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There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN 
serves as a measurement model with high flexibility, suitable to model educational assessment data 
with a complex structure. BN is a novel psychometric approach and not all aspects of its application 
are well-known. The article aims to provide the systematization of BN model criticism methods in 
the field of educational assessment. The review revealed the diversity of model criticism methods and 
the shortages of specific research. The results demonstrate the state-of-the-art and help to navigate 
practitioners and researchers. 

Introduction 

 Bayesian networks (BN) have become a widely 
applied modeling tool in a variety of research domains 
(Cruz, Desai, Dewitt, Hahn, Lagnado, Liefgreen et al., 
2020). In the last decades, the increased use of BN 
arose in the area of educational assessment 
(Culbertson, 2016). In psychometrics, BN serves as a 
measurement model with high flexibility suitable to 
model educational assessment data with a complex 
structure (Almond, Mislevy, Steinberg, Yan, & 
Williamson, 2015). 

 The early studies in the field of educational 
assessment describe techniques for building BN and 
illustrate different aspects of BN construction, such as 
the estimation of probabilities within conditional 
probability tables or the interpretation of inferences 
about students (e.g., Almond, DiBello, Moulder, & 
Zapata-Rivera, 2007; Mislevy, Almond, Yan, & 
Steinberg, 1999; Mislevy, Senturk, Almond, Dibello, 
Jenkins, Steinberg, et al., 2002; Mislevy, Steinberg, 
Breyer, Almond, & Johnson, 2002). 

 DiCerbo, Bertling, Stephenson, Jia, Mislevy, Bauer 
et al. (2015) mentioned that, in the BN framework, it is 
convenient to include new observable indicators into 
the model with the same structure of latent variables. 
Scalise and Clarke-Midura (2018) discussed the 
hybridized model, which consists of both 
multidimensional Item Response Theory (IRT) 
modeling and BN with a small number of nodes. In 
their study, the application of BN helps to get new 
information from assessment systems and make more 
precise inferences about students. 

De Klerk, Veldkamp, and Eggen (2015) 
demonstrated that BN is the most widely used 
framework for psychometric analysis in the area of 
simulation-based and game-based assessment. Usually, 
the latent characteristics, assessed through the 
simulation-based and game-based assessment, have an 
extremely complex structure; hence, a measurement 
model should be flexible enough to take into account 
the system of complex relationships among skills and 
student actions (Becker and Shute, 2010). Therefore, a 
psychometric modeling approach based on an 
application of the BN appeared to be useful (e.g., Levy, 
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2013; Shute & Wang, 2016; Xing, Li, Chen, Huang, 
Chao, Massicotte et al., 2020). 

Notwithstanding BN's benefits, there are several 
challenges in its application (Levy, 2013). One of them 
is associated with the model criticism procedure. For 
psychometric paradigms with a relatively long history, 
such as the IRT or structural equation modeling 
(SEM), model criticism methods are well-known (de 
Ayala, 2009; Hu & Bentler, 1999). In contrast, model 
criticism methods are underdeveloped for novel 
psychometric approaches, such as BN (Crawford, 
2014). Model fit analysis of BN is a theoretical and 
practical issue that needs to be answered to the 
application of BN in educational assessment (Hu & 
Templin, 2020). 

The aim of the study is to reveal the state of the 
development and application of model criticism 
methods, within the BN approach, in the context of 
educational assessment. The study focuses on the 
application of BN as a measurement model and the 
following model criticism procedure. In the article, 
model criticism is considered in a broad sense, 
including model comparison, different aspects of 
model misfit, and the functioning of  observable 
variables. In addition, the essential characteristics of 
model criticism approaches are briefly discussed. 

The study is organized as follows. Firstly, we 
discuss BN as a measurement model and briefly 
describe model criticism issues within BN. Next, we 
present the methodology and the results of the 
literature review analysis.   

Bayesian Networks 

The BN model is a framework for modeling 
probabilistic relationships among latent and observable 
variables and performing a probabilistic inference 
(Pearl, 1988). More technically, BN is a directed acyclic 
graph, which represents a complex system of joint 
probability distribution among nodes that are 
interrelated by edges. In the context of educational 
assessment, the latent nodes represent cognitive 
characteristics, e.g., math skills or critical thinking; the 
observed nodes represent students' actions, e.g., an 
answer on a multiple-choice item or an action in a 
computer game. Thus, edges represent conditional 
dependencies between latent characteristics and 
observed actions. Moreover, edges might represent 
conditional dependencies between students' 

characteristics or between students' actions 
themselves. 

In educational assessment, the most common 
practice to build BN is to initially define the structure 
of the model (Almond et al., 2015). In this case, 
conditional dependencies between variables are set 
initially into the model, and the probability inference is 
obtained within this structure. A given structure of BN 
should represent theoretical expectations of domain 
experts, test-developers, or psychometricians about the 
association between cognitive characteristics and the 
observed actions. Нowever, a data-driven approach 
also can be applied if there is an absence of a strong 
theory or as a source of additional information (Yan, 
Almond, & Mislevy, 2004). 

