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In this paper is proposed a straightforward model selection approach that indicates the most suitable 
count regression model based on relevant data characteristics. The proposed selection approach 
includes four of the most popular count regression models (i.e. Poisson, negative binomial, and 
respective zero-inflated frameworks). Moreover, it addresses two of the most relevant problems 
commonly found in real-world count datasets, namely overdispersion and zero-inflation. The entire 
selection approach may be performed using the programming language R, being all commands used 
throughout the paper available for practical purposes. It is worth mentioning that counting regression 
models are still not widespread within the social sciences. 

Introduction 

Poisson regression models are commonly applied in 
count data analysis, where the behavior of the dependent 

variable 𝑌(𝑌 ∈ ℕ0) may be explained by predictor 

variables 𝑋𝑘𝑖, which may be either metric or dummy 

variables – i.e. 𝐸(𝑌|𝑋𝑘𝑖). Such models are based on the 
strict premise that there is equality between the mean 
and variance of the dependent variable, conditional to 
the predictor variables. Despite the fact that Poisson 
regression models consist of a suitable framework for 
numerous analysis involving count data, its simplicity 
engenders problems to many real-word applications 
(Cameron and Trivedi, 2013, Zeviani et al., 2014, Fávero 
and Belfiore, 2019). 

The problem of overdispersion is frequently found 
in real-world count datasets, consisting of the case in 
which the variance of the dependent variable - 
conditional to the predictor variables - is statistically 
greater than the corresponding mean (Payne et al., 2017, 

Dupuy, 2018). The detection of such a problem is 
relevant for an appropriate choice between the Poisson 
or negative binomial (NB hereinafter) regression model 
(Blackburn, 2015). Overdispersion is commonly caused 
either due to heterogeneity in sample values, presence of 
outliers, correlated variables, omission of relevant 
predictors or zero inflation (Payne et al., 2018). 

The adoption of Poisson regression models in the 
presence of overdispersion produces similar undesirable 
consequences compared to the absence of 
homoscedasticity in a linear regression setting (Cameron 
and Trivedi, 2013). This leads to bias in the estimated 
coefficients, with consequent inefficiency and 
inconsistency of the modeling process (Breslow, 1990, 
Hilbe, 2011, Smith and Faddy, 2016). Aiming at tackling 
such frequent problems in count data, a test for 
detecting overdispersion (CT test hereinafter) within 
count data is proposed by Cameron and Trivedi (1990). 

As part of the Generalized Linear Models, the count 
data regression models are used for cases where the 
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phenomenon under study presents itself in the form of 
a quantitative variable, however with only discrete and 
non-negative values, as we have already discussed. 
However, it is common that some variables with count 
data present an excessive amount of zeros, which can 
cause that the estimated parameters, when estimating the 
traditional Poisson and NB regression models, be biased 
since they cannot capture the exacerbated presence of 
null counts. In these situations, the zero-inflated (ZI) 
regression models can be used, in the presence of 
overdispersion or not. 

The ZI regression models, according to Lambert 
(1992), are considered a combination between a model 
for count data and a model for binary data, since they are 
used to investigate the reasons that lead to a determined 
number of occurrences (count) for a phenomenon, as 
well as lead (or not) to the actual occurrence of this 
phenomenon, independently of the amount of observed 
count. 

The actual definition regarding the existence or not 
of an excessive amount of zeros in the dependent 
variable is prepared by means of a specific test, known 
as the Vuong test (1989), which will represent the first 
output to be analyzed when estimating the zero-inflated 
regression models. 

The contribution of the present paper is the 
proposition of a straightforward model selection 
approach to select the most suitable count data 
regression framework given distinct data characteristics. 
The proposed selection approach adapts the rationale in 
Perumean-Chaney et al. (2013) to be performed using 
the programming language R, covering two of the most 
relevant problems frequently found in real-world count 
datasets, namely overdispersion and zero-inflation. 
Moreover, it is provided the respective R commands to 
perform each stage of the proposed model selection 
approach. 

Thus, this study intends to be a tutorial article, 
which target audience consists of researchers who are 
interested in regression models applied to count data but 
frequently are not sure about which model framework 
would be preferrable. To address such a practical need 
observed among analysts and researchers, particularly 
within social scientists, this paper then has two main 
objectives. Firstly, it is presented a clear exposition on 
count data models, emphasizing the Poisson, NB, and 
ZI frameworks. Secondly, it is provided a step-by-step 
introductory guide on how such count models may be 

properly understood, adapted, refined, and executed 
through the R language. 

Following this introduction, this paper is divided 
into six sections. Section two presents the literature 
review. Section three introduces our proposed model 
selection approach. Section four details the data and 
respective exploratory data analysis. Section five 
demonstrates the proposed approach through four 
empirical cases, interpreting the respective outputs, and 
comparing the log-likelihood and fitted values of each 
model. Section six concludes. All R commands used 
throughout the paper are provided in the Appendix. 

Literature Review 

According to Wooldridge (2010), a general 
regression model applied to count data may be described 
through equation (1): 

 

ln(𝑌̂𝑖) = ln(𝜆𝑖) = 𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖 ,

𝑗 = 1, 2, 3, … (1) 

 

where 𝜆𝑖 represents the expected number of 
occurrences or incidence rate ratio of the phenomenon 
under study for a given exposure (i.e. a fixed interval of 
time in which a particular number of events is 

registered), 𝛼 is the intercept, the coefficients estimated 

for each predictor variable 𝑋𝑗 are represented by 𝛽𝑗 , and 

𝑖 represents each observation in the sample. 

Poisson Regression Model 

According to Cameron and Trivedi (2013), in 
general, Poisson regression models are suitable to cases 
in which the distribution of the occurrence of a 
particular phenomenon under study follows a Poisson 
distribution, as shown in Figure 1. 

In Figure 1, the term 𝑝 represents the likelihood of 

an observation 𝑖 occurring for a particular exposure 𝑚, 
as detailed in equation (2): 

 

𝑝(𝑌𝑖 = 𝑚) =
exp(−𝜆𝑖)𝜆𝑖

𝑚

𝑚!
, 𝑚 = (0, 1, 2, 3, … . ).        (2) 
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Figure 1. Data visualisation of the Poisson distribution 

 

 

 

 

It is postulated in Fávero et al. (2020) and 
(Klakattawi et al., 2018) that Poisson regression models 
assume the existence of equidispersion within the 

variable of interest - i.e. 𝜇𝑖 = 𝐸(𝑌𝑖) = 𝑉𝑎𝑟(𝑌𝑖) = 𝜆, as 
detailed in equations (3) and (4): 

 

𝐸(𝑌𝑖) = ∑ 𝑚
exp(−𝜆)𝜆𝑚

𝑚!
∞
𝑚=0 =

𝜆∑
exp(−𝜆)𝜆𝑚−1

(𝑚−1)!
∞
𝑚=1 = 𝜆                                   (3) 

 

𝑉𝑎𝑟(𝑌𝑖) = ∑
exp(−𝜆)𝜆𝑚

𝑚!
(𝑚 − 𝜆)2∞

𝑚=0 =

∑
exp(−𝜆)𝜆𝑚

𝑚!
(𝑚2 − 2𝑚𝜆 + 𝜆2)∞

𝑚=0 =

𝜆2∑
exp(−𝜆)𝜆𝑚−2

(𝑚−2)!
+ 𝜆∑

exp(−𝜆)𝜆𝑚−1

(𝑚−1)!
∞
𝑚=1 − 𝜆2 = 𝜆∞

𝑚=2

  

    (4) 

 

The coefficients of a Poisson regression model are 
estimated by the following likelihood function (Taddy, 
2015): 

 

𝐿 = ∏
exp(−𝜆𝑖)𝜆𝑖

𝑌𝑖

𝑌𝑖!

