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Cognitive diagnostic modeling has become an exciting new field of psychometric research.  These 
models aim to diagnose examinees’ mastery status of a group of discretely defined skills, or attributes, 
thereby providing them with detailed information regarding their specific strengths and weaknesses.  
Combining cognitive diagnosis with computer adaptive assessments has emerged as an important part 
of this new field.  This article aims to provide practitioners and researchers with an introduction to and 
overview of recent developments in cognitive diagnostic computer adaptive assessments. 

 
Interest in psychometric models referred to as cognitive 
diagnostic models (CDMs) has been growing rapidly 
over the past several years, motivated in large part by the 
call for more formative assessments made by the No 
Child Left Behind Act of 2001 (No Child Left Behind, 
2002).  Rather than assigning to examinees a score on a 
continuous scale representing a broadly defined latent 
ability as common item response theory (IRT) models 
do so effectively, CDMs aim to provide examinees with 
information concerning whether or not they have 
mastered each of a group of specific, discretely defined 
skills, or attributes.  These skills are often binary, 
meaning that examinees are scored as masters or 
non-masters of each skill.  For example, the skills 
required by a test of fraction subtraction may include 1) 
converting a whole number to a fraction, 2) separating a 
whole number from a fraction, 3) simplifying before 
subtracting, and so forth (de la Torre & Douglas, 2004), 
and a reading test may require the skills 1) remembering 
details, 2) knowing fact from opinion, 3) speculating 
from contextual clues, and so on (McGlohen & Chang, 
2008).  Thus, CDMs may potentially aid teachers to 
direct students to more individualized remediation and 
help to focus the self-study of older students. 

More formally, CDMs assign to each examinee a 
vector of binary mastery scores denoted 

)...( 21 Kααα=α  for an assessment diagnosing K skills.  

For example, for K=3, an examinee assigned the vector 
)101(=α has been deemed a master of the first and 

third skills and a non-master of the second skill.  Since 
each of the K skills may be assigned two levels, there are 
2K possible skill mastery patterns, which are referred to 
as latent classes, since mastery and non-mastery are 
regarded as unobserved categories for each skill. Figure 
1 lists all the possible latent classes an examinee may be 
classified into for K=3 skills, ranging from mastery of 
none of the skills to mastery of all the skills. 
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Figure 1: Latent classes for diagnosing K=3 skills 
 

Methods by which examinees are assigned skill 
mastery patterns will be discussed later in the paper.  
Some researchers have argued that a binary mastery 
classification is too restrictive and does not adequately 
reflect the way students learn; there should be at least 
one intermediate state between mastery and 
non-mastery representing some state of partial mastery.  
While some CDMs are able to accommodate more than 
two levels of skill mastery, the majority of research has 
focused on CDMs that diagnose binary skill levels. 

While earlier CDM literature focused primarily 
upon theoretical issues such as model estimation, there 
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has recently been an increasing amount of work being 
done on issues that are intended to facilitate practical 
applications of the models, such as the reliability of 
attribute-based scoring in CDMs (Geirl, Cui, & Zhou, 
2009), automated test assembly for CDMs (Finkelman, 
Kim, & Roussos, 2009), and strategies for linking two 
consecutive diagnostic assessments (Xu & von Davier, 
2008).  In addition, researchers have also been striving to 
develop the theory necessary to implement cognitive 
diagnostic computer adaptive assessments, which we 
refer to as CD-CAT.  Jang (2008) describes the possible 
utility of CD-CAT in a classroom setting with the 
following scenario.  Upon the completion of a unit, a 
classroom teacher selects various items to be used in a 
CD-CAT diagnosing specific skills taught in the unit.  
Students complete the exam using classroom computers, 
and diagnostic scores are immediately generated 
detailing the strengths and weaknesses of the students.  
This vision illustrates the potential of CD-CAT to 
become a powerful and practical measurement tool.  The 
purpose of this article is to highlight advances in the 
development of CD-CAT and point out areas that have 
not been addressed as thoroughly as others.  The 
organization of this article will parallel that of 
Thompson (2007), who discusses variable-length 
computerized classification testing according to an 
outline due to Weiss and Kingsbury (1984), who 
enumerate the essential components of variable length 
CAT: 

1. Item response model 
2. Calibrated item bank 
3. Entry level (starting point) 
4. Item selection rule 
5. Scoring method 
6. Termination criterion 

It is hoped that some pragmatic information will be 
provided to practitioners wishing to know more about 
CD-CAT, and since some of the sections are applicable 
to CDMs in general rather than only CD-CAT, this 
article may also serve as a primer to those readers 
brand-new to the subject.   

