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School personnel currently lack an effective method to pattern and visually interpret disaggregated 
achievement data collected on students as a means to help inform decision making. This study, 
through the examination of longitudinal K-12 teacher assigned grading histories for entire cohorts of 
students from a school district (n=188), demonstrates a novel application of hierarchical cluster 
analysis and pattern visualization in which all data points collected on every student in a cohort can be 
patterned, visualized and interpreted to aid in data driven decision making by teachers and 
administrators. Additionally, as a proof-of-concept study, overall schooling outcomes, such as student 
dropout or taking a college entrance exam, are identified from the data patterns and compared to past 
methods of dropout identification as one example of the usefulness of the method. Hierarchical 
cluster analysis correctly identified over 80% of the students who dropped out using the entire student 
grade history patterns from either K-12 or K-8. 

 

Data driven decision making (3DM), has recently 
emerged in the literature as a powerful means through 
which teachers and school leaders are able to gather 
together around student and school-level data to inform 
decision making and tailor instruction and resource 
allocation to students and classrooms (Copland, Knapp, 
& Swinnerton, 2009; Halverson, Grigg, Prichett, & 
Thomas, 2007; Ikemoto & Marsh, 2007; Raths, Kotch, 
& Carrino-Gorowara, 2009; Wayman & Stringfield, 
2006a). To date, much of the research on 3DM has 
identified the practice of creating dialogue around 
student standardized test scores, which has been shown 
to increase professional communities of practice in 
schools, help teachers adjust to changing school needs, 
and allow school and district leaders to direct the limited 
resources of a school district to the instructional issues 
most relevant for their teachers (Bowers, 2008; Honig & 
Coburn, 2008; Park & Datnow, 2009). However, schools 
are flooded with data, from test scores, to teacher 
assigned grades, periodic formative and summative 

assessments, attendance, discipline records, and more 
(Bernhardt, 2004; Creighton, 2001a). While some of the 
3DM literature has urged school leaders to leverage all 
forms of data in schools in service to improve student 
achievement (Bernhardt, 2004), much of the research to 
date has focused on standardized test scores. One 
often-overlooked form of data collected daily in schools 
is teacher-assigned grades (Bowers, 2009). It has been 
argued that in the U.S. we have a dualistic assessment 
system, one based on standardized tests that reports to 
administrators and policy makers, and another based on 
grades that reports to students, parents and teachers 
(Farr, 2000). The purpose of this study is to combine the 
two emerging research domains of 3DM and the 
usefulness of teacher-assigned grades using a novel form 
of data mining, patterning and visualization known has 
hierarchical cluster analysis (HCA), to provide school 
leaders, researchers and policy makers a method to make 
better informed decisions in schools earlier, using data 
already collected on students. 
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Teacher-Assigned Grades as Useful Data in 
Schools 

When considering teacher-assigned grades as useful 
data in schools, much of the research on grades has 
maligned grades as a poor assessment of academic 
knowledge, and has urged teachers to forgo grades for 
other forms of more standardized or aligned 
assessments (Brookhart, 1991; Carr & Farr, 2000; 
Hargis, 1990; Kirschenbaum, Napier, & Simon, 1971; 
Shepard, 2006; Wilson, 2004). Termed “hodge-podge” 
or “kitchen sink” grading, surveys of teachers have 
repeatedly found that teachers award students grades for 
a variety of factors, including academic knowledge, 
attendance, participation, and behavior (Brookhart, 
1991; Cizek, Fitzgerald, & Rachor, 1995-1996; Cross & 
Frary, 1999; McMillan, 2001). Nevertheless, teachers 
have historically been resistant to efforts to reform 
grading practices (Cizek, 2000), and instead award grades 
for these variety of factors, all while standardized testing 
pressures have increased in addition to, rather than in 
replacement of, all of the past forms of assessment going 
on in schools daily (Farr, 2000). Indeed, while 
administrators have indicated that they privilege 
standardized test scores over other forms of data 
(Guskey, 2007), little criterion validity has been shown 
for test scores as they relate to overall student school or 
life outcomes (Rumberger & Palardy, 2005), whereas 
teacher-assigned grades have a long history of predicting 
overall student outcomes, such as graduating or 
dropping out (Bowers, 2010). 

An emerging line of research has begun to ask why 
teacher-assigned grades are predictive of overall student 
outcomes, but are a weak indicator of academic 
knowledge when compared to standardized test scores 
(Bowers, 2009, 2010; Lekholm & Cliffordson, 2008; 
O'Connell & Sheikh, 2009). This research has suggested 
that about 25% of the variance in grades is attributable 
to assessing academic knowledge (grades and test scores 
historically correlate at 0.5), but that the other 75% of 
teacher-assigned grades appear to assess a student’s 
ability to negotiate the social processes of school 
(Bowers, 2009). Termed a Success at School Factor 
(SSF), teachers appear to award grades as an assessment 
of student performance in the institution of schooling, 
awarding higher grades for participation, behavior, and 
attendance which in the end appears to be a fairly 
accurate assessment of overall student outcomes, such as 
graduating on time (Bowers, 2009, 2010). For school 
leaders, who have the unique authority to look 
longitudinally across the system (Bowers, 2008), this 

research indicates that teacher-assigned grades could be 
a useful type of data for 3DM, especially when it comes 
to early determinations of possible overall student 
outcomes, such as dropping out of school. Indeed, the 
vast majority of the dropout literature indicates that early 
school district identification of the students most at risk 
of dropping out (as early as late elementary and middle 
school) may be the most effective means of designing 
and implementing interventions (Alexander, Entwisle, & 
Kabbani, 2001; Balfanz, Herzog, & MacIver, 2007; 
Rumberger, 1995). This is one of the main purposes of 
data driven decision-making; using data already collected 
in schools to help drive decisions on improving specific 
school, teacher and student outcomes. 

