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Writing assessments often consist of students responding to multiple prompts, which are judged by 
more than one rater. To establish the reliability of these assessments, there exist different methods 
to disentangle variation due to prompts and raters, including classical test theory, Many Facet Rasch 
Measurement (MFRM), and Generalizability Theory (G-Theory). Each of these methods defines a 
standard error of measurement (SEM), which is a quantity that summarizes the overall variability of 
student scores. However, less attention has been given to conditional SEMs (CSEM), which 
expresses the variability for scores of individual students. This tutorial summarizes how to obtain 
CSEMs for each of the three methods, illustrates the concepts on real writing assessment data, and 
provides computational resources for CSEMs including an example of a specification file for the 
FACETS program for MFRM and R code to compute CSEMs for G-theory. 

Introduction 
Writing assessments are used by various national 

agencies in many countries to monitor the development 
of students’ writing proficiency and development. In 
writing assessment, major threats to reliability are rater 
and task effects and their interaction. A rater is anyone 
with the responsibility to judge the quality of a student 
text on the basis of some criteria. A writing task can take 
an infinite number of shapes, but it is common that a 
task prompts a student to write in a particular genre, 
which can be specified in terms of the function the 
writing serves (e.g., informative, argumentative, 
descriptive) or by labels such as “letter to the editor”, 
“cooking recipe”, “expository essay”, or by a 
combination (e.g., “write an argumentative text as a letter 
to the editor”).  Writing assessment research has 
consistently found rater effects to be non-trivial (Eckes, 
2015), as raters within and across contexts (e.g., school 
districts, countries) differ in their judgement of text 
quality. The hitherto only international writing 

assessment investigation ended in an anticlimax, as raters 
in different countries were found to disagree on the 
merits of texts (Purves, 1992). The task effect in writing 
assessment has also proven to be substantial. A study by 
Bouwer et al. (2015) took into account both raters and 
tasks and suggested that students need to write at least 
12 texts (three in each of four genres), rated by at least 
two independent raters to increase reliability to an 
acceptable level.  

In many contexts, multiple tasks and multiple raters are 
costly, and it is unfeasible to include 12 tasks. When 
basing decisions on the outcomes of writing assessment, 
a decision maker can be aided by estimates of the 
uncertainty of measures. The standard error of measurement 
(SEM; Harville, 1991) can be used to estimate a 
confidence interval at a given level (e.g., 68 %, 95 %, 
99%) around the observed student score by multiplying 
the SEM by 1, 1.96 or 2.58, and then subtracting and 
adding that value to the observed score. This confidence 
interval is useful in situations in which cut scores are 
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used, as it can help the practitioner assess the impact of 
establishing cut scores at certain levels. It can also be 
helpful to researchers wishing to include texts 
representing distinct proficiency levels. This SEM may 
be referred to as a “general” SEM, as it is a fixed value 
used for all candidates. This means that the confidence 
interval is equal in size across students and across 
different levels of competence. On the other hand, the 
conditional SEM (CSEM) differs by taking into account 
that the standard error of measurement is not a score-
invariant property (Embretson & Reise, 2000; Feldt et 
al., 1985). 

Reliability and SEM in Writing Assessment 

In writing assessment, reliability is often used 
interchangeably with inter-rater agreement, which 
denotes the extent to which two or more raters agree on 
the judgement of a piece of writing. Intra-rater 
agreement, which to our knowledge is less commonly 
investigated, refers to the extent to which a single rater 
is consistent over time. In a comprehensive review of 
methods for establishing inter-rater agreement, Stemler 
(2004) distinguished between consensus, consistency, 
and measurement approaches. Consensus approaches 
involve calculations that derive an index of proportions 
of exact or adjacent agreement, while consistency 
approaches are concerned with the consistency in rank 
ordering students. Consensus and consistency 
approaches were developed under the classical test theory 
(CTT) paradigm. Measurement approaches can be used 
to both estimate effects and disentangle additional 
effects (e.g., task effects, effects of writing at different 
occasions). Some measurement approaches belong to 
the modern test theory paradigm. Two of the methods 
mentioned by Stemler (2004) as measurement 
approaches are Generalizability Theory (G-theory; 
Brennan, 2001) and Many-Facet Rasch Measurement 
(MFRM; Linacre, 1994). Both methods represent more 
sophisticated techniques and can be used to disentangle 
multiple sources of variation in a writing assessment 
context, albeit under very different premises.1 

The general SEM and the G-theory and MFRM 
approaches have received outstanding treatments in 
several papers and books. Harville (1991) offers a good 
starting point for understanding SEM under CTT 

 

 
1 In fact, the CTT, G-theory and Rasch approaches are often said to represent different philosophies. It is beyond the scope of this 
practical guide to review these differences, but interested readers are referred to Embretson and Reise (2000) and Brennan (2001) for 
detailed accounts.   

approaches, G-theory has been described by Shavelson 
and Webb (1991) and Brennan (2001), and MFRM and 
other versions of the Rasch model have been thoroughly 
described in, for example, Bond and Fox (2015), Eckes 
(2015), Linacre (1994), and McNamara (1996). These 
approaches have also received due attention in the 
language testing field where there have been several 
comparisons between CTT, MFRM, and G-theory (e.g., 
Bachman, 2004). Lynch and McNamara (1998) 
compared G-theory and MFRM in terms of analysis for 
test development purposes, and Sudweeks et al. (2005) 
made comparisons of the two methods on several 
criteria, including interpretation of results and handling 
of missing data. Recently, a comprehensive introduction 
to these and other methods were presented in Aryadoust 
and Raquel (2019), accompanied by tutorials to conduct 
several relevant analyses.  

