution does not properly describe its sampling 
distribution beyond its central tendency (Curran et al., 
2002). However, the sample null baseline noncentrality 
does follow nicely the population trends (see Table 1) 
that are function of the earlier identified three 

 

Table 1. Eta square (𝜂𝜂2) effect size patterns for the main components of the CFI metric space across different 
outcome measures in the main simulation study.  

 

Note. 𝜆𝜆0
(Σ) = population value of the null baseline noncentrality; 𝜆𝜆0

(𝑆𝑆) = sample value of the null baseline 
noncentrality; 𝜆𝜆𝑚𝑚

(𝑆𝑆)= sample noncentrality for the estimated true model; CFI = sample CFI value for the 
estimated true model (i.e., CFI =  𝜆𝜆𝑚𝑚

(𝑆𝑆)/𝜆𝜆0
(𝑆𝑆); <.95 = model rejection rate or percentage of replications where 

the sample CFI value for the estimated true model is below .95. 𝜂𝜂2's are based on the type-III sum of squares 
in a full factorial ANOVA. 

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 7 
Van Laar & Braeken, Understanding CFI 
 
components of the metric space. Where an increase in 
either of the components has a positive effect on the 
baseline noncentrality. Notice that the sampling 
variation unaccounted for by the design factors is almost 
non-existing (i.e., 1 − 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = .001). 

Comparing the theoretically expected 𝜆𝜆0
(Σ) with the 

sample average �̅�𝜆0
(𝑆𝑆) (see Table B1) indicates that a small 

upward sampling bias for �̅�𝜆0
(𝑆𝑆) is present. This bias tends 

to become more severe with additional variables 𝑝𝑝. The 
relative effect of this upwards bias is worse for the lower 
sample size conditions, but has less of an impact with 
increased correlation 𝑟𝑟 as the corresponding increase in 
the absolute value of �̅�𝜆0

(𝑆𝑆) dwarfs the bias. One 
consequence of the upward bias is that all small-sample-
with-limited-correlation conditions that had a similarly 
restricted non-optimal baseline at population level, now 
at sample level are ordered as a function of the number 
of variables 𝑝𝑝. 

Model noncentrality 𝜆𝜆𝑚𝑚
(𝑆𝑆). Under asymptotical theory 

given regularity conditions (e.g., Steiger et al., 1985), the 
𝜒𝜒𝑚𝑚2  fit statistic when the true model is estimated, is 
expected to follow a central chisquare sampling 
distribution with mean df. Hence, the sample 
noncentrality of the model �̅�𝜆𝑚𝑚

(𝑆𝑆) should tend to its 
expected value 0. 

However, some upward sampling bias in �̅�𝜆𝑚𝑚
(𝑆𝑆) is 

present for almost all simulation conditions, although in 
absolute terms this is smaller than for �̅�𝜆0

(𝑆𝑆). The true 
model’s noncentrality (and hence its sampling bias) is 
most affected by the number of variables 𝑝𝑝 (see Table 
1), and in contrast to its prominent role in the null model 
unaffected by the amount of correlation 𝑟𝑟. The most 
severe bias is observed in the low-sample-size-many-
variables conditions (𝑝𝑝 = 24, 𝑛𝑛 = 100). Overall, 
increasing sample size seemed to reduce the biasing 
effect of the additional variables. The finding of large 
sampling bias as a function of increasing number of 
manifest variables and moderated by sample size 
corresponds to earlier findings in the literature (e.g., 
Moshagen, 2012). Notice that the sampling variation 
unaccounted for by the design factors (i.e., 1 − 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  = 
.671) is also much higher for the model noncentrality 
than for the null baseline noncentrality (i.e., 1 − 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  = 
.001). 

Comparative Fit Index (CFI). The asymptotically-derived 
sampling distribution of the CFI has not yet been 
established in the literature although logically it would 
conform to the sampling distribution of a ratio of two 
dependent shifted (non)central chisquare distributions, 
with the caveat that even a shifted noncentral chisquare 
is not fully applicable for the null baseline model. What 
we identified so far in the simulation study is that 
sampling affects the numerator 𝜆𝜆𝑚𝑚

(𝑆𝑆)and denominator 
𝜆𝜆0

(𝑆𝑆) of the CFI in a slightly different fashion. The 
resulting effect patterns on CFI in our simulation design 
(see Table 1) reflect this duality and lead to a mix of both 
𝜆𝜆-patterns, with the most central role for correlation 𝑟𝑟 
followed by sample size 𝑛𝑛, whereas the effect of the 
number of variables 𝑝𝑝 has become negligible. 

As we looked at CFI values for estimated true 
models, all observed CFI values should be indicative of 
the kind of sample values that can be expected to express 
good model fit. The 5% CFI quantile shows that the 
expected range of realistic CFI values actually varies 
greatly and covers a broad range across conditions (see 
Table B1). This difference becomes most prominent in 
those conditions where low sample size co-occurs with 
low correlation. In the most extreme situation (i.e., 𝑛𝑛 = 
100, 𝑝𝑝 = 24, 𝑟𝑟 = .1), 5% of the replications even have 
CFI values below or equal to .57. As reference to get the 
picture of the whole range, 16% of replications in this 
condition still have CFI values above or equal to .95. At 
the same time, for some conditions (e.g., but not 
exclusively, the conditions where correlation 𝑟𝑟 = .9) the 
range of realistic CFI values is much more limited as the 
5% quantile was already as high as .99 or even 1. 

Rule of thumb CFI ≥ .95. The common rule of thumb 
for CFI states that CFI should be at least .95 to speak of 
acceptable goodness of fit, and otherwise if CFI < .95 
one would reject the model. Given that the true model 
is fitted each time, the ideal outcome is of course a 
rejection rate of 0%. The results in Table B1 however, 
show that this is not accurate for all conditions. The 
median rejection rate is 0% but the average is 8% with a 
maximum of 84%. Of our 96 conditions, 43 had a non-
zero rejection rate and 27 a rejection rate larger than 5%. 