Visualizing Data for 3DM in Schools 

If grades are useful to help teachers and school 
leaders engage in 3DM, what are the best ways of going 
about examining the data and determining where, when, 
and how students may be overly challenged with the 
system and therefore would need additional resources 
and opportunities to improve? The use of 
cross-sectional means and standard deviations for 
schools, classrooms and subgroups of students has been 
long proposed (Creighton, 2001b; Konold & Kauffman, 
2009). However, aggregated descriptive statistics give 
only an overview of the central tendency of a sample, 
obscuring the actual trends in individual student 
achievement that may provide the clues to inform 
teachers and school leaders that a student has shifted 
from on-track performance to significantly challenged 
with school. An alternative is to inspect every data 
element individually for each student, but for schools 
with hundreds or thousands of students, understanding 
and interpreting trends becomes impossible. As a third 
option, some researchers have proposed that single 
student course failures could be used for this purpose, 
since early failure in reading or mathematics has been 
shown to be highly predictive of student schooling 
outcomes (Allensworth & Easton, 2005, 2007; Balfanz 
et al., 2007). Indeed, much of the past research has 
focused on using logistic regression to predict the 
likelihood of dropping out of school given if a student 
has failed a core course (Alexander et al, 2001, 
Allensworth & Easton, 2005, 2007; Balfanz et al. 2007). 
However, this issue returns to the problem of reducing 
the rich set of data represented by individual student 
achievement trends to aggregated means and fitted 
regression slope equations that are generalizable to the 
population, but less useful for making data driven 
decisions for individual students and schools. 
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Additionally, depending upon single course failures may 
be too late for many students, since the negative effects 
of failure place the students farther and farther behind 
before the organization can recognize the problem and 
devise a solution. The goal should be to interrupt a 
decline in achievement early, before it results in future 
course failure, especially if an early but small decline is 
predictive of major future challenges with school years 
later (Bowers, 2010). However, educators engaged in 
3DM currently lack an effective means to disaggregate 
data while still providing a predictive context for that 
data. Cizek (2000) provides a caution for proponents of 
3DM for teachers and school leaders in today’s schools:   

It's an unfortunate irony: At no other time have 
educators, parents, students and policymakers had so 
much assessment information with which to make sense 
of educational reform; at the same time, these groups 
also receive little guidance regarding what the 
information means, its quality or what to do with it. 
Measurement specialists should not be surprised, if, in 
the face of assessment overload, educators rely 
increasingly on intuition or arbitrarily pick and choose 
from discrepant assessment results when they make 
important educational decisions. (p.17) 

Consequently, while much of the 3DM literature 
has focused on the use of data systems, data rooms, and 
discussion of student scores (Halverson et al., 2007; 
Hamilton et al., 2009; Wayman, Cho, & Johnston, 2007; 
Wayman & Stringfield, 2006b), few studies to date have 
proposed and tested methods that would allow schools 
to not only inspect their student’s data, but allow 
practitioners to understand the complexities of the data, 
analyze longitudinal trends, and make predictions based 
on their school’s past performance. In this study, I adapt 
innovations from the broader data mining literature to 
propose the use of hierarchical cluster analysis (HCA) 
and heatmaps as a novel means to pattern and interpret 
longitudinal trends in student data, such as 
teacher-assigned grades, which I use here to illustrate the 
method. As an example of a small set of hypothetical 
data using simplified and extreme values to initially 
demonstrate the differences in patterns, Figure 1A 
presents an unordered list of hypothetical student 
non-cumulative grade point averages (GPA) from just 
grades 9-12 in which an A=4, B=3, C=2, D=1, F=0. For 
just eight students, this table demonstrates the 
complexities of the data. From this data, it is difficult to 
tell one student apart from another. Imagine not eight 
students for Figure 1A, but hundreds or thousands, and 
not just for the four years of high school but all thirteen 

years K-12. Such tables of data become uninterpretable, 
and lead to the types of garbage-can decision making 
(Cohen, March, & Olsen, 1972; March, 1997) that Cizek 
(2000) warns of in the quote above as practitioners 
become overwhelmed with the size and longitudinal 
nature of the dataset. As noted above, focusing instead 
on measures of central tendency or inferential statistics, 
such as the mean or logistic regression, also does not 
address the issue, since the goal is to address the 
individual needs of each student based on their 
performance to date in the system provided to them.  

Figure 1 An Example of Hierarchical Cluster Analysis (HCA) 
with non-cumulative Grades 

The broader data mining literature provides a way 
to bring order and a means to analyze all of the data 
without aggregating the data, displaying each individual’s 
information patterned and displayed in a way that allows 
for interpretation of large longitudinal datasets. Known 
as hierarchical cluster analysis (HCA), this multivariate 
statistical method uses a series of nested correlation 
calculations, or distance measures, to reorder a dataset 
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such that “clusters” of data patterns are closest to each 
other in a list (Anderberg, 1973; Hubert, Köhn, & 
Steinley, 2009; Rencher, 2002; Romesburg, 1984; Sneath 
& Sokal, 1973). As an example, the table in Figure 1A 
discussed above presents the non-cumulative grades of 
eight students for four years of high school, ordered by 
student number. Figure 1B uses HCA to reorder the list, 
such that longitudinal data patterns that are most similar 
are closest to each other in the list, such that students 3, 7 
and 5 are proximal to each other, while students 6, 1, and 
2 are also proximal to each other, but further away from 
3 and 7. HCA also provides a means to draw what is 
known as a cluster tree, or a dendrogram (“dendro” 
from the Greek meaning “roots or tree”). Based on the 
distance calculations, here uncentered correlation using 
an average linkage clustering algorithm (see Methods 
and Appendix A), the cluster tree on the left in Figure 1B 
visually represents the similarity or dissimilarity of each 
of the data patterns, with shorter horizontal lines 
indicating more similarity, longer horizontal lines 
indicating more dissimilarity in patterns. Vertical lines 
connect the closest rows to form the clusters. Thus, each 
data row is “clustered” by similarity, such that the 
previously unordered list is reordered with the most 
similar data patterns closest to each other. 

 An additional more recent innovation in the data 
mining literature has been the use of a heatmap with 
HCA (Eisen, Spellman, Brown, & Botstein, 1998; 
Weinstein et al., 1997). Tables of numbers or data are 
difficult for the human eye to interpret, however as 
stated in the HCA literature, humans are very adept at 
identifying and interpreting patterns of colors. A 
heatmap takes advantage of this difference, 
transforming each data point from a number or symbol 
(such as a grade) into a block of color, in which a hotter 
color indicates a higher score (such as red), a cooler color 
indicates a lower score (such as blue), and a neutral color 
indicates a central score (such as grey). Figure 1C 
extends the above HCA example to a heatmap, such that 
the order of the student list places students with similar 
grade patterns proximal to each other, the cluster tree 
indicates the calculated amount of similarity or 
dissimilarity, and the heatmap allows for the visual 
inspection and interpretation of the longitudinal grading 
histories (see Fig. 1). By examining Figure 1C, the 
longitudinal data patterns for an ordered list of students 
based on the similarity in grades is made much more 
obvious. Here, the highly graded students cluster near 
the top, while the most dissimilar students are in the 
center (longest horizontal lines in the cluster tree) and 

the low graded students cluster near the bottom. In 
addition, heatmaps can also contain dichotomous data as 
an extension of the main map, here in Figure 1C 
represented by a black box indicating that a student 
either dropped out or took the ACT (Fig. 1C, right). For 
data driven decision-making, from this type of data 
patterning through HCA and visualization with a 
heatmap, large longitudinal datasets can be examined 
without resorting to aggregating the data to overall 
means, and preserving each student’s individual set of 
data while allowing for pattern recognition, longitudinal 
analysis, and identification of specific clusters of 
students based on their performance in the system to 
date. 