 
Psychometric Model 

Much of the research into CDMs over the past decade 
has focused upon the formulation and estimation of new 
models and families of models.  CDMs that have been 
used in recent CAT research include the Deterministic 
Input, Noisy-And gate (DINA) model (Junker & 
Sijtsma, 2001), the Noisy Input, Deterministic-And gate 

(NIDA) model (Maris, 1999), and the fusion model 
(Hartz, 2002; Hartz, Roussos, & Stout, 2002).  These 
models vary in terms of complexity, including the 
number of parameters assigned to each item and the 
assumptions concerning the manner in which random 
noise enters the test taking process.  In particular, the 
DINA model has enjoyed much attention in the recent 
CDM literature, due in large part to its simplicity of 
estimation and interpretation.  It is beyond the scope of 
this article to provide an in-depth discussion of any 
specific model; for an overview and comparison of these 
and various other CDMs see DiBello, Roussos, and 
Stout (2007) and Rupp and Templin (2008b).      

The vast majority of CDMs, including those 
mentioned above, utilize an item to skills mapping 
referred to as a Q matrix (K. Tatsuoka, 1985).  The Q 
matrix is an efficient representation of the specific skills 
that are required by each item in the item bank.  For skills 
k=1… K and an item bank consisting of m=1… M 
items, the Q matrix entry mkq  is defined as  

⎩
⎨
⎧

=
otherwise

kskillrequiresmitemif
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Thus, each item in the bank contributes exactly one row 
to the Q matrix.  For example, we consider the following 
Q matrix 
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It can be seen that the first item in the bank requires 
skills 1 and 2, the second item requires skills 1, 3, and 4, 
the third item requires skill 3 only, and so on.  The Q 
matrix is often constructed by subject matter experts 
(SMEs), and understandably, much effort has been spent 
studying this important component of CDMs.  For 
example, Rupp and Templin (2008a) explored the 
consequences of using an incorrect, or mis-specified Q 
matrix, de la Torre (2009) developed methods of 
empirically validating the Q matrix under the DINA 
model, and de la Torre and Douglas (2008) devised a 
scheme involving multiple Q matrices for modeling 
different problem solving strategies. 

In addition to determining which skills are required 
by each item, the SME must also decide how mastery of 
the skills affects the response probabilities.  For 
example, does a high probability of success result only 
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when an examinee has mastered all of the required skills 
or when at least one skill is mastered?  Does the 
probability of a correct response increase gradually as 
more required skills are mastered?  Models demanding 
that all required skills be mastered for a high probability 
of a correct response are referred to as conjunctive 
models; models demanding only some proper subset of 
the required skills be mastered are called disjunctive.  In 
addition to deciding on a model based upon expert 
judgment, the response data may be fit to multiple 
models, and general fit indices such as the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) may be computed to compare model fit 
(de la Torre & Douglas, 2008).   

In general, there has been no general endorsement 
of one CDM being better suited for use in CD-CAT 
applications than any other.  Selection of a specific CDM 
for use in a given assessment will be decided upon by 
collaboration between SMEs and psychometricians. 
Clearly, the construction of the Q matrix is of utmost 
importance for any CDM application, regardless of the 
specific model used.  Finally, in practice a CDM may 
have to be chosen depending on the computing 
resources available for estimating the model, which is 
considered in the next section. 

