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In light of the replication crisis in psychology, null-hypothesis significance testing (NHST) and p-
values have been heavily criticized and various alternatives have been proposed, ranging from slight 
modifications of the current paradigm to banning p-values from journals. Since the physics education 
research community often relies on quantitative statistical approaches, the challenges the replication 
crisis poses to these approaches need to be considered. p-values suffer primarily from the fact that 
they carry little information by themselves and lend themselves to misinterpretations. As one 
alternative, Bayesian approaches have become increasingly popular as the posterior distributions they 
provide carry more relevant information than p-values. In this paper, we discuss practical issues related 
to p-values with respect to interpreting and communicating results and how these issues can be 
addressed using a Bayesian approach. Drawing on a science education data set, we demonstrate how 
Bayesian data analysis methods go beyond p-values and can help to make more valid conclusions and 
to communicate them more easily in a manner that lends itself to less misinterpretations. 
 

Introduction 

Since its development in the early 20th century, the 
concept of p-values in frequentist null hypothesis 
significance testing (NHST) has been criticized by 
numerous authors based on theoretical and practical 
issues (Cohen, 1994; Gigerenzer et al., 2004; Ioannidis, 
2005; McShane et al., 2017; Meehl, 1967; Simmons et 
al., 2011). However, p-values are still pre-dominant in 
psychological and more specifically science education 
research today (e.g., all papers involving statistical 
analysis published in Physical Review Physics Education 
Research in 2016 used p-values). Recently, concerns with 
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NHST and p-values have resurfaced as part of the 
discourse about the reproducibility crisis in 
psychological and social science (Nuzzo, 2014; Open 
Science Collaboration, 2015) with well documented 
high profile replication failures as in Carney et al. 
(2010). Some researchers even go so far as to argue that 
low replication rates are to be expected given the 
current statistical paradigm (Smaldino & McElreath, 
2016). Various alternatives to current practices have 
been proposed in the past. Some within the frequentist 
framework suggest modifying the current practice with 
p-values, e.g., justifying the necessary p-value levels in 
order to claim statistical significance for each study 
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depending on design, sample size, etc. (Lakens et al., 
2018) or lowering the conventional significance level 
from 0.05 to 0.001 in order to reduce the rate of false-
positives (Benjamin et al., 2018). Others go beyond 
current practices and argue for a “new statistic” that 
shifts the emphasis to parameter estimation 
(Cumming, 2014). Some argue for an even more radical 
shift and propose Bayesian approaches (Gigerenzer et 
al., 2004; Kruschke, 2013; Kruschke & Liddell, 2017; 
Wagenmakers et al., 2018). 

 Edwards et al. (1963), Cohen (1994), and 
Gigerenzer et al. (2004) have provided discussions 
about theoretical, mostly epistemic, differences 
between frequentist and Bayesian approaches. More 
practical discussions have been provided in the context 
of structural equation models (SEM) and 
developmental research (van de Schoot et al., 2014) or 
hypothesis testing and general psychology (Kruschke, 
2013; Wetzels & Wagenmakers, 2012). In this paper, 
we demonstrate how Bayesian approaches can be 
useful in the context of science education research. 
Drawing on linear models as one of the dominant 
statistical tools in the field, we show how a Bayesian 
approach allows the incorporation of strong theoretical 
knowledge or knowledge from previous studies into 
statistical analyses and thus can help with interpreting 
their data. Further, given how people (including 
researchers) struggle with correctly interpreting the p-
values predominant in the frequentist paradigm (Aczel 
et al., 2017; Gelman, 2013; Gelman & Stern, 2006; 
Gigerenzer et al., 2004; Wasserstein & Lazar, 2016), we 
discuss to what extent a Bayesian approach can 
support researchers in correctly interpreting statistical 
results as well as communicating these results more 
transparently. 

 In order to do so, we walk through the data analysis 
of a study in which we investigated how students’ and 
scientists’ perceptions of typical practices of scientists 
differ. We will provide theoretical background as 
necessary and present a broader discussion at the end. 

 

An Applied Example 

Background  

The sciences face relatively high drop-out rates at 
the university level (Brinkworth et al., 2009). Among 
others, this may be caused by students having 
unrealistic ideas about what scientists do (Sharkawy, 

2012; Solomon et al., 1994). In order to investigate to 
what extent students have realistic ideas about what 
scientists do, we investigated which activities high 
school students, graduate students, and science 
professors considered typical for scientists to engage in 
on a regular basis. 

In order to do so, we administered a questionnaire 
to high school students, graduate students, and science 
professors which asked them to what extent they 
considered that scientists engage in activities such as 
“reading a journal article” on a regular basis. The 
questionnaire, which was iteratively developed through 
a number of pilot studies in order to ensure validity and 
reliability, used a Likert-scale ranging from one to 
indicate that an activity is considered untypical to four 
to indicate that an activity is considered typical (see 
Figure 1 for an example question). The activities cover 
a range of dimensions (Realistic, Investigative, Artistic, 
Social, Enterprising, Conventional + Networking) 
(Dierks et al., 2014; Wentorf et al., 2015) that represent 
the whole span of activities that scientists engage in, 
e.g., social (S) covers activities such as advising a 
graduate student whereas investigative (I) covers 
activities such as conducting a literature review. For 
more details on the questionnaire see (Stamer et al., 
2019). 