BN assumes Bayes' theorem application for 
making a probabilistic inference about the latent 
variable; therefore, all significant features of Bayesian 
statistics should be considered (Pearl, 1988). For 
instance, let us denote x as an observable variable, 
which represents student action, and θ as a latent 
variable, which represents a student characteristic. 
Then, the conditional relationship between these 
variables, through Bayes' Theorem, is expressed by the 
following equation:  

P (θ | x) =  
P (x | θ) ∗ P(θ)

P(x)
                  (1) 

where P ( | x) is the posterior probability distribution, 
which is the distribution of the latent variable 

conditional on the observed variable; P () is the prior 
probability representing previous knowledge about the 
distribution of the latent variable, without considering 

the empirical data; P (x | ) is a so-called likelihood 
that shows the plausibility of the data, given a 
parameter of the model; and P (x) is a probability 
distribution of the observed variable, unconditional on 
any other variable. 

Following computational restrictions, all variables 
included in BN are discrete random variables. In 
educational assessment, observable variables are 
usually dichotomous (0 represents an incorrect answer, 
1 represents a correct answer) or polytomous (where 
scores of partially correct answers are added). Contrary 
to widespread IRT or SEM models, in BN, latent 
variables are also considered discrete, usually described 
in terms of latent classes, and show different 
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proficiency levels (e.g., low, moderate, or high; Levy, 
2009). 

The Bayesian approach requires setting prior 
probability distribution regarding model parameters, 
such as distribution for latent variables. Prior 
distribution might be gathered from previous research, 
empirical data, pretesting, or experts' opinions 
(Almond et al., 2015). 

Conditional dependencies between variables are 
expressed via conditional probability tables (CPT). 
Each cell of CPT, for observable variable x, represents 
the conditional probability of being at each state of 
variable x, given each state of latent variable θ. The 
values within CPT are also parameters to be estimated 
through the application of BN, considering prior 
information and empirical data. 

Schematically, the process of building BN can be 
described in several consecutive steps. In the first step, 
the variables of interest are defined, and the structure 
of the model is set. In the second step, prior 
distributions of model parameters should be specified. 
Further, model parameters are estimated via any 
parameter estimation method, taking into account 
prior information and empirical data. Finally, the next 
step of the analysis is to verify the quality of the model, 
the so-called model criticism process. For more 
information about theoretical and methodological 
foundations of BN, see Neapolitan (2004), Pearl 
(1988), and for application in the context of 
psychometrics, see Almond et al. (2015), Mislevy 
(1994). 

Model criticism 

According to modern psychometric standards, 
theoretical models ought to be validated, which means 
the quality of theoretical models should be proven 
(AERA, APA, & NCME, 2014). One of the ways to 
gather evidence of the validity of the theoretical model 
is to analyze the data results from students' 
performances. This analysis aims to conclude whether 
empirical data support theoretical expectations. This 
procedure is called model checking or model criticism. 
As was mentioned by Crawford, "models are built to 
help evaluate what students know. The models are, 
themselves, evaluated to see what the model-builders 
(domain experts) know." (2014, p.2). 

According to Sinharay (2006), model criticism 
analysis for BN is not straightforward. For instance, 

standard techniques, such as the χ2-test of the 
goodness of fit, cannot be applied directly due to many 
response patterns. Furthermore, the IRT model 
diagnostics are irrelevant due to discrete latent 
variables in BN. In summary, there is a shortage of 
well-studied model diagnostic techniques for the BN 
framework (Crawford, 2014; Hu & Templin, 2020). 

BN is a relatively novel type of measurement 
model for the psychometric community. To the 
author's knowledge, there is no unified model criticism 
procedure that should be applied to the BN 
measurement model. As presented in the following 
sections, the authors pay attention to different aspects 
of model fit, such as model identification, item or 
global fit (Almond et al., 2015; Culbertson, 2016). The 
systematization of BN model criticism approaches is 
the motivation of the study.  

 

Methods 

A systematic review of model criticism approaches 

The purpose of this study is to identify the state-
of-the-art, related to model criticism techniques within 
Bayesian networks in educational assessment. In order 
to conduct the analysis, the literature discussing BN as 
a measurement model in educational assessment was 
searched. Searching the literature included two 
iterations. The first one looked through the Web of 
Science and Scopus databases and selected relevant 
articles. In the second iteration, references of these 
papers were additionally scanned, and relevant articles 
were selected. After that, the content analysis of the 
selected articles was conducted. 