 
Calibrated Item Bank 

Estimating the item parameters of a CDM is generally 
achieved by an expectation-maximization (EM) 
algorithm (Dempster, Laird, & Rubin, 1977) approach 
or by Markov Chain Monte Carlo (MCMC) techniques 
(Tierney, 1994).  Examples of models fit by the EM 
algorithm include the DINA (de la Torre, 2008), the 
NIDA (Maris, 1999), and the general diagnostic model 
(GDM) of von Davier (2005), and MCMC has been used 
to fit models including, but not limited to, the DINA 
and NIDA (de la Torre & Douglas, 2008) and the fusion 
model (Hartz, 2002).  These papers outline algorithms 
which may be implemented by practitioners in the 
programming language of their choice, or existing 
ready-made software packages may be utilized.  Such 
programs include Arpeggio (Educational Testing 
Service, 2004), a commercial package which estimates 
the fusion model and a routine for use in the commercial 
software M-Plus (Muthén & Muthén, 1998-2006) which 
estimates a family of CDMs based upon log linear 
models (Henson, Templin, & Willse, 2009).  A list of 
various commercial and freeware software programs for 
estimating CDMs may be found in Rupp and Templin 
(2008b). 

There are some complications, however.  Not all of 
the software is well documented, and some programs are 
available only to researchers.  An issue critical to the 
practical implementation of an operational CD-CAT 
program is that the algorithms described in the above 
papers and some of the software is designed for full 
response matrices only and must be modified by the 
practitioner to handle response data in which items are 
not seen by every examinee.  Another practical concern 
is computing time; in general, the EM algorithm will 
converge much more quickly (especially when 
diagnosing a small number of skills) than MCMC 
methods, for which convergence may take several hours 
or even possibly days.  For this reason, as well as the 
extreme care required to assess the convergence of the 
parameters estimated via a MCMC algorithm, 
practitioners may conclude that the EM algorithm 
approach is the preferable estimation method in the 
context of an operational diagnostic assessment 
program. 

There have been few concrete recommendations in 
the literature regarding minimum sample size for 
calibrating item parameters for CDMs.  Rupp and 
Templin (2008b) suggest that for simple models such as 
the DINA a few hundred respondents per item is 
sufficient for convergence, especially if the number of 
skills being diagnosed is not too large, such as four to six.  
A systematic study investigating minimum sample size 
for item calibration for different CDMs and for various 
numbers of skills is currently lacking.  A related issue is 
that of model identifiability, or the property of the model 
that ensures a unique set of item parameters will be 
estimated for a given set of data.  von Davier (2005) 
states that models diagnosing greater than eight skills are 
likely to have problems with identifiability, unless there 
are a large number of skills measuring each item.  For a 
simple example of how such problems might arise, 
consider attempting to estimate a model diagnosing 
K=10 skills using a sample of N=1000 examinees. Since 
the number of possible latent classes (210=1024) is 
greater than the actual number of examinees, it is 
doubtful that accurate parameter estimates and 
examinee classifications will be obtained.  Of course, 
models having fewer parameters per item will have less 
difficulty with identifiability than models with more 
complex parameterizations, and again, there have been 
no systematic studies for CDMs investigating the 
relationships between identifiability, sample size, and the 
number of skills being diagnosed. 
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Starting Point 

The issue of the selection of items that are initially 
administered to examinees at the start of a CD-CAT 
assessment has not been explicitly addressed.  In their 
simulation study Xu, Chang, & Douglas (2003) begin the 
simulated exams by administering the same set of five 
randomly chosen items to each examinee.  If examinees 
are subjected to a series of diagnostic exams, such as a 
pretest/test/retest scheme, then it would be possible to 
start the exam by selecting items (see the next section) 
according to the examinee’s previous classification.  
Whether selecting initial items in this fashion or 
randomly affects the examinee’s ultimate classification is 
currently unknown. 