Sample 

A total number of 347 persons participated in the 
study (244 high school students, 92 graduate students, 
and 10 professors). The high school students aged 16 
on average (M=16.4, SD=2.1) came from nine urban 
and sub-urban schools in northern Germany. The 
graduate students and professors came from a range of 
different physical science departments, e.g., 
computational chemistry or astrophysics, from a 
number of different German universities. All scales 
showed sufficient reliability for the three groups 

(average Cronbach’s 𝛼 = .76). 

Analysis 

In order to investigate to what extent high school 
students, graduate students, and professors have 
different ideas about what scientists do, we looked at 
the three groups on the different RIASEC+N 
dimensions. First, we calculated students’ average 
score across the questions of the respective dimension. 
The number of questions per dimension are 4 (S), 6 
(R). and 7 (C). Table 1 shows the mean and standard 
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deviation of these scores for the three groups on the 
C, S, and R dimension. Now, the question arises with 
what confidence we can consider the differences and 
similarities between the groups as real, i.e., we want to 
know to what extent the measured differences and 
similarities between the groups are due to random 
variation or can be expected to generalize to other high 
school students, graduate students, and professors. 
How sure are we that high school students and 
graduate students really have different ideas about the 
activities on the R dimension? Are high school 
students and graduate students similar enough on the 
C dimension to be considered equivalent? How 
confident can we be in the small difference between 
graduate students and professors on the R dimension 
given the small number of professors? In order to 
answer these and similar question, we apply statistical 
procedures. 

The current standard: Using p-values 

Let us formulate a statistical model for our data. 
In this paper, we will rely on linear models for analysis 
as they allow us to use a consistent manner to describe 
the  statistical  models  that  we  will  apply  and  make 
differences between the approaches easily visible 
(Cumming, 2014; Kruschke & Liddell, 2017). We first 
consider the question about the extent to which high 
school students and graduate students are really 
different on the R dimension. We denote the data for 

the R dimension 𝑅𝑖. The subscript 𝑖 indicates the 𝑖𝑡ℎ 
participants score. As in a t-test, we assume that the 
scores on the R dimension for high school and 
graduate students taken together are approximately2 

normally distributed 𝑁(𝜇𝑖 , 𝜎). Figure 2 shows the 
close alignment of the data for R and a superimposed 
normal distribution which justifies the assumption of 

normality. In 𝑁(𝜇𝑖, 𝜎), 𝜇𝑖 denotes the mean score on 
R and σ the respective standard deviation

Figure 1. Example question from the realistic (R) dimension. 

 

Table 1. Mean and standard deviation for the groups on the C, S, and R dimension 

Dimension Group Mean SD 

C 

High School Students 3.30 0.44 

Graduate Students 3.30 0.49 

Professors 3.27 0.72 

S 

High School Students 2.52 0.57 

Graduate Students 2.62 0.63 

Professors 3.65 0.43 

R 

High School Students 2.98 0.44 

Graduate Students 3.32 0.49 

Professors 2.90 0.67 

 
 

2 Please note that we make some approximations in this analysis for the sake of simplicity and refer to e.g., Gelman et al. (2012) or 
McElreath et al. (2016) for a thorough coverage of Bayesian Data Analysis and Likelihood functions beyond the normal distribution. 
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Figure 2. Histogram plot of data for R with superimposed normal distribution in black 

 

 

 

In order to get at the difference between the groups, 

we write it as a linear relationship for 𝜇𝑖 where 

𝛽0 represents the mean of the graduate students, 𝛽1 the 
difference in means between the two groups, and the 

dummy variable  𝐻𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖  indicates 
whether a participant is a high school or graduate 

student: 𝜇𝑖  =   𝛽0 +   𝛽1 × 𝐻𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 . 
All taken together, this gives the statistical model in 
equation (1): 

 

𝑅𝑖~𝑁(𝜇𝑖, 𝜎) (1) 

𝜇𝑖  =   𝛽0 +   𝛽1 ×  𝐻𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

 

 Note that the model assumes that the groups have 
similar standard deviations. If this assumption is 
violated, we have to extend the model in order to 
account for different standard deviations. We use the 
statistical software R (R Development Core Team, 
2008) in order to estimate the model, which provides 
us with t-values, degrees of freedom, and p-values. 
Conventionally, the question whether there is a 
difference between the groups will be answered based 
on the p-values3. In case of this model, the p-value for 

𝛽1 is of interest as 𝛽1 describes the difference in means 

 
 

3 Note that when we want to compare multiple groups, p-values need to be corrected in order to account for multiple testing. In the 
Bayesian framework, we can address this issue using multi-level modelling techniques (see Gelman et al., 2012). 