𝑛
𝑖=1     (5) 

 

From which the logarithm of the likelihood 
function is derived as follows: 

 

𝐿𝐿 = ∑ [−𝜆𝑖 + 𝑌𝑖 ln(𝜆𝑖) − ln(𝑌𝑖!)]
𝑛
𝑖=1  (6) 

 

Equation (6) is then iterated 𝑘 times up to 
convergence to a maximum value (Fávero et al., 2018) – 

i.e. 𝐿𝐿 = ∑ [−𝜆𝑖 + 𝑌𝑖 ln(𝜆𝑖) − ln(𝑌𝑖!)]
𝑛
𝑖=1 = max. 

 

Negative Binomial (NB) Regression Model 

The estimation of an NB regression model is 
intrinsically related to the existence of overdispersion in 
the count dataset (Payne et al., 2018), which distribution 
is shown in Figure 2. 
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Figure 2. Data visualisation of the NB distribution 

 

 

 

In Figure 2, 𝑝 and 𝑚 refer to the same terms 

mentioned in Figure 1, 𝜃 is the shape parameter being 

𝜃 > 0, and 𝛿 is the rate parameter being 𝛿 > 0. The 
likelihood of a random portion out of the total number 

of occurrences of the dependent variable 𝑌𝑖 of 𝑖 
observations in exposure 𝑚 may calculated through 
equation (7): 

 

𝑝(𝑌𝑖 = 𝑚) = (
𝑚+𝜃−1
𝜃−1

) (
𝜃

𝑢𝑖+𝜃
)
𝜃

(
𝑢𝑖

𝑢𝑖+𝜃
)
𝑚

, 𝑚 =

0,1,2,3, … (7) 
 

where 𝑢𝑖 represents the mean, with 𝑢 = 𝐸(𝑌) <
𝑉𝑎𝑟(𝑌). Thus, the estimation of an NB regression 
model assumes the presence of overdispersion in the 
dependent variable conditional to the predictor variables 

(Hilbe, 2014) - i.e. 𝑢𝑖 = 𝐸(𝑌𝑖) < 𝑉𝑎𝑟(𝑌𝑖). The mean 
and variance are shown in equations (8) and (9), 
respectively: 
 

𝐸(𝑌𝑖) = 𝑢 (8) 
 

𝑉𝑎𝑟(𝑌𝑖) = 𝑢 + 𝜙𝑢2 (9) 
 

𝜙 = 𝜃−1 (10) 

𝑢𝑖 = exp(𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖) (11) 
 

As discussed in Cameron and Trivedi (1990), the 

parameter 𝜙 in equation (9) represents overdispersion 
within the count data. Moreover, it is postulated in 

Fávero et al. (2020) that cases where 𝜙 → 0, 
equidispersion would then be detected, indicating that a 
Poisson regression model would be suitable. According 

to the same authors, for the case in which 𝜙 is 
statistically greater than zero, then overdispersion would 
effectively occur, suggesting the application of an NB 
regression model instead. 

Although the Poisson model is the most 
frequently used regression model for count data analysis, 
by definition, its distribution contains a single free 

parameter 𝜆. This prevents the variance to be fitted to 
the mean (Payne et al., 2018), as previously explored for 

the case of 𝜆 = 𝑉𝑎𝑟(𝑌) in equations (3) and (4). Hence, 
in the presence of overdispersion, an NB regression 
model may provide a better fit for the count data, in 
which the mean of the Poisson distribution may be used 
as a random variable that follows a gamma distribution 

with an additional free parameter 𝜙 (Cameron and 
Trivedi, 1990, Fávero et al., 2020). 
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Thus, once overdispersion is properly tested and 
confirmed, then NB models are estimated via the 
likelihood criterion specified in equation (12), as 
discussed in Cameron and Trivedi (2010): 
 

𝐿𝐿 = ∑ [𝑌𝑖 ln (
𝜙𝑢𝑖

1+𝜙𝑢𝑖
) −

ln(1+𝜙𝑢𝑖)

𝜙
ln Γ(𝑌𝑖 +

𝑛
𝑖=1

𝜙−1) − ln Γ(𝑌𝑖 + 1) − ln Γ(𝜙
−1)] (12) 

 
which should be iterated up to reaching the maximum 

value (Hilbe, 2014) - i.e. 𝐿𝐿 = ∑ [𝑌𝑖 ln (
𝜙𝑢𝑖

1+𝜙𝑢𝑖
) −𝑛

𝑖=1

ln(1+𝜙𝑢𝑖)

𝜙
ln Γ(𝑌𝑖 + 𝜙

−1) − ln Γ(𝑌𝑖 + 1) −

ln Γ(𝜙−1)] = max. 

Zero-inflated (ZI) Regression Models 

Although count models, such as Poisson and NB 
regression, may generate robust estimation for count 
data, these models may not be the most suitable 
frameworks in the case there is an excessive amount of 
zero-valued observations in the dependent variable 
(Perumean-Chaney et al., 2013). 

According to Lambert (1992), ZI regression models 
are regarded as a mixture between a model for count data 
and a model for binary data. These models are applied 
to identify the reasons a particular quantity of counts 
occurs, regardless of the number of observed counts. 

Two types of ZI models are typically considered. 
The first type consists of a zero-inflated Poisson (ZIP 
hereinafter) regression model, estimated from the 
combination of a Bernoulli with a Poisson distribution. 
The second type refers to the zero-inflated negative 
binomial (ZINB hereinafter) model, estimated from the 
combination of a Bernoulli with a Poisson-gamma 
distribution. 

 

Zero-inflated Poisson (ZIP) Regression Model. 

The probability 𝒑(𝒀𝒊 = 𝟎), reflecting a zero count of a 

particular observation 𝒊 = 𝟏, 𝟐, … , 𝒏 – being 𝒏 the 
sample size, is calculated considering the sum of a 
dichotomic (i.e. binary) component. Analogously, the 

term 𝒑𝒍𝒐𝒈𝒊𝒕𝑰  is defined as the probability of any count 

not materializing exclusively due to such a dichotomic 
component. 

Moreover, the probability 𝒑(𝒀𝒊 = 𝒎) that a 

particular count 𝒎 = 𝟏, 𝟐, 𝟑, … effectively occurs, is 

calculated by multiplying the Poisson distribution by 

(𝟏 − 𝒑𝒍𝒐𝒈𝒊𝒕𝒊). Therefore, the general equation of the 

estimated probability for each observation i of an event 
occurring in a dichotomous manner is formulated in 
equation (13): 

 

𝒑𝒊 =
𝟏

𝟏+𝒆𝒙𝒑[−(𝜸+𝝂𝟏𝑿𝟏𝒊+𝝂𝟐𝑿𝟐𝒊+⋯+𝝂𝒌𝑿𝒌𝒊)]
               (13) 

 

Equation (13) is routinely used to calculated the 
probability of an event – commonly denoted by the 
value of one, and the probability of a non-event – 
commonly denoted by the value of zero. However, 
specifically for the ZI cases, equation (13) should 
consider the existence of zeros as an event and, 
conversely, values different from zero should be 
understood as a respective nonevent. 