In all contexts in which students’ writing is measured for 
decision making, it is common to report the reliability of 
the measures and leave to the user of the results to 
appraise the trustworthiness of students’ results. Despite 
a rich literature, we have found very few resources 
dealing with SEM and CSEM for writing assessment, 
although SEMs offer a practical tool for assessing the 
appropriateness of, for example, dividing students into 
groups of pass and fail. For G-theory, there are accounts 
by Brennan (e.g., 1998, 2001), but these do not include 
tutorials on the procedures using widespread statistical 
software, such as SPSS and the R statistical computing 
environment (R Core Team, 2019). Moreover, there are 
very few illustrations of G-theory CSEM on real data, 
outside of the work of Brennan. For MFRM, various 
instructional papers and chapters tend to focus more on 
the so-called fit statistic. This helps the researcher to 
gauge to what extent a person’s responses fit the MFRM 
model but is less helpful for establishing confidence 
intervals around person scores.  To add to the literature, 
this article describes some approaches to SEM using, in 
Stemler’s terms, consistency measures for estimating a 
general SEM and measurement methods for estimating 
CSEM. The intention of this broad approach is to offer 
some initial guidance to researchers working either 
mainly with classical test theory approaches or with 
measurement approaches. 
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This Tutorial 

In this tutorial, we present analyses conducted on 
real writing assessment data with the CTT2, MFRM, and 
G-theory approaches, respectively. We describe how to 
estimate the general SEM for the CTT approach and 
CSEM in MFRM and G-theory, with the aim of enabling 
other researchers to gain familiarity with the procedures. 
Specifications for the software used are provided in two 
appendices. The remainder of this paper is structured as 
follows. The Methods section briefly recaps CTT, 
MFRM, and G-theory as well as the computational 
resources available for obtaining CSEMs in each of these 
methods. The Real Data Analysis section describes data 
from a study evaluating rater training for a writing 
assessment program in Norway and illustrates the basic 
results and CSEMs from the three methods above. The 
Conclusion includes comments on the methods as well 
as ideas for further investigation.  

Methods 

CTT Concepts and Computational Resources 

Under the traditional CTT approach a reliability 
estimate is calculated, and the estimate is then, alongside 
the standard deviation for the test score, plugged into 
the following equation:  

 

𝑆𝐸𝑀 =  𝑆𝑋√1 − 𝑟𝑥𝑥   , 
 

where SEM is the standard error of measurement, 𝑆𝑋 is 

the standard deviation and 𝑟𝑥𝑥 is the reliability estimate. 

Traditionally, 𝑟𝑥𝑥 has represented the correlation 
between parallel test forms. For writing assessment, 
however, a test is not a single entity. The difficulty of 
holding task difficulty and rater severity constant are two 
reasons for this; a third is that in practice, especially in 
large scale assessments, all raters will not judge all 
student texts. Students will therefore encounter different 
tests depending on whom judges the text (see chapter 2 
of McNamara [1996], for a treatment of these aspects), 
and depending on which prompt they chose in settings 
when it is possible to choose among tasks.    

A common way to estimate reliability when raters 
perform judgements of the qualities of students’ 

 

 
2 There are methods for estimating CSEM under the CTT approach (Feldt et al., 1985), but we have not yet encountered descriptions of 
how to do so with data stemming from judgements of student texts (or any other artifacts). 

responses is to compute a consistency measure, for 
example Spearman’s rho or Kendall’s tau (Stemler, 
2004). Another popular estimate is the intraclass 
correlation coefficient (ICC; McGraw & Wong, 1996). 
These consistency measures can be interpreted as an 
expression of the degree to which to raters coincide in 
their judgement. A strong correlation indicates that 
raters consistently award the same candidates with high 
scores and the same candidates with low scores. 
McNamara (2000) proposes that a correlation of .7 is a 
“rock-bottom minimum” for language tests.  It should 
be noted that the consistency measure does not indicate 
to which extent raters agree on the exact score, and so 
the measure will indicate if raters are ranking student 
responses in similar or dissimilar fashion rather than if 
they award the same mark. There are several other 
popular statistics that can either produce estimates of 
absolute agreement or consistency, thereby 
complementing the correlation (e.g., Stemler, 2004; 
Kilem, 2014), some of which are incorporated in R 
packages such as CTT (Willse, 2018) and psych (Revelle, 
2019). 

MFRM Concepts and Computational Resources 

MFRM (Linacre, 1994) is an extension of the Rasch 
model (Rasch, 1980). The latter is a probabilistic model 
stating that a student’s probability of scoring  correct (or 
affirmative) on a dichotomous item is equal to the 
difference between the student’s modelled ability and the 
particular item’s modelled difficulty. Formally, the Rasch 
model usually takes this expression: 

 

𝑙𝑜𝑔 (
𝑃𝑛𝑖

1 − 𝑃𝑛𝑖
) = 𝐵𝑛 − 𝐷𝑖  , 

 

where 𝑃𝑛𝑖 is the probability of a correct response,  𝐵𝑛 

denotes the ability of student 𝑛, and 𝐷𝑖 denotes the 

difficulty of item 𝑖. When the ability is equal to the 
difficulty, a student has a probability of .5 of responding 
correctly. Estimates of student ability and item difficulty 
are expressed on a logit scale, and it is common for 
student ability to be in the range of -5 to 5.  

In contrast to CTT approaches and, as we shall see, 
the G-theory approach, applying the Rasch model is a 
means to scale student scores. If the empirical data fits 
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the assumptions of the Rasch model, the scaling 
transforms the ordinal scores to interval scores 
(Engelhard, 2013). Another feature of fitting scores to 
the Rasch model is that the resulting estimates are 
invariant of each other. A student thus has an ability level 
invariant of rater, item and task, and an item has a 
difficulty level invariant of the other facets. There are 
several outstanding treatments of the Rasch model in 
educational and language testing (e.g., Bond & Fox, 
2015; McNamara, 1996), and readers are advised to refer 
to them for additional technical specifications.  

The MFRM is an extension of the Rasch rating scale 
model (which is another extension of the Rasch model; 
Andrich, 2016), used in educational and psychological 
testing where persons perform tasks that are judged into 
one of k categories.3 It does so by treating aspects of the 
measurement causing variation as “facets,” which in turn 
comprise elements. In the MFRM terminology, student 
groups, raters, tasks, and rating scales are all facets, and 
individual persons or items in these groups are referred 
to as elements.  