Central Aim of the Study 

Thus, the central aim of this study is to adapt 
hierarchical cluster analysis and heatmaps for use with 
teacher assigned grades for data driven decision-making. 
The method will be tested and demonstrated with a 
small sample of data, and the study will explore what the 
analysis and visualization method can and cannot do for 
3DM in schools. The research question of interest here 
is that as just one example of the usefulness of the 
method for 3DM, to what extent do student grades 
cluster through HCA into patterns that identify which 
students are most at risk of dropping out of school. 

METHOD 
Sample and District Context 

The entire longitudinal grading histories for the 
entire class of 2006 for two districts, District A and 
District B, were collected from the permanent paper file 
records from both school districts whether or not each 
student graduated on time in either school district from 
two cohorts of students. Although multiple school 
districts were assessed for inclusion in the study, the two 
districts included in the end were both willing to 
participate in the study, and had retained achievement 
records for both students who had graduated and 
students who had dropped out. Districts A and B are 
located within the same United States industrial 
Mid-West state, are within 10 miles of each other, in 
close proximity to a major metropolitan area, and share a 
contiguous border. Due to requirements imposed for 
confidentially of students, schools and school districts, 
district specifics are intentionally left vague. 

District A is categorized as a mid-sized central city 
by the United States census, with less than 3000 students 
enrolled in two elementary schools, one middle school 
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and one high school. In 2006, district demographics 
included a student population that was about 70% 
economically disadvantaged, 50% Hispanic, 30% white, 
and 15% African American (NCES, 2006). District B is 
categorized as an urban fringe mid-sized city by the 
United States census, serving fewer than 3000 students 
who were enrolled in three elementary schools, one 
middle school and a high school. In 2006 district 
demographics included a student population that was 
about 50% economically disadvantaged, 50% white, 
20% Hispanic, and 15% African American (NCES, 
2006). 

Data Collection 

 The entire longitudinal grading histories of each 
student in the sample were recorded from the districts’ 
permanent paper file records, copies of report cards, 
from kindergarten through grade 12 in June of 2006. A 
student was included in the sample if the student had 
entered the district at any time on-track to graduate in 
June of 2006, whether or not the student eventually 
graduated. This resulted in a sample size of n=188. 

Grades for each student in each subject at each 
grade level were recorded. Courses were categorized into 
subjects based on each district’s curriculum guidelines 
and report cards, such that subject categories included 
mathematics, English, speaking, writing, reading, 
spelling, handwriting, science, social studies, foreign 
language, government, economics, music, physical 
education, health, computers, study skills, art, life skills 
and family skills. Letter grades for each subject at each 
grade level were converted into the following numeric 
grading scale: A = 4.0, A- = 3.666, B+ = 3.333, B = 3.0, 
B- = 2.666, C+ = 2.333, C = 2.0, C- 1.666, D+ = 1.333, 
D = 1.0, D- = 0.666, E or F = 0. Mean non-cumulative 
grade point averages (GPA) for each grade level were 
calculated by calculating the mean GPA for all subjects 
within each grade level. For each student, other variables 
were also recorded, such as gender, student transfer into 
or out of the districts, if the student took the ACT 
college entrance exam, if the student had graduated on 
time, or if the student had dropped out prior to 
graduating. Grades at the high school level were 
recorded for each semester, denoted as S1 (semester 1) 
or S2 (semester 2). 

Hierarchical Cluster Analysis 

Cluster analysis is a descriptive statistical analysis 
that brings empirically defined organization to a set of 
previously unorganized data (Anderberg, 1973; Eisen et 
al., 1998; Jain & Dubes, 1988; Lorr, 1983; Rencher, 2002; 

Romesburg, 1984; Sneath & Sokal, 1973). There are two 
types of clustering, supervised and unsupervised. 
Supervised clustering begins with a defined set of 
assumptions about the categorization of the data, while 
unsupervised clustering assumes nothing about the 
categorization and is designed to statistically discover the 
underlying structure patterns within the dataset 
(Kohonen, 1997), a procedure well suited to discovering 
the underlying patterns within student data in education. 
While there are many types of unstructured cluster 
analyses (Anderberg, 1973; Hubert et al., 2009; Lorr, 
1983; Romesburg, 1984; Sneath & Sokal, 1973), this 
study focuses on hierarchical cluster analysis due to the 
procedure’s ability to discover a taxonomic structure 
within a dataset efficiently (Lorr, 1983; Rencher, 2002; 
Romesburg, 1984; Wightman, 1993) and its proven use 
in past studies (Bowers, 2007; Cleator & Ashworth, 
2004; Quackenbush, 2006).  

Hierarchical clustering provides a way of organizing 
cases based on how similar the values for the list of 
variables are for each case. A brief discussion of the 
HCA method is provided here while an in-depth 
presentation of the HCA method used here is provided 
in Appendix A. In hierarchical clustering, each case is 
first defined as an individual cluster, a series of numbers 
for each variable on that case. As an example, this could 
be a single student’s grades in all subjects from grade K 
through 12. As recommended in the HCA literature 
(Romesburg, 1984), all data was standardized here 
through z-scoring to prevent overweighting in the 
subsequent similarity matrix. A distance measure was 
then calculated for each case, creating a 
similarity/dissimilarity matrix. For this study, 
uncentered correlation was used as the distance measure 
(see Appendix A). A clustering algorithm was then 
applied in an iterative fashion at each level of clustering 
such that the two most similar cases were first joined 
into a cluster based on how similar the pattern of 
numbers were for both cases, here using the average 
linkage clustering algorithm (see Appendix A). This 
continued in a hierarchical fashion as similar cases were 
joined to clusters and clusters were themselves joined to 
similar clusters, until the clustering algorithm defined the 
entire dataset at the highest hierarchical level as one 
cluster (Anderberg, 1973; Eisen et al., 1998; Lorr, 1983; 
Rencher, 2002; Romesburg, 1984; Sneath & Sokal, 
1973). Thus, when complete, cases that were previously 
organized just as a pseudo-random descriptive list, 
organized alphabetically or by student numbers, were 
placed nearby other cases in the list with which they had 
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a high similarity, aiding in visualization and identification 
of empirically defined patterns previously unknown 
within the dataset. This does not change the data for 
each case, but merely reorders the cases into clusters 
based on the similarity of each case’s data vector, aiding 
dataset-wide pattern analysis and interpretation. For an 
in-depth review of this method, please see Bowers 
(2007) or Romesburg (1984). 