These results follow automatically from the 
observed ranges of CFI values for a true model not being 
consistent with the range implied by the rule of thumb 
[.95, 1]. The much wider or at times more narrower 
range of observed CFI for the estimated true model 
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would imply that the rule of thumb should/could in fact 
be made more lenient or strict depending on the 
situation. A point to which we will return in the 
discussion. 

Metric space principle 𝐶𝐶𝐹𝐹𝐶𝐶|𝜆𝜆0
(𝑆𝑆). In line with our 

starting ‘metric space’ principle that the baseline 
determines differentiation power of CFI, the effect size 
patterns (see Table 1) for the model rejection rates given 
the rule of thumb follow the trends for the (sample and 
population) null baseline noncentrality yet with a 
diminished role of the number of variables 𝑝𝑝. Hence, 
increasing the metric space by increasing CFI’s 
denominator through increasing either of the three 
design components has a positive effect on the size of 
𝜆𝜆0

(𝑆𝑆), the size and range of CFI values, and the resulting 
model rejection rates according to the common rule of 
thumb (see also Table B1 for a detailed overview of 
results). 

The observed diminished role of 𝑝𝑝 is due to the set 
of conditions where low sample sizes are combined with 
low correlation in the data (i.e., 𝑛𝑛 = 100 & 𝑟𝑟 ≤ .5 or 𝑛𝑛 = 
200 & 𝑟𝑟 ≤ .2) where a larger number of variables 𝑝𝑝 leads 
to higher (see the excerpted conditions in Table 2) 
instead of the generally expected lower rejection rates. 
Sampling variability and bias in those conditions destroy 
the regularity of the metric space principle. Focusing on 
one of the low-sample-size-low-correlation conditions, 
Figure 1 shows an example of how sampling variation in 
𝜆𝜆𝑚𝑚

(𝑆𝑆) relates to sampling variation in 𝜆𝜆0
(𝑆𝑆) as a function of 

the number of variables 𝑝𝑝. The horizontal and vertical 
line in the figure respectively show the average value of 
𝜆𝜆𝑚𝑚

(𝑆𝑆) and 𝜆𝜆0
(𝑆𝑆) within a specific condition. Given the 

definition of CFI (see Equation 1), the diagonal line is 
the critical line representing the combination of 𝜆𝜆𝑚𝑚

(𝑆𝑆) 
values and 𝜆𝜆0

(𝑆𝑆) values that result in CFI = .95. When 
replications are positioned in the area above this line, the 
corresponding CFI value will always be below .95, 
leading to rejection of the model. In other words, the 
values of 𝜆𝜆𝑚𝑚

(𝑆𝑆) in these situations are becoming too large 
compared to their 𝜆𝜆0

(𝑆𝑆) counterpart to acquire good 
model fit according to CFI. While replications 
positioned on or below the diagonal line correspond to 
good model fit according to the .95 rule of thumb for 
CFI. 

For both 𝜆𝜆𝑚𝑚
(𝑆𝑆) and 𝜆𝜆0

(𝑆𝑆), their mean values increase 
with additional variables 𝑝𝑝 as seen in their respective 
marginal distributions. However, the trend in 𝜆𝜆𝑚𝑚

(𝑆𝑆) seems 
to be dominant over the trend in 𝜆𝜆0

(𝑆𝑆), as with additional 
variables 𝑝𝑝, 𝜆𝜆𝑚𝑚

(𝑆𝑆) results in more extreme values relative 
to the 𝜆𝜆0

(𝑆𝑆) counterparts as seen in the heavier right tail 
in the distribution of the former. As a consequence, 
more replications are wrongly classified as showing 
inadequate model fit. In these specific conditions, 
problems in CFI performance are due to the strong 
sampling variation and bias in the numerator 𝜆𝜆𝑚𝑚

(𝑆𝑆) that 
counteracts the positive effect of increased average size 
of the metric space reflected by the denominator 𝜆𝜆0

(𝑆𝑆). 

In the majority of the cases, this bias-interference is 
not applicable and the general metric-space principle 
works out despite sampling variation and bias in CFI’s 
numerator and denominator. Figure 2 serves as an 
illustration of this principle. Whereas the distribution of 
𝜆𝜆𝑚𝑚

(𝑆𝑆) remains relatively constant across increasing 
correlation, the distribution of 𝜆𝜆0

(𝑆𝑆) takes big steps 
upwards, dwarfing any sampling bias in 𝜆𝜆𝑚𝑚

(𝑆𝑆). The 
increase in correlation leads to a big increase in null 
baseline noncentrality which goes together with a 
decrease in the rejection rates of the CFI for the 
correctly specified model. The same results hold with 
increasing sample size 𝑛𝑛, whereas for increasing number 
of variables 𝑝𝑝 it is less demarcated due to the opposing 
bias in 𝜆𝜆𝑚𝑚

(𝑆𝑆). 

 

Don’t interpret CFI depending on 
RMSEA of null model? 

As indicated before, additional specifications on the use 
of the general rule of thumb for CFI have been around. 
For example, one lesser known qualification advocated 
for on a popular web resources on SEM fit indices 
recommends that “CFI should not be computed if the 
RMSEA of the null model is less than .158 or otherwise 
one will obtain too small a value of the CFI” (Kenny, 
2015). However, formal support for this 
recommendation was not given. Hence, we used the 
results from the main simulation study to follow up on 
the usefulness of this specific qualification in practice.  
  



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 9 
Van Laar & Braeken, Understanding CFI 
 
 
 
  

T
ab

le
 2

. C
on

tra
di

ct
in

g 
th

e 
m

et
ric

 sp
ac

e 
pr

in
ci

pl
e:

 N
eg

at
iv

e 
ef

fe
ct

 o
f t

he
 n

um
be

r o
f v

ar
ia

bl
es

 𝑝𝑝
 o

n 
th

e 
pe

rf
or

m
an

ce
 o

f C
FI

. 