In a ZIP model estimation, when combining a 
binary logistic estimation with another counting data 
estimation , it is assumed that there are two processes 
generating zero values. One of such processes is due to 
the binary distribution (structural zeros) and the 
remaining one due to the Poisson distribution (sampling 
zeros). 

The combination between structural zeros and 
sampling zeros is represented in equation (14). The 
former follows a Bernoulli distribution - in which zero-
valued and non-zero observations are considered as an 
event and non-event, respectively – and the latter 
follows a Poisson distribution. 

 

{
𝒑(𝒀𝒊 = 𝟎) = 𝒑𝒍𝒐𝒈𝒊𝒕𝒊 + (𝟏 − 𝒑𝒍𝒐𝒈𝒊𝒕𝒊)𝒆𝒙𝒑(−𝝀𝒊)     

𝒑(𝒀𝒊 = 𝒎) = (𝟏 − 𝒑𝒍𝒐𝒈𝒊𝒕𝒊)
𝒆𝒙𝒑(−𝝀𝒊)𝝀𝒊

𝒎

𝒎!
              

(1

4) 

 

where 𝒀~𝒁𝑰𝑷(𝝀, 𝒑𝒍𝒐𝒈𝒊𝒕𝑰), being 𝒑𝒍𝒐𝒈𝒊𝒕𝑰  calculated 

through equation (15): 

 

𝒑𝒍𝒐𝒈𝒊𝒕𝒊 =
𝟏

𝟏+𝒆𝒙𝒑[−(𝜸+𝝂𝟏𝑾𝟏𝒊+𝝂𝑾𝟐𝒊+⋯+𝝂𝒒𝑾𝒒𝒊)]
       (15) 
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where 𝑾𝒒 consists of the q-th explanatory variable that 

originates structural zeros. 

 

𝝀𝒊 = 𝒆𝒙𝒑(𝜶 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 +⋯+ 𝜷𝒌𝑿𝒌𝒊)         
(16) 

 

It is worth noting that if 𝒑𝒍𝒐𝒈𝒊𝒕𝒊 = 𝟎, then the 

distribution of probabilities of equation (14) is clearly 
summarized in the Poisson distribution, including cases 

where 𝒀𝒊 = 𝟎. In other words, ZIP regression models 
present two zero generating processes, in which one 
refers to the binary distribution (structural zeros) and the 
other to the Poisson distribution (sampling zeros). From 
equation (14), it is possible then to formulate the 
objective function detailed in equation (17), which 
objective is to estimate the parameters 

𝜶,𝜷𝟏, 𝜷𝟐, … , 𝜷𝒌, 𝜸, 𝝂𝟏, 𝝂𝟐, … , 𝝂𝒒 of a ZIP regression 

model. 

 

𝑳𝑳 = ∑ 𝒍𝒏[𝒑𝒍𝒐𝒈𝒊𝒕𝒊 + (𝟏 − 𝒑𝒍𝒐𝒈𝒊𝒕𝒊)𝒆𝒙𝒑(−𝝀𝒊)] +𝒀𝒊=𝟎

∑ [𝒍𝒏(𝟏 − 𝒑𝒍𝒐𝒈𝒊𝒕𝒊) − 𝝀𝒊 + 𝒀𝒊 𝒍𝒏(𝝀𝒊) −𝒀𝒊>𝟎

𝒍𝒏(𝒀𝒊!)] = 𝒎𝒂𝒙    (17) 

 
Based on equations (15) and (16), one may define 

that while the occurrence of structural zeros is 
influenced by a vector of explanatory variables 

𝑾𝟏,𝑾𝟐, … ,𝑾𝒒, the occurrence of a particular count 𝒎 

is influenced by a vector of 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒌. A potential 
application consists of inserting the same variable into 
two vectors to investigate if such a variable 
simultaneously influences the occurrence of an event 
and, if so, quantifying the occurrences (i.e. counts) of the 
phenomenon being explored. 

Zero-inflated Negative Binomial (ZINB) 

Regression Model. The probability 𝑝(𝑌𝑖 = 0) of the 

occurrence of zero count 𝑝𝑙𝑜𝑔𝑖𝑡𝑖 of a particular 

observation 𝑖 = 1,2, … , 𝑛 – being 𝑛 the sample size, is 
also calculated based on the sum between a dichotomic 
with a count component. However, differently from the 
ZIP regression model, in the case of the ZINB 

regression framework, the probability 𝑝(𝑌𝑖 = 𝑚) of 

occurrence of a particular 𝑚 count follows a Poisson-
Gamma distribution. 

Thus, the combination between structural zeros 
and sampling zeros is represented in equation (18). The 
former follows a Bernoulli distribution – in which zero-
valued and non-zero observations are considered as an 
event and non-event, respectively – and the latter 
follows a Poisson-gamma distribution. 

 

{
 
 

 
 
𝑝(𝑌𝑖 = 0) = 𝑝𝑙𝑜𝑔𝑖𝑡𝑖 + (1 − 𝑝𝑙𝑜𝑔𝑖𝑡𝑖) (

1

1 + 𝜙𝑢𝑖
)

1
𝜙
                                                            

𝑝(𝑌𝑖 = 𝑚) = (1 − 𝑝𝑙𝑜𝑔𝑖𝑡𝑖) [(
𝑚 + 𝜙−1 − 1

𝜙−1 − 1
) (

1

1 + 𝜙𝑢𝑖
)

1
𝜙
(
𝜙𝑢𝑖

𝜙𝑢𝑖 + 1
)
𝑚

]                

 

 (18) 

 

where 𝑌~𝑍𝐼𝑁𝐵(𝜙, 𝑢, 𝑝𝑙𝑜𝑔𝑖𝑡𝑖), 𝜙 represents the inverse 

of the shape parameter of a gamma distribution and, 

analogously to the ZIP regression model, 𝑝𝑙𝑜𝑔𝑖𝑡𝑖 is 

calculated following equations (19) and (20): 

 

𝑝𝑙𝑜𝑔𝑖𝑡𝑖 =
1

1+exp[−(𝛾+𝜈1𝑊1𝑖+𝜈2𝑊2𝑖+⋯+𝜈𝑞𝑊𝑞𝑖)]
       (19) 

 

𝑢𝑖 = exp(𝛼 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖)       (20) 

 

Based on equation (18), the objective function 
detailed in equation (21) may be formulated, aiming at 
estimating the parameters 

𝜙, 𝛼, 𝛽1, 𝛽2, … , 𝛽𝑘, 𝛾, 𝜈1, 𝜈2, … , 𝜈𝑞 of a ZINB regression 

model. 

 

𝐿𝐿 = ∑ ln [𝑝𝑙𝑜𝑔𝑖𝑡𝑖 + (1 − 𝑝𝑙𝑜𝑔𝑖𝑡𝑖) (
1

1+𝜙𝑢𝑖
)

1

𝜙
] +𝑌𝑖=0

∑ ln [(1 − 𝑝𝑙𝑜𝑔𝑖𝑡𝑖) + 𝑌𝑖 ln (
𝜙𝑢𝑖

1+𝜙𝑢𝑖
) −

ln(1+𝜙𝑢𝑖)

𝜙
+𝑌𝑖>0

ln Γ(𝑌𝑖 + 𝜙
−1) − ln Γ(𝑌𝑖 + 1) − ln Γ(𝜙

−1)] = max 

      (21) 

In the case that 𝑝𝑙𝑜𝑔𝑖𝑡𝑖 = 0 in equation (18), the 

distribution of probabilities is then restricted to the 

Poisson-gamma distribution, including cases where 𝑌𝑖 =
0. Then, the ZINB regression models also present two 
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zero generating processes, resulting from both the 
binary and Poisson-gamma distribution. 