Missing Data 

Unlike many of the datasets described in the data 
mining literature above, education datasets that include 
all students from a school, cohort or district are 
notorious for issues with missing data. For the dataset 
described here of all grades in all subjects K-12 for two 
cohorts of students, all student cases included missing 
data for two reasons. First, not all students take all of the 
same subjects, especially at the high school level. For any 
one student at the high school level, that student’s 
pattern of course taking differed from many other 
students. Thus, one student at any one grade level may 
have data for a subject such as music, but a different 
student may not have chosen to take that subject at that 
grade level. Second, many students dropped out of 
school before the end of grade 12, or transferred into or 
out of either district, leaving multiple grade levels with 
no data for that student. These two missing data issues 
are inherent with these types of district or cohort-wide 
datasets, and cannot be avoided in education data. 
Fortunately, average linkage, as the clustering algorithm, 
helps to address this missing data issue. In average 
linkage the distance measure between two cases is the 
mean pairwise distances between all items contained in 
the two cases, here uncentered correlation. Hence, if a 
student drops out and is thus missing data for the later 
grades the algorithm uses the average of the pairwise 
distances between that student and the next student to 
compare for possible cluster inclusion. Thus, students 
with missing data due to dropout are weighted in their 
distance measure towards the earlier grade levels that 
include data for the grades they obtained. Rather than a 
problem, this provides additional structure within the 
dataset, as students who dropout at similar times will 
have similar levels of missing and present data, and thus 
be weighted similarly in the clustering algorithm and 
distance measure and pattern together more often, 
dependent on their grades, which is the overall purpose 
of the clustering method. While there are other methods 
to deal with this type of missing data, such as imputing, 
this study focuses on detailing the overall method and 
providing a single initial example of its usefulness for 

education. Thus, while of interest, a discussion and 
analysis of alternative missing data procedures must be 
left for future studies. 

Clustergrams 

To date, while few studies in education use 
clustering, those that have describe their clustering 
results in many varied ways (Janosz, LeBlanc, Boulerice, 
& Tremblay, 2000; Sireci, Robin, & Patelis, 1999; 
Wightman, 1993; Young & Shaw, 1999). One way to 
help visualize the organization of the data by hierarchical 
clustering is to draw a cluster tree, sometimes referred to 
as a dendrogram (Eisen et al., 1998; Lorr, 1983; 
Romesburg, 1984). A cluster tree is generated from the 
similarity matrix outlined above. For each iteration of 
the clustering algorithm, a line is drawn in the 
dendrogram as a graphical representation for each case. 
For each iteration of the algorithm, the cluster tree 
“grows” as the first level of clusters is connected to other 
clusters hierarchically, until the entire dataset is 
represented as a single cluster. Thus, within a cluster 
tree, clusters of cases and clusters of clusters can quickly 
be identified by the closeness of lines corresponding to 
cases and linked to other cases. The unit length of the 
horizontal line indicates similarity of patterns, the 
distance in the data space between the two clusters is in 
the units of the measure, with a shorter line denoting 
higher similarity.  

While clustering provides order to the unordered 
list, visualization of the data patterns is also important, 
and one relatively recent innovation in 
high-dimensionality data visualization is a heatmap 
(Eisen et al., 1998; Weinstein et al., 1997). A heatmap 
takes tables of clustered numbers, which the human 
mind can not easily interpret for pattern recognition, and 
converts the table into blocks of color, aiding the human 
eye in visualizing patterns within clustered data and 
combining these blocks with a dendrogram creating a 
clustergram (Eisen et al., 1998). For cluster analysis in 
fields such as the natural sciences, it has become 
standard to pattern analyze large sets of data and display 
both a heatmap together with a dendrogram to visualize 
the patterns within the data and determine if specific 
patterns align with overall participant outcomes. In 
addition, while traditional statistical program packages 
do include clustering algorithms, such as SAS (using 
PROC CLUSTER) and SPSS, software has been written 
that can calculate and draw these types of clustergrams 
(DeHoon, Imoto, Nolan, & Miyano, 2004; Eisen & 
DeHoon, 2002; Eisen et al., 1998) For this study, 
publicly available online clustering software (Vilo, 2003) 



Practical Assessment, Research & Evaluation, Vol 15, No 7 Page 7 
Bowers, Grades, 3DM, Dropout, and HCA 
 

was used to cluster the data, create the heatmap, and 
cluster tree. 

The combination of the cluster analysis, cluster tree, 
and heatmap, creates the clustergram (see Fig. 2). In the 
clustergram, the overall z-scored data for each case is 
unchanged, but is merely reordered for categorization 
and pattern interpretation based on how similar each 
case’s data vector is to each other case’s data vector. For 
the clustergrams presented here, student cases are 
represented as each row. The columns represent a 
repeating pattern of subjects at each grade level, from 
more core subjects to more non-core subjects reading 
from left to right. Thus, for each student in the dataset 
(each row of data), one can find that student’s assigned 
grade in a subject at any one specific grade level (each 
column of data). However, a vast table of numbers (here, 

188 student rows with 169 subject columns across all 
grade levels K-12) would be uninterpretable. Following 
the recommendations for the creation of a clustergram 
(Eisen et al., 1998; Weinstein et al., 1997), the z-scored 
grades data were converted into a heatmap, such that any 
one student’s grade in any one specific subject at any one 
specific grade level is represented as a single color block. 
The color gradient for these representative color blocks 
in the heatmap ranges from a more intense, “colder”, 
blue for grades -3 standard deviations below the mean, 
to grey for grades at the mean, to a more intense, 
“hotter”, red for grades +3 standard deviations above 
the mean, with missing data represented in white. In this 
way, rather than a massive table of numbers, a horizontal 
line of varying color blocks based on that student’s 
grades represents each student’s grade vector across 
their time in the school district (see Fig. 2). The 
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Figure 2: Clustergram Template.  
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hierarchical cluster analysis orders the position of each 
student within the dataset based on data similarity, thus 
placing similar lines of data next to each other in the 
heatmap, allowing for visual interpretation of clusters. 
Combining the heatmap with the cluster tree allows one 
to interpret the calculated similarity of each hierarchical 
cluster in combination with the actual data for every case 
and every data point. One can then “zoom in” on 
specific clusters of interest either by eye or by using 
software to examine the figures more closely. 

 In addition, clustergrams may also include a final 
set of data for each case’s data row, in which overall 
categorical covariates are displayed at the end of the 
heatmap but were not included in the clustering 
algorithm calculations (van'tVeer et al., 2002; 
vandeVijver et al., 2002). For the example presented 
here, student categorical variables included dropout, if 
the student took the ACT exam, was female, or had 
attended district A. In such categorical representations, 
the presence of the variable for a student’s case is 
represented by a shaded bar, while the absence is 
represented in white (Fig. 2, right). When combined with 
the clustering, heatmap and cluster tree, the categorical 
variable listing provides the reader with overall 
information on each student’s case, such as dropping 
out, patterned in relation to other students with similar 
data patterns, aiding interpretation of clusters of 
students and clusters of clusters. Overall, this 
disaggregated data visualization technique of the 
clustergram, in which all of the data across the entire 
dataset is patterned and displayed allows one to examine 
all of the data together, patterned and disaggregated. In 
many ways, rather than aggregate data using averages or 
other measures of central tendency, HCA combined 
with a clustergram allows for overall data pattern 
interpretation without the loss of individual student data 
and variability to aggregation.  