 

N
ote

. I
n 

ge
ne

ra
l a

n 
in

cr
ea

se
 in

 th
e 

siz
e 

of
 th

e 
m

et
ric

 s
pa

ce
 is

 e
xp

ec
te

d 
to

 h
av

e 
a 

po
sit

iv
e 

ef
fe

ct
 o

n 
th

e 
C

FI
 m

od
el

 re
je

ct
io

n 
ra

te
s. 

H
ow

ev
er

, t
he

 re
su

lts
, e

xc
er

pt
ed

 fr
om

 T
ab

le
 B

1,
 s

ho
w

 th
os

e 
co

nd
iti

on
s w

he
re

 a
dd

iti
on

al
 v

ar
ia

bl
es

 𝑝𝑝
 re

su
lt 

in
 in

cr
ea

se
d 

re
je

ct
io

n 
ra

te
s 

fo
r 

C
FI

, e
ve

n 
th

ou
gh

 λ�
0(𝑆𝑆

)  in
cr

ea
se

s 
as

 e
xp

ec
te

d.
 I

t 
sh

ou
ld

 h
ow

ev
er

 b
e 

no
te

d 
th

at
 in

 s
om

e 
co

nd
iti

on
s 

th
e 

re
je

ct
io

n 
ra

te
s 

ar
e 

st
ill

 c
lo

se
 to

 z
er

o 
(e

.g
., 

w
he

n 
𝑛𝑛 

=
 1

00
 a

nd
 𝑟𝑟

 =
 .5

). 
W

ith
 λ�
0(𝑆𝑆

)  =
 a

ve
ra

ge
 s

am
pl

e 
va

lu
e 

of
 th

e 
nu

ll 
ba

se
lin

e 
no

nc
en

tra
lit

y;
 λ�
𝑚𝑚(𝑆𝑆

)  =
 a

ve
ra

ge
 s

am
pl

e 
no

nc
en

tra
lit

y 
fo

r t
he

 e
st

im
at

ed
 tr

ue
 m

od
el

; <
 .9

5 
=

 m
od

el
 re

je
ct

io
n 

ra
te

 o
r p

er
ce

nt
ag

e 
of

 re
pl

ic
at

io
ns

 w
he

re
 th

e 
sa

m
pl

e 
C

FI
 v

al
ue

 fo
r t

he
 e

st
im

at
ed

 tr
ue

 m
od

el
 is

 b
el

ow
 .9

5.
  

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 10 
Van Laar & Braeken, Understanding CFI 
 
 
 
  

Fi
gu

re
 1

. S
ca

tte
rp

lo
t w

ith
 m

ar
gi

na
l d

ist
rib

ut
io

ns
 o

f λ
𝑚𝑚(𝑆𝑆

)  a
nd

 λ
0(𝑆𝑆

)  a
s a

 fu
nc

tio
n 

of
 th

e 
nu

m
be

r o
f v

ar
ia

bl
es

 𝑝𝑝
 fo

r t
he

 c
on

di
tio

ns
 

w
he

re
 𝑛𝑛

 =
 2

00
 a

nd
 𝑟𝑟

 =
 0

.1
. 

 

 

N
ote

. T
he

 h
or

iz
on

ta
l a

nd
 v

er
tic

al
 li

ne
 in

 th
e f

ig
ur

e r
es

pe
ct

iv
el

y s
ho

w
 th

e a
ve

ra
ge

 v
al

ue
 o

f λ
𝑚𝑚(𝑆𝑆

)  an
d 
λ 0(𝑆𝑆

)  w
ith

in
 a 

sp
ec

ifi
c c

on
di

tio
n.

 
W

ith
 λ
𝑚𝑚(𝑆𝑆

)  =
 s

am
pl

e 
no

nc
en

tra
lit

y 
fo

r 
th

e 
es

tim
at

ed
 tr

ue
 m

od
el

; λ
0(𝑆𝑆

)  =
 s

am
pl

e 
va

lu
e 

of
 th

e 
nu

ll 
ba

se
lin

e 
no

nc
en

tra
lit

y.
 G

iv
en

 
th

at
 C

FI
 =

 1
 −

 λ
𝑚𝑚 λ 0

, t
he

 d
ia

go
na

l l
in

e 
is 

th
e 

cr
iti

ca
l l

in
e 

re
pr

es
en

tin
g 

th
e 

co
m

bi
na

tio
n 

of
 λ
𝑚𝑚(𝑆𝑆

)  v
al

ue
s 

an
d 
λ 0(𝑆𝑆

)  v
al

ue
s 

th
at

 re
su

lts
 

in
 C

FI
 =

 .9
5.

 R
ep

lic
at

io
ns

 th
at

 a
re

 p
os

iti
on

ed
 in

 th
e 

ar
ea

 a
bo

ve
 th

is 
lin

e 
w

ill
 a

lw
ay

s 
re

su
lt 

in
 C

FI
 v

al
ue

s 
be

lo
w

 .9
5,

 le
ad

in
g 

to
 

re
je

ct
io

n 
of

 th
e 

m
od

el
. W

hi
le

 re
pl

ic
at

io
ns

 p
os

iti
on

ed
 o

n 
or

 b
el

ow
 th

e 
di

ag
on

al
 li

ne
 w

ill
 re

su
lt 

in
 g

oo
d 

m
od

el
 fi

t a
cc

or
di

ng
 to

 th
e 

.9
5 

ru
le

 o
f t

hu
m

b 
fo

r C
FI

. T
he

 p
at

te
rn

 o
bs

er
ve

d 
is 

fo
r t

he
 lo

w
-s

am
pl

e-
siz

e-
lo

w
-c

or
re

la
tio

n 
co

nd
iti

on
s 

no
t c

on
fo

rm
in

g 
to

 th
e 

m
et

ric
 s

pa
ce

 p
rin

ci
pl

e,
 fo

r w
hi

ch
 th

eo
re

tic
al

ly
 u

ne
xp

ec
te

d 
hi

gh
er

 re
je

ct
io

n 
ra

te
s 

oc
cu

r w
ith

 in
cr

ea
sin

g 
nu

m
be

r o
f v

ar
ia

bl
es

 (s
ee

 
al

so
 T

ab
le

 2
). 