There were three key inclusion criteria in the study. 
The first criterion was that the papers should be 
published in English. The second criterion was that 
studies should be published as an article, conference 
paper, book or book chapter, or a chapter of a 
dissertation with open access. The third criterion was 
that the content of the studies was relevant: the studies 
are related to the area of educational or psychological 
research and performed analysis of simulated or/and 
real assessment datasets. The studies should discuss the 
psychometric analysis of the data and present model  
criticism analysis within BN. Overall, 25
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1 studies were analyzed in the research. The 
following section will discuss the directions of model 
criticism approaches. The summary of the 
systematization is presented in Appendix A 

Results 

The selected articles were analyzed and categorized 
into seven groups, based on the techniques of model 
criticism within the BN framework: a) classification 
and prediction accuracy; b) model comparisons; c) 
mutual information; d) inspection of conditional 
probability tables; e) residual analysis; f) posterior 
predictive model checking, and g) correlation with 
external criteria. Because one study may include 
different aspects of model criticism, one article can be 
assigned to several groups. 

Classification and predication accuracy 

In the context of educational assessment, 
classification and prediction accuracy demonstrates the 
ability of a model to categorize and predict the level of 
students' proficiency. 

The basic concept of the prediction accuracy 
approach is that if the model fits the data well, the 
model can precisely predict the state of the parameter. 
In the study by Williamson, Almond, & Mislevy (2000), 
the accuracy of predictions was considered as the 
criteria for model fit assessment. The study 
investigated if different indices, such as Ranked 
Probability Score (RPS; Epstein, 1969), Weaver's 
Surprise Index (WSI; Weaver, 1948), and Good's 
Logarithmic Score (GLS; Good, 1952), are helpful for 
the detection of errors. Vomlel (2004) compared the 
prediction accuracy (expected decision error) of 
different models, including computer-adaptive and 
non-adaptive models. The criterion demonstrates if the 
model correctly predicts the state of students' skills. 
The statistic that was used is the percentage of cases 
that were predicted equivalently to the observed data. 

Xing, Li, Chen, Huang, Chao, Massicotte et al. 
(2020) investigated the prediction accuracy of 
engineering design process assessment by comparison 
of the results provided by the assessment system and 
students' annual energy output. In the study, an 

 
 

1 Following the described criteria, 23 articles were selected. Two articles were added following anonymous    reviewer recommendation. 

external criterion (students' annual energy output) 
serves as the basis for the decision about the usefulness 
of BN. The authors computed precision and recall 
indexes. Precision demonstrates the correctness of the 
identification of students' labels; recall reflects the 
correctness of the identification of true cases. The 
indexes reveal the percentage agreement separately for 
high and low-performing groups. In the research by 
Pardos, Heffernan, Anderson, and Heffernan (2007) 
and Pardos, Feng, Heffernan, and Linquist-Heffernan 
(2007), model criticism of mathematics test was 
realized based on the analysis of the prediction 
accuracy through estimation of the absolute difference 
between predicted and observed score. 

The classification accuracy approach is based on a 
similar idea that if the model fits the data well, it will 
correctly classify students to their proficiency levels. 
Almond (2015) discusses the application of two 
classification accuracy coefficients: Goodman and 
Kruskal's lambda (Goodman & Kruskal, 1954) and 
Cohen's κ (Cohen, 1960). In the study by Lee and 
Corter (2011), firstly, classification accuracy was 
checked for both misconceptions and skills, based on 
the percentage agreement between the predicted and 
observed parameters and Cohen's k statistic. Secondly, 
the classification accuracy coefficient (percentage 
agreement) was applied to investigate misconception 
patterns. In a study based on simulations, Rutstein 
(2012), applied classification accuracy analysis to detect 
if a model had correctly assessed the level of learning 
progress. The analysis was based on the percentage 
agreement and the adjusted Rand index (Steinley, 
2004). 

The diversity of classification and prediction 
accuracy statistics is wide; therefore, a researcher 
should be highly attentive in choosing one or several 
of them. For instance, as the criterion of accuracy, a 
straightforward percentage agreement analysis and 
special criteria were applied. However, in the article by 
Lee and Corter (2011), the drawbacks of percentage 
agreement were discussed. Cohen's k statistics are  
suggested as a more reliable index because it adjusts the 
percentage agreement for the probability of agreement 
by chance (Lee and Corter, 2011). Almond (2015)
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highlighted that Goodman and Kruskal's lambda and 
Cohen's k statistics answer different questions. 
Cohen's k is a statistic that estimates agreement 
between rates; Goodman and Kruskal's Lambda 
answers where the estimates of the state are more 
precise if the classification was applied. 

In the study by Williamson, Almond, & Mislevy 
(2000), the primary focus was on the comparison of 
different prediction indices (RPS, WSI, GLS). 
However, the indices were not presented in other 
studies of the current literature review. The 
investigation of the efficiency of discrepancy measures 
within the PPMC approach by Crawford (2014) 
demonstrated that RPS and GLS were unable to detect 
any model misspecification. Additional investigations 
of the properties of different criteria in the context of 
BN application in education appeared to be helpful. 

Model comparisons 

The studies of the second group are unified by an 
application of information criteria. The articles are 
based on the comparison of likelihood estimates and 
implement information criteria, such as AIC (Akaike 
information criterion; Akaike, 1973), BIC (Bayesian 
information criterion; Schwarz, 1978), or DIC 
(Deviance information criterion; Spiegelhalter, Best, 
Carlin, & van der Linde, 2002) for model selection. 

