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Yule (1903) and Simpson (1951) described a statistical paradox that occurs when data is aggregated. In 
such situations, aggregated data may reveal a trend that directly contrasts those of sub-groups trends. 
In fact, the aggregate data trends may even be opposite in direction of sub-group trends.  To reveal 
Yule-Simpson’s paradox (YSP)-type occurrences, researchers must simultaneously consider the effect 
of an intervention at specific levels and on the overall model to ensure datasets are accurately analyzed 
and research findings are appropriately interpreted. The primary objectives of this manuscript are to: 
(1) examine the history of YSP; (2) describe necessary and sufficient causes for YSP occurrences; (3) 
provide examples of YSP in research and explain YSP’s relationship to multi-level modeling including 
Hierarchical Linear Modeling (HLM); and (4) discuss YSP’s implications for researchers.   

 

 Yule-Simpson’s paradox (YSP) is a statistical 
phenomenon that may occur when data is aggregated 
(Malinas, 2001; Simpson, 1951; Thompson, 2006; 
wa-Kivilu, 2003; Yule, 1903) or statistical test 
assumptions are violated (i.e., particularly assumptions 
of independence).  When YSP occurs, aggregated data 
may reveal a trend that directly contrasts with that of its 
sub-groups.  In fact, the aggregate data may be opposite 
in direction of these sub-groups (Thompson, 2006; i.e., 
trends or correlations existing within independent 
groups become inversed when groups are combined, 
which yields counter-intuitive statistical findings).  A 
frequent cause of this statistical occurrence is when 
group data of unequal sizes are merged.  This 
aggregation may create unequally weighted results, 
which produce misleading relationships and cause 
situations where findings may be interpreted 
inappropriately.  This paradox is not limited to aggregate 
data from multiple groups; it may also occur when data is 
aggregated from multiple locations or (time) waves.   

YSP is a relatively easy phenomenon to understand; 
however, Malinas (2001) describes it as a “logically 
benign, empirically treacherous hydra” (p. 265).  
Although YSP occurrences are often recognizable, 
without careful planning for data analyses, YSP-type 
effects may go unnoticed and lead to misinterpreted or 

erroneous study findings.  The primary objectives of this 
manuscript are to: (1) examine the history of YSP; (2) 
describe necessary and sufficient causes for YSP 
occurrences; (3) provide examples of YSP in research 
and explain YSP’s relationship to multi-level modeling 
including Hierarchical Linear Modeling (HLM); and (4) 
discuss YSP’s implications for researchers.  

 
HISTORY AND INTRODUCTION OF THE 

PARADOX 
George Udny Yule (1871-1951) was a student and 

colleague of the statistician Karl Pearson (of Pearson’s r 
correlation) and an eminent statistician in his own right 
(Kendall, 1952, p. 156).  His contributions to the field 
included fourteen editions of Introduction to the Theory of 
Statistics and numerous texts on correlation and 
regression (Kendall, pp. 156-158).  Yule was credited 
with inventing the correlogram, a method for plotting 
correlation coefficients, and developing the foundation 
of the theory of autoregressive series (Kendall, p.157).   

In 1903, Yule wrote a paper titled “Notes on the 
Theory of Association of Attributes in Statistics.”  He 
began the paper by explaining that the most basic 
method for statistical classification is “division by 
dichotomy” (Yule, p. 121).  This process involves 
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placing units of observation (e.g., patients, animals) into 
one of two mutually exclusive groups based on the 
presence or absence of an attribute (Yule, p. 121).  These 
attributes are said to be independent for any given universe or 
sub-universe when the “chance of finding them together is 
the product of the chances of finding either of them 
separately” (p. 125).    

When two (independent) attributes (e.g., the 
association of A and B) or their contraries are considered 
jointly, they may be positively or negatively associated (Yule, 
1903, p. 126).  The direction of this association is 
determined by whether the related attributes are greater or 
less than the value placed on the attribute when it is 
independent (Yule, p. 126).  When three attributes (i.e., A, 
B, C) are considered, the relationship becomes more 
complex.  In this situation, the pair-wise relationship 
between A and B or their contraries must be considered in 
terms of the third variable, C, or its contrary (i.e., A and B 
given that C is also present; Yule, 1903).   

Despite the temptation of researchers to assume 
these attributes are independent, Yule wrote that one 
must actually determine whether these “attributes are 
independent, wholly or in part” (p. 132).  These partial 
associations (interactions) are essential for testing the 
accuracy of the total associations observed (p. 132).  Just 
because a pair of attributes is independent within a 
sub-universe, this does not permit statisticians to infer this 
relationship remains true for the universe or vice versa (p. 
132).  The association of A and B equal to zero does not 
always mean the association of A and B, given C, is also 
equal to zero.  Further, one should not infer the inverse.  
Yule additionally explained that if A and B have a 
positive or negative value, the same might not hold true 
for A and B given C is present. 