 

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 11 
Van Laar & Braeken, Understanding CFI 
 
 
 
  

Fi
gu

re
 2

. S
ca

tte
rp

lo
t w

ith
 m

ar
gi

na
l d

ist
rib

ut
io

ns
 o

f λ
𝑚𝑚(𝑆𝑆

)  a
nd

 λ
0(𝑆𝑆

)  a
s a

 fu
nc

tio
n 

of
 th

e 
co

rr
el

at
io

n 
𝑟𝑟 

fo
r t

he
 c

on
di

tio
ns

 w
he

re
 𝑛𝑛

 
=

 1
00

 a
nd

 𝑝𝑝
 =

 1
2.

 

 

 

N
ote

. T
he

 h
or

iz
on

ta
l a

nd
 v

er
tic

al
 li

ne
 in

 th
e f

ig
ur

e r
es

pe
ct

iv
el

y s
ho

w
 th

e a
ve

ra
ge

 v
al

ue
 o

f λ
𝑚𝑚(𝑆𝑆

)  an
d 
λ 0(𝑆𝑆

)  w
ith

in
 a 

sp
ec

ifi
c c

on
di

tio
n.

 
W

ith
 λ
𝑚𝑚(𝑆𝑆

)  =
 s

am
pl

e 
no

nc
en

tra
lit

y 
fo

r 
th

e 
es

tim
at

ed
 tr

ue
 m

od
el

; λ
0(𝑆𝑆

)  =
 s

am
pl

e 
va

lu
e 

of
 th

e 
nu

ll 
ba

se
lin

e 
no

nc
en

tra
lit

y.
 G

iv
en

 
th

at
 C

FI
 =

 1
 −

 λ
𝑚𝑚 λ 0

, t
he

 d
ia

go
na

l l
in

e 
is 

th
e 

cr
iti

ca
l l

in
e 

re
pr

es
en

tin
g 

th
e 

co
m

bi
na

tio
n 

of
 λ
𝑚𝑚(𝑆𝑆

)  v
al

ue
s 

an
d 
λ 0(𝑆𝑆

)  v
al

ue
s 

th
at

 re
su

lts
 

in
 C

FI
 =

 .9
5.

 R
ep

lic
at

io
ns

 th
at

 a
re

 p
os

iti
on

ed
 in

 th
e 

ar
ea

 a
bo

ve
 th

is 
lin

e 
w

ill
 a

lw
ay

s 
re

su
lt 

in
 C

FI
 v

al
ue

s 
be

lo
w

 .9
5,

 le
ad

in
g 

to
 

re
je

ct
io

n 
of

 th
e 

m
od

el
. W

hi
le

 re
pl

ic
at

io
ns

 p
os

iti
on

ed
 o

n 
or

 b
el

ow
 th

e 
di

ag
on

al
 li

ne
 w

ill
 re

su
lt 

in
 g

oo
d 

m
od

el
 fi

t a
cc

or
di

ng
 to

 th
e 

.9
5 

ru
le

 o
f t

hu
m

b 
fo

r C
FI

. I
n 

co
nt

ra
st

 to
 F

ig
ur

e 
1,

 th
e 

pa
tte

rn
 se

en
 h

er
e 

is 
th

e 
do

m
in

an
t p

at
te

rn
 c

on
fo

rm
in

g 
to

 th
e 

m
et

ric
 sp

ac
e 

pr
in

ci
pl

e,
 in

st
ea

d 
of

 th
e 

ex
ce

pt
io

n 
to

 th
e 

ru
le

. 

 

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 12 
Van Laar & Braeken, Understanding CFI 
 
We expected that if this rule of thumb works, cases 
where RMSEA0 < .158 co-occur with a CFI value below 
the commonly adopted .95 threshold more often than 
not for models that fit. 

As an initial rough effectiveness indicator of this 
rule of thumb we cross-classified all replications for each 
condition from the main simulation study based on 
whether the sample RMSEA0 and CFI values were 
below or above their respective thresholds (see Table 3). 
On average the incidence of RMSEA0 < .158 amounted 
to 31% of the cases. Given RMSEA0 < .158, the 
probability for also obtaining a CFI value below .95 was 
on average 17.5% with a range across conditions 
between 0 and 84.2%. The reason for this wide range 
can be clearly illustrated by translating the RMSEA0 < 
.158 into a corresponding required value for the null 
baseline noncentrality 𝜆𝜆0.158 = RMSEA0

2× (𝑛𝑛 − 1) × df0. 
This threshold null baseline noncentrality 𝜆𝜆0.158 value 
indeed only depends on two design factors – the number 
of variables 𝑝𝑝 (𝜂𝜂2 = .482), sample size 𝑛𝑛 (𝜂𝜂2 = .225) –, 
and their interaction 𝑛𝑛 × 𝑝𝑝 (𝜂𝜂2 = .293), but not on the 
third factor data correlation 𝑟𝑟 (i.e., 𝜂𝜂2 = .000 for 𝑟𝑟, 𝑝𝑝 × 
𝑟𝑟, 𝑟𝑟 × 𝑛𝑛, & 𝑝𝑝 × 𝑟𝑟 × 𝑛𝑛). As one example, Table 4 clearly 
illustrates the ignorance of this RMSEA0 < .158 
threshold for the conditions where sample size 𝑛𝑛 = 200 
and df0 = 28 (i.e., number of variables 𝑝𝑝 = 8). Note that 
these results generalize across the other conditions. The 
RMSEA0 < .158 specification wrongly assumes a null 
baseline noncentrality 𝜆𝜆0.158 that remains constant 
regardless of the correlation 𝑟𝑟 in the data, whereas CFI 
and its denominator the null baseline noncentrality λ0 
are highly sensitive to exactly this correlation. 