 
Item Selection Rule  

Much of the CDM literature that is specific to CD-CAT 
applications focuses upon rules for item selection.  
Several rules and variations have been proposed for both 
assessments that are designed to exclusively provide 
diagnostic information and for assessments that provide 
an IRT theta estimate as well as diagnostic results.  
Concerning the former scenario, Xu et al. (2003) apply 
the theoretical results of C. Tatsuoka (2003) to a large 
scale CD-CAT assessment using the fusion model.  Two 
item selection procedures are proposed; a procedure 
based upon choosing the item from the bank which 
maximizes the Kullback-Leibler (KL) information, a 
measure of the distance between two probability 
distributions, and a procedure based upon minimizing 
the Shannon Entropy (SHE), a measure of the flatness 
of the posterior distribution of the latent classes (see the 
next section).  It is shown that, for fixed length exams, 
selecting items via the KL information or SHE leads to 
higher classification accuracy rates compared to selecting 
items randomly.  The SHE procedure is slightly more 
accurate than the KL information, but with more 
skewed item exposure rates.  Cheng (2009) proposed 
two modifications to the KL information procedure, the 
posterior weighted Kullback-Leibler (PWKL) procedure 
and the hybrid Kullback-Leibler (HKL) procedure.  
Both were shown to yield superior classification 
accuracy compared to the standard KL information and 
SHE procedures.  One note of practical concern is the 
computational efficiency of these various item selection 
rules.  The KL information procedure is by far the most 
efficient, since information has to be computed only 
once for a given item bank.  On the other hand, the SHE 
procedure requires that considerable calculations be 

performed over every remaining item in the bank each 
time an item is administered. 

Item selection procedures have also been proposed 
for the case in which both a common IRT model and a 
CDM are fit to the same data in an attempt to 
simultaneously estimate a theta score and glean 
diagnostic information from the same assessment.  
McGlohen and Chang (2008) fit the three parameter 
logistic (3PL) and the fusion models to data from a large 
scale assessment and simulated a CAT scenario in which 
three item selection procedures were testing.  The first 
procedure selected items based upon the current theta 
estimate (via maximizing the Fisher information) and 
classified examinees at the end of the exam, the second 
procedure selected items based upon the diagnostics (via 
maximizing the KL information) and estimated theta at 
the end, and the third procedure selected items 
according to both criterion by the use of combining 
shadow testing, a method of constrained adaptive testing 
proposed by van der Linden (2000), and KL 
information.  The first and third procedures displayed 
good performance for both the recovery of theta scores 
and diagnostic classification accuracy. 

 
Scoring Method 

Examinee scoring in the context of CDMs involves 
classifying examinees into latent classes by either 
maximum likelihood or maximum posteriori.  There is 
no distinction between obtaining an interim 
classification during a CD-CAT and a classification at 
the end of a fixed length diagnostic exam.  We will 
demonstrate the maximum posteriori method, since the 
maximum likelihood method is equivalent to a special 
case of maximum posteriori.  For an assessment 
diagnosing K skills, the thi examinee is classified into one 
of the 2K possible latent classes given his or her 
responses, denoted iX , and the set of parameters 
corresponding to the items to which the examinee was 
exposed, denoted iφ .  The likelihood of the responses 
given membership in the thl latent class and the item 
parameters may be denoted as ),|( iliXP φα , and the 
prior probability of the thl latent class is denoted 
as )( lP α , which may be estimated from a previous 
calibration or expert opinion.  Then, the desired 
posterior probability )|( il XP α , the probability of the 

thi examinee’s membership in the thl latent class given 
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her response sequence, may be found using the formula 
(Bayes Rule) 

∑ =

= L

c cci

lli
il

PXP
PXP

XP
1

)()|(
)()|(

)|(
αα

αα
α . 

Calculating the posterior distribution of the latent 
classes entails simply using the above formula for all 
l=1... L possible latent classes.  The examinee is then 
classified into the latent class with the highest posterior 
probability.  When the value 1/L is substituted for 

)( lP α in the computation, referred to as a flat or 
non-informative prior, the result is equivalent to 
classification via maximum likelihood. 

Upon the completion of a CD-CAT assessment, it 
may be desired to provide the examinee with a graph of 
individual skill probabilities, or skill “intensities,” in 
addition to simple binary mastery/non-mastery 
classifications.  Such a graph may be constructed using 
the final posterior distribution of the latent classes. For 
example, suppose a hypothetical examinee is 
administered a CD-CAT assessment diagnosing K=3 
skills and upon completion of the exam the posterior 
distribution shown in Table 1 is computed based upon 
the responses and item parameters of the exposed items.  
Clearly, the examinee would be assigned the mastery 
vector {1 0 1}, since this class has the highest value in 
the posterior distribution.   