Data Diagnostic Tests 

In the present study, two tests are explored in order 
to identify two relevant problems frequently present in 
real-world count data. Firstly, it is detailed a test for 
detecting overdispersion, following the proposition in 
Cameron and Trivedi (1990). Secondly, it is presented a 
test to confirm excessive zeros in the dependent variable, 
following the proposition in Vuong (1989). 

Overdispersion Cameron and Triverdi (CT) 
Test. The CT test for overdispersion detection in count 
data proposed by Cameron and Trivedi (1990), where 

𝐻0 is the equidispersion given by 𝑉𝑎𝑟(𝑌|𝑋) = 𝐸(𝑌|𝑋), 
based on equation (22): 
 

𝑉𝑎𝑟(𝑌|𝑋) = 𝐸(𝑌|𝑋) + 𝜙[𝐸(𝑌|𝑋)]2 (22) 

 

It is worth noticing that equation (22) is similar to 
the variance function of the NB regression model in 
equation (10). For the test in equation (22), the 

significance of parameter 𝜙 must be verified, in which 

𝐻0: 𝜙 = 0 and 𝐻1: 𝜙 > 0. For the detection of 
overdispersion in the count data, at a certain level of 
significance, it is postulated that a Poisson regression 
model should be estimated a priori. 

Subsequently, an auxiliary ordinary least squares 
(OLS) regression model without intercept is also 

estimated. Its dependent variable 𝑌∗, given by equation 

(23), is then computed using the fitted values of 𝜆 from 
the initially established Poisson regression model. 

 

𝑌𝑖
∗ =

[(𝑌𝑖−𝜆𝑖)
2−𝑌𝑖]

𝜆𝑖
 (23) 

 

The auxiliary model in equation (23) sets 𝜆 as its 
single predictor variable, following equation (24): 

 

𝑌̂𝑖
∗ = 𝛽𝜆𝑖 (24) 

 
Furthermore, subsequently to the estimation of 

the auxiliary model in equation (24), it is performed a 
Student’s t-test to analyze the p-value of the predictor 

variable 𝜆. In the cases in which 𝑝 > |𝑡| > 𝑠𝑖𝑔, it is then 
assumed that, at a certain significance level, there is 

equidispersion in the data. Conversely, if 𝑝 > |𝑡| ≤ 𝑠𝑖𝑔 
then overdispersion, at a certain significance level, is 
confirmed. 

This overdispersion test may be performed in R 
programming language, using the overdisp() function of 
the overdisp package introduced in Freitas Souza et. al. 
(2020). 

Excess Zeros Vuong Test. The Vuong test 
(Vuong, 1989) is used to check for the presence of 
excessive zeros within the dependent variable. This test 
compares two model frameworks estimated over the 

same data, for instance models 𝑀1 and 𝑀2. Its null 

hypothesis 𝐻0 is that both models 𝑀1 and 𝑀2 fit 
adequately to the underlying data. Such models cannot 
be nested and their dependent variables must consist of 
count data (Desmarais and Harden, 2013). 

This test adopts the Kullback-Leibler divergence 
(Kullback and Leibler, 1951) of the data-generating 

model 𝑀𝑡. The difference of the Kullback-Leibler 

divergence between model 𝑀𝑡 and a particular model 𝑀 

is algebraically expressed as 𝐷𝐾𝐿(𝑀𝑡||𝑀). Hence, the 𝐻0 

of the test is formulated as 𝐻0: 𝐷𝐾𝐿(𝑀𝑡||𝑀1) =
𝐷𝐾𝐿(𝑀𝑡||𝑀2). 

Therefore, considering that the Vuong test refers 
to a comparison between count data models for ZI 
detection, besides estimating an ZI regression model – 
either a ZIP or ZINB framework, it is also necessary to 
estimate an additional regression model for comparison 
purposes, consisting of either a Poisson or NB model 
estimation. More objectively, this test should be applied 
either to compare a Poisson against a ZIP model 
estimation or an NB against an ZINB model estimation. 

This overdispersion test may be performed in R 
programming language, using the vuong() function of 
the pscl package introduced in Zeileis, Kleiber, and 
Jackman (2008). 

Model Selection Approach 

The model selection approach proposed in the 
present study is comprised of four widely used count 
regression model frameworks and two statistical tests to 
identify problems commonly found in real-world count 
datasets. The aim of this selection approach is to guide 
analysts in their decision on which count regression 
model would be the most appropriate according to 
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specific characteristics of the dataset. The relation 
between regression models for count data and the 
presence of overdispersion and/or excessive amount of 
zero-valued observations in the dependent variable are 
summarized in Table 1. 

Thus, in cases in which there is an excessive amount 
of zero-valued observations in the dependent variable, 
the ZIP and ZINB regression models are more 
appropriate. Nonetheless, when there is overdispersion, 
then NB regression models would consist of more 

suitable alternatives, either its classical version or the ZI 
framework. As shown in Figure 3 as well, in the case that 
the dependent variable has both attributes of excessive 
zeros and overdispersion, then the ZINB regression 
model would be the best framework to be adopted. The 
proposed count regression model selection approach 
illustrated in Figure 3 is originally introduced in 
Perumean-Chaney et al. (2013) and then adapted in the 
present study in order to enable its execution using R 
programming language. 

 
 
Table 1. Regression models for count data, overdispersion, and excess of zeros 

Dependent variable attribute 
Count data regression model 

Poisson NB ZIP ZINB 

Excessive zeros No No Yes Yes 
Overdispersion No Yes No Yes 

 
 

 

Figure 3. Flowchart of the proposed count regression model selection approach, adapted from Perumean-Chaney 
et al. (2013). 

 



Practical Assessment, Research & Evaluation, Vol 26 No 13 Page 9 

Fávero et al., Count Data Regression Analysis  

 

Data 

The data to illustrate the application of the 
proposed count regression model selection approach 
contain information about approvals of students in a 
specific national high school exam in Brazil reported in 
160 public or private schools. This dataset is available as 
supplementary material to this paper. Moreover, all R 
codes used in the following empirical applications are 
provided in the Appendix. As reported in Table 2, the 
dataset contains four variables, 160 observations, and no 
missing values. 

In Table 3 are summarized the descriptive statistics 
of variables approvals, professors and hours, as well as the 
frequency of occurrence of the categorical variable public. 
It is reported that almost 60% of the schools do not 
present any student approved in the considered national 
high school exam, suggesting the presence of an 
excessive amount of zero-valued observations in the 
dependent variable. 

It is worth noticing that the variance of the variable 
approvals is 14 times larger than the respective mean. The 
histogram of the dependent variable approvals is shown 
in Figure 4. 

 

 

Table 2. Name, type of data, and description of the variables in the dataset 

Variable name Type of data Variable description 

Approvals Quantitative discrete 
Number of students approved per school in the national 

high school exam. 

Professors Quantitative discrete Number of full-time teachers in each school. 

Hours Quantitative continuous 
Average number of hours studied per week by the 

students from each school. 