In the end, the overall negative predictive value of 
the .158 rule of thumb appears to be not too reliable (i.e., 
Pr(CFI < .95|RMSEA0 < .158)). Hence, it varies highly 
whether we can indeed expect too low CFI values given 
a correctly specified model when RMSEA0 < .158. On 
the other hand, the correct decision of acceptable fit (i.e., 
CFI ≥ .95) is taken in on average 95.8% (range across 
conditions = 52.9-100%) of the cases that RMSEA0 ≥ 
.158. Hence, the overall positive predictive value (i.e., 
Pr(CFI ≥ .95|RMSEA0 ≥ .158)) of the .158 rule of 
thumb is more promising. The reason for this difference 
is that for specific settings the null baseline noncentrality 
corresponding to the RMSEA0 = .158 threshold is 
unreachable. This is illustrated in the latter columns of 
Table 4, where for this particular case of 𝑛𝑛 = 200 and 𝑝𝑝 
= 8, RMSEA0 values below .158 can only occur in 

conditions with correlations 𝑟𝑟 below .3 (i.e., 𝜆𝜆0
(𝑆𝑆) < 

𝜆𝜆0.158). Note that the specific breakdown point does vary 
depending on sample size 𝑛𝑛 and number of variables 𝑝𝑝. 
In the end, this leads exactly to flagging down some of 
the conditions in which the CFI baseline for comparison 
is rather too small for effective model differentiation. 

 

Table 3. Cross-classification of all replications in the 
main simulation study based on their RMSEA0 and 
CFI value relative to the corresponding thresholds. 

 
Note. RMSEA0 = RMSEA values for the null baseline 
model; CFI = CFI values for the estimated true 
model. For the proposed rule of thumb to work, 
RMSEA0 values below .158 ought to co-occur with 
CFI values below .95. Each cell in the cross-
classification contains the overall average percentage 
and range of average percentages of replications 
across conditions in the main simulation study that is 
consistent with its thresholds-requirements. 

 

In sum, despite its relatively good average positive 
predictive value, the proposed .158 rule of thumb does 
not fully meet its purpose. In its current form it is too 
general and ignores the role of one of the key 
components of CFI (cf. data correlation). In light of the 
wide range of values and variation in performance, it 
does not seem advisable to utilize a fixed general 
RMSEA threshold as the conclusive answer for 
assessing whether or not to apply the CFI for fit 
assessment. 

 

Discussion 
If we would desire not mere mindless binary rule-

following but more deliberate practice when assessing 
model fit, we need to better clarify what type of fit each 
of the different indices stand for and to provide a better 
insight in their inner workings to understand why fit 
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indices behave like they do. In this study, we started with 
such endeavour for the Comparative Fit Index. 

CFI is a relative model fit measure expressed as a ratio 
of the noncentrality of the model of interest to that of a 
baseline comparison model. In essence this implies that 
the CFI is in fact a standardized statistic where the 
standard of comparison is typically provided by the 
noncentrality of the null model that is by default chosen 
as comparison model. This does mean that one CFI is 
not the other because the baseline standard, the 
noncentrality of the null model, is determined by data 
dimensions (i.e., 𝑛𝑛 × 𝑝𝑝) and amount of multivariate 
dependence in the data (i.e., |𝐑𝐑|). This is important as 
the implications of absolute value judgement of good fit 
according to CFI might not correspond to the relative 
improvement CFI stands for. With a small CFI metric 
space, low relative improvement does not necessarily 
imply that a model is not good in terms of absolute fit, 
while a high relative fit given a large metric space can still 
be associated with a large amount of absolute 
misspecification. The broader the baseline, the less strict 
the CFI ≥ .95 rule of thumb becomes as more absolute 
misspecification is allowed for a model that is considered 

to adequately fit. This natural feature of a 
standardized/relative measure such as CFI, brings 
Moshagen and Auerswald (2018) to caution strongly 
against CFI’s use for evaluating absolute fit of a single 
model. 

However, such decontextualized assessment of fit 
of a single model is unfortunately quite commonplace in 
practice with the default application of the binary rule of 
thumb: CFI ≥ .95 means “good fit” whatever that might 
mean. If we formalize the latter as correctly identifying 
the true model as a good fitting model, with a binary 
decision rule that works at least 95% of the time, our 
simulation results show that the rule of thumb needs to 
be adjusted based on data characteristics or only be 
applied under certain qualifications. 

Qualifications for use of CFI’s rule of thumb. Our results 
illustrate the theoretically derived principle that a wider 
basis for model differentiation is provided by increasing 
the three core components of the null baseline 
noncentrality – sample size 𝑛𝑛, number of variables 𝑝𝑝, 
and multivariate dependence as reflected by |𝐑𝐑|, the 
determinant of the data correlation matrix. This results 

Table 4. Attainability of the threshold: Sensitivity of the null baseline noncentrality and CFI to data 
correlation 𝑟𝑟 in relation to the constant RMSEA0 rule of thumb and corresponding threshold in terms of the 
null baseline noncentrality 𝜆𝜆0.158. 