between high school and graduate students. Running 
the model in the statistical software R gives t(334)=-
6.15, p<.001. But what does that p-value tell us? It gives 
the probability for the difference in means taking the 
calculated t-value or a more extreme one given the null-
hypothesis that the true parameter difference in means 
is zero. In other words, the p-value tells us how 
(in)compatible the data are with our statistical model 
and the respective null-hypothesis of the difference 
between the groups being zero (Cohen, 1994; 
Gigerenzer et al., 2004; Kruschke & Liddell, 2017; 
Wasserstein & Lazar, 2016). In this case, the p-value 
tells us that our data are very incompatible with the 
null-hypothesis of the difference between the groups 
being zero. As the value is below the conventional 
p=0.05, we conclude that the difference between the 
groups is statistically significant and interpret our 
results as evidence that there really is a difference 
between high school and graduate students regarding 
the R dimension of RIASEC+N. However, statistical 
significance does not imply practical importance 
because small effects of no practical importance can be 
highly statistically significant given large samples 
(McShane & Gal, 2017). In order to judge the practical 
importance of the difference, we draw on effect size 
measures such as Cohen’s d which in our case takes the 
value of d=0.75, 95% CI [0.51, 1.00], indicating a 
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medium to large difference (Cohen, 1992). In sum, in 
this case, p-values and the effect size indicate a 
practically meaningful difference between the groups 
that we would consider real. 

Let us turn to high school and graduate students 
one the C dimension. Both groups have similar means 
and standard deviations, but are they similar enough to 
be really considered equal? Running a linear model 
gives t(334)=-0.4, p=.69, d=-0.05, 95% CI [-0.29, 0.19]. 
From p > 0.05, we infer that there is no evidence to 
reject the null-hypothesis that the difference between 
the groups is zero and conclude that there is no 
statistically significant difference between the groups. 
Further, d tells us that the observed difference between 
the groups is of little practical importance. However, 
we cannot consider this evidence that there is no 
difference between the groups because our statistical 
power could just have been too small to detect a 
difference (Cohen, 1994; Gigerenzer et al., 2004; 
Kaplan, 2014; Kruschke, 2013; Daniël Lakens, 2017). 
When we consider high school and graduate students 
on the S dimension, we face a similar situation with 
t(334)=-1.35, p=.18, d=-0.16, 95% CI [-0.40, 0.08]. 
Again, the p-value provides no evidence for a 
difference between the groups and the observed 
difference of d=-0.16, 95% CI [-0.40, 0.08] would still 
be considered of little practical importance. However, 
if we compare the results from the S and C dimension, 
we see hugely different p-values and effect sizes but are 
left with the conclusion of no evidence for difference: 
In comparison, the data for C appear to indicate that 
there is no difference between the groups more 
strongly than the data for S which might even suggest 
a small – although practically minor – difference 
between the groups. However, p-values are not very 
helpful in helping us navigate these cases. 

 The small amount of information a p-value 
provides becomes even more pronounced when we 
consider the difference between graduate students and 
professors on the R dimension: t(10.10)=-1.92, p=.08, 
d=-0.64, 95% CI [-1.3, 0.02]4. The p-value provides no 
evidence for a difference between the groups but d=-
0.64, 95% CI [-1.3, 0.02] suggests that we observed a 
medium to large effect favoring the graduate students. 

 
 

4 Note that the decimals in the degrees of freedom come from the Welch’s t-test that was used to obtain the p-value. This modified t-test 
accounts for the differences in variance between the groups and as indicated in the statistical model in equation 2. 

The large observed difference is not statistically 
significant because two factors limit the precision on 
the estimation: 1) our sample is relatively small as we 
only have data from N=10 professors and 2) we had 
to modify our statistical model in order to account for 
the difference in standard deviations in the two groups. 
We did this by adding another linear term for the 

standard deviation 𝜎 which leads to the model in 
equation (2). 

 

𝑅𝑖~𝑁(𝜇𝑖, 𝜎𝑖) (2) 

𝜇𝑖  =   𝛽0 +   𝛽1 ×  𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

𝜎𝑖  =   𝛽2 +   𝛽3 ×  𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

 If we report this result, we can argue that we 
observe a big difference and that the p-value 
approaches the conventional level of statistical 
significance. We can even point to data from our pilot 
studies that suggests that professors on average score 
close to three which is close to the average we observed 
in the present study (mean = 2.90) and in general 
answered very similarly. Considering the evidence 
holistically as the ASA’s statement suggests 
(Wasserstein & Lazar, 2016) indicates that there really 
is a difference between graduate students and 
professors regarding the R dimension. However, the 
literature also points out that we are prone to 
overestimating the magnitude of effects and potentially 
even get the sign of the effect wrong if we face low 
statistical power, i.e., in situations with small samples 
as in ours (Gelman & Carlin, 2014). In sum, the 
information p-values provide about the data remain 
somewhat inconclusive. 