A MFRM model can take many shapes, depending on 
the purpose of the analysis. In the present case we have 
used the following model:  

 

𝑙𝑜𝑔 (
𝑃𝑛𝑚𝑖𝑗𝑘

1 − 𝑃𝑛𝑚𝑖𝑗𝑘
) = 𝐵𝑛 − 𝐷𝑚 − 𝐸𝑖 − 𝐶𝑗 − 𝐹𝑥 , 

 

where 𝑃𝑛𝑚𝑖𝑗𝑘 represents the probability of student 𝑛 on 

task 𝑚, rating scale 𝑖, by rater 𝑗 receiving a score of 𝑘, 

and 𝑃𝑛𝑚𝑖𝑗𝑘 − 1 represents the probability of the same 

student under the same conditions receiving a score of 

𝑘 − 1. 𝐵𝑛 is the ability for person 𝑛, 𝐷𝑚 is the difficulty 

of task 𝑚, 𝐸𝑖  is the difficulty of rating scale 𝑖, and 𝐶𝑗 is 

the severity of rater 𝑗. Finally, 𝐹𝑥 represents the point on 

the logit scale where category 𝑘 and 𝑘 − 1 are equally 
probable. 

Focusing particularly on the precision of measures, 
there are a few key statistics ensuing from a MFRM 
analysis. A prerequisite, however, for using the output is 
that the data fits the model. The MFRM software we 
have used (FACETS) does not output a meaningful 
global measure of data-model fit, but, as Eckes (2015, p. 

 

 
3 It is also possible to specify a Partial Credit Model (PCM) using the FACETS software. PCM is particularly useful when items do not 
share number of scale steps, or when one wishes to investigate if items behave differently (see Eckes, 2014, pp. 127–132.   

69) notes, the global fit can easily be assessed using 
standardized residuals. Eckes suggest that when there 
are less than 5 % standardized residuals exceeding |2.0| 
and 1 % exceeding |3.0| the data fits the model 
reasonably well. It can also be noted that MFRM 
software outputs element-specific fit measures, 
indicating to what extent the model has been able to 
predict an element’s raw scores. These are called 
information-weighted fit (or infit) and outlier-sensitive fit 
(or outfit). Fit statistics exceeding 1.0 indicate “misfit,” or 
unpredictable differences between observed and 
modelled expected results, while fit statistics below 1.0 
indicate “overfitting” elements (i.e. elements with less 
than expected variation). For a non-technical treatment 
of these statistics, see Linacre (2002, p. 878). When the 
researcher has concluded that the data fits the model 
reasonably well, there are four precision measures to take 
into consideration. The first three are versions of a 
global reliability estimate. Building on Schumacker and 
Smith (2007, p. 399), we will briefly present them here. 

The separation statistic 𝑅, which for the persons facet is 
a Rasch analogue to coefficient alpha , indicates to what 
extent elements of facets have been reliably separated. 

The 𝑅 value can be interpreted as the ability of the 
measurement to reliably separate candidates. Using the 

person facet as an example, 𝑅 is calculated by dividing 

the person facet variance (𝑆𝐷𝑝
2) from 𝑆𝐴𝑝

2 , which is a 

“person variance that is adjusted for measurement” 
(Schumacker & Smith, 2007, p. 399). The latter is 

calculated by subtracting the mean square error (𝑀𝑆𝐸𝑝) 

from the variance. 𝑀𝑆𝐸𝑝 is given by  

 

𝑀𝑆𝐸𝑝 = ∑ 𝑆𝑛
2/𝑁

𝑁

𝑛=1
 , 

 

where 𝑆𝑛
2 is the standard error for each person. 𝑅 has a 

maximum value of 1.0 and can be converted to 

“separation statistic” (𝐺𝑝), by 𝑆𝐴𝑝/(𝑀𝑆𝐸𝑝)
1/2

which 

can be interpreted as the ability for a particular 
configuration of persons, raters and task to separate 

persons. Unlike 𝑅, 𝐺 does not have a maximum value. 

𝐺𝑝 can, in turn, be converted to 𝐻𝑝, which indicates the 

number of significant “strata” a particular measurement 
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can divide students into. 𝐻𝑝 is given by (4𝐺𝑝 + 1)/3. It 

follows that the MFRM analysis outputs conditional 
SEMs, i.e. a SEM for each element. The SEM for subject 

𝑛 is calculated this way: 
 

𝑆𝑛
2 =

1

√𝑇𝐼(𝐵𝑛)
 , 

 

where 𝑇𝐼(𝐵𝑛) is the test information for person 𝑛, with 

ability level 𝐵. The test information is computed by 
summing the model variance for each element. SEMs, 
reliability, and separation measures are also given for 
other facets than the student facet.  

With reference to situations where a researcher is 

forced to make absolute decisions, the separation 

statistics are useful for estimates of the measures ability 

for the relative separation of the persons (or other 

elements), while the SEM provides the researcher with 

means to gauge possible classification errors, after a cut 

score has been established.  

Conducting a MFRM Analysis  

There are several programs that enable the 
researcher to perform MFRM analyses. Freeware 
developed for R include the SIRT (Robitzsch, 2020) and 
TAM (Robitzsch et al., 2020) packages, and RUMM® is 
a commercial package. A popular program is 
FACETS®, developed and maintained by Linacre (e.g., 
2018) for the past 30 years. In this tutorial, we provide 
examples for specifying settings for the FACETS 
software (see Appendix A) and how to read and make 
use of some of the output, with a particular focus on 
SEM.  

To conduct a MFRM analysis in FACETS, one 
needs to create a “specification file.” As FACETS is a 
versatile tool, there is an abundance of methods to 
specify the analysis, all depending on how to best 
accommodate the researcher’s need. In this example, we 
have specified a relatively simple analysis. FACETS 
operates with “centered” and “non-centered” (or 
“floating”) facets. In the context of the program, a 
centered facet is the “local origin,” while a non-centered 
facet is, as it were, floating in relationship to that origin. 
This means that all facets, except one, are centered so 
that the average logit value for a facet is 0. The non-
centered facet is measured against this origin and may 
thus have a positive or negative mean. For non-technical 

audiences a mean score of 0 introduces interpretational 
difficulties, since some candidates will have “negative 
ability” and some raters “negative severity”. To 
accommodate reporting needs, the FACETS 
specification file can be amended with a user specified 
mean score. For this data set, we have set the mean score 
to 50, which is conventional in some educational 
assessment contexts, and the distance between each logit 
to 10 (see Appendix A for instruction on how to enter 
this specification). 