Public Categorical dichotomous 
Information about whether the school is public (i.e. 0 = 

no, 1 = yes). 

 

 

Table 3. Descriptive statistics of the variables in the dataset 

Variables 

approvals professors hours public 

Smallest: 0.00 

Quartile 1: 0.00 

Median: 0.00 

Quartile 3: 3.00 

Largest: 33.00 

Mean: 2.87 

Variance: 40.74 

Smallest: 7.00 

Quartile 1: 14.00 

Median: 20.00 

Quartile 3: 27.00 

Largest: 29.00 

Mean: 18.01 

Variance: 59.91 

Smallest: 1.00 

Quartile 1: 7.07 

Median: 10.24 

Quartile 3: 14.23 

Largest: 38.00 

Mean: 11.83 

Variance: 57.67 

Rel. freq. of 0: 57% 

 

Rel. freq. of 1: 43% 

 

Note. Rel. freq. stands for relative frequency. 
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Figure 4. Histogram of the variable approvals 

 

 

Empirical Applications with R 

This section contains four empirical cases that 
demonstrate the practical usefulness of the model 
selection approach proposed in this study. In such cases, 
the data detailed in Section 4 are estimated using 
Poisson, NB, ZIP, and ZINB regression models, which 
are executed with functions and packages of the R 
programming language. 

Besides the algorithms used, the functional form 
and respective parameters of the models involved are 
also detailed in order to algebraically demonstrate the 
analysis performed behind each respective R algorithm. 
Furthermore, empirical applications in R of the CT test 
for overdispersion and Vuong test for excess zeros are 
also illustrated. 

Following the model selection approach detailed in 
Section 3, the first case explores the Poisson regression 
model. Subsequently to the modeling stage, it is 
performed the CT test, which consists of a first step 
towards an informed decision making on which count 
regression framework would be the most suitable 
alternative. Then, the NB regression model is estimated 
and assessed for comparison purposes. Lastly, the ZIP 
and ZINB regression models are also estimated and the 
Vuong test is then also performed. 

Case 1: Poisson Estimation and Overdispersion 

Test 

A preliminary comparative analysis between the 
mean and variance of the dependent variable reported in 
Table 3, along with the graphical interpretation of the 
histogram shown in Figure 4, suggest the presence of 
overdispersion. However, despite of such preliminary 
evidences, it is not possible yet to confirm its effective 
presence because, in fact, these statistics need to be 
conditional to the respective explanatory variables. 

In the R programming language, the estimation of 
the Poisson regression model may be performed using 
the glm() algorithm of the stats package, which is part of 
the standard installation. The functional form of the 
Poisson regression model, ensuing a stepwise procedure, 
is composed in equation (25): 

 

𝜆𝑖 = exp(−1.0912 + 0.1279 × ℎ𝑜𝑢𝑟𝑠𝑖 − 0.4123 ×
𝑝𝑢𝑏𝑙𝑖𝑐𝑖) (25) 

 

All predictor variables in equation (25) have 
parameters statistically significant at the significance 
level of 5%, ceteris paribus. It is worth mentioning that the 
variable professor is removed from this estimation not 
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because it is not statistically significant but instead due 
to the fact that is not statistically significant along with 
the remaining predictor variables, ceteris paribus. 

It is also relevant to validate if the Poisson 
regression model is more appropriate than the NB 
regression framework. In other words, the analyst needs 
to test for the presence of overdispersion in the 
dependent variable conditioned to the predictor 
variables. Following the model selection approach 
detailed in Section 3, the CT test is then used. 

Upon determining the fitted values 𝜆 of the 
regression model in equation (25), it is then possible to 

generate the dependent variable 𝑌∗, as formulated in 
equation (23). The functional form of the auxiliary OLS 
model without an intercept is shown in equation (26): 

 

𝑌𝑖
∗ = 0.0522 × 𝜆𝑖 (26) 

 

Such an auxiliary OLS model without an intercept 

indicates that the coefficient of the variable 𝜆𝑖 results in 

a p-value of 0.442 > 0.05. Then, the 𝐻0 of the CT test 
cannot be rejected. Hence, the equidispersion of the 
dependent variable, conditional to the predictor 
variables, is confirmed at the significance level of 5%. 

A straightforward routine to perform this 
overdispersion test is using the overdisp() function. Such 
an R function should be performed subsequently to the 

application of the 𝑛 − 1 dummies procedure, if 
applicable depending on the data context. The ouputs of 
this R function to execute the CT test for overdispersion 
is shown in Figure 5, confirming the presence of 
overdispersion in this particular case. 

In the light of the outputs in Figure 5, there is 
evidence that the Poisson would be preferable in 
comparison with the NB regression model. Nonetheless, 
it is worth mentioning that the Vuong test has not yet 
been performed and, therefore, such a model preference 
is still preliminary. In addition, to calculate the 
confidence intervals of the regression model in equation 
(25), one may use the confint() function of the stats 
package. 

Regarding the model parameters in equation (25), 

the intercept 𝛼 is -1.0912. The measurement of exp(𝛽𝑗) 
denotes the change, on average, of the rate of the 
dependent variable while changing the respective 
predictor variable in one unit, ceteris paribus. For instance, 
the slope coefficient of variable hours in equation (25) is 

0.1279, which yields exp(0.1279) = 1.1364. Hence, 
the average rate of approvals of students should be 
multiplied by a factor of 1.1364 for every unit increase 
in the variable hours, ceteris paribus. Therefore, one unit 
increase in the variable hours leads to an increase, on 
average, of 13.64% in the rate of approvals of students 
in the school, ceteris paribus. 

Similarly, one may analyze the slope coefficient of 
the variable public in equation (25). Considering that its 

𝛽𝑗 = −0.4123, then exp(−0.4123) = 0.6621. 

Consequently, there is a decline, on average, of 33.79% 
in the rate of approvals in the national exam for public 
schools in comparison with private schools, ceteris paribus. 
In other words, the average rate of approvals in the 160 
schools should be multiplied by a factor of 0.6621 as a 
consequence of the fact that the school is public. 

In addition, to compute the respective predicted 
values while preserving the ranges of the predictor 
variables, then the predict() function of the stats package 
may be used. 

 

Figure 5. Outputs of the CT test for overdispersion using the overdisp() function 
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Case 2: NB Estimation 

In R, the estimation of the NB regression model 
may be performed through the glm.nb() algorithm of the 
MASS package. Although the CT test for overdispersion 
previously indicates that the Poisson regression model 
should be used in the data context explored in Case 1, in 
this subsection an estimation using the NB regression 
model is performed for pedagogical purposes. The 
functional form of the NB regression model is 
formulated in equation (27), as follows: 

 

𝑢𝑖 = exp (−2.0224 + 0.0509 × 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟𝑠𝑖 +
0.1362 × ℎ𝑜𝑢𝑟𝑠𝑖 − 1.0914 × 𝑝𝑢𝑏𝑙𝑖𝑐𝑖) (27) 

 

At the significance level of 5%, all predictor 
variables in the regression model in equation (28) have 
parameters statistically different from zero, ceteris paribus. 

As the parameter 𝜙 is 0.8956, then 𝜃 = 1.1166 with a 

standard error of 0.329. The ratio between 𝜃 and its 

standard error results in 𝑧 > 1.96, confirming that the 

parameter 𝜃 is statistically different from zero, at the 
confidence level of 95%. 