In this section, we presented one case where p-
values provided evidence for a difference between 
groups. Bases on the p-values and the effect size, we 
were able to conclude that there is a medium to large 
difference between high school and graduate students 
with regard to the R dimension. Further, we presented 
two cases with data from the S and C dimension where 
p-values provided no evidence for difference between 
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groups and the observed effect sizes suggested small 
practical differences. In these cases, we could not 
conclude that there really is no difference between the 
groups as our sample might have been too small to 
detect an effect. Alarmingly, Aczel et al. (2017) found 
that taking p > 0.5 as evidence for no difference 
between groups is actually happening quite frequently 
in psychological journals. A subsequent re-analysis 
revealed that in many of those cases the available 
evidence for no difference between the groups was 
quite weak which might very well be the case with our 
results for the S dimension where p = 0.18 and d = -
0.16, 95% CI [-0.40, 0.08] could hint at a small effect 
which we were not able to detect with the present 
sample. Within the frequentist framework, we could 
draw on equivalence testing to address this problem as 
equivalence testing provides evidence whether the 
difference between the groups is in a specified range 
around zero in which differences between the groups 
can be considered practically irrelevant. However, this 
would lead us to a new methodology and set of 
software packages which is beyond the scope of this 
paper. In the last case we presented, the p-value 
provided no evidence for difference, the effect size was 
in the medium to large range, and we had information 
from a pilot study that supported the medium to large 
effect size. However, given the small sample, we also 
faced the risk of overestimating the magnitude and sign 
of the effect, which again resulted in a situation where 
p-values were not providing helpful information. 
Within the frequentist framework, we could try to 
incorporate the information from the pilot study by 
testing a directed hypothesis, i.e., that graduate 
students on average report higher values on the R 
dimension than professors. However, this would not 
use the full data available from the pilot study and 
directed hypothesis tests are rarely accepted in science 
education research. An alternative would be to draw on 
advanced methods and try to incorporate the 
information from the pilot study in our statistical 
model through penalization. Similar to equivalence 
testing, the latter would demand new methodology and 
software packages. 

Besides the problems we faced when making 
inferences because p-values did not provide us with 
much information, we also navigated a number of 
potential pitfalls when interpreting the p-values. In the 
first case where we compared high school and graduate 
students on the R dimension, we found p < .001. While 

the respective effect is conventionally considered to be 
highly significant, the magnitude of the effect is not, 
because p-values are not a measure of effect size 
(Wasserstein & Lazar, 2016) although they are 
commonly misinterpreted as such (Gelman, 2013; 
Gigerenzer et al., 2004; McShane et al., 2017; McShane 
& Gal, 2017; Wagenmakers et al., 2018). Further, we 
were careful not to interpret p-values as probabilities 
for a hypothesis being true. When we compared 
graduate and high school students on the S and C 
dimension, we were only able to  conclude very little 
from the relatively high p-values. A common 
misinterpretation is to interpret p-values as the 
probability of the null-hypothesis being true (McShane 
& Gal, 2017). This misinterpretation may very well be 
the cause for the instances where p > 0.05 was 
considered evidence for no effect that Aczel et al. 
(2017) found in psychological journals. 

Before we will explore a Bayesian approach in the 
next section, let us consider again the last case where 
we compared professors and graduate students on the 
R dimension where our p-value bases analysis provided 
only inconclusive information, which was due to our 
small sample and the lack of a way to incorporate prior 
available information into the statistical model. Science 
educations’ research often faces the same challenge. 
There is a body of substantive theory but researchers 
struggle to incorporate it into statistical analyses and 
often face small samples that do not allow for precise 
parameter estimation (Kaplan, 2014; McNeish, 2016; 
van de Schoot et al., 2014). 

Going Beyond p-values: Bayesian Data Analysis 

In this section, we will introduce the general idea 
of Bayesian data analysis and repeat the analyses we did 
in the last section in a Bayesian framework. The 
Bayesian perspective interprets probability as the 
information about uncertainty, i.e., probability 
quantifies the (un)certainty of our information about 
some aspect of the world (De Finetti, 1992). Bayes’ 
theorem forms the basis for updating one’s prior 
information about something based on data, i.e., 
considering prior information one learns from the data. 
Let us see how this works when we reconsider high 
school and graduate students on the R dimension of 
RIASEC+N again. Equation (3) shows Bayes’ 
theorem. 
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𝑃𝑟𝑖𝑜𝑟 ×  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
= 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟         (3) 

(3) 

  

 The prior is the probability distribution that 
describes our information about the world before we 
have seen the data, i.e., in our case, information about 
any differences between high school and graduate 
students on the R dimension we know from the 
literature or earlier studies. The likelihood summarizes 
the information about the world we find in the data, 
i.e., in our case, we use a normal distribution in order 
to summarize the participants’ scores on the R 
dimension, just as we did in the statistical model in 
Equation 1. It is often the most influential part in a 
Bayesian model. The posterior is the mathematical 
consequence of a given prior and likelihood as 
specified in Bayes’ theorem. It is the probability 
distribution that describes our information about the 
world given the data that we have observed, i.e., in our 
case, it is the information about differences between 
high school and graduate students on the R dimension 
that results from the combination of prior information 
and data. 

 Let us specify our statistical model for the 
difference between high school and graduate students 
on the R dimension in Bayesian terms. Since we 
summarize the data the same way, the likelihood 
remains the same as in equation (1). 