Yule (1903, pp. 133-134) illustrated these points 
using an example from population genetics.  This 
example considers the inheritance of an attribute among 
same-sex parent/child pairs.  Table 1 represents Yule’s 
example in tabular form.  

Table 1. Yule’s Example of the Paradoxical Phenomenon  

 Fathers (n=100) Mothers (n=100) Parents (n=100 
couples) 

 With 
attribute 

Without 
Attribute

With 
attribute 

Without 
Attribute 

With 
attribute 

Without 
Attribute 

Sons w/ attribute  25% 25% - - - - 

Sons w/o attribute 25% 25% - - - - 

Daughters w/ attribute - - 1% 9% - - 

Daughters w/o attribute - - 9% 81% - - 

Offspring w/ attribute - - - - 13% 17% 

Offspring w/o attribute - - - - 17% 53% 

 

Affected sons with an affected father (n=25) 
accounted for 25% of cases (p. 133).  In contrast, 
affected offspring whose parents both had the attribute 
(i.e., 13 out of 30) accounted for 43.3% of cases (p. 133).  
This pooled data might cause researchers to incorrectly 
assume this attribute is more dominant or easily passed 
between generations.  However, in reality the attribute is 
not particularly heritable through the mother or father’s 
genetic line.  Yule described this phenomenon as “quite 
a large but illusory inheritance created simply by the 
mixture of the two distinct records” (i.e., maternal and 
paternal inheritance; p. 133).  Exploring this attribute 
inheritance by gender might help to explain the origins 

of this erroneous conclusion and others in similar 
situations.  

Yule explained “there will be an apparent 
association between A and B in the universe…unless 
either A or B is independent of C” (p. 134).  However, 
variables A, B, and C fail to meet this requirement in 
Yule’s example.  When the data are pooled, a positive 
association exists between both parents with the 
attribute (A) and offspring with the attribute (B), and 
male gender (C).  A larger proportion of males have the 
attribute when compared to the proportion of females 
who have the attribute.  The unequal proportion of 
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males with the attribute contributes a greater weighted 
average when the data are pooled.  The pooled data then 
exhibit an association that runs counter to that found in 
at least one of the sub-groups.  Yule referred to this 
phenomenon as the “fallacy of mixing distinct records” 
(p. 132).  Although more commonly referred to as 
Simpson’s paradox, we will refer to it as the 
Yule-Simpson’s Paradox (YSP) throughout this text in 
deference to the contributions that Yule and Simpson 
made to our understanding of this paradox. 

 

CONCEPTUAL MATURATION OF THE 
PARADOX 

In 1951, E.H. Simpson published a paper titled 
“The Interpretation of Interaction in Contingency 
Tables.”  Simpson began this paper by considering a 
2x2x2 (attributes A, B, and C) contingency table (p. 238).  
As in Yule’s paper, Simpson wrote that this relationship 
contains partial associations (i.e., first order interaction, 2x2), 
as well as an interaction between all three variables (i.e., 
second order; p. 238).  He demarcated the boundary 
between first and second order interactions by stating if 
A and B are associated (first order interaction), a second 
order interaction between AB and C will not exist if the 
degree of association for AB given C is the same as AB given 
C’s contrary (p. 239).  Simpson wrote that when there is 
no apparent “second order interaction, there is 
considerable scope for paradox and error…if A and B 
are associated positively in C and negatively in… (its 
contrary, γ) they may appear independent in the whole 
population” (p. 240).  

Simpson (1951) illustrated this concept using a 
heuristic example of clinic patients (p. 241).  In the 
example, patients received treatment or no treatment 
and were monitored for survival over time.  Table 2 is a 
reproduction of the fourth table in the 1951 Simpson 
paper (p. 240).   

 
Table 2. Simpson’s Example of the Paradoxical 
Phenomenon (n=52) 

 Male (n=20) Female (n=32) 

Untreated Treated Untreated Treated 

Alive 7.69% 15.38% 3.85% 23.08% 

Dead 5.77% 9.62% 5.77% 28.85% 

 

When the data were examined by gender, one might 
believe that both males and females responded favorably 
to treatment and survived (i.e., 8/52 and 12/52, 
respectively), compared to those who did not receive 
treatment (i.e., 4/52 and 2/52, respectively; Simpson, 
1951, p. 241).  However, when the data were aggregated, 
these positive associations vanished and there appeared 
to be no association between treatment and survival (p. 
241).  

 

YSP: NECESSARY AND SUFFICIENT 
CAUSES 

Based on this historical overview of YSP, one might 
inquire “what is actually happening when this paradox 
occurs in a research study?”  YSP can occur in the 
presence or absence of second or higher order 
interactions.  In the former case, YSP occurs when 
aggregating data from multiple 2x2 contingency tables 
instead of using 2x2x2, or stratified tables.  In the latter 
case, YSP occurs when there is no second interaction.  
However, in this case, B and C are correlated and either 
A or B (or their contraries) fails to be independent of C 
(i.e., the independence assumption is violated).   