However, we may also compute the probability that 
the examinee has mastered each individual skill.  Since 
the latent classes are mutually exclusive and exhaustive, 
we may simply add the probabilities of the latent classes 
associated with each skill.  Specifically, denote the 
probability that an examinee has mastered skill k as 
P(skill k) and the probability that the examinee is a 
member of latent class }{ 321 ααα  as })({ 321 αααP .  
Then
 

76.0
13.043.005.015.0

})111({})101({})011({})001({)1(

=
+++=

+++= PPPPskillP

 

Similar calculations yield P(skill 2)=0.24 and P(skill 
3)=0.72.  These probabilities may be expressed via a bar 
graph as in Figure 2.  These graphs may help students 
and teachers grasp diagnostic results in a more intuitive 
fashion than classification alone. 
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Figure 2: Graph of individual skill probabilities 
 
 
Termination Criterion  

In general, discussions of termination criteria, or 
stopping rules, for CD-CAT have been largely absent 
from the current literature.  One exception is C. 
Tatsuoka (2002).  Working in the context of diagnostic 
classification using partially ordered sets, an approach in 
which examinees are classified into “states” rather than 
latent classes and thus somewhat different than that 
taken by the CDMs discussed in this paper, he proposes 
that a diagnostic assessment be terminated when the 
posterior probability that an examinee belongs to a given 
state exceeds 0.80.   

Table 1: Posterior probability for hypothetical examinee 

Latent class {0 0 0} {1 0 0} {0 1 0} {0 0 1} {1 1 0} {1 0 1} {0 1 1} {1 1 1} 
Posterior 

probability 0.06 0.15 0.02 0.12 0.05 0.43 0.04 0.13 
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This concept may be easily adapted to CDMs by 
terminating the exam when the probability an examinee 
belongs to a latent class exceeds 0.80, and this threshold 
may be lowered or raised if it is desired to sacrifice some 
classification accuracy in exchange for shorter exams, or 
vice versa.  This stopping rule, and likely other stopping 
rules for CD-CAT yet to be proposed, utilizes the 
posterior distribution of the latent classes as a measure 
of the precision of classification, similar to the standard 
error on an IRT theta estimate.  The more “peaked” a 
distribution is at one class, the more reliable the 
classification will be.  Clearly, a termination rule which 
stops a CD-CAT exam when an examinee is assigned 
posterior distribution in Table 2 will most likely yield 
more accurate classifications than a rule which stops the 
exam when the posterior distribution is similar to that 
shown in Table 1 for the previous example.  The 
performance of Tatsuoka’s termination rule at 
thresholds higher and lower than 0.80 in terms of 
classification accuracy and test efficiency, as well as the 
formulation of new termination rules, may prove to be 
fruitful directions for research. 

 
Discussion 

CDMs are statistically sophisticated measurement tools 
that hold great promise for enhancing the quality of 
diagnostic feedback provided to all levels of students in 
many different types of assessment situations.  New 
models, both simple and complex, that measure various 
cognitive processes are rapidly being proposed, and 
means of estimating these models are being made more 
and more accessible to practitioners.  In order for CDMs 
to fulfill their potential, however, researchers must still 
answer basic general questions regarding concerns such 
as the reliability and validity of the results yielded by 
CDMs.  For example, for simulation studies in which 
response data are generated to fit a given model exactly, 
CDMs are capable of classifying individual skill 
masteries with over 90% accuracy (de la Torre & 
Douglas, 2004; von Davier, 2005).  However, there is 
less understanding as to how accurately examinees are 
classified in real world applications, i.e., when the 
examinee responses do not fit a given model exactly.  

Questions also remain that are specific to CD-CAT.  
In order for Jang’s (2008) hypothetical scenario detailed 
above to become a reality, CD-CAT assessments must 
be made to be efficient, accurate, and sufficiently 
uncomplicated so that they may be effortlessly 
incorporated into actual classrooms.  This article has 
aimed to describe areas of CD-CAT methodology that 
are being developed to a high degree, such as item 
selection rules, as well as areas which remain somewhat 
unexplored, such as termination rules.  It is hoped that 
some useful direction has been provided to practitioners 
wishing to begin working and experimenting with this 
new methodology. 
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