 Now we need to specify a prior for each parameter 

in the model (𝜎, 𝛽0 , 𝛽1), i.e., our prior information 
about differences between high school and graduate 
students on the R dimension. For the specification of 
a prior, we can often draw on the literature or earlier 
studies. However, in this case, we have no prior 
information available. In such cases, we can specify 
what is often called (Gelman et al., 2014; McElreath, 
2016b) a weakly informative prior, i.e., a prior 
distribution that considers basically all results equally 
likely but is skeptical of very extreme results and 
encodes natural constraints of the model. Let us first 

consider a prior for the standard deviation 𝜎. Popular 
prior distributions for standard deviations include 

 
 

5 Please note that the specification of priors is a very important part of Bayesian data analysis that requires much care. The priors in this 
paper present rather simple choices that illustrate the principles. We recommend https://github.com/stan-dev/stan/wiki/Prior-Choice-
Recommendations for advice on prior choices. 

uniform distribution and half-cauchy (McElreath, 
2016b). For simplicity5, let us consider a uniform 
distribution which considers all values in the specified 

range equally likely. We know that by definition 𝜎 is 
positive and, based on our previous experiences with 

the instrument, we consider 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) (all values 
between zero and one are equally likely) a sensible prior 
for the standard deviation. Now, we need a prior for 

𝛽0 . In our statistical model, 𝛽0  represents the average 
score on the R dimension of the graduate students. 
Based on the range of the scale (1-5) and following the 
usual assumption in linear models that coefficients are 
normally distributed, we use a normal distribution 
centered at 2.5 with a standard deviation of 0.75: 

𝑁(2.5,0.75). The standard deviation of 0.75 
represents that we do not have a lot of information 
about how graduate students score on the R dimension 
reflects the range of the scale. Finally, we need a prior 

for 𝛽1 that describes our prior information about the 
difference between the groups. Again, we use a normal 
distribution but as we have no prior information about 
the difference between the groups, we center it at zero 

and use a standard deviation of 0.5: 𝑁(0, 0.5). This 
describes that we consider a large range of differences 
between the groups equally likely. At the same time, the 
model is slightly skeptical of very large differences as 
those are not compatible with the range of the scale. 
The complete model is shown in equation (4): 

 

𝑅𝑖~𝑁(𝜇𝑖, 𝜎) (4) 

𝜇𝑖  =   𝛽0 +   𝛽1 ×  𝐻𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

𝜎 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

𝛽0  ~ 𝑁(2.5,0.75) 

 

𝛽1 ~ 𝑁(0,0.5) 

 

 Notice how the model is identical to the one 
presented in equation (1) except for the priors. If we 
had chosen priors that consider all parameter values 

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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equally likely, i.e., priors that include no information, 
our model would be equivalent to the one in equation 
(1). Thus, from a practical perspective, we could think 
of frequentist models as a special case of Bayesian 
models where we specify no prior information 
whatsoever. 

 With our statistical model at hand, we can now 
estimate the model. We use the open source 
probabilistic programming language Stan (Carpenter et 
al., 2017) which we access through an R interface called 
rethinking (McElreath, 2016a). Stan estimates these 
models using Markov-Chain Hamiltonian Monte-
Carlo sampling. While it is beyond the scope of this 
paper to explain the sampling method and Markov-
chains in detail (see e.g., McElreath (2016b) for an 
accessible explanation), there are two ways to assess 
whether the sampling was successful: visual inspection 
of the Markov-chains and the Gelman-Rubin 

convergence criterion 𝑅̂ (Gelman et al., 2014). Visual 
inspection of the Markov chains is a simple but 
powerful way to assess to what extent the Markov- 

chains have mixed and reached stationary distributions. 
Usually, trace plots of the chains should look like 
“Hairy Caterpillars” (Figure 3) when the chains have 

mixed and reached a stationary distribution.  𝑅̂ shoul 

be one to indicate convergence. If  𝑅̂ is above one, the 
Markov-chains usually have not converged. Values of 

 𝑅̂ above 1.01 warrant caution (McElreath, 2016b). For 
all models that we ran for this paper, visual inspection 

of the Markov-chains and  𝑅̂ indicated that the chains 
mixed and reached stationary distributions. 

 

When we estimated the model following the 
frequentist paradigm, our software provided us with t-
values, degrees of freedom, and p-values. In the 
Bayesian approach, the software provides us with 
posterior distributions for every parameter. How do 
we use these in order to address the question about the 
extent to which high school students and graduate 
students are really different on the R dimension? We 
calculate the posterior distribution of Cohen’s d which 
is displayed in Figure 4 below. 

 

 

Figure 3. Traceplot of a “Hairy Caterpillar” Markov-chain depicting 3000 samples. The gray box represents the first 
1000 samples, which are for warm-up 
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Figure 4. Posterior density plot of Cohen’s d for the difference between high school and graduate students on the R 
dimension. Gray area marks 95% probability interval 

 

 

 

The posterior describes the probability density of 
Cohen’s d for the difference between graduate and high 
school students. Using the conventional 95% 
threshold, the posterior distribution tells us that there 
is a 95% probability that the difference between the 
groups ranges between a Cohen’s d of -1 and -0.5 with 
the highest probability (the mean of the distribution) 
being -0.74. Thus, we can conclude that there really is 
a difference between the groups within the range of a 
medium to large effect favoring the graduate students. 
In this case, the results of a Bayesian approach and a p-
value based approach are very similar. In cases where 
we have little to no prior information and sufficient 
sample sizes, this is generally to be expected. However, 
the plot of posterior of d directly communicates the 
magnitude of the effect and the confidence which we 
can have in the results. The sharper the peak of the 
posterior, the more confident we can be of a result and 
the wider the distribution the less confident we can be 
of a result. While p-value based confidence intervals 
(CIs) in principle can carry similar information, they are 
more prone to misinterpretation because CIs do not 
necessarily carry distributional information, i.e., while 
parameter values closer to the peak of the posterior 
distribution are more likely than those at the fringes, 
parameter  values  in  the  middle  of  a  CI  are  not  

 
 

6 C: 𝛽0 = 𝑁(2.5, 0.75) , S: 𝛽0 = 𝑁(2.5, 0.75) 

necessarily more likely than those at the fringes of the 
CI. 