G-theory Concepts and Computational Resources 

G-theory is a framework for quantifying reliability 
in which sources of variation are also referred to as 
“facets.” Unlike in the MFRM context, the objects of 
measurement (often people) are not considered a facet 
in G-theory; on the other hand, factors such as items, 
raters, and occasions are regarded as facets. G-theory 
analyses are described as having two phases, the G study 
and the D study. In the G study phase, estimates are 
obtained for variance components of the facets and 
interactions between them, so that the largest sources of 
variation can be identified. Then, the D study provides 
coefficients of overall reliability and also allows the 
researcher to obtain projections of the reliability levels 
yielded by sample sizes different than the ones used for 
the study. Thus, the D study allows practitioners to 
determine procedures for optimal research designs. 
Furthermore, G and D studies may be conducted for 
many different experimental designs, as facets may be 
crossed or nested within each other. Also, G-theory 
accommodates facets as being either random (e.g., the 
researcher wishes to generalize beyond the particular 
sample of raters used in the study) or fixed (e.g., the 
researcher does not wish to generalize beyond those 
particular raters).  

While many previous papers have applied G and D 
study methodologies to a number of different fields in 
social and biomedical science, there is a relative scarcity 
of studies demonstrating the calculations of G-theory 
CSEMs. A notable exception is Brennan (1998), who 
derives CSEMs for a number of different G-theory 
designs and presents examples for a dichotomously-
scored vocabulary test and a polytomously-scored 
mathematics assessment. Brennan (2001a) also presents 
these examples as well as a summary of the concepts and 
calculations for G-theory CSEMs.  

We briefly review G-theory concepts and notation 
to facilitate the discussion of CSEMs. See Shavelson and 
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Webb (1991) and Brennan (2001a) for book-length 
treatments on fundamental and advanced concepts in G-
theory. The persons which are the subject of 

measurement are denoted as 𝑝, and facets such as items, 

raters, and occasions are denoted as 𝑖, 𝑟, and 𝑜, 
respectively. The variance component for persons is 

denoted as 𝜎2(𝑝), the variance component for the 

persons by items interaction is denoted as 𝜎2(𝑝𝑖), and 

so on. The actual sample size for items is notated as 𝑛𝑖 , 

and so on for other facets. Then, 𝑛𝑖
′ denotes the sample 

size for items considered in the D study, which is not 

necessarily equal to 𝑛𝑖 , and so on for the other facets.  

In a random model, the particular raters, occasions, etc. 
are considered to be drawn from a very large (infinite) 
groups of raters, occasions, etc. A universe score for 

person 𝑝, notated as 𝜇𝑝, is her or his average score over 

all items, raters, and occasions we wish to generalize to. 

The absolute error variance 𝜎2(Δ)  for designs with 
random facets is the sum of all the variance components 

except the subject variance 𝜎2(𝑝). For example, 
consider a design with two crossed random facets, items 

and occasions, which is denoted as 𝑝 × 𝑖 × 𝑜. Then, the 
absolute error variance for this design is given by 

 

𝜎2(Δ) =
𝜎2(𝑖)

𝑛𝑖
′ +

𝜎2(𝑜)

𝑛𝑜
′

+
𝜎2(𝑝𝑖)

𝑛𝑖
′ +

𝜎2(𝑝𝑜)

𝑛𝑜
′

+
𝜎2(𝑖𝑜)

𝑛𝑖
′𝑛𝑜

′
+

𝜎2(𝑝𝑖𝑜)

𝑛𝑖
′𝑛𝑜

′
 . 

 

The absolute error for person 𝑝 is defined as  
 

Δ𝑝 ≡ �̅�𝑝 − 𝜇𝑝 , 
 

which is interpreted as the error resulting from using the 

observed mean score from person 𝑝 as an estimate of 
that person’s universe score (Brennan, 2001a). Then, in 
the design above, the absolute CSEM is defined as  

 

�̂�(Δ𝑝) = √
�̂�2(𝑖)𝑝

𝑛𝑖
′ +

�̂�2(𝑜)𝑝

𝑛𝑜
′

+
�̂�2(𝑖𝑜)𝑝

𝑛𝑖
′𝑛𝑜

′
 , 

 

Thus, 𝜎(Δ𝑝) can be described as the standard error 

of the within-person mean, and the average of squares of 

the �̂�(Δ𝑝)  values is equal to the absolute error variance, 

𝜎2(Δ) (Brennan, 2001a).  

To our knowledge, the resources for obtaining 
absolute CSEMs for G-theory are not numerous. The 
freely available software mGENOVA (Brennan, 2001b) 
includes an option that, when called, will supply the 
CSEMs for a number of different G-theory designs. 
However, this is a standalone software, and in a modern 
data science context R offers the advantage of being able 
to handle all steps of the analysis, including data 
cleaning, analysis, visualization, and reporting. Thus, we 
provide R code in Appendix B for computing absolute 
CSEMs for G-theory, building upon the G and D study 
capabilities of the gtheory package (Moore, 2016). 

Real Data Analysis 

Data 

The data used in the current paper was collected in 
the fall of 2016 from an investigation conducted to 
evaluate a rater training approach. The context of rater 
training was the Norwegian Sample-Based Writing Test 
(NSBWT) which was a government-financed writing 
test program measuring writing proficiency among 
students in 5th and 8th grades (Skar, 2017; Jeffery et al., 
2018). Raters (N = 8) from the NSBWT were sampled 
and rated texts from 25 students enrolled in 8th Grade in 
Norway. Each student had written two texts, 
representing two genres, and each text was assessed on 
six rating scales, Communication, Content, Text Structure, 
Language Use, Spelling, and Punctuation, each scored from 
1 to 5.  The resulting dataset comprised 2,400 ratings and 
the design was completely crossed, as all raters judged 
both genres from all students. The results, which were 
based on MFRM, were published in Skar and Jølle (2017) 
and used as part of the quantitative evaluation.  For more 
information about the rating scales and the training and 
evaluation, readers are referred to Skar and Jølle (2017). 

CTT Results 

We estimated reliability using Spearman’s rho, 
which takes into account that the data is expressed on an 
ordinal scale, rather than an interval scale (Stevens, 
1946). For the present data set, the average correlation 
was rho = .62; Table 1 presents all inter-rater 
correlations.  Coefficient alpha was .93, the ICC was .61 
[.57–.66] (Skar & Jølle, 2017); the mean score for 
students was 2.79, and the standard deviation was .86.  