Apparently, such results may seem counterintuitive 
due to the fact that the CT test indicates equidispersion 
in the dependent variable conditioned to the predictor 

variables. Nevertheless, the parameter 𝜙 of the NB 
regression model seems to be statistically different from 
zero. However, it is worth noticing that the Vuong test 
has not yet been performed and the lack of such an 
information may cause serious avoidable problems to 
the analyst. 

Regarding the NB regression model parameters in 

equation (27), its intercept 𝛼 is -2.0224 and, analogously 
to the model in equation (25), the measurement of 

exp(𝛽𝑗) denotes the change, on average, of the rate of 

the dependent variable while changing the respective 
predictor variable in one unit, ceteris paribus. 

The slope coefficient of variable professors in 

equation (27) is 0.0509, which yields exp(0.0509) =
1.0523. Hence, the average rate of approvals of 
students should be multiplied by a factor of 1.0523 for 
every unit increase in the variable professors, ceteris paribus. 
Consequently, one unit increase in the variable professors 
leads to an increase, on average, of 5.23% in the rate of 
approvals in the national high school exam, ceteris paribus. 

Analogously, for every unit increase in the variable 
hours the rate of approvals should be multiplied by a 
factor of 1.1459, yielding an increase, on average, of 
14.59% in the rate of approvals in the national exam, 
ceteris paribus. Similarly, the fact that a school is public 
would cause a decrease, on average, of 66.43% in the rate 
of approvals, ceteris paribus. 

In addition, analogously to the estimation 
performed in Case 1, one may compute the confidence 
intervals of the NB regression model using the confint() 
function of the MASS package as well as the predicted 
values, while preserving the ranges of the predictor 
variables, using the predict() function of the stats 
package. 

Case 3: ZIP Estimation and Vuong Test 

To illustrate the application of the Vuong test to 
detect the presence of excessive zeros in the dependent 
variable, this case explores the ZIP regression model 
estimation, which is also compared to the Poisson 
regression estimation performed in Case 1. In R, the ZIP 
regression model may be performed through the 
zeroinfl() function of the pscl package. 

It is worth mentioning that there is not yet a 
corresponding function in R to perform a stepwise 
procedure to remove predictor variables whose 
parameters are not statistically significant in ZI 
regression models. In view of such a limitation, the 
authors then carefully select the most suitable ZIP 
regression model considering the variables in the dataset. 
The portion of structural and sampling zeros among all 
zeros in the dataset are shown in equations (28) and (29), 
respectively: 

 

𝑝𝑙𝑜𝑔𝑖𝑡𝑖 =
1

1+exp[−(2.9868−0.1138×𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟𝑠𝑖−0.1743×ℎ𝑜𝑢𝑟𝑠𝑖+2.9351×𝑝𝑢𝑏𝑙𝑖𝑐𝑖)]
 

 (28) 

 

𝜆𝑖 = exp(−0.0808 + 0.0949 × ℎ𝑜𝑢𝑟𝑠𝑖) (29) 

 

Based on equations (28) and (29), the functional 
form of the ZIP regression model is then formulated in 
equation (30): 
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𝜆𝑍𝐼𝑃𝑖 = {1 −
1

1+exp[−(2.9868−0.1138×𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟𝑠𝑖−0.1743×ℎ𝑜𝑢𝑟𝑠𝑖+2.9351×𝑝𝑢𝑏𝑙𝑖𝑐𝑖)]
} ×

exp(−0.0808 + 0.0949 × ℎ𝑜𝑢𝑟𝑠𝑖) (30) 

 

Before discussing the parameters of equation (30), 
the results of the Vuong test have to be analyzed. Such 
test outputs generated in R are shown in Figure 6, 
comparing the Poisson regression model explored in 
Case 1 and formulated in equation (25) with the ZIP 
regression model formulated in equation (30). In this 
case, the Vuong test indicates a better adequacy of the 

ZIP regression model, resulting in 𝑧 = −4.8751 and a 
p-value smaller than 0.05. 

It is worth mentioning that Desmarais and Harden 
(2013) propose a correction to the Vuong test. This 
correction is based on the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) 
statistics. Such a correction should be implemented to 
eliminate potential biases that may affect the model 
selection decision regarding the most appropriate 
regression framework. 

Regarding the outputs in Figure 6, while the Vuong 

test results in 𝑧 = −4.8751, the AIC and BIC corrected 

statistics are 𝑧 = −4.6448 and 𝑧 = −4.2908, 
respectively, all yielding a p-value smaller than 0.05. 
Therefore, the results of the Vuong test with AIC and 
BIC correction also indicate that the ZIP regression 
model is the most appropriate in this context. 

In equation (30), the predictor variables professors, 

hours and public correspond to the variables 𝑊1, 𝑊2 and 

𝑊3 in equation (15), respectively, while the variable hours 

refers to a predictor variable 𝑋1, following equation (16). 
Hence, the regression model formulated in equation (30) 
aims to estimate if the probability of structural zeros in 
equation (28) is affected by the number of full-time 
teachers in each school included in the sample (i.e. 
variable professors), the average number of hours studied 
per week by the students from each school (i.e. variable 
hours), and whether the school is public or private (i.e. 
variable dummy public). 

Furthermore, such a regression model also intends 
to predict whether the occurrence of a particular count 
of approvals in the national high school exam (i.e. 
variable approvals) is influenced by the average number of 

hours studied per week in the respective school 𝑖 (i.e. 
variable hours), as shown in equation (29). Therefore, it is 

likely that variables used as 𝑊𝑞 are also used as 𝑋𝑘 

(Hilbe, 2011). 

Thus, in the case of an ZI estimate, the 

measurement of exp(𝜈𝑞) would indicate a change, on 

average, of the occurrence of excess structural zeros in 

the dependent variable approvals, whereas exp(𝛽𝑗) would 

explain the change, on average, in the rate of approvals 
of students with respect to the counting data, including 
sampling zeros, ceteris paribus. 

Regarding the part of the ZIP regression model in 
equation (30) that calculates the occurrence of structural 

zeros, its intercept 𝛾 is 2.9868. For instance, as the slope 

coefficient of variable professors is 𝜈1 = −0.1138, then 

exp(−0.1138) = 0.8924. This means that one unit 
increase in the variable professors leads to a decrease, on 
average, of 10.76% in the chances of the occurrence of 
structural zeros, ceteris paribus. 

 

Figure 6. Outputs of the Vuong test comparing the Poisson with the ZIP regression model 
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In the case of the slope coefficient of variable hours, 

which is 𝜈2 = −0.1743, then exp(−0.1743) =
0.8401. Such a result means that one unit increase in the 
variable hours leads to a decrease, on average, of 15.99% 
in the chances of the occurrence of structural zeros in 
the rate of approvals in the national high school exam, 

ceteris paribus. Moreover, the variable public yields 𝜈3 =
2.9351, which means that the fact that a school is public 
would result in an increase, on average, of 1,782.34% in 
the chances of the occurrence of structural zeros, ceteris 
paribus. 

In summary, the larger the number of full-time 
professors and the average number of hours studied per 
week by the students in the school, the smaller is the 
probability of non-occurrence of approvals. On the 
other hand, public schools do not favor the approval of 
students in the national high school exam. 