Let us now turn to the comparisons of graduate 
students and high school students on the C and S 
dimension where we faced p-values > 0.05 and thus 
were left with somewhat inconclusive results. In both 
cases, we have little prior information to guide us in the 
specifications of our priors. Thus, we will use priors 
similar to those used in Equation 4 and only modify 

the prior for 𝛽0 which describes the average score of 
the graduate students to be centered around the 
observed mean of the graduate students on the 
respective dimensions6. Figure 5 shows the posterior 
of d for the C dimension. The posterior distribution 
tells us that there is a 95% probability that the 
difference between the groups ranges between a 
Cohen’s d of -0.27 and 0.18 with the highest probability 
being -0.05. Further, we see that the posterior is 
relatively symmetrically distributed around zero. Our p-
value based analysis of the data did not allow us to 
conclude that there was no difference between the 
groups and applying equivalence testing would have 
led us to a new methodology and new software tools. 
In a Bayesian approach however, it is quite easy to 
apply the idea of equivalence testing because the 
posterior already provides all the information we need.  
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We can define a range of practical equivalence 
(ROPE)7 (Kruschke, 2013; Daniël Lakens, 2017), i.e., a 
range within which differences between groups have 
no practical consequences, although they may be 
measurable, e.g., in an educational setting, anything 
below the average teacher effect of d = 0.3 (Hattie, 
2009) may be considered a small or negligible effect. 
Following this definition, we can define a range of 
practical equivalence ranging from a Cohen’s d of -0.3 
to 0.3 and calculate with what probability the true 
difference between the groups lies in that range. We 
find that around 98% of probability mass of the 
posterior fall into the ROPE. Thus, we can infer that 
there is a 98% probability of practical equivalence 
between high school and graduate students regarding 
the C dimension of RIASEC+N. Thus, the Bayesian 
approach easily allows quantifying support for the null-
hypothesis of two groups being identical using a range 
of practical equivalence8. 

 Let us consider the difference between graduate 
and high school students on the S dimension. Figure 6 
shows the posterior of d for the S dimension. The 
posterior distribution tells us that there is a 95% 
probability that the difference between the groups 
ranges between a Cohen’s d of -0.30 and 0.08 with the 
highest  probability  being  -.16.  Equivalence  testing  

shows around 87% of probability mass of the posterior 
fall into the ROPE ranging from -0.3 < d < 0.3. In our 
p-value based analysis of the S and C dimension p-
values provided little information in general and also 
were not very helpful in distinguishing between the two 
cases. The Bayesian analysis however makes it easy to 
get a better sense of the extent to which the results 
provide evidence that high school and graduate 
students do not differ on the C and S dimension. On 
the C dimension, the Bayesian analysis provides 
evidence for practical equivalence between the groups, 
in case of the S dimension, the evidence for 
equivalence is substantially weaker. When it comes to 
communicating our results, the two distinctly different 
posterior distributions in Figure 4 and Figure 5 clearly 
communicate that the evidence for difference between 
the groups is more pronounced in case of C dimension 
compared to the S dimension. Because p-values are 
often (mis)interpreted in a p >.05 means “no 
evidence”9 and p <.05 means “evidence” fashion 
(Gelman, 2013; McShane & Gal, 2017), there is a 
substantial risk that the results for the C and S 
dimension would both have simply been interpreted as 
“no evidence for difference”. Thereby, the existing 
difference in the confidence of this interpretation for 
the C and S dimension would have been missed. 

 

Figure 5. Posterior density plot of Cohen’s d for the difference between high school and graduate students on the C 
dimension. Gray area marks 95% probability interval 

 

 

 

 

 

 

 

 

 
 

7 Ideally, a ROPE should be defined before any analysis is conducted in order to avoid bias. Also note that ROPEs will vary between 
disciplines, area of research etc. What matters is a sound argument for the range of the ROPE. 

8 While beyond the scope of this paper, so called Bayes factors can also be used to quantify support for null hypotheses in Bayesian data 
analysis (Aczel et al., 2017; Wagenmakers et al., 2018; Wetzels & Wagenmakers, 2012). 