Using the equation presented in the section CTT 
Concepts and Computational Resources, the general 
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SEM equals 0.53. The interpretation under the CTT 
approach is that we are 68 % confident (Harville, 1991) 
that a candidate with a score equaling the mean score of 
2.79 has a true score in the range of 2.79 ± 0.53 = 2.26–
3.32. Using conventional rounding, this result would 
imply that a student’s true score would be either 2 or 3 
which can be considered to be a substantial difference 
on a five-point scale.  If a pass/fail cut score equal to the 
mean was to be established, 13 of the 25 students would 
have scores within a confidence interval overlapping that 
pass score (please refer to column “Obs.Avg” of Table 
2).  

MFRM Results 

An analysis of the 2,400 standardized residuals 

showed that 109 (4.54%) exceeded |2|. Of those, six 

(0.25%) were greater than |3|. Therefore, it was 
concluded that the data fit the model reasonably well. 
Table 2 presents the observed average score for each 
student, the scaled score from the MFRM analysis, and 
the conditional standard error of measurement 
associated with the latter. The table also contains 
separation indices and fit statistics for each element. As 
can be noted, the SEMs were tightly clustered around 

the mean value of 1.48 (SD = 0.08), and the 𝐻𝑝-index 

suggests that the measurement allowed for separation of 
students into 14 distinct statistical stratas. The reliability 

of the separations was high (𝑅 = .99). Although the 
SEMs showed little variation, there was an expected 
non-linear relationship between the scaled score and 
SEM, as is apparent in Figure 1. The scatter plot suggests 
that the SEMs were lower for students scoring around 

the mean. If a pass/fail cut score that equaled the mean 

(≈57) was to be established, again using 68 % 
confidence, two students would have a confidence 
interval around their score that overlapped the cut score. 

Table 3 displays MFRM results for the rater facet. 
Applying the same reliability and separation statistics, it 
becomes evident that the raters also differed 
substantially. Keeping in mind the counter-intuitive use 
of reliability for this facet, it can be seen that the 
reliability of rater separation was .95, indicating that 
raters differed in severity to a substantial extent. To 
illustrate the diagnostic value of a MFRM analysis, we 
have also included descriptive and separation statistics 
for genres (or “occasion” for G-theory) and rating scales 
in Tables 4 and 5. For a writing assessment developer it 
might be useful to know to which extent genres and 
rating scales differ in difficulty, once disentangled from 
student ability and rater severity.  

G-Theory Results 

For the G-theory analysis, the score from each of 
the five rating scales was summed for each student; thus, 
the possible scores ranged from 6 to 30.  Both raters and 
genres were treated as random facets, resulting in a 

𝑝 × 𝑔 × 𝑟 design. The results for the G and D studies 
are displayed in Tables 6 and 7, respectively. In Table 7, 
the ANOVA degrees of freedom and mean squares are 
shown for each source of variation, and the actual 
variance component estimate and percent of the total 

 

 
Table 1. Correlations Between Raters (Spearman’s rho)  
 

 R1 R2 R3 R4 R5 R6 R7 R8 

R1 – .720 .685 .619 .560 .640 .626 .664 

R2  – .693 .696 .631 .576 .679 .675 

R3   – .635 .599 .607 .644 .617 

R4    – .599 .600 .579 .604 

R5     – .518 .572 .550 

R6      – .559 .646 

R7       – .587 

R8        – 

Note. R1 = Rater 1, R2 = Rater 2 and so on. All correlations are statistically significant (𝑝 <  .001).  
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Table 2. MFRM Results for Students   
 

Student ID Obs. Avg. Scaled Score SEM Infit 

1 2.41 49.57 1.56 .95 

2 2.25 45.84 1.60 .84 

3 3.10 63.95 1.40 1.22 

4 1.36 25.17 1.44 .88 

5 3.54 71.98 1.38 1.24 

6 2.47 51.01 1.54 .96 

7 3.79 76.58 1.40 .98 

8 3.82 77.16 1.40 .81 

9 3.12 64.34 1.40 .56 

10 3.16 64.93 1.39 .79 

11 2.64 54.67 1.49 1.12 

12 3.97 79.96 1.43 1.04 

13 3.95 79.55 1.42 .59 

14 2.17 43.77 1.62 .77 

15 2.57 53.32 1.51 .78 

16 1.96 38.51 1.62 .99 

17 1.88 36.44 1.60 .78 

18 1.59 29.93 1.51 1.26 

19 3.94 79.35 1.42 .81 

20 2.76 57.27 1.46 .82 

21 2.51 51.95 1.53 .81 

22 3.05 62.97 1.40 1.72 

23 2.68 55.55 1.48 1.43 

24 2.66 55.11 1.48 1.54 

25 2.49 51.48 1.53 1.05     
 

Mean 2.79 56.81 1.48 .99 

SD .74 15.45 .08 .28 

𝑀𝑆𝐸𝑝 
 

2.19 
 

 

𝑆𝐴𝑝 
 

236.6 
 

 

𝑅𝑝 
 

.99 
 

 

𝐺𝑝 
 

10.39 
 

 

𝐻𝑝 
 

14.18 
 

 

 
Note. The scaled score was derived using a linear transformation of the logit scores. The transformation enables 
effective communication to non-technical audiences, since no students will have negative proficiency values.   
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Figure 1. Test Information and SEM for Students 

 

 
Note. This plot illustrates the relation between test information and SEM; specifically, the SEM is lower when 
information is higher and vice versa. TABLE 3 
 
Table 3. Descriptive and Separation Statistics for Raters 
 

Rater ID Obs. Avg. Scaled Score SEM Infit 

R1 2.78 50.26 .83 .94 

R2 3.03 45.03 .83 .59 

R3 2.68 52.42 .87 1.00 

R4 2.63 53.40 .84 .74 

R5 2,66 52.84 .84 1.30 

R6 2.71 51.79 .84 .98 

R7 2.78 50.26 .83 1.36 

R8 3.08 44.00 .83 1.04     
 

Mean 2.79 50.00 .83 .99 

SD .17 3.57 .00 .26 

𝑀𝑆𝐸𝑟 
 

.69 
 

 

𝑆𝐴𝑟 
 

12.08 
 

 

𝑅𝑟 
 

.95 
 

 