 
Note. The results stem from the main simulation study and show an example for the conditions where the 
sample size 𝑛𝑛 = 200 and the number of variables 𝑝𝑝 = 8. RMSEA0 = RMSEA threshold of the null baseline 
model; 𝜆𝜆0.158 = .158 threshold for RMSEA0 translated in terms of null baseline noncentrality; 𝜆𝜆0

(Σ) = 
population value of the null baseline noncentrality; 𝜆𝜆0

(𝑆𝑆)= sample value of the null baseline noncentrality; CFI 
= CFI value for the estimated true model. 
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in high rates of qualifying the correctly specified model 
as having good fit in high signal to noise conditions, that 
is high correlation with added high sample size 
regardless of the number of variables. In contrast, in low 
signal to noise conditions, that is low sample size and 
low correlation, the CFI ≥ .95 rule was too strict and an 
increase of the number of variables made matters even 
worse. In the latter conditions, the null baseline model is 
already quite close in absolute fit to the correctly 
specified model, hence it is less likely to observe a huge 
relative change of 95% of that small distance even for a 
correctly specified model. Consequently, a word of 
caution for the current binary use of the CFI ≥ .95 rule 
of thumb in such conditions is in order. Sample sizes 
below 200 are unfortunately not uncommon (Jackson et 
al., 2009; MacCallum & Austin, 2000) and the prevailing 
pragmatic idea that standardized factor loadings of .3 (𝑟𝑟 
= .09) and .4 (𝑟𝑟 = .16) are sufficient for meaningful 
interpretation (Brown, 2015) seems too optimistic. 

The CFI ≥ .95 rule of thumb would approximately 
work in this 95% correct sense as a function of sample 
size and correlation: for 𝑛𝑛 = 1000, a correlation of at 
least 𝑟𝑟 = .1, for 𝑛𝑛 = 500, a correlation of at least 𝑟𝑟 = .2 
is required, for 𝑛𝑛 = 200 a correlation of at least 𝑟𝑟 = .3, 
and for 𝑛𝑛 = 100 a correlation of at least 𝑟𝑟 = .5. Based on 
our simulation results, a conjecture could be put forward 
that a baseline noncentrality of 𝜆𝜆0

(𝑆𝑆) ≥ 1400 provides a 
sufficient broad metric space for fine-grained model 
differentiation using the CFI (e.g., conditions in line with 
this requirement had very narrow CFI range for the true 
model and far above the .95 rule of thumb). This is a 
conservative guideline as things do not necessarily look 
bad in all smaller baseline conditions. Although the 
general CFI metric-space principle holds, the specific 
values suggested here are of course based on the limited 
set of levels of factors considered in the small simulation 
study, and would be somewhat adjusted with availability 
of results for more factor levels (e.g., extra sample size 
conditions) or even other design factors such as the data-
generating model. Yet, the general identified patterns 
related to the CFI baseline are mostly data driven and 
core points and non-value specific recommendations 
can in that sense be trusted to generalize quite well. 

We already mentioned that these type of additional 
qualifications, on when the CFI rule of thumb can be 
used, are not something new. Specifically, we looked into 
the recommendation not to use CFI if the RMSEA of 
the null model is less than .158 (Kenny, 2015). Even 

though this qualification does attempt to provide a more 
nuanced reporting of CFI, the simulation results showed 
that in light of its wide variation in performance across 
conditions, it is not advisable to use this specific 
qualification without careful deliberation. Yet, the 
underlying idea does contain merit as it essentially 
intends to filter out cases where there is a lack of 
covariance and high levels of noise in the data. Perhaps, 
we should not even consider SEM in such cases in the 
first place (e.g., Barrett, 2007) or at the minimum realize 
that it’s not reasonable to expect a large relative fit 
difference from a null baseline model that itself is already 
very closely fitting to the data in an absolute parsimony 
fit sense. 

Adjusting CFI’s rule of thumb. Alternatively, instead of 
including additional qualifications on when to use CFI’s 
rule of thumb, we could also adjust the rule of thumb 
depending on data characteristics. The general pattern of 
results shows that the CFI threshold should even 
become stricter in the more optimal situations (high 
correlation 𝑟𝑟, high sample size 𝑛𝑛: CFI 5% quantiles as 
high as .99), while it needs to be reduced considerably in 
the less optimal situations (low correlation 𝑟𝑟, low sample 
size 𝑛𝑛). The latter could even result in setting a threshold 
value as low as CFI ≥ .57 for a specific condition (𝑛𝑛 = 
100, 𝑝𝑝 = 24, 𝑟𝑟 = .1). When realistic CFI values for a true 
model cover such a broad range, CFI loses its 
informativeness for absolute model fit assessment. 

Effect size. Another more drastic, but likely 
preferable alternative to including additional 
qualifications on when to use CFI’s rule of thumb or 
adjusting its threshold value as a function of data 
characteristics, would be to actually interpret CFI’s 
value. In this respect, it is useful to see CFI as an 
extension of the linear regression model’s R-square 
effect size measure to the broader SEM field. Both 
measures have indeed a similar setup: 

 𝑟𝑟𝑌𝑌|𝑋𝑋
2  = 1 − 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡
  

 CFI(𝑚𝑚,0) = 1 − 𝜆𝜆𝑚𝑚
𝜆𝜆0

  

effect size = 1 −  misspecification target model vs.  saturated model

misspecification null model vs.  saturated model
  

This further clarifies that in essence, CFI is, like the R-
square, a standardized effect size measure and hence all 
reservations with respect to interpretations of 
standardized effect size measures (e.g., Baguley, 2009) 
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transfer to the interpretation of CFI. Such a realization 
has two major implications. 

Firstly, CFI can be a useful benchmark metric for 
interpreting the relative magnitude of the effects within 
the same application dataset. Having a set of competing 
models, CFI can be used to quantify the effect size of 
the paths in which the models differ. In other words, we 
are using CFI as intended as an incremental comparative 
fit index among a set of models for the same dataset and 
interpreting its value in terms of relative magnitude. 