9 While some disciplines use different thresholds for p-values, the principle remains the same. 
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Figure 6. Posterior density plot of Cohen’s d for the difference between high school and graduate students on the S 
dimension. Gray area marks 95% probability interval 

 

 

Figure 7. Posterior density plot of Cohen’s d for the difference between graduate students and professors on the R 
dimension. Gray area marks 95% probability interval 

 

 

 Let us now return to the comparison of graduate 
students and professors on the R dimension. Using p-
values, we faced the problem that the p-value was only 
approaching the conventional level of statistical 
significance while Cohen’s d suggested a medium to 
strong effect. Thusly, the results were relatively 
inconclusive. We attributed this to the small sample 
and the fact that we also had to estimate standard 
deviations for both groups. Available prior 
information did not help addressing the issue because 
we had no way to incorporate the information into the 
statistical model.   Now, the Bayesian approach allows  

us to incorporate this information into the statistical 
model. In a pilot study, we already saw that professors 
very consistently scored close to three. We encode this 

information in the prior for 𝛽0 which describes the 
average score of the professors. As in the previous 
cases, we use a normal distribution centered at three 
but now we will use a smaller standard deviation of 
only 0.1 in order to describe that we are relatively 
confident in values close to three based on the results 

from the pilot study: 𝛽0  ~ 𝑁 (3, 0.1). For the other 
parameters, we choose priors as in the previous cases. 
Equation (5) shows the full statistical model. 
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𝑅𝑖~𝑁(𝜇𝑖, 𝜎𝑖) 

 

(5) 

𝜇𝑖  =   𝛽0 +   𝛽1 ×  𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

𝜎𝑖  =   𝛽2 +   𝛽3 ×  𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖 

𝛽0  ~ 𝑁(3, 0.1) 

𝛽1 ~ 𝑁(0, 0.5) 

 

𝛽2 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

 

𝛽3 ~ 𝑁(0,0.5) 

 

 We estimate the model and calculate the posterior 
of d for the R dimension. The posterior distribution 
(Figure 7) tells us that there is a 95% probability that 
the difference between the groups ranges between a 
Cohen’s d of 0.35 and 1.16 with the highest probability 
being 0.74. 

 This result is very different from the one we 
obtained in our p-value based analysis. By 
incorporating our prior information about the 
professors into the statistical model, we found 
evidence that suggests that there really is a medium to 
strong difference between graduate students and 
professors with respect to the R dimension. Priors that  

strongly reflect prior available information are often 
called informative priors (Gelman et al., 2014) and it is 
through informative priors that Bayesian data analysis 
is often better prepared to handle problems with small 
samples (McNeish, 2016; van de Schoot et al., 2014). 
However, for transparencies sake, it is important to 
clearly state the assumptions that went into the 
formulation of the priors and when using informative 
priors, we should also conduct a sensitivity analysis in 
which we re-run the model with an only weakly 
informative prior and compare the results. Figure 8 
shows the posterior that resulted from estimating the 
model with a weakly informative prior and the 
posterior that resulted from estimating the model with 
the informative prior in one panel. The posterior 
estimated with a weakly informative prior is notably 
wider than the posterior estimated with an informative 
prior, reflecting the reduced precision of the estimate. 
The posterior describes that there is a 95% probability 
that the difference between the groups ranges between 
a Cohen’s d of 0.00 and 1.36 with the highest 
probability being 0.67. Thus, this posterior is not as 
strong evidence for a difference between the groups as 
the one derived from an informative prior but it points 
in a generally similar direction, thus supporting the 
general rationale of our informative prior. If the weakly 
informative prior had yielded totally different results, 
we would have to question the choice of our 
informative prior or at least would have to discuss it 
more thoroughly. As the two posteriors in Figure  8 

 

Figure 8. Posterior density plot of Cohen’s d for the difference between graduate students and professors on the R 
dimension. The distribution with a sharp peak resulted from estimating the model with informative priors, the wide 
distribution resulted from estimating the model with a weakly informative prior. Gray area marks 95% probability 
interval 
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basically represent the two extreme cases of prior 
specification (weakly informative and strongly 
informative), we also get a sense of how our prior 
information influences the result. If we re-estimated 
the model with another less strongly informative prior, 
the posterior would be somewhere between the two 
depicted in Figure 7. Another way to check the 
accuracy of our model is to look at a posterior 
predictive plot. 

 In such a plot, we compare the actual data with the 
prediction simulated from the fitted model. Figure 9 
shows the data from the professors and graduate 
students, simulated data from the model with weakly 
informative priors, and informative priors. Comparing 
the boxplots in the left panel in Figure 9, we see that 
the simulated results from the model with informative 
priors have less spread than the simulated results from 
the  model  with  weakly  informative  priors  which  

reflects that our informative prior was specified to 
represent greater confidence in parameter values close 
to three for the professors. We see a similar thing in 
the right panel with the graduate students. The 
simulated data from the model with the informative 
prior appear to capture the observed data better than 
the simulated data from the model with weakly 
informative priors. Thus, the posterior predictive plot 
lends credibility to how we specified the informative 
prior and is generally a helpful tool to check model fit. 

 In sum, the Bayesian analysis allowed us to easily 
incorporate prior information into our statistical 
model, which is rather complicated in standard 
frequentist approaches. This, in turn, allowed us to 
obtain informative posterior distributions that provide 
more conclusive information than p-values about 
difference between graduate students and professors 
on the R dimension. 