𝐺𝑟 
 

4.17 
 

 

𝐻𝑟 
 

5.89 
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Table 4. Descriptive and Separation Statistics for Genre (Occasion) 
 

Genre / Occasion Obs. Avg Scaled Score SEM Infit 

Expository 2.68 52.27 .42 1.00 

Narrative 2.90 47.73 .42 .98     
 

Mean 2.79 50.0 .42 .99 

SD .16 3.21 .00 .01 

𝑀𝑆𝐸𝑜 
 

.17 
 

 

𝑆𝐴𝑜 
 

10.14 
 

 

𝑅𝑜 
 

.98 
 

 

𝐺𝑜 
 

7.65 
 

 

𝐻𝑜 
 

10.53 
 

 

 
 
 
Table 5. Descriptive and Separation Statistics for Rating Scales 
 

Rating Scale Obs. Avg. Scaled Score SEM Infit 

Communication 2.91 47.47 .72 1.16 

Content 2.80 49.91 .72 1.21 

Text Structure 2.77 50.43 .72 .86 

Language Use 2.75 50.95 .72 .86 

Spelling 2.89 47.89 .72 1.05 

Punctuation 2.63 53.36 .73 .82     
 

Mean 2.79 50.00 .72 .99 

SD .10 2.16 .00 .17 

𝑀𝑆𝐸𝑠 
 

.52 
 

 

𝑆𝐴𝑠 
 

4.13 
 

 

𝑅𝑠 
 

.89 
 

 

𝐺𝑠 
 

2.82 
 

 

𝐻𝑠 
 

4.09 
 

 

 
variability are displayed in the rightmost columns. The 
variance due to persons accounts for the largest 
percentage, nearly 65% of the total variation. This 
indicates that, unsurprisingly, students’ scores differed 
substantially. The variances for genres and raters were 
relatively small (2.4 and 2.5%, respectively). The 
interaction with the largest variance component is for 
the persons by genres interaction (P x G), indicating 
that the relative standings of persons differed 
somewhat from one genre to the other. Finally, a  

substantial amount of variance (about 17%) was due to 
the three-way interaction of person, genre, and rater, 
and/or other systematic variation not addressed in the 
study, and/or random noise. 

Table 7 shows the values for �̂�2(Δ) and �̂�, the 
absolute error variance and dependability coefficient, 

for the original sample sizes 𝑛𝑅
′ = 𝑛𝑅 = 8 and 𝑛𝐺

′ =
𝑛𝐺 = 2, as well as the projected values of �̂�2(Δ) and 

�̂� for some hypothetical sample sizes. While there is 
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Table 6. G Study for the p × g × r Design 
 

Source Df Mean Square Variance component Percent of variability 

Persons 24 318.9 18.19 64.9 
Genres 1 171.6 .68 2.4 
Raters 7 53.6 .79 2.8 
P x G 24 27.0 2.78 9.9 
P x R 168 5.7 .46 1.6 
G x R 7 13.0 .33 1.2 
P x G x R (Residual)  168 4.8 4.80 17.1 

 

Table 7. D study for the p × g × r Design 
 

  D Studies     

𝑛𝐺
′  1 1 1 2 2 2 

𝑛𝑅
′  2 4 8 2 4 8 

�̂�2(Δ) 6.65 5.06 4.26 3.64 2.68 2.21 

�̂� .73 .78 .81 .83 .87 .89 

 
 
no universally agreed upon “acceptable” level of 
reliability, Shavelson and Webb (1991) suggest that .80 
is “reasonable.” The bottom row of Table 7 shows that 
this level can be nearly reached with one genre and four 

raters (�̂� = .78) or slightly exceeded by with two 

genres and two raters (�̂� = .81).  

Next, G-theory CSEMs were computed for each 
of the subjects with the original sample sizes using the 

equation for �̂�(Δ𝑝) shown in the previous section. 

However, eight raters may be impractical for many 
assessment contexts. The ability of the D study to 
obtain projected reliability estimates under 
hypothetical samples sizes also extends to the CSEMs. 

Figure 2 shows the CSEMs for 𝑛𝐺
′ = 𝑛𝐺 = 2 genres 

and 𝑛𝑅
′ =1, 2, 3 and 8 raters plotted versus the mean 

over the 𝑛𝐺 ∗ 𝑛𝑅 =16 scores for each student.  

The CSEM for a given person is a function of the 

variance components for the 𝑅 ×  𝐺 G-study based 

only on that person’s data, notated as �̂�2(𝑅)𝑝, 

�̂�2(𝐺)𝑝, and �̂�2(𝑅𝐺)𝑝. Thus, those subjects with 

relatively large within-person variance components will 
have relatively large CSEM values. The largest CSEM 

(3.64) for 𝑛𝐺
′ = 𝑛𝐺 = 2 and 𝑛𝑅

′ = 8 is especially 
noticeable in the upper right hand section of Figure 2. 
This is discussed in the next section. As done for 
previous methods, 68% confidence intervals were 
created for each student taking their mean score over  

genres and raters and adding and subtracting (one 
times) their CSEM. Assuming a cut score was set to the 
grand mean (17), then six students had intervals 
containing the cut score. 

A Case Study 
Student #5 offers an interesting case study. S/he 

scored well above the mean, both in raw scores, and 
scaled Rasch scores. Under the G-theory approach, 
this student had the largest CSEM, but under the 
MFRM the same student has the lowest. Table 8 
provides the raw scores and descriptive statistics for 
this student. As can be seen, s/he received her or his 
highest scores on the narrative text. It is also possible 
to note considerable variation. The large within-in 
person variation causes MFRM to estimate a small 
standard error for student #5. However, this student 
was flagged by the MFRM analysis with significantly 
high infit and outfit values. These indicate several 
unexpected results. From a writing proficiency theory 
perspective, it is odd that student #5 received 2.50 
points on spelling in the expository text, and 4.25 in 
the narrative text, and on punctuation 2.88 and 4.13, 
respectively. Spelling and other transcription skills are 
normally automatized and not heavily task sensitive. 
When the MFRM analysis indicated that student #5 
was measured with high precision, as indicated by the 
low standard error, it is somewhat counter-intuitive: 
the raw scores suggests that this student had an uneven
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Figure 2. G-theory CSEMs Versus Means for nR
′ = 1, 2, 3 and nr = 8 Raters. 