Secondly, comparing CFI’s across different datasets 
is not straightforward as given their standardized nature, 
a value of .95 is indeed similar in relative magnitude, but 
not necessarily in absolute magnitude. The latter would 
require that the denominator in CFI’s formula remains 
constant across datasets. Where R-square is a relative 
reduction in variance not accounted for, and the 
denominator is a proxy for total variance in the outcome 
variable, CFI is a relative reduction in model non- 
centrality, and – when the baseline model is the null 
model – the denominator can be seen as a proxy for the 
amount of generalized variance in the manifest variables 
of the model, the determinant of the observed 
correlation matrix |𝐑𝐑|. An interpretation of CFI in terms 
of absolute magnitude would require an interpretation of 
the amount of generalized variance, that is the value of 
this determinant. The determinant of a correlation 
matrix can be seen geometrically as the volume of the 
swarm of standardized data points, with |𝐑𝐑| = 1 in case 
of all zero-correlations (corresponding to a ‘ball’ in a 
multidimensional plane) and with |𝐑𝐑| = 0 for a matrix 
with perfect linear dependence (a ball flattened along at 
least one dimension). Whereas people in practice often 
already find it hard to interpret the absolute magnitude 
of a variance, it is fair to say that even less people have a 
good intuition about what a large or small generalized 
variance or determinant is for their dataset. The current 
lack of straightforward interpretability of CFI in terms 
of absolute magnitude essentially disqualifies it in 
practice for assessing the absolute fit of a single model 
or for comparing model fit between different datasets. 

Nevertheless, the central role of this determinant 
should revive some interest in understanding classic 

                                                 
 

2 In a linear model, it is similarly good practice to report next to the R-square also the total variance of the outcome 
variable (or alternatively the residual standard deviation) to contextualize the percentage. 

measures of multivariate statistics (e.g., Anderson, 1958) 
to further our understanding of more modern SEM 
practices. In the meantime, we recommend 
implementing a reporting standard where next to the 
CFI also its denominator, the baseline model’s 
noncentrality 𝜆𝜆0 is reported to provide some context for 
interpretation. These quantities are generally available or 
easy to request in common SEM software such as Mplus 
or R:lavaan. If the default null model is chosen as 
baseline, explicit reporting of its three key components 
– sample size 𝑛𝑛, number of manifest variables 𝑝𝑝, 
determinant of the observed correlation matrix |𝐑𝐑| – 
would help in gaining some intuition on common 
reference values for these data characteristics2 in your 
field of application and eventually allow for a better 
interpretation of relative and absolute magnitude of CFI 
even across datasets. 

Other Considerations. One limitation of the current 
study is that we only considered the default null model 
in which all observed variables are uncorrelated while 
looking at the performance of CFI. However, it was 
already discussed by Bentler and Bonett (1980, p. 604) 
that “the incremental fit indices depend critically on the 
availability of a suitable framed null model”. Widaman 
and Thompson (2003) argue that there are numerous 
situations in which the default null model would be an 
improper choice. Different alternatives for specification 
of a proper baseline model can be found in the literature 
(e.g., Little, 2013; Widaman & Thompson, 2003). While 
Widaman and Thompson (2003) already touched upon 
it, going forward it is important to systematically evaluate 
the potential influence of the chosen null model on 
performance evaluation of the different comparative fit 
indices under different circumstances, as well as the 
substantive consequences of comparing a model of 
interest to a more meaningful baseline model. 

In this study, we focused on the typical maximum 
likelihood estimator used in structural equation 
modelling, yet it would be of interest to expand the study 
to other estimators in particular for the categorical data 
case, both including limited-information estimators 
based on the polychoric correlation matrix or bivariate 
contingency tables as well as full-information estimators 
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based on the item response patterns (cf. item response 
theory tradition). A move to the categorical case might 
also essentially call for a different baseline model; for 
categorical data, correlations are strongly constrained by 
their marginal distributions as mean and variance are 
intertwined. 

Another avenue for further research would be to 
explore the impact of transitioning from classic 
estimates for the two noncentrality parameters in the 
CFI to bias-corrected estimates as for instance suggested 
by Raykov (2005). Raykov did add caution as for 
instance a bias-correction bootstrap estimate of 
noncentrality is feasible, but the properties of the 
approach for this particular case have not been fully 
studied. Yet deflating differential sampling bias in both 
numerator and denominator of CFI could potentially 
ensure that its sampling behavior is even more 
systematic and in line with the driving components of 
the baseline. 

Conclusion  

To conclude, the CFI does what it is supposed to 
do, but we haven’t been using it in a smart fashion. The 
CFI is a relative fit measure where the standard for 
comparison is provided by the noncentrality of the (null) 
baseline model. The common CFI ≥ .95 rule of thumb 
implies that regardless of context we are happy with a 
reduction of 95% of the misspecification by the null 
model. Current practices make us prone to hunting 
down this magic CFI ≥ .95 value as a pseudo absolute 
fit measure disregarding the existence of the baseline. 
CFI as an absolute but meaningless criterion that needs 
to be fulfilled to achieve an adequate model that can 
serve as starting point for further analysis. To help 
remedy this, we recommend that at a minimum a dual 
reporting standard is followed where both model of 
interest and the (null) baseline model are evaluated to 
provide proper context for interpretation of the CFI 
value. By making the presence of the baseline (and its 
core components) explicit in the reporting, the need to 
take it into account when interpreting fit indices also 
becomes explicit and non-ignorable. Even more optimal 
would be if CFI is not simply used as a mere number in 
a search for model adequacy but used as a real relative fit 
index intended to evaluate the relevance of cumulative 
theoretically motivated model restrictions in terms of % 
reduction in misspecification as measured by the 
baseline model (Bentler & Bonett, 1980). 

References 
Anderson, T. (1958). An Introduction to Multivariate Statistical 

Analysis. Wiley. 

Baguley, T. (2009). Standardized or simple effect size: What 
should be reported? British Journal of Psychology, 100(3), 
603–617. 

Barrett, P. (2007). Structural equation modelling: Adjudging 
model fit. Personality and Individual Differences, 42(5), 815–
824. 