  When a second order interaction occurs and/or 
the independence assumption is violated, the 
“moderator is a qualitative (e.g., sex, race, class) or 
quantitative (e.g., level of reward) variable that affects 
the direction and/or strength of the relation” between 
the independent (IV) and dependent (DV) variables 
(Baron & Kenny, 1986, p. 1174).  The effect of the IV on 
the DV changes based upon the level of the moderator 
(i.e., C or its contrary).  While a linear type 
moderator-interaction is “generally assumed,” it is not 
the only type (p. 1175).  Interactions may also be quadratic 
(curvilinear) or step functions (pp. 1175-1176).   

Regardless of the type of moderator-interaction, 
when a moderator is considered, the relationship 
between the IV and DV may be altered in such a way 
that it changes direction.  This change in the direction or 
strength of the IV and DV relationship has important 
implications for data analysis and interpretation.  In such 
instances, potential moderator variables may include 
interactions between individual- and ecological-level 
factors (Kraemer et al., 2006, p. 605; Lièvre et al., 2002, 
p. 3) or unequal sample sizes unaccounted for within 
aggregate data (Cates, 2002, p. 2; Kunisaki, 2005, p. 
1674).  When researchers use data containing 
unaccounted-for moderators, calculated results often 
yield incorrect proportions, odds ratios, and relative risk 
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values (Cates, p.2; Sistrom & Garvan, 2004, p. 12).  
Interpretations based on these values may lead to 
erroneous conclusions concerning statistical, clinical, 
and practical significance.  Further, these errors may 
compromise study validity and limit researchers’ ability 
to compare results across studies (Lièvre et al., p. 2; 
Sistrom & Garvan, p. 18).   

 

CONTEMPORARY EXAMPLES OF 
SIMPSON’S PARADOX 

Examples of Yule-Simpson’s paradox (YSP) occur 
in studies across vastly different fields.  The paradox may 
occur in any instance where researchers aggregate data 
without accounting for potential moderators or 
independence of observations.  According to Cohen 
(1986, p. 33), “any comparisons of probabilities, rates, or 
measurements that are weighted averages of component 
probabilities, rates, or measurements from subgroups” 
may be affected.  Examples of YSP have been published 
in many fields including literature related to education, 
business and economics (Cohen, p. 34), cognitive 
psychology (Howe, Rabinowitz, & Grant, 1993), sports 
(Wardrop, 1995), and medical school admissions 
(Wainer & Brown, 2004).  The following are examples 
from the fields of education, population sciences, and 
public safety:  

Educational Testing and Measurement: SAT 

Between 1981 and 2002, the national average for the 
verbal Scholastic Aptitude Test (SAT) score appeared to 
remain relatively stable at 504 points (Bracey, 2004, p. 
32).  However, during that same time period, the average 
verbal scores for all racial and ethnic subgroups 
increased by between eight and twenty-seven points.  
Bracey attributed this example of YSP to the changing 
demographics of SAT test-takers.  Over this time period, 
the number of white students taking the SAT fell while 
the number of minority students rose.  Performance 
improved across all racial and ethnic groups, but 
minority (excluding Asian Americans) students’ average 
verbal scores remained below the national average.  
Higher numbers of increasing but below average scores 
resulted in a national average that not only failed to 
reflect subgroups’ improved verbal scores; they failed to 
reflect any change at all (pp. 32-33). 

Higher Education Admissions 

University of California, Berkeley graduate school 
admissions data from the 1970’s is one of the more 
well-known examples of YSP (Spellman, Price, & Logan, 

2001).  The university wanted to insure that female 
applicants were being treated fairly.  Despite a 
concentrated effort to reduce potential for 
discrimination in graduate school admissions, 
university-wide data indicated that a higher number of 
females than males were being denied admission.  One 
might have concluded that Berkeley was highly 
discriminatory against female graduate school 
applicants.  Examining data by university department 
directly contradicted this conclusion.  Further 
examination revealed females were applying in much 
greater numbers to departments with fewer available 
slots.  When the data was aggregated, the entire 
university artificially appeared to have higher rejection 
rates for female applicants.  

Demography 

 Demography is the study of human populations 
using characteristics such as birth and death rates.  
Cohen (1986) described a real-life example of Simpson’s 
paradox involving a comparison of death rates in Costa 
Rica and Sweden.  Historically, the Swedish have a 
reputation for being among the longest living people on 
the planet.  In his example, the Costa Rican age-specific 
female death rates in the year 1960 were higher than the 
corresponding Swedish rates for the previous five-year 
period (p. 33).  By contrast, its female crude death rate 
was substantially lower than the Swedish rate.  This trend 
was also observed in Costa Rican males compared with 
Swedish males.   

 Intuitive assessment of this example would lead 
many to question, “How could a country with higher 
age-specific death rates have a lower crude death rate?”  
The answer is YSP. In 1960, Costa Rica had a much 