Clustergram X-Axis Subject Order 

The order of subject columns on the X-axis in the 
clustered heatmap is as follows reading from left to right: 
K (kindergarten) - mathematics, speaking, writing, 
reading; grades 1-4 – mathematics, reading, writing, 
spelling, handwriting, science, social studies; grade 5 – 
mathematics, reading, English, spelling, handwriting, 
science, social studies; grade 6 – mathematics, reading, 
English, spelling, handwriting, science, social studies, 
music, physical education, art; grade 7 – mathematics, 
English, science, social studies, music, physical 
education, health, art; grade 8 - mathematics, English, 
science, social studies, music, physical education, study 

skills, art; grade 9 semester 1 (9S1) – mathematics, 
English, science, social studies, foreign language, 
government, economics, music, physical education, 
computers, art, life skills, family skills. Grades 9 semester 
2 through grade 12 semester 2 repeat the grade 9 
semester 1 pattern. 

FINDINGS 
An Example of Hierarchical Clustering: HCA using 
longitudinal grade histories 

The main goal of this study is to present hierarchical 
cluster analysis (HCA) and visualization techniques as a 
useful method for the organization and pattern analysis 
of large sets of school and district data to aid data driven 
decision making (3DM). The study design and the 
hierarchical clustering and visualization clustergram 
methods are adapted from the data mining literature 
detailed above (Eisen et al., 1998; van'tVeer et al., 2002; 
vandeVijver et al., 2002; Weinstein et al., 1997). Briefly, 
the study design consists first of a hierarchical cluster 
analysis and display of a large number of different 
assessments on each case in the dataset. Here, teacher 
assigned grades for each student in two cohorts from 
every subject and every grade level. Second, the cluster 
pattern is compared to an overall outcome of interest, 
here student dropout, to assess if the cluster patterns of 
the assessment align with the overall outcome patterns. 
Third, other categorical covariates are compared to the 
cluster pattern, such as gender. Fourth, the hypothesis is 
that when clustered using the entire longitudinal K-12 
grading histories of entire cohorts of students, teacher 
assigned grades should predict overall student outcomes, 
such as dropping out or taking the ACT, by clustering 
students into identifiable clusters based only on their 
grades. 

Figure 3 presents a clustergram that displays the 
results of the hierarchical cluster analysis and 
visualization. Since data visualization techniques that 
simultaneously display each disaggregated data point for 
the entire dataset and the analysis are rare in education, 
the Figure 3 clustergram at first glance appears overly 
complex. However, it consists of three main segments 
(for a detailed explanation of all of the elements of the 
figure, please refer to the methods). The center 
“heatmap” displays the z-scored teacher assigned grades 
in every subject at every grade level for each student in 
the dataset. Student cases are the rows. Each column is a 
specific subject at each grade level, moving from more 
core courses on the left of each grade level (such as 
mathematics, English and science) to more non-core  
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Figure 3: Hierarchical cluster analysis of K-12 student subject-specific grades identifies student dropout. Hierarchical cluster 
analysis of student subject-specific grades pattern into two main clusters, those who receive generally high grades throughout 
K-12 and generally graduate on time, and those who receive generally low grades throughout K-12 and dropout more often. 
Each student is aligned along the vertical axis, with subjects by grade-level aligned along the horizontal axis. Z-scored student 
grades are represented by a heatmap, with higher grades indicated by an increasing intensity of red, lower grades indicated by an 
increasing intensity of blue, the mean indicated by grey, and white indicates no data (center). Hierarchical clusters are 
represented by a cluster tree (left). Black bars represent dichotomous categorical variables for each of the categorical variables 
listed (right). The dashed black line through the center of the heat map indicates the division line between two major clusters in 
the full dataset (center). Grade level is indicated along the top horizontal axis (center top). Within each high school grade level 
two separate semesters are represented, semester 1 (S1) and semester 2 (S2). Subjects are ordered left to right within each grade 
level from core-subjects to non-core subjects (see methods). Four vertical colored bars between the cluster tree and the heatmap 
(left) denote four sub-clusters detailed in Fig 5. 
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courses to the right within each grade level (such as 
music and art). Each student’s grade for each subject at 
each grade level is represented by a color block that 
ranges from a more intense blue for low grades, to grey 
for grades close to the mean, to a more intense red for 
high grades. A white block represents missing data for 
students in any subject at any grade level. As can be seen 
from the heatmap, students who transferred into the 
school districts in elementary or middle school have 
streaks of white in their row, while students who either 
transferred out or dropped out have streaks of white 
extending out through high school (Fig. 3, center). In 
addition, the clustergram displays the subject enrollment 
patterns of all students in the dataset, especially at the 
high school level. Student rows within each grade level 
have blocks of data to the left within each specific grade 
level, indicating grades and enrollment in core courses, 
but also display a more dispersed pattern to the right 
within a grade level, indicating grades in a variety of 
non-core courses.  

The HCA has reordered the students, from a list 
ordered alphabetically by last name when the data was 
collected, to a list ordered by the similarity of each 
student’s longitudinal K-12 grading history pattern. 
Students who received similar patterns of grades are 
placed proximal to each other in the list. This clustering 
is presented in the cluster tree (Fig. 3, left). Cluster 
similarity is represented by shorter length horizontal 
lines, and more dissimilar clusters are represented by 
longer lines, with the two overall largest clusters denoted 
by the single connection on the cluster tree on the far left 
(Fig. 3, left) as well as the horizontal dotted black line 
across the heatmap (Fig. 3, center). The clustering is also 
evident from the heatmap as students with similar 
longitudinal grade patterns are clustered together. To 
maintain confidentiality, student names and 
identification numbers are not included in the 
clustergram. However, if this analysis was performed 
within a school district in which confidentiality was 
maintained, student names or identification numbers 
would be listed to the left of each row in the heatmap. 
Display software, such as a word processor or image 
viewer, could then be used to zoom in on specific 
student’s patterns. 

The final component of the Figure 3 clustergram is 
the categorical variable listing for each student (Fig. 3, 
right). As stated above, each student is represented by a 
row of clustered grade data patterns across the heatmap. 
On the far right, the categorical data for each student’s 
row of data is presented for if the student dropped out, 

took the ACT, was female, or attended district A. A 
black bar indicates the presence of the variable for that 
student. To aid in reading the figure, the reader may wish 
to place a blank sheet of paper over the columns of 
categorical data, and move the paper to the right, 
revealing one column at a time. In this way, one can 
compare the categorical variables to the overall clustered 
pattern to aid interpretation. 