 

 

Table 8. Descriptive Statistics for Student #5 
  

Expository 
 

Narrative 
 

Overall 
 

 
Mean SD Mean SD Mean SD 

Communication 3.38 .92 4.38 .92 3.88 1.02 

Content 3.00 .53 4.13 1.13 3.56 1.03 

Text Structure 3.13 .64 3.75 .89 3.44 .81 

Language Use 2.88 .83 4.13 .64 3.50 .97 

Spelling 2.50 .53 4.25 .71 3.38 1.09 

Punctuation 2.88 .35 4.13 .83 3.50 .89        

Overall 2.96 .68 4.13 .84 3.54 .96 
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profile, and that it might have been be beneficial to 
measures his or her skills on more occasions. 
Inspecting the relationship between SEMs and the infit 
statistic, Figure 3 suggests that precision, in terms of 
SEMs, should not be mistaken for model fit. Student 
with high and low SEMs demonstrated both good and 
poor fit to the model.  

The G-theory CSEM for student #5 for 𝑛𝐺
′ =

𝑛𝐺 = 2 and 𝑛𝑅
′ = 𝑛𝑅 = 8  is 3.64. The variance 

components for the within-person  𝑅 ×  𝐺 G-study  

are displayed in Table 9.  The values of �̂�2(𝑅)𝑝  

and �̂�2(𝐺)𝑝 are larger than for any other student; this 

means that the scores for student 5 varied considerably 
over genres and raters. Since the CSEM is a function 
of these quantities, student #5 had the largest CSEM. 
Thus, it is intuitive that G-theory CSEMs are  

proportional to the amount of variation of within-

student scores. The CSEMs for 𝑛𝐺
′ = 𝑛𝐺 = 2 and 

𝑛𝑅
′ = 8 and variance components for these persons are 

shown in Table 9. 

Conclusion 
The aim of this tutorial was to present approaches 

for establishing SEM in writing assessment as well as 
give detailed accounts of procedures for estimating 
SEM under a CTT approach, a MFRM approach and 
a G-theory approach, respectively. We did so by 
presenting the basic steps in the analysis, and provide 
examples using real data. The sample size was small 
and thus the generalizability of the results may be 
limited; however, we focused on illustrating the 
process and providing tools for practitioners to analyze 
their own data. 

 

 

Table 9.  Mean and Within-Person Variance Components for Student #5. 
 

 Mean Score �̂�2(𝑅)𝑝 �̂�2(𝐺)𝑝 �̂�2(𝑅𝐺)𝑝 

Largest CSEM (3.64) 21.25 8.21 23.98 4.00 

 
 

Figure 3. The Relationship Between Fit Statistics and SEM in MFRM.  

 
Note. SEM cannot easily be predicted by fit statistic; Student with high and low SEMs demonstrated both good and 
poor fit to the model. 
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Previous research has investigated merits of the 

different approaches and compared them in terms of 
accuracy. This was beyond the scope of this paper, but 
we have presented some observations of comparative 
character. First, compared to the others, the CTT 
approach is fairly uncomplicated and can easily be 
done using a spreadsheet software like Microsoft 
Excel®. With that said, compared to MFRM and G-
Theory, the general SEM seems to inflate the number 
of students with large confidence intervals, likely 
because the traditional reliability estimate is an 
insufficient proxy for rater effects. The MFRM and G-
theory approaches both disentangle effects of facets 
contributing to variance in scores. Given how variation 
is treated, G-theory will flag student composite score 
based on high variation as uncertain, while MFRM will 
tend to do the opposite. In the concrete case study 
presented above, student #5 had the largest and 
smallest SEM, for G-theory and MFRM approaches, 
respectively. A closer inspection of the raw data 
suggested a student with somewhat surprising results 
(such as task-related spelling competence). It is 
debatable, then, which approach provides the 
researcher with most useful information. It can seem 
as the MFRM SEM estimate can be counterintuitive 
low, but using the infit statistic as a complement may 
reduce the risk of making faulty interpretations. 
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Appendix A. Annotated Specification file for FACETS 

 

The following specification was used for the MFRM analysis. A semicolon starts an annotation. 

  

Title = [Insert title of analysis here] 

Facets = 4; Four facets   

Positive = 1; For students, high ability -> high logit. For all other facets, difficulty/harshness -

> high logit 

Inter-rater = 3; facet 3 is the rater facet 

Noncentered= 1; Center the elements all the facets except facet 1. This established the zero 

point (local origin) of the measurement frame-of-reference 

Umean = 50, 10, 3 ; set mean to 50, logit distance to 10 and report three decimals  

Model= ?,?,?,?,R5 ; The Andrich rating scale model for judges, persons, tasks and rating 

scales. Highest possible mark on a rating scale was 5 (all other values are automatically treated 

as missing).  

* 

Labels= 

1, Student 

1-561; the 25 students were numbered 1–561. Unobserved elements are excluded from the 

analysis.  

* 

2, Genre 

1584=Expository; in the data file, each genre had a code  

1585=Narrative 

* 

3, Rater 

9=R1 

10=R2 

13=R3 

16=R4 

17=R5 

22=R6 

38=R7 

45=R8 

* 

4, Rating Scale 

1=Communication 

2=Content 

3=Text Structure 

4=Language Use 

5=Spelling 

6=Punctuation  

* 

Data = 

1,1584,9,1-6,2,2,2,2,3,2; This is the first data string. It equals student #1, task 1584 

(expository), rater #1, rating scales 1–6, and scores 2, 2, 2, 2, 3 and 2 on each of the six scales.  
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Instructions for calculation test information for element 

 

This guide was provided by Linacre (personal communication): 

  

• In FACETS, click “Output Files” and choose “Residuals/Responses files”. 

• Choose “Output to Excel”. 

• In Excel, sort the file on the elements you wish to compute test information for. 

• Sum the column “Var” for an element.  
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Appendix B: G-theory CSEM code example 

 

 

We present reproducible examples of computing CSEMs for G-theory using the code provided in 

Appendix C. Both examples use the data from Table 3.2 of Brennan (2001), which is publicly available in the 

gtheory package. We present examples for one- and two-facet G-theory designs, in turn. The functions in 

Appendix C should be copied and pasted into an R script, the code provided below should also be pasted in the 

same script. Note, this tutorial covers obtaining CSEMs only; for information on obtaining basic G and D study 

results for G-theory, see Huebner and Lucht (2019). 