In addition, the intercept 𝛼 of the sampling zeros is 

-0.0808 and the slope coefficient 𝛽1 of variable hours is 

0.0949, resulting in exp(0.0949) = 1.0995. This 
indicates that one unit increase in the variable hours leads 
to an increase, on average, of 9.95% in the chances of 
the occurrence of approvals, ceteris paribus. Thus, a unit 
increase in the variable hours, besides contributing to a 
smaller probability of the existence of zero inflation, also 
influences an increase in the number of students 
approved in the national high school exam, ceteris paribus. 

Similarly to Cases 1 and 2, the confidence intervals 
of ZIP regression model estimations may be computed 
using the confint() function, either for the structural or 
sampling zeros. Lastly, to predict values while preserving 
the ranges of the predictor variables, one may use the 
predict() function of the stats package. 

Case 4: ZINB Estimation and Vuong Test 

Although the CT test indicates equidispersion and 
the Vuong test suggests that the ZIP regression model is 
the most appropriate framework considering the sample 
data, for pedagogical purposes the ZINB regression 
model is estimated in this subsection. 

In R, similarly to the ZIP model, the ZINB 
regression model estimation may be performed using the 
zeroinfl() function of the pscl package. Moreover, as 
there is not yet a corresponding function in R to perform 
a stepwise procedure to remove predictor variables 
whose parameters are not statistically significant in ZI 
regression models, the authors carefully select the most 

suitable ZINB regression model using the variables in 
the dataset. 

Algebraically, the estimated ZINB regression model 
is described by equation (31), in which the parameters of 
all predictor variables are statistically different from zero 
at the significance level of 5%, ceteris paribus. 

 

𝑢𝑍𝐼𝑁𝐵𝑖 = {1 −
1

1+exp[−(2.9868−0.1138×𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟𝑠𝑖−0.1743×ℎ𝑜𝑢𝑟𝑠𝑖+2.9351×𝑝𝑢𝑏𝑙𝑖𝑐𝑖)]
} ×

exp(−0.0808 + 0.0949 × ℎ𝑜𝑢𝑟𝑠𝑖) (31) 

 

The outputs of the Vuong test comparing the NB 
regression model explored in Case 2 and expressed in 
equation (27) with the ZINB regression model 
expressed in equation (31), with AIC and BIC 
correction, are shown in Figure 7. 

The Vuong test shows a significant 𝑧 statistics at the 
confidence level of 95%. This indicates that the ZINB is 
preferable to the NB regression model due to the 
confirmation of the presence of an excessive amount of 
zero-valued observations. 

Regarding the part of the ZINB regression model 
in equation (31) that calculates the occurrence of 

structural zeros, the intercept 𝛾 is 2.9868. As the slope 

coefficient 𝜈1 of the variable professors is –0.1138, then 

exp(−0.1138) = 0.8924. This indicates that one unit 
increase in the variable professors leads to a decrease, on 
average, of 10.76% in the chances of the occurrence of 
structural zeros, ceteris paribus. 

As the slope coefficient 𝜈2 of variable hours is -

0.1743, then exp(−0.1743) = 0.8401. This means 
that one unit increase in the variable hours leads to a 
decrease, on average, of 15.99% in the chances of the 
occurrence of structural zeros in the rate of approvals, 
ceteris paribus. Moreover, regarding the variable public, 

𝜈3 = 2.9351 and then exp(2.9351) = 18.8234. This 
means that the fact that a school is public would result 
in an increase, on average, of 1,782.34% in the chances 
of the occurrence of structural zeros, ceteris paribus. 

The intercept 𝛼 of the sampling zeros is -0.0808 and 

the slope coefficient 𝛽1 of variable hours is 0.0949, 

resulting in exp(0.0949) = 1.0995. This indicates that 
one unit increase in the variable hours leads to an 
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increase, on average, of 9.95% in the chances of the 
occurrence of approvals in the national high school 
exam, ceteris paribus. 

The parameter 𝜙 is not statiscally different from 
zero, resulting in a p-value of 0.889. Therefore, there is 
further evidence of the existence of equidispersion in the 
dependent variable conditioned to the predictor 
variables. It is worth mentioning that in Case 2, when 

exploring the NB regression model, the parameter 𝜙 
appears to be statistically significant. However, such a 
statistically significant result is, actually, a consequence 
of the fact that in that particular case the Vuong test is 
not performed and, therefore, there is no information 
about the presence of inflation of zeros in the dependent 
variable. 

Moreover, the fact that 𝜙 is not statistically 
different  from  zero  in  the  ZINB  regression    model  

estimation produces fitted values that causes the model 
to retrograde to a ZIP regression model. This is 
evidenced through the strong similarity of the 
parameters and the log-likelihood ratio (LR) test 
comparing both ZI regression estimations, as shown in 
Figure 8. 

As detailed in Figure 8, the outputs 𝜒2 = 0.0001 
with one degree of freedom and p-value of 0.992 explicit 
that, at a confidence level of more than 95% (99%, for 
instance), there is no statistically significant differences 
between the ZIP and ZINB regression models, despite 
the fact that the ZINB regression model contains an 

additional parameter (i.e. 𝜙). Lastly, in R, the LR test 
may be performed using thelrtest() function of the lmtest 
package. 

 

 

 

 

Figure 7. Outputs of the Vuong test comparing the NB with the ZINB regression model 

 

 
 

 

Figure 8. Outputs of the LR test comparing the estimation of the ZIP (model 1) and ZINB regression model (model 
2) 
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Log-likelihood and Fitted Values Comparison 

After illustrating the practical usefulness of the 
proposed count model selection approach in Section 3 
through four cases exemplified in Section 4 - in which 
the ZIP regression model is selected as the most suitable 
framework, in Figure 9 is presented the estimated log-
likelihood of each regression model included in the 
present study, using the logLik() function of the stats 
package. 

The largest log-likelihood estimations are produced 
by both ZI regression models, while the Poisson 
regression model presents the smallest log-likelihood 
value. The Poisson and NB regression models are 23% 
and 14% smaller than the ZIP regression model, 
respectively. 

As the variable hours consists of the single predictor 
variable included in the sampling zeros part of the ZIP 
and ZINB regression models, then it is performed a 
comparison between observed values along with their 
respective fitted values of all four estimated regression 
models, as shown in Figure 10. 

Figure 10 also suggests, through a data visualization 
approach,  a  better  fit  of  the  ZIP  regression   model  

estimation in comparison with the remaining model 
frameworks. Moreover, it is possible to notice that the 
ZINB regression estimation naturally retrogrades to the 

ZIP regression model framework in cases where 𝜙 → 0. 

Conclusion 

In this paper is presented a straightforward model 
selection approach to indicate the most suitable count 
data regression model, contemplating relevant data 
characteristics. The proposed approach adapts the 
rationale in Perumean-Chaney et al. (2013), covering two 
of the most relevant problems commonly found in real-
world data count – namely, overdispersion and zero-
inflation, while enabling analysts to perform the entire 
selection approach using the programming language R. 

The comparison between the mean and variance of the 
dependent variable does not consist of a suitable 
approach for overdispersion examination. In similar 
fashion, assuming a particular amount of zero-valued 
observations is not the appropriate procedure to identify 
the zero-inflation characteristic in the dependent 
variable. 

 

 

 

Figure 9. Log-likelihood estimations comparing all four regression model frameworks 
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Figure 10. Comparison of fitted values of all estimated regression models, based on the variables approvals and hours 

 

 

 

 

Contrastingly, the CT test for overdispersion 
proposed by Cameron and Trivedi (1990) consists of a 
reliable procedure to confirm overdispersion within the 
dependent variable conditional to the predictor 
variables. Complementarily, the Vuong test proposed by 
Vuong (1989) is a solid statistical tool to identify the 
presence of excessive amount of zero-valued 
observations in the dependent variable. Such tests 
support the decision to be made by the analyst on which 
count regression model should be used considering data 
characteristics. 