As an example of the usefulness of hierarchical 
cluster analysis and visualization with educational data, 
K-12 subject-specific grade cluster patterns are 
informative in identifying student dropout. Figure 3 
shows that the sample of students clustered into two 
main large clusters (Fig. 3, center, dotted black line) in 
which students generally received high grades 
throughout their schooling career and graduated on time 
(Fig. 3 center, upper cluster) or generally received overall 
low grades near the mean and dropped out more often 
(Fig. 3 center, lower cluster). Of the students in the lower 
cluster, 38% of them dropped out of school as 
compared to only 6% in the upper cluster. When viewed 
as a percentage of all of the students who dropped out, 
88.6% of the dropouts clustered into the low-grading 
cluster (Fig. 3, center, lower cluster; right dropout 
category). The opposite pattern occurred in the upper 
cluster that reflects higher achievement and college 
preparation. The upper cluster contained few students 
who dropped out but did contain the majority of 
students who took the ACT college entrance exam and 
were female (Fig. 3 center, upper cluster; right, dropout, 
took ACT, and female categories). Only a slight 
difference existed between the upper and lower clusters 
by which of the two districts the students attended (Fig. 
3 right, district A category), and this slight difference 
between the two clusters by district enrollment was 
confirmed with a chi-square analysis (χ2(1,N=186) = 
3.97, p=0.046). As an early identification method for 
student dropout, student grade clustering also 
performed well when the data was reclustered from only 
K-8 (93.9% of dropouts clustered into the lower cluster) 
and K-6 (63.0% of dropouts clustered into the lower 
cluster) (Fig. 4 A & B).  

Cluster analysis of course grades also provides an 
attractive avenue for identifying time points for early 
instructional intervention by exploring specific student 
grade cluster patterns. As an example, four individual 
course grade clusters are identified in Figure 3 between 
the heatmap and the cluster tree (Fig. 3, left, vertical 
colored solid bars). These individual grade clusters are 
informative for dropout identification as each cluster 
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Figure 4: Hierarchical cluster analysis of K-6 and K-8 student subject-specific grades identifies students at risk of dropout and 
severely challenged by school. Student subject-specific grades were clustered K-6 (A) and K-8 (B). For each clustergram, each 
student is aligned along the vertical axis, with subjects by grade-level aligned along the horizontal axis. Z-scored student grades 
are represented by a heatmap, with higher grades indicated by an increasing intensity of red, lower grades indicated by an 
increasing intensity of blue, the mean indicated by grey, and white indicates no data (center A & B). A cluster tree (left A & B) 
represents hierarchical clusters. Black bars represent dropout status to the right of each heatmap. The dashed black line through 
the center of the heatmap indicates the division line between two major clusters in the dataset (center A & B). School and 
grade-level is indicated along the top horizontal axis (center top). Subjects are ordered left to right within each grade level from 
core-subjects to non-core subjects (see methods).  
 

identifies specific patterns of student grades from early 
elementary throughout the rest of the student’s time in 
the school system (Fig. 3 left; high-high, orange bar; 
low-high, yellow bar; high-low, green bar; low-low, 
purple bar). For example, the high-low cluster (Fig. 3, 
green vertical bar) starts elementary with relatively high 
grades, but then the grades begin to fall by grade 4 with a 
high percentage of dropout. This is in contrast to the 
low-high cluster (Fig. 3, yellow vertical bar) in which the 
students started elementary school with relatively low 

grades, but then their grades rose over time with all 
students in the cluster graduating. 

Figure 5 displays a plot of the mean non-cumulative 
grade point average (GPA) for these four clusters across 
all subjects for each grade level. While the high-high 
cluster of students received an “A-” average (near 3.5 
GPA) throughout their career in the system with 97.7% 
graduating on time (Fig. 5, orange), students in the 
low-low cluster quickly fell in GPA during early 
elementary to a C+ average (2.0 to 2.5 GPA) with 40% 
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dropping out (Fig. 5, purple). In contrast to these two 
groups, the low-high cluster received low grades early 
but then rose in GPA over time with 100% of the 
students graduating (Fig. 5, yellow). In addition, the 
high-low cluster received B+ GPAs up until grade 3 
(similar to the high-high cluster) and then fell into a 
pattern similar to the low-low cluster with GPAs near a 
C+, with 45% dropping out (Fig. 5, green). For this 
dataset, these cluster patterns suggest that early trends in 
teacher assigned grades appear to be somewhat unstable 
until grade 4. However, after grade 4, examining specific 
cluster patterns in this way appears to provide useful 
information on overall student performance at specific 
grade levels patterned with students performing 
similarly. 
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Figure 5: Mean non-cumulative GPA trends, K-12, for four 
sub-clusters from the hierarchical cluster analysis 

 

Comparison to Past Dropout Identification 
Literature 

Throughout the dropout identification literature the 
goal is to find a “flag” that accurately identifies students 
who will ultimately dropout of school (Balfanz et al., 
2007; Gleason & Dynarski, 2002). Such flags should 
provide a means for educators to not only identify which 
students are at risk of dropping out, but also possible 
time points, subjects, or areas of schooling through 
which educators could intervene to help a student 
graduate. To date, the data on identifying these flags has 
been mixed (Hammond, Linton, Smink, & Drew, 2007). 
Previously, to identify flags as variables associated with 
high risk of dropping out, researchers have first 
employed a variety of methods to analyze the data, such 
as linear and logistic regression, determined that a 

specific variable is significant, and then calculated the 
percentage of students who dropout who also possess 
the nominated flag or combination of flags. As an 
example, using multiple regression Gleason & Dynarski 
(2002) were able to identify 43% of the students who 
eventually dropped out using a variety of high school 
level variables obtained from student surveys, such as 
family on public assistance, sibling dropout, high 
absenteeism, external locus of control, among many 
others. At the middle school level using the same 
method, Gleason & Dynarski accurately identified only 
23% of the students who eventually dropped out. 
Recently, Balfanz et al. (2007) identified a combination 
of flags at the grade 6 level using logistic regression. 
They were able to identify 60% of the students in their 
sample who eventually dropped out before graduating 
from high school. These grade 6 flags included low 
attendance, unsatisfactory behavior, and failures in math 
and English. In comparison to this literature, for this 
dataset, the hierarchical cluster analysis presented here 
identified student dropouts from only one type of data 
already collected in schools, teacher assigned grades, and 
it appears to be an improvement over these past 
methods. Using K-12 and K-8 data, the cluster analysis 
identified 88.6% and 93.9% of the students who 
dropped out, respectively, an apparent improvement 
over past methods. In addition, hierarchical cluster 
analysis of K-6 grade data identified 63.0% of the 
students who dropped out. This is comparable to the 
grade 6 data of Balfanz et al. (2007).  