West, Rutstein, Mislevy, Liu, Choi, Levy et al. 
(2010) applied BIC and the bootstrapped likelihood 
ratio test (BLRT) to compare learning progress models 
in the assessment system. Lee and Corter (2011) 
compared models for the diagnosis of mathematical 
skills and misconceptions based on AIC and BIC. 
Song, Wang, Dai, and Ding (2018), analyzed fraction 
subtraction data in terms of comparison of models 
with different hierarchical structures, based on −2log-
likelihood (−2LL) and DIC (Celeux, Forbes, Robert, & 
Titterington, 2006). Rutstein (2012) applied AIC, BIC, 
and DIC to compare models with different structures. 
Also, DIC was used in a parameter recovery study by 
Almond, Yan, and Hemat (2008). Sinharay and 
Almond (2007) applied DIC to compare models with 
different numbers of latent classes for the mixed 
number subtraction example. 

There is a shortage of studies investigating which 
information criteria should be chosen for specific 
circumstances. In the article by Sinharay and Almond 
(2007), it was noticed that DIC is similar to AIC if the 

priors are noninformative and might be preferable if 
MCMC is applied. 

Mutual information 

In the studies of the third group, the analysis of 
Mutual Information (MI) values and the visualization 
of the Weight of Evidence (WOE), evidence balance 
sheets, help to "debug" assessment systems. MI shows 
the degree of association between two variables and 
helps to indicate their utility. For instance, a high level 
of MI between latent and observable variables shows 
that the observable indicator sustainably represents 
latent proficiency (Almond, 2015). 

Similarly, WOE (Good, 1985), and its visualization 
evidence balance sheet (Madigan, Mosurski, & 
Almond, 1997), helps to identify the most influential 
observable variables for latent variables assessment. 
The WOE method demonstrates the amount of 
information provided by the observable indicator to 
estimate the level of proficiency. This method was 
applied for the analysis of the functioning of indicators 
within Physics Playground (Newton's Playground), 
NetPass, and Math Word Problem assessment 
(Almond, Kim, Shute, & Ventura, 2013; Almond, Kim, 
Velasquez, & Shute, 2014; Almond, Mulder, Hemat, & 
Yan, 2009; Kim, Almond, & Shute, 2016). 

Inspection of conditional probability tables 

In the articles from the fourth group, item 
functioning is analyzed based on the inspection of 
CPTs. It is based on the idea that the probability of a 
correct answer should be higher if a student has 
mastered a skill. CPTs inspection shows whether items 
can discriminate between students with different 
proficiency levels. This approach was applied by West 
et al. (2010) and Kim et al. (2016). DiCerbo, Xu, Levy, 
Lai, and Holland (2017) compared prior and posterior 
values of CPTs and additionally analyzed the values of 
CPTs of latent variables. 

Residual analysis 

The articles of the fifth group focus on the analysis 
of the residuals. In the study by Almond et al. (2009), 
the impact of the common stimulus that bound a set 
of items was investigated. Mantel-Haenszel statistic 
was applied to verify if the local independence across 
observable variables holds. Pardos, Feng, Heffernan, 
and Linquist-Heffernan (2007) apply Bayesian test item 
residuals for model criticism analysis. In the study, the 
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residual is the average of the differences between 
students' observed and predicted responses for an 
item. 

The study of Sinharay and Almond (2007) focuses 
on the analysis of the difference between observed and 
predicted values based on the raw scores. According to 
the authors' interpretation, if there are too many items 
with high absolute values of residuals, the model 
should be considered poor. However, it was revealed 
that this approach serves to detect only an extreme 
level of a model misfit. Visualization techniques for 
this analysis were presented and discussed as a fruitful 
way to catch the sources of the misfit. 

Item fit analysis was based on the comparison 
between observed and predicted proportion correct 
answers for items within a given proficiency level. The 
comparison includes graphical representation and χ2-
type test statistics. Despite promising results, the 
authors indicated that the power of χ2-type test 
statistics is under-investigated and also mentioned that 
an approach based on Posterior Predictive Model 
Checking (PPMC) methods is more promising (see the 
section PPMC below). 

Posterior predictive model checking 

The sixth group included studies that applied the 
PPMC method (Gelman, Meng, & Stern, 1996). PPMC 
compares observed (realized) and model-expected 
simulated (posterior predictive) data with respect to a 
discrepancy measure. The discrepancies between 
realized and posterior predictive values indicate that 
the model is incapable of describing the observed data. 
One of the features of PPMC is that it provides a 
reference distribution of the discrepancy measure 
empirically from the draws of the model parameters 
from the posterior distribution. 

Sinharay (2006) describes the model criticism 
approach, which includes PPMC for the analysis of 
item fit and inter-item association. The former analysis 
included three types of discrepancy measures. The first 
discrepancy measure characterizes the association 
between number-correct scores and item scores (point 
biserial correlations). The second discrepancy measure 
is based on examinees' equivalent class memberships 
and demonstrates the proportion of students in an 
equivalent class answering an item correctly. 
Equivalent classes represent the patterns of students' 
responses. The third discrepancy measure is based on 

observed raw scores, that form groups of students. The 
discrepancy measure demonstrates the proportion of 
students in a raw score group answering an item 
correctly. 