Bentler, P. M. (1990). Comparative fit indexes in structural 
models. Psychological Bulletin, 107(2), 238–246. 

Bentler, P. M., & Bonett, D. G. (1980). Significance tests 
and goodness of fit in the analysis of covariance 
structures. Psychological Bulletin, 88(3), 588–606. 

Bollen, K. A. (1989). Structural Equations with Latent Variables. 
John Wiley & Sons, Inc. 

Boomsma, A. (1985). Nonconvergence, improper solutions, 
and starting values in lisrel maximum likelihood 
estimation. Psychometrika, 50(2), 229–242. 

Brown, T. A. (2015). Confirmatory Factor Analysis for 
Applied Research (2nd). Guilford Press. 

Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. 
(2002). The noncentral chi-square distribution in 
misspecified structural equation models: Finite sample 
results from a Monte Carlo simulation. Multivariate 
Behavioral Research, 37(1), 1–36. 

Graybill, F. A. (1983). Matrices with Applications in Statistics 
(2nd). Wadsworth International Group. 

Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, 
R. L. (2006). Multivariate Data Analysis (6th). Pearson. 

Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, 
M. (2011). Masking misfit in confirmatory factor 
analysis by increasing unique variances: A cautionary 
note on the usefulness of cutoff values of fit indices. 
Psychological Methods, 16(3), 319–336. 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit 
indexes in covariance structure analysis: Conventional 
criteria versus new alternatives. Structural Equation 
Modeling, 6(1), 1–55. 

Jackson, D. L., Gillapsy, J. A., & Purch-Stephenson, R. 
(2009). Reporting practices in confirmatory factor 
analysis: An overview and some recommendations. 
Psychological Methods, 14(1), 6–23. 

Kenny, D. A. (2015). Measuring model fit. 
http://davidakenny.net/cm/fit.htm  

http://davidakenny.net/cm/fit.htm


Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 17 
Van Laar & Braeken, Understanding CFI 
 
Lai, K., & Green, S. B. (2016). The problem with having two 

watches: Assess- ment of fit when RMSEA and CFI 
disagree. Multivariate Behavioral Research, 51(2-3), 220–
239. 

Little, T. D. (2013). Longitudinal Structural Equation Modeling. 
Guilford Press. 

MacCallum, R. C., & Austin, J. T. (2000). Applications of 
structural equation modeling in psychological research. 
Annual Review of Psychology, 51(1), 201–226. 

Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of 
golden rules: Comment on hypothesis-testing 
approaches to setting cutoff values for fit indexes and 
dangers in overgeneralizing Hu and Bentler’s (1999) 
findings. Structural Equation Modeling: A Multidisciplinary 
Journal, 11(3), 320–341. 

McDonald, R. P., & Ho, M. R. (2002). Principles and 
practice in reporting structural equation analyses. 
Psychological Methods, 7(1), 64–82. 

Moshagen, M. (2012). The model size effect in SEM: 
Inflated goodness-of-fit statistics are due to the size of 
the covariance matrix. Structural Equation Modeling: A 
Multidisciplinary Journal, 19(1), 86–98. 

Moshagen, M., & Auerswald, M. (2018). On congruence and 
incongruence of measures of fit in strucutral equation 
modeling. Psychological Methods, 23(2), 318–336. 

Muthén, L. K., & Muthén, B. O. (2002). How to use a 
Monte Carlo study to decide on sample size and 
determine power. Structural Equation Modeling: A 
Multidisciplinary Journal, 9(4), 599–620. 

Niemand, T., & Mai, R. (2018). Flexible cutoff values for fit 
indices in the evaluation of structural equation models. 
Journal of the Academy of Marketing Science, 46, 1148–1172. 

R Core Team. (2020). R: A language and environment for 
statistical computing. 

Raykov, T. (2005). Bias-corrected estimation of 
noncentrality parameters of covariance structure 
models. Structural Equation Modeling: A Multidisciplinary 
Journal, 12(1), 120–129. 

Ropovik, I. (2015). A cautionary note on testing latent 
variable models. Frontiers in Psychology, 6, Article 1715. 

Rosseel, Y. (2012). lavaan: An R package for structural 
equation modeling. Journal of Statistical Software, 48(2), 1–
36. 

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. 
(2003). Evaluating the fit of structural equation models: 
Tests of significance and descriptive goodness-of-fit 
measures. Methods of Psychological Research Online, 8, 23–
74. 

Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). 
Understanding the model size effect on SEM fit 
indices. Educational and Psychological Measurement, 79(2), 
310–334. 

Shi, D., Lee, T., & Terry, R. A. (2018). Revisiting the model 
size effect in structural equation modeling. Structural 
Equation Modeling: A Multidisciplinary Journal, 25(1), 21–
40. 

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the 
multivariate asymptotic distribution of sequential Chi-
square statistics. Psychometrika, 50(3), 253–263. 

Widaman, K. F., & Thompson, J. S. (2003). On specifying 
the null model for incremental fit indices in structural 
equation modeling. Psychological Methods, 8(1), 16–37. 

 

 

Citation: 

van Laar, S., & Braeken, J. (2021). Understanding the Comparative Fit Index: It’s All About the Base! Practical 
Assessment, Research & Evaluation, 26(26). Available online: 
https://scholarworks.umass.edu/pare/vol26/iss1/26/ 
 

Corresponding Author 

Saskia van Laar 
Centre for Educational Measurement at the University of Oslo (CEMO) 
Oslo, Norway 

 
email: s.van.laar [at] cemo.uio.no 

https://scholarworks.umass.edu/pare/vol26/iss1/26/


Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 18 
Van Laar & Braeken, Understanding CFI 
 

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 19 
Van Laar & Braeken, Understanding CFI 
 

 



Practical Assessment, Research & Evaluation, Vol 26 No 26 Page 20 
Van Laar & Braeken, Understanding CFI 
 

Appendix B: Results of main study 
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