DISCUSSION 
The central purpose of this study is to introduce 

hierarchical cluster analysis and pattern visualization 
methods from the data mining literature and 
demonstrate the method’s utility through one example, 
identification of student dropout from student K-12 
longitudinal grades. For educational data, the method 
provides a useful and interesting means to visualize and 
assess an entire disaggregated data history pattern for a 
student in comparison with every other student’s data 
pattern in a sample. The clustergram allows for the 
visualization and interpretation of every data point. Each 
student’s data pattern is proximal in the clustergram to 
students with similar patterns, facilitating system-wide 
analysis and identification of specific clusters in the 
dataset. As an example application of the usefulness of 
cluster analysis with education data, hierarchical cluster 
analysis of longitudinal student grades in every subject, 
K-12, provides an interesting avenue to examine 
assessment patterns to aid in data driven 
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decision-making, and identifying overall student 
outcomes, such as dropping out or taking the ACT. In 
comparison to past methods of dropout identification, 
hierarchical cluster analysis of student grades for this 
dataset appears to be comparable to past methods. 

The application of hierarchical cluster analysis and 
visualization to education data 

This study details the application of HCA and 
visualization of subject-specific teacher assigned grades. 
While there is disagreement in the data mining literature 
over which distance measure and clustering algorithm 
are best for different applications (Quackenbush, 2006), 
the uncentered correlation and average linkage methods 
were chosen here based on their known ability to 
provide distinctive clusters to provide an initial example 
application of the method. The question of which 
clustering method is most useful and efficient with this 
type of data is of interest, but it is outside the scope of 
this study. While it is not the purpose of this study to 
review all types of cluster analysis, future work will focus 
on comparing distance measures and clustering 
algorithms to improve the method. Such additional types 
of distance measures could include Euclidean and 
city-block distance while comparative clustering 
algorithms could include k-means and self-organizing 
maps (Frey & Dueck, 2007; Romesburg, 1984), to name 
just a few. 

The use of cluster analysis in much of the data 
mining literature has focused on the identification and 
classification of specific patterns in the data that will 
predict future participant outcomes (Dolled-Filhart et 
al., 2006; Kallioniemi, 2002; Lu et al., 2005; 
Quackenbush, 2006; vandeVijver et al., 2002). This has 
required clustering in both dimensions, across cases and 
across potential predictors, in an effort to narrow the 
number of variables that identify overall case outcomes. 
For this study, I argue that both dimensions are 
clustered; students are clustered hierarchically using the 
average linkage algorithm, while grades are clustered 
chronologically and by an ordered repeating pattern 
from core subjects to non-core subjects. While a subset 
of subject grades that identify overall course dropout is 
of interest, and will be explored in future research, the 
object here is to aid in the identification of potentially 
useful student data patterns for 3DM. As detailed here 
with the analysis of specific sub-clusters of students, 
such as the high-low and low-high clusters, ordering the 
grades dimension by time allows for the examination of 
student data trends from early elementary, through high 
school. While preliminary, the results presented here 

with subjects and grade-levels ordered chronologically 
suggest that student grade patterns are somewhat 
unstable prior to grade four. However, the period 
between grade 4 and grade 8 seems to be critical in terms 
of grade patterns when examining overall student 
performance, such as dropout. 

Identification of Dropouts 

As an initial example of the usefulness of cluster 
analysis and visualization for 3DM, I now turn to a 
discussion of the results of the HCA and visualization 
for early identification of student dropouts. This study 
has come to a rather obvious finding; students with 
generally low grades throughout their career in school 
drop out. A main critique of this study is that this is 
already known. However, because literature already 
exists that demonstrates that student grades are useful in 
helping to identify who may drop out, this type of data 
and student outcome provides a useful platform from 
which to evaluate hierarchical cluster analysis in 
comparison to past methods.  

Past methods of identifying students who may drop 
out of school have been overly reliant on regression 
analysis, which inherently aggregates data to the overall 
means within the dataset. The method here of using 
HCA retains the disaggregated data for each student, 
patterns each student’s data together with similar student 
data trends, and allows for interpretation and 
identification of groups of student patterns that are 
associated with dropping out. For the dataset examined 
here, these overall patterns, which appear to become 
much more stable after grade 4, are as effective as past 
methods up to the grade 6 level, and the results suggest 
that the method may be an improvement using higher 
grade level data. In addition, the analysis here included 
only one type of data, grades, and this type of data is 
already present in most schools for every student at 
every grade level and subject. Rather than collect even 
more types of data, the results of this study suggests that 
through the use of these types of pattern analysis and 
visualization techniques, data that we currently collect in 
schools but often ignore can be repurposed for 3DM 
and examined longitudinally to aid in identifying early 
which students are most challenged by school. 

Past research has demonstrated that teacher 
assigned grades are useful for identifying students who 
may dropout (Bowers, 2009, 2010). However, to date, 
the literature using grades to identify dropouts has been 
problematic in four main ways. First, it is overly 
concentrated on course failures in core courses such as 
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English and mathematics (Allensworth, 2005; 
Allensworth & Easton, 2005, 2007; Balfanz et al., 2007; 
Hammond et al., 2007), a point at which a student has 
already experienced the deleterious impact of the 
beginnings of school failure. The findings presented 
here cluster analyzed the entire grading scale across all 
subjects, including both core and non-core subjects to 
capture grading patterns that to date have gone 
unexamined. Second, many of the past studies required 
the use of multiple variables in addition to grades, 
including attendance, and unsatisfactory behavior 
(Balfanz et al., 2007; Hammond et al., 2007). For the 
dataset analyzed here, this study suggests that grades 
alone are very useful for identifying student dropouts 
when analyzed with hierarchical cluster analysis. Third, 
these past studies have also overly focused on single 
grade levels, such as the grade 6 study by Balfanz et al. 
(2007). The dropout process is a longitudinal “life course 
perspective” in which student challenges with school 
slowly build over time (Alexander et al., 2001; 
Allensworth & Easton, 2007; Finn, 1989; Jimerson, 
Egeland, Sroufe, & Carlson, 2000), a phenomenon that 
is important to address in identifying students at risk of 
school failure, before failure occurs. This aspect of the 
dropout process is highly amenable to study using 
hierarchical cluster analysis of longitudinal student 
grades. Fourth, these past studies have overly relied on 
achievement in core courses (Allensworth & Easton, 
2007; Balfanz et al., 2007; Hammond et al., 2007). This 
emphasis makes the assumption that core academic 
knowledge, as represented in core course subject grades 
such as English and mathematics, is exclusively 
representing academic knowledge and that little 
information can be obtained from non-core subject 
achievement, such as in music, physical education, or art. 
Excluding non-core course achievement information 
ignores the wealth of data collected on students that 
when analyzed longitudinally aids in the identification of 
students at risk of dropping out of school. Thus, 
hierarchical cluster analysis of longitudinal student grade 
patterns addresses these issues in identifying students 
who may drop out of school. 