The later analysis provides information about the 
sources of local independence violations based on the 
odds ratio as a discrepancy measure. The comparison 
between observed and predicted data was also 
conducted via χ2-type and G-type test statistics and a 
graphical method called Direct Data Display. 

The utility of PPMC for model checking and, more 
precisely, the sensitivity of different discrepancy 
measures to local independence violation was 
investigated by Levy (2006). Six directional discrepancy 
measures (covariance, residual covariance, log odds 
ratio, standardized log odds ratio residual, the model-
based covariance, and Q3 (Yen, 1984)) demonstrated 
the sources of local dependence and, therefore, 
provide necessary information for model 
improvement. 

The PPMC approach for BN model checking was 
studied in more detail by Crawford (2014). The author 
applied discrepancy measures aimed at detecting misfit 
at the global, item, and person levels. The author 
examined the sensitivity of discrepancy measure to 
inadequately modeled dimensionality and the number 
of latent classes. Following the results of previous 
research, thirteen discrepancy measures were selected. 
As a result, standardized generalized dimensionality 
discrepancy measure (SGDDM; Levy, Xu, Yel, & 
Svetina 2015) and Q3 performed reasonably well to 
detect either local independence violation and the 
misconceptions of the number of latent classes. 

The study by Rupp, Levy, DiCerbo, Sweet, 
Crawford, Calico, et. al. (2012) was focused on the 
investigation of the psychometric quality of the 
assessment tool for measuring the proficiency of 
design, configuration, and troubleshooting computer 
networks. In the article, different discrepancy measures 
within PPMC were applied; among them are univariate 
proportions correct; Q3; a marginal generalized 
dimensional discrepancy measure (GDDM; Levy & 
Svetina, 2011). The model criticism analysis helped to 
find out and clarify the sources of item misfit. More 
precisely, based on the values of Q3, the sources of 
local dependence between observable indicators were 
detected. To verify the scoring structure, proportion 
correct values and GDDM were applied, and it was 
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revealed that the model should be redefined by subject-
matter experts. 

The study by Levy and Mislevy (2016) 
demonstrates an unusual application of PPMC to 
verify a hard prerequisite relationship. The study 
investigated whether it is necessary to possess one skill 
in advance of possessing another. The authors 
analyzed the frequency of cases when students 
performed successfully on one skill and poorly on the 
skill that serves as a prerequisite. After that, the authors 
compared the realized and posterior predictive values. 

The comparison with posterior predictive values 
serves as a reference to decide to what extent the 
deviation from the theoretically expected pattern leads 
to the intended results. 

The studies of the section investigated the 
usefulness of different discrepancy measures, as well as 
the benefits and drawbacks of PPMC. Among the 
benefits of the PPMC are its theoretical basis, 
sensitivity to the uncertainty of parameter estimation, 
and flexibility. 

Sinharay (2006) calls the method intuitive and 
straightforward. However, it should be noticed, PPMC 
is a conservative method, rather than restrictive, in 
terms of the tendency to not detect a misfit if it exists, 
rather than detect misfit if it is absent. Also, a 
significant feature of PPMC is the intensity of 
computation. Because PPMC goes along with MCMC, 
it might take hours to estimate and store the necessary 
parameter estimates (Crawford, 2014; Sinharay, 2006). 

Talking about the choice of the discrepancy 
measure, Crawford (2014) concluded that a 
combination of different discrepancy measures is 
needed to provide useful and interpretable 
characteristics of model-data fit and recognize the 
source of the misfit. Rupp et al. (2012) mentioned that 
the choice of the discrepancy measure appeared as a 
problematic point. 

Despite the advantages of PPMC as a model 
criticism technique, it seems like a challenge for 
methodologists to make it more widespread in 
educational assessment since it is necessary not only to 
discover proper ways of model criticism but also to 
make it convenient for practitioners. 

Correlation with external criteria 

Finally, the seventh group was formed by studies 
that focused on the validation of the inferences about 
students, gathered through BN application as a 
measurement model. The studies analyze the 
correlation of the BN inferences about students with 
an external criterion, such as the results of another test, 
expert opinion, or the raw score. 

De Klerk, Eggen, and Veldkamp (2016) analyze the 
correlation between the results of the multimedia-
based performance assessment tool, gathered through 
BN models, and the raw score. DiCerbo et al. (2017), 
in the field of the geometric measurement of area, 
synthesizing the information in the data with prior 
beliefs provided by experts. 

Shute, Wang, Greiff, Zhao, and Moore (2016), 
validate the inference about students' performance in 
game-based problem-solving assessment by analyzing 
the correlation of these results with the results of 
Raven's Progressive Matrices. Shute and Moore (2017) 
investigated the validity of the physics understanding 
assessment, realized via the game-based simulation, by 
the comparison with the results of an external physics 
test. An analysis, which included the investigation of 
the correlation between the results given by the physics 
understanding assessment and combined pretest and 
posttest results, was also presented by Almond (2015). 