In the present study the Poisson, NB, ZIP, and 
ZINB regression model are estimated and discussed 
through four empirical cases executed with R. The CT 
and Vuong test are also applied to the data. Considering 
the dataset used (i.e. information about approvals of 
students from 160 schools in a Brazilian national high 
school exam), the CT test indicates equidispersion 
within the dependent variable, conditioned to the 
predictor variables. Additionally, the outputs of the 

Vuong test confirm the presence of zero-inflation in the 
dependent variable. 

Furthermore, the cases explored in this study 
emphasize that if the zero-inflation data characteristic is 
not properly detected, this may induce the analyst to 
incorrectly believe that there is overdispersion in the data 

by finding an apparently statistically significant 𝜙 
parameter. Consequently, the respective misleading 
conclusion would indicate that the NB regression would 
be the most appropriate model whereas, in fact, the best 
alternative in such a data context would be the ZIP 
regression model instead. 

It is also underscored that if a count regression 
estimation is performed without properly analyzing the 
underlying distribution of the dependent variable as well 
as neglecting the importance of applying statistical tests 
to confirm relevant data idiosyncrasies, then this 
potentially leads to bias in the estimated coefficients, 
with consequent inefficiency and inconsistency of the 
modeling process. 
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Finally, all commands in R used throughout the 
paper are presented in the Appendix. 
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Appendix. Model Selection Approach Program in R 

 

Loading packages: 
library(tidyverse) 
library(MASS) 
library(overdisp) 
library(pscl) 
library(lmtest) 
library(reshape2) 

 
Loading dataset: 
load("dataset.RData") 

 
Descriptive statistics of the variables in the dataset (Table 3): 
summary(dataset) 

 
Histogram of the variable approvals (Figure 4) 
dataset %>%  
  ggplot() + 
  geom_bar(aes(x = factor(approvals)), stat="count", fill = "seagreen") + 
  geom_text(aes(x = factor(approvals),label = ..count..),  
            stat="count", vjust = -0.8, size = 2.5, color = "seagreen") + 
  labs(x = "Approvals", 
       y = "Frequency") + 
  theme_classic() 

 
Poisson estimation: 
poisson_model <- glm(approvals ~ professors + hours + public, 
                     data = dataset, 
                     family = "poisson") 

 
Stepwise procedure (Expression 25): 
poisson_final_model <- step(object = poisson_model, 
                            k = qchisq(p = 0.05, 
                                       df = 1, 
                                       lower.tail = FALSE), 
                            trace = 0) 

 
Parameters of the Poisson final model (Expression 25): 
summary(poisson_final_model) 

 
Creating a dependent variable Y* (ystar) for the auxiliary OLS model, as shown in expression (26): 
dataset["lambda"] <- poisson_final_model$fitted.values 
 
dataset["ystar"] <- ((dataset$approvals - dataset$lambda) ^ 2 - dataset$approvals) / 
dataset$lambda 

 
Estimating the auxiliary OLS Model Y*~λ, without the intercept (Expression 26): 
aux_ols_model <- lm(formula = ystar ~ 0 + lambda, 
                    data= dataset) 
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Parameters of the auxiliary OLS Model (aux_ols_model) Y*~λ, without the intercept (Expression 26): 
summary(aux_ols_model) 

 
Use of the overdisp() command (Figure 5): 
overdisp(x = dataset, 
         dependent.position = 1, 
         predictor.position = 2:4) 

 

Negative Binomial estimation: 
nb_model <- glm.nb(approvals ~ professors + hours + public, 
                   data = dataset) 

 
Stepwise procedure (Expression 27): 
nb_final_model <- step(object = nb_model, 
                       k = qchisq(p = 0.05, 
                                  df = 1, 
                                  lower.tail = FALSE), 
                       trace = 0) 

 
Parameters of the Negative Binomial final model (Expression 27): 
summary(nb_final_model) 

 
𝜃 Parameter: 
nb_final_model$theta 

 
𝜙 Parameter (1/𝜃): 
1 / nb_final_model$theta 

 
z Statistics of 𝜃 Parameter: 
nb_final_model$theta / nb_final_model$SE.theta 

 
ZIP Estimation (Expression 30): 
zip_model <- zeroinfl(formula = approvals ~ hours | professors + hours + public, 
                      data = dataset, 
                      dist = "poisson") 

 
Parameters of the ZIP model (Expression 30): 
summary(zip_model) 

 
Vuong test - poisson_final_model vs zip_model (Figure 6): 
vuong(poisson_final_model,zip_model) 

 
ZINB Estimation (Expression 31): 
zinb_model <- zeroinfl(formula = approvals ~ hours | professors + hours + public, 
                       data = dataset, 
                       dist = "negbin") 

 
Parameters of the ZINB model (Expression 31): 
summary(zinb_model) 
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Vuong test - poisson_final_model vs zip_model (Figure 7): 
vuong(nb_final_model,zinb_model) 

 

LR Test (Figure 8): 

lrtest(zip_model, zinb_model) 

 

Log-likelihood and Fitted Values Comparison (Figure 9) 
data.frame(Poisson = logLik(poisson_final_model), 
           NegBin = logLik(nb_final_model), 
           ZINB = logLik(zinb_model), 
           ZIP = logLik(zip_model)) %>%  
  rename(`Poisson Model` = 1, 
         `NB Model` = 2, 
         `ZIP Model` = 4, 
         `ZINB Model` = 3) %>%  
  melt() %>% 
  ggplot(aes(x = variable, y = (abs(-value)), fill = factor(variable))) + 
  geom_bar(stat = "identity") + 
  geom_label(aes(label = (round(value,4))), hjust = 1.2, color = "white") + 
  labs(y = "Log-Likelihood",  
       x = "Estimations") + 
  coord_flip() + 
  scale_fill_manual("Legenda:", 
                    values = c("black", "gray40", "seagreen", "seagreen3")) + 
  theme(legend.title = element_blank(),  
        panel.background = element_rect("white"), 
        legend.position = "none") 

 

Comparison of fitted values of all estimated regression models, based on the variables approvals and hours - 

Figure 10: 

dataset %>% 
  mutate(zip_lambda = zip_model$fitted.values, 
         u = nb_final_model$fitted.values, 
         zinb_u = zinb_model$fitted.values) %>%  
  ggplot() + 
  geom_point(aes(x = hours, y = approvals), alpha = 0.3) + 
  geom_smooth(aes(x = hours, y = lambda,  
                  color = "Poisson Estimation"), linetype = "longdash", se = F) + 
  geom_smooth(aes(x = hours, y = zip_lambda,  
                  color = "ZIP Estimation"), linetype = "solid", se = F) + 
  geom_smooth(aes(x = hours, y = u, color = "NB Estimation"), linetype = "dashed", se = F) + 
  geom_smooth(aes(x = hours, y = zinb_u, color = "ZINB Estimation"), linetype = "dotted", se = F) 
+ 
  scale_color_manual("Fitted Values:", 
                    values = c("black", "steelblue", "red", "orange")) + 
  labs(x = "Hours of Study per Week", 
       y = "Approvals") + 
  theme_bw() 
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