In addition, the hierarchical cluster analysis and 
visualization method, detailed here as a clustergram, 
provides additional information about students that past 
regression analyses do not. While both types of methods 
provide information for identification of overall student 
outcomes prior to those outcomes, the clustergram 
displays the entire set of data analyzed for every case in 
the dataset, patterned in a way that aids overall 

interpretation. This is in stark contrast to regression 
analyses that aggregate data and report overall parameter 
estimates. Much like a medical x-ray, the clustergram 
provides a unique way to “look inside” each student’s 
entire history of achievement, and examine that history 
in context with other students who have performed in a 
similar manner through pattern analysis. The 
interpretation of these data patterns for 3DM is then 
aided through this type of pattern analysis, and helps 
point to possible areas and timing for future 
interventions.  

As one example for 3DM, examining the 
clustergram in Figure 3 provides a means to assess the 
types of courses that students enroll in throughout their 
career K-12 and analyze the patterns of course taking 
and curriculum present for different clusters of students. 
As can be seen in Figure 3, columns of contiguous data 
patterns begin in the heatmap at grade 9 semester 1, as 
students take a majority of core courses (core courses are 
to the left in each column, non-core to the right). These 
patterns are especially interesting when considering that 
at the student-level the data are not a sample but rather 
entire cohorts of students. Thus, interesting and 
informative patterns in the types of courses taken can be 
observed. Here, the high-high cluster at the top of the 
heatmap in Figure 3 appears to take mostly core courses, 
until curriculum dispersion in grade 12, as their data 
spreads out across the different types of courses. For the 
students in the low-low cluster near the bottom of the 
heatmap, this type of curriculum dispersion begins 
earlier in grade 11, with these students taking fewer core 
subjects than other clusters. 

As another example for 3DM, the change in Figure 
5 for the high-low group occurred as a change between 
grade 3 and 4 from an average B grade to a C+. Without 
knowledge of these longitudinal grading history patterns, 
this type of change may be overlooked in most schools. 
However, as demonstrated in Figure 3 and 5, students in 
the green high-low cluster dropped out at an increased 
rate. The argument here, is that for 3DM using teacher 
assigned grades as data already collected in schools, 
knowledge of this seemingly small change in the data 
pattern in elementary school provides the information to 
target this narrow window of time to provide these 
students with additional support before they begin to 
experience course failure as they reach middle and high 
school. While this proof-of-concept study included two 
cohorts from two districts and found similar data 
patterns across both districts, the next step of this work 
will be to analyze multiple cohorts over time from the 
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same district to assess the stability of individual grade 
cluster patterns. If specific patterns are predictive from 
one cohort to the next within the same district this 
would indicate schooling or teacher-level effects on 
student achievement that would be very informative for 
within district 3DM. 
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Appendix 

Following the recommendations of the literature cited above, hierarchical cluster analysis was performed in this study as 
follows. First, student course grades were categorized by subject for each semester and grade level from grades K through 12 as 
discussed in the methods. Second, grades were converted from letter grades to a five-point scale (0-4). Third, the data matrix Y 
was obtained which contained the data for both cohorts of students with every subject specific grade, K-12, in which y′i is an 
observation vector corresponding to each student case, and yj is a column corresponding to subject specific numeric grades, 
converted from letter grades as detailed above. Fourth, each yj was normalized through z-scoring, so that the data in the entire 
matrix Y was replaced with z-scores based on the means of each subject specific and grade-level specific column, yj. This step is 
recommended to control for overweighting in the clustering algorithm by arbitrary cases (Rencher, 2002; Romesburg, 1984). 
Fifth, the similarity distance matrix was generated. The distance measure employed was uncentered correlation which is 
commonly used in hierarchical clustering (Eisen & DeHoon, 2002; Romesburg, 1984) and is represented by the following 
equations: 
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The uncentered correlation function, r(xi,yi) defined in Equation 1 is highly similar to the Pearson product moment 
correlation, except that it assumes that the mean is 0 for every series even when it is not, through the use of a modified standard 
deviation (σ) (equations 2 and 3) for data vectors for two separate cases, xi and yi. This is important when considering two vectors 
that have the same shape but are separated by a constant value, and thus offset from each other. The Pearson correlation (a 
centered correlation) would be the same for these two vectors, namely 1, while the uncentered correlation for these two vectors 
would not be 1 (Anderberg, 1973; Eisen & DeHoon, 2002). This is valuable when examining the similarity of trends of student 
grade patterns over time, since if the trend of two students was the same, yet they were always offset by one letter grade, the 
Pearson product moment correlation would deem the two similar. The use of uncentered correlation helps to address this issue in 
the similarity matrix. Furthermore, it should be noted that the choice of which distance measure is “best” for any particular 
application is under contention (Anderberg, 1973; Ein-Dor, Zuk, & Domany, 2006; Eisen & DeHoon, 2002; Eisen et al., 1998; 
Jain & Dubes, 1988; Lorr, 1983; Lu et al., 2005; Romesburg, 1984; Shen, Ghosh, Chinnaiyan, & Meng, 2006; Sneath & Sokal, 
1973; vandeVijver et al., 2002; Weinstein et al., 1997; Zapala & Schork, 2006). Hence, while the question of which distance 
measure performs best with education data is of interest, it is outside the scope of this study. 

The sixth step is to apply a clustering algorithm iteratively to the distance matrix. The use of the average linkage algorithm 
here is due to its demonstrated success in the past in identifying patterns predictive of overall outcomes from similar types of 
datasets (Bowers, 2007; D'haeseleer, 2005; Eisen et al., 1998; Quackenbush, 2006; Romesburg, 1984). For average linkage, 
Equation 4, if r(xi,yi) is equal to Equation 1, uncentered correlation, the distance between any two clusters A and B is defined as 
the average distance of the total number of cases within both clusters, nAnB, between the total number of cases in cluster A, nA, 
and the total number of cases in cluster B, nB, such that: 
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where the sum is over all of xi in A and all of yi in B. Equation 4 is applied iteratively over the distance matrix, as the two vectors 
with the smallest distance are joined into the first cluster and the matrix is updated with the average linkage of the vectors from 
Equation 4. This process iterates over the matrix hierarchically, clustering similar clusters to similar cases and other clusters, until 
the entire dataset is finally clustered into one final cluster. 