 

Figure 9. Posterior predictive check graph showing boxplots of the actual data of the professors and graduate 
students on the R dimension, and results simulated from the fitted model with weakly informative and informative 
priors 
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General Discussion 

Making Inferences and Communicating Results 

We used a standard p-value driven approach and 
Bayesian data analysis to analyze data in order to 
answer the question to what extent high school 
students, graduate students, and professors have 
different ideas about what scientists do. In case of two 
clearly different groups (high school and graduate 
students on the R dimension) and large samples, p-
values gave us confidence that the observed difference 
was not random. In case of two relatively similar 
groups (high school and graduate students on the S and 
C dimension), standard p-value based methods allowed 
us only to say that there was no evidence for difference 
between the groups, but not to quantify how good the 
evidence was for no difference between the groups. In 
case of a small sample of professors, a large effect size, 
but a p-value only approaching the level of statistical 
significance, we found ourselves in an inconclusive 
situation as we had no way of incorporating prior 
information in the estimation process of the statistical 
model. Using Bayesian data analysis, our results 
mirrored those of the p-value based approach in case 
of a clear difference in the data and a large sample. In 
general, differences between Bayesian and frequentist 
approach will be small if we have large samples and 
little prior information. However, in the other two 
cases, Bayesian data analysis allowed us to reach 
conclusions that went beyond the p-value based 
analysis. The posterior as the standard Bayesian 
“result” of an analysis allowed us to easily quantify how 
good the evidence was for no difference between high 
school and graduate students on the C dimension. 
Further, it allowed us to compare that to the difference 
between high school and graduate students on the S 
dimension which revealed that in case of the S 
dimension, the evidence was far from suggesting no 
difference between the groups. Lastly, when we faced 
the small sample of professors, we were able to include 
prior information about the professors into our 
statistical model, which resulted in a more precise 
estimation and thus allowed us to conclude that there 
really is a difference between professors and graduate 
students on the R dimension. Note that this inclusion 
of prior information in a prior is distinctly different 
from including e.g. a covariate in a regression model in 
order to account for a possible confounding variable. 
In the latter case, we add variables to better reflect the 

structure of our design or theoretical model, however, 
we do not specify prior information about that variable 
itself. 

In general, our results mirror the practical 
advantages of Bayesian data analysis we find in the 
literature: 1) Bayesian methods can improve estimation 
in small sample situation through incorporation of 
prior information which is often available in science 
education (McElreath, 2016b; McNeish, 2016; van de 
Schoot et al., 2014). 2) Once acquired, the Bayesian 
tool set provides a coherent framework for a range of 
tasks that often require specialized software packages 
in the frequentist approach (equivalence testing, 
penalization, missing value imputation, multi-level 
modelling). Further, p-values are often misinterpreted 
and lend themselves to dichotomous thinking (Aczel et 
al., 2017; Cohen, 1994; Gigerenzer et al., 2004; 
Kahneman, 2012; Kruschke & Liddell, 2017; McShane 
& Gal, 2017). Posterior distributions as a primary way 
to communicate results appear to be less prone to 
dichotomous misinterpretation as their shape describes 
how confident we are that the true value lies inside a 
given range. Further, since we have to justify our priors 
in a Bayesian approach, we make the statistical model 
explicit and can no longer hide behind jargon such as 
t-test. This should help researchers understand the 
models of their fellow colleagues better and see the 
assumptions that the researchers made when analyzing 
and interpreting their data. An issue which can hardly 
be overestimated in importance in light of the 
replication crisis in psychological and social science. 

Limitations 

The downside of the possibilities that specifying 
priors provide, is, that it is not always trivial to specify 
one and that the influence of priors on results has to 
be discussed as part of a sensitivity analysis (Gelman et 
al., 2014). Further, fitting Bayesian models is 
computationally intensive and thus takes longer. The 
bright side, however, is that Bayesian models may fit 
where frequentist maximum likelihood methods do 
not converge (McNeish, 2016; van de Schoot et al., 
2014). Thus, apart from large-scale applications where 
the most prominent practical advantages of the 
Bayesian approach do not apply because the influence 
of priors is negligible and the benefit of distributional 
information ceases to exist in light of very precise 
estimation, Bayesian models should be considered as a 
viable alternative. Lastly, there is an issue with the 
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communication of Bayesian results. Standards and 
conventions of what needs to be communicated in a 
scientific paper are simply not as developed as for the 
classical frequentist methods and people are often not 
as familiar with Bayesian methods as they are with 
frequentist ones. Thus, more explanation may be 
needed in order to adequately and successfully 
communicate the results of Bayesian data analysis. 
Lastly, we want to clarify that the results of Bayesian 
data analysis as well as any other statistical approach 
have to be carefully considered in the context of the 
actual study in which the data were collected and that 
the advantages of Bayesian data analysis we have 
demonstrated cannot solve flaws in the design of a 
study. 

 

Conclusions 

Our examples have focused on two practical 
advantages of Bayesian data analysis: 1) posterior 
distributions are more informative than p-values which 
allows for deeper analysis, and 2) incorporating prior 
information allows for better estimation and thus 
inferences. We also value the Bayesian approach 
because it appears to bridge a fundamental gap 
between data analysis and the knowledge base we build 
in science education research. Based on substantive 
theory, we can often make strong assumption about 
the relationship of variables before we have measured 
them. This reflects the body of knowledge science 
education research has built. However, if we follow the 
frequentist paradigm in our statistical models, we 
struggle to reflect that knowledge in our statistical 
models. The prior in Bayesian data analysis allows 
reflecting our knowledge as researchers in our 
statistical models. Thus, Bayesian data analysis can help 
produce statistical models that are closer tied to theory 
and thus better reflect what we know about the world 
(Fiedler, 2017; Muthén & Asparouhov, 2012). 
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