 

Conclusion 

The literature review was focused on the model 
criticism of BN, as a measurement model, in the field 
of educational assessment. BN provides an 
opportunity for the flexible modeling of complex 
educational assessment data. However, BN is a novel 
psychometric approach, and not all aspects of its 
application are well-known. In the context of model 
criticism, there are fruitful and beneficial studies that 
demonstrate useful model criticism approaches; 
nevertheless, more research in the area is still required. 

The review revealed the diversity of model 
criticism procedures applied in educational assessment 
studies. It was demonstrated that model criticism for 
BN does not appear as a unified framework. In the 
review, model criticism was considered in a broad 
sense: the way of model checking was not a criterion 
for either inclusion or exclusion of the papers. The 
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results demonstrated that the studies focused on the 
model comparison, quality of inference about students, 
item fit, and global fit, whereas person fit analysis 
appeared underrepresented. The WOE helps to 
recognize unexpected patterns in student behavior; 
however, this approach focuses on investigating poor 
indicator functioning. Person-fit statistics were briefly 
discussed by Almond et al. (2015), Crawford (2014), 
Levy and Mislevy (2016), and Mislevy, Senturk, et al. 
(2002). 

Almond et al. (2015), Levy and Mislevy (2016) 
conducted PPMC with the root mean square of the 
squared Pearson residuals as a discrepancy measure. 
Mislevy, Senturk, et al. (2002) also conducted PPMC 
with the fit mean square measure which is based on the 
difference between observed and expected responses. 
However, the authors highlighted that "a more serious 
analysis would run simulations to characterize the 
specificity and the sensitivity of fit indices constructed 
in this manner" (Mislevy, Senturk, et al., 2002, p. 28). 
Crawford (2014) applied Hierarchy Consistency Index 
(HCI) as a discrepancy measure which demonstrated 
promising results for person misfit identification. 

The issues related to differential item functioning 
(an issue when the test behaves differently for different 
groups of the population, DIF) were discussed by 
Almond et al. (2015) and Sinharay (2006). Almond et 
al. (2015) suggest that if there is no DIF in the model, 
the introduction of a subpopulation membership 
variable should not affect the probability of correct 
response. Sinharay (2006) conducted PPMC with 
Mantel–Haenszel test as a discrepancy measure. The 
author highlighted that PPMC provides a benefit for 
researchers because it helps to obtain matched groups 
with respect to students` latent skills. DIF-detection 
and person-fit analysis are underrepresented among 
modern psychometric studies that apply BN as a 
measurement model, and more methodological 
research in this area is needed. 

Another approach to model discrete latent and 
observable variables applied in modern psychometrics 
is a cognitive diagnostic model (CDM). CDM is a 
family of measurement models that provide a specific 
person classification based on the performance in 
particular domains of a target construct. Almond and 
Zapata-Rivera (2019) postulated that CDM could be 
represented as BN. 

Sessoms and Henson (2018) demonstrated that 
across studies that applied CDM, model criticism was 
based primarily on relative fit indices (e.g., AIC), 
overall fit indices (e.g., HCI), and item fit. The authors 
highlighted that an important direction for CDM 
model criticism is the development of guidelines for 
model fit indexes. This direction is also relevant for BN 
because there is a shortage of guidelines and simulation 
studies that provide practitioners with 
recommendations about applying fit indexes. 

Furthermore, it was shown that approaches 
suitable for model criticism for CDM could be 
successfully applied for model criticism for BN 
(Sinharay and Almond, 2007). Recently, Hu and 
Templin (2020) demonstrated a similarity between BN 
and CDM in parametrizations of the hierarchical 
relationship and proposed an approach of model fit 
analysis for BN. According to the results, the 
likelihood ratio test is helpful to conduct a model 
comparison analysis between models with differences 
in the hierarchical relationships between latent 
variables. 

A promising extension of BN in modern 
psychometrics is a Dynamic Bayesian network (DBN; 
Almond et al., 2015; Reye, 2004). This model allows 
researchers to conduct an analysis considering 
dependencies between time segments. For instance, 
the DBN captures students` attempts to solve the task 
and provides detailed feedback to students 
immediately during the assessment procedure. 

DBN is considered a perspective direction for 
future research (Xing et al., 2020) and has been 
successfully applied in educational assessment (Levy, 
2019). However, the questions about the investigation 
of the psychometric properties of DBN remain open, 
and the model criticism of DBN is one of them 
(Reichenberg, 2018a). Reichenberg (2018a, 2018b) 
highlighted that there are not enough studies that 
investigate the adequacy of the BN model criticism 
methods in application to DBN. However, it provides 
an opportunity for researchers to investigate novel 
model criticism methods specifically for DBN. For 
instance, Reichenberg (2018a) postulates that the 
development of new discrepancy measures for PPMC 
analysis is a promising direction. 

A special case of DBN is Bayesian Knowledge 
Tracing (BKT), a general approach in intelligent 
tutoring systems (Käser et al., 2014). BKT describes 
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the probability of transition from the state of an 
unknown skill to the state of mastered skill during skill 
acquisition (Corbett & Anderson, 1995). However, 
model criticism of BKT has its unique features, such as 
probable semantic model degeneracy, which is the 
issue that arises when estimated parameters that fit the 
data well are inconsistent with the assumptions of the 
model (Doroudi & Brunskill, 2017). 

Moreover, the investigation of the relationship 
between BKT and Performance Factors Analysis 
(PFA) is considered a promising research direction 
(Galyardt & Goldin, 2015). PFA describes student 
learning progression based on correct and incorrect 
responses within the logistic regression approach 
(Pavlik Jr et al., 2009). Model criticism of PFA 
(particularly, Recent Performance Factors Analysis 
model, R-PFA) was conducted via stratified cross- 
validation analysis, AIC, and visualization technique 
Viz-R, which is similar to a confusion matrix, but also 
takes into account the distance between observed and 
predicted data (Galyardt & Goldin, 2015; Goldin & 
Galyardt, 2015). 

Overall, discussing the details of model criticism of 
student learning models, Pelánek (2018) postulate that 
improvement of evaluation standards is highly 
demanded. Remarkably, the author highlighted that for 
student models such as BKT or PFA, several aspects 
of model criticism are needed to be conducted and 
reported carefully: the way of data collection, the 
approach to data splitting for cross-validation, the 
choice and computation of accuracy statistics (Pelánek, 
2018). 

The results of the review serve to provide 
systematization of model criticism methods for BN 
used in the educational assessment research and to 
discuss related areas and directions for future research. 
The review intended to navigate practitioners and 
researchers in the area of BN model criticism, 
assuming that it helps not to miss the benefits of the 
application of BN as a flexible and convenient 
measurement model. However, one of the limitations 
of the study is that despite two iterations in the 
literature search process, any research might be 
omitted, and the diversity of model criticism 
approaches might be underrepresented. 

To conclude, the primary focus of educational 
assessment is to make valid inferences about student 
characteristics, which is possible if a proper 

measurement is applied. Almond and colleagues 
postulated that "a requisite for valid, high quality and 
effective assessment is harmony between the 
substantive theory that underlies the conceptual 
student model and the formal probability model 
supporting the assessment." (2007, p. 355). The 
measurement model represents the underlying 
structure of cognitive processes, and the model fit 
analysis can provide insights into it. Moreover, model 
criticism analysis helps us realize if observable 
indicators of an assessment tool represent latent 
proficiencies, which may shed light on the assessment 
tool's quality and help improve it. The role of model 
criticism in modern educational research is emphasized 
by the fact that many articles consider model fit 
analysis to be a self-sustained direction of future 
research (de Klerk et al., 2016; DiCerbo et al., 2017; 
Levy & Mislevy, 2004; Rutstein, 2012; West, Rutstein, 
Mislevy, Liu, Levy, Dicerbo et al., 2012). BN is a 
promising measurement model in modern educational 
assessment; therefore, the model criticism techniques 
deserve more attention. 
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Appendix A 
 

Authors, Publication Year Title of the Article Name of the 

Instrument 

Software Method of 

Parameter 

Estimation 

Model 

Checking 

Almond, 2015 Tips and Tricks for  Building Bayesian 

Networks for Scoring Game-Based 

Assessments 

Physics Playground 

(Newton's Playground) 

R-Netica EM-

algorithm 

Classification and 

prediction 

accuracy; Mutual 

Information; 

Correlation with 

external  criteria 

Almond, Kim, Shute & 

Ventura, 2013 

Debugging the Evidence Chain Physics Playground 

(Newton's Playground) 

Not 
presented 

Not 
presented 

Mutual 
Information 

Almond, Kim, Velasquez, 

& Shute, 2014 

How Task Features  Impact Evidence 

From Assessments Embedded in 
Simulations and Games 

Math Word Problems; 

Physics Playground 
(Newton's Playground) 

Not 

presented 

Not 

presented 

Mutual 

Information 

Almond, Mulder, Hemat, 

& Yan, 2009 

Bayesian Network Models for Local 

Dependence among  Observable 
Outcome Variables. 

NetPass StatShop MCMC Mutual 

Information; 

Residual analysis 

Almond, Yan & Hemat, 
2008 

Parameter Recovery Studies with a 

Diagnostic Bayesian Network Model 

Information and 

Communication 

Technology (ICT) 

Literacy Assessment 

Simulation study 

StatShop MCMC Model 
Comparisons 

Crawford,  2014 Posterior Predictive Model Checking in 

Bayesian Networks 

Simulation study WinBUGS MCMC Posterior 

predictive model 

checking 

De Klerk, Eggen, & 

Veldkamp, 2016 

A Methodology for Applying Students' 

Interactive Task Performance Scores 

From a Multimedia- Based Performance 

Assessment in a Bayesian Network 

Confined space guard 

(CSG) students' 

assessment 

GeNle Clustering  

algorithm 

Correlation with 

external criteria 
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DiCerbo, Xu, Levy, Lai, & 

Holland, 2017 

Modeling Student Cognition In Digital 

and Nondigital Assessment 

Environments 

The Alice in Arealand 

game 

WinBUGS MCMC Inspection of 

conditional 

probability tables; 

Correlation with 

external criteria 

Kim, Almond, & Shute, 

2016 

Applying Evidence- Centered Design for 

the Development of Game-Based 
Assessments in Physics Playground 

Physics Playground 

(Newton's Playground) 

R-Netica Gradient 

descent 

algorithm 

Mutual 

Information; 

Inspection of 

conditional 

probability  tables 

Lee & Corter,  2011 Diagnosis of Subtraction Bugs Using 

Bayesian Networks 

Study of Subtraction  

Bugs (VanLehn, 1981) 

HUGIN Not 

presented 

Classification and 

prediction 

accuracy; Model 

comparisons 

Levy, 2006 Posterior Predictive Model Checking for 

Multidimensionality in Item Response 

Theory and Bayesian Networks 

Simulation  study WinBUGS MCMC Posterior 

predictive  model 

checking 

Levy & Mislevy, 2016 Bayesian Psychometric  Modeling Mixed number 

subtraction example 

WinBUGS MCMC Posterior 

predictive model 

checking 

Pardos, Feng, Heffernan, & 

Linquist- Heffernan, 2007 

Analyzing Fine-Grained Skill Models 

Using Bayesian and Mixed 

Effects Methods 

Massachusetts 

Comprehensive 

Assessment System 

Not presented Not 

presented 

Classification  and 

prediction 

accuracy; Residual 

analysis 

Pardos, Heffernan, 

Anderson, & Heffernan, 

2007 

The Effect of Model Granularity on 

Student Performance Prediction Using 

Bayesian Networks 

Massachusetts 

Comprehensive 

Assessment System 

Bayes Net 

Toolkit for 

MATLAB 

Not 

presented 

Classification  and 

prediction 

accuracy 

Rupp, Levy, Dicerbo, 

Sweet, Crawford, Calico, 

Benson, Fay, Kunze, 

Mislevy, & Behrens, 2012 

Putting ECD into Practice: The 

Interplay of Theory and Data in 

Evidence Models within a Digital 

Learning Environment 

Packet Tracer WinBUGS MCMC Posterior 

predictive  model 

checking 

Rutstein, 2012 Measuring Learning Progressions Using 

Bayesian Modeling in Complex 

Assessments 

Learning Progressions’ 

Assessment 

WinBUGS MCMC Classification  and 

prediction 

accuracy; Model 

comparisons 
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Sinharay & Almond, 2007 Assessing Fit of Cognitive Diagnostic 

Models 

Mixed number subtraction 

example (Tatsuoka et al., 

1988) 

BUGS MCMC Model 

Comparisons; 

Residual analysis 

Sinharay, 2006 Model Diagnostics  for Bayesian 

Networks 

Mixed-number 

subtraction example 

(Tatsuoka, 1990), 

simulated data. 

WinBUGS MCMC Posterior 

predictive  model 

checking 

Shute & Moore, 2017 Consistency and Validity in Game- 

Based Stealth Assessment 

Physics Playground 

(Newton's Playground) 

Netica EM-

algorithm 

Correlation with 

external  criteria 

Shute, Wang, Greiff, Zhao, 
& Moore, 2016 

Measuring Problem  Solving Skills via 

Stealth Assessment in an Engaging 

Video Game 

Use Your Brainz Netica Not 

presented 

Correlation with 
external criteria 

Song, Wang, Dai & Ding, 

2018 

Bayesian Network  for Modeling 

Uncertainty in Attribute Hierarchy 

Fraction Subtraction Not presented Not 

presented 

Model 

Comparisons 

Vomlel, 2004 Bayesian Networks  in Educational 

Testing 

Math skills HUGIN Hugin PC 

algorithm,  

EM-

algorithm 

Classification  and 

prediction 

accuracy 

West, Rutstein, Mislevy, 

Liu, Choi, Levy, 

Crawford, DiCerbo, 

Chappel, & Behrens, 2010 

A Bayesian Network Approach to 

Modeling Learning Progressions and 

Task Performance 

Packet Tracer Not presented Not 

presented 

Model 

Comparisons; 

Inspection of 

conditional 

probability tables 

Williamson, Almond, & 

Mislevy, 2000 

Model Criticism of  Bayesian Networks 

with Latent Variables 

Simulation study Ergo EM-

algorithm 

Classification and 

prediction 

accuracy 

Xing, Li, Chen, Huang, 

Chao, Massicotte, & Xie, 

2020 

Automatic Assessment of Students' 

Engineering Design  Performance Using 

a Bayesian Network 

Engineering  design tasks aGrUM Not 

presented 

Classification  and 

prediction 

accuracy 
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