One-facet Design 

 

We load the gtheory package as well as the dplyr package, which is used by the functions provided. 

Then, the data for Table 3.2 of Brennan is loaded from the gtheory package:  

library(gtheory) 

library(dplyr) 

data("Brennan.3.2") 

 

The data is originally from a nested two-facet design, but we recast it as a one-facet crossed 𝑝 × 𝑡 design, with 

𝑛𝑝 = 10 subjects performing the same 𝑛𝑡 = 12  tasks. The resulting data is named dat1: 

dat1 <- Brennan.3.2 

dat1$Task <- rep(1:10, times = 12) 

 

The function calcGtheory1FacetCSEM() has the following arguments: 

 

calcGtheory1FacetCSEM(Person, Facet, Score, nf_prime = NULL) 

 

The vectors for person, facet and score are the first three arguments. The fourth argument is the number of 

levels for the facet, or 𝑛𝑡
′  for facet 𝑡. If a value is not specified, the actual number of instances 𝑛𝑡

′ = 𝑛𝑡 is used. 

Or, the user can specify a value of 𝑛𝑡
′  that is not equal to 𝑛𝑡. For example, running the following code will 

return CSEMs based on the actual number of tasks, 𝑛𝑡
′ = 𝑛𝑡 = 12: 

calcGtheory1FacetCSEM(dat1$Person, dat1$Task, dat1$Score) 

 

Alternately, we can obtain CSEMs based on, for example, 𝑛𝑡
′ = 8 items: 
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calcGtheory1FacetCSEM(dat1$Person, dat1$Task, dat1$Score, 8) 

 

Accordingly, the CSEM values for the second run with 𝑛𝑡
′ = 8 are larger than for the first run with 𝑛𝑡

′ = 𝑛𝑡 =

12.  

Two-facet Design 

 

For the two-facet design, the rater facet from Table 3.2 is incorporated into the analysis, and the data is 

recast as a crossed two-facet  𝑝 × 𝑡 × 𝑟 design, with 𝑛𝑝 = 10 subjects, 𝑛𝑡 = 3 tasks, and 𝑛𝑟 = 4 raters using 

the following code: 

data("Brennan.3.2") 

dat2 <- Brennan.3.2 

dat2$Rater <- rep(c(1:4), each = 10, times = 3) 

 

The function calcGtheory2FacetCSEM() has the following arguments: 

 

calcGtheory2FacetCSEM(Person, Facet1, Facet2, Score, nf1_prime = NULL, nf2_prime = NULL) 

 

The vectors for Person, the two facets, and score are the first four arguments. The fifth and sixth arguments are 

the numbers of levels for the first and second facets, i.e.  𝑛𝑡
′  and 𝑛𝑟

′  respectively. If values are not specified, the 

actual sample sizes 𝑛𝑡
′ = 𝑛𝑡 and 𝑛𝑟

′ = 𝑛𝑟 are used. For example, exectuting the following code will return 

CSEMs based on the actual numbers of tasks and raters, 𝑛𝑡
′ = 𝑛𝑡 = 3 and 𝑛𝑟

′ = 𝑛𝑟 = 4, respectively: 

calcGtheory2FacetCSEM(dat2$Person, dat2$Task, dat2$Rater, dat2$Score) 

 

Or, for example, we can obtain the CSEMs when there are two tasks and two raters: 

 

calcGtheory2FacetCSEM(dat2$Person, dat2$Task, dat2$Rater, dat2$Score, 2, 2) 
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Appendix C: R Functions for Computing G-theory Conditional Standard Errors 

 

#Function to compute CSEM for 1-facet G-theory designs. 

 

calcGtheory1FacetCSEM <- function(Person, Facet, Score, nf_prime = NULL){ 

  #Obtain sample sizes 

  np <- length(unique(Person)) 

  df1 <- data.frame(Person, Facet, Score) 

  if (is.null(nf_prime)) nf <- length(unique(Facet)) else nf <- nf_prime 

  var_persons <- df1 %>% group_by(Person) %>%  

                          summarise(VarPers = var(Score)) %>% pull(VarPers) 

  AbsCondCSEM <- sqrt(var_persons/nf) 

  CSEM <- data.frame(unique(Person), AbsCondCSEM) 

  names(CSEM) <- c("Person", "AbsCondSEM") 

  return(CSEM) 

} 

 

#Function to compute CSEM for 2-facet crossed G-theory designs.  

 

calcGtheory2FacetCSEM <- function(Person, Facet1, Facet2, Score, nf1_prime = NULL, nf2_prime = NULL){ 

  #Obtain sample sizes 

  np <- length(unique(Person)) 

  if (is.null(nf1_prime)) nf1 <- length(unique(Facet1)) else nf1 <- nf1_prime 

  if (is.null(nf2_prime)) nf2 <- length(unique(Facet2)) else nf2 <- nf2_prime 

  data_csem <- data.frame(Person, Facet1, Facet2, Score) 

  #Formula for within person variation 

  formula_i <- Score ~ (1|Facet1) + (1|Facet2) 

  #Save results for conditional absolute SEM 

  AbsCondSEM <- numeric(np) 

  #Loop through subjects; compute conditional absolute SEMs for each  

  for (i in 1:np) { 

    #Get data for student i 

    dat_i <- data_csem[data_csem$Person == unique(data_csem$Person)[i],] 

    #perform G Study and extract variance components 

    gstud_i <- gstudy(dat_i, formula_i) 

    var_i <- gstud_i$components[,2] 

    #Compute conditional abs SEM for subject i and save 

    AbsSEM_i <- sqrt(var_i[which(gstud_i$components[,1] == "Facet1")]/nf1 +  

                     var_i[which(gstud_i$components[,1] == "Facet2")]/nf2 +  

                     var_i[3]/(nf1*nf2)) 

    AbsCondSEM[i] <- AbsSEM_i 

  } 

  CSEM <- data.frame(unique(data_csem$Person), AbsCondSEM) 

  names(CSEM) <- c("Person", "AbsCondSEM") 

  return(CSEM) 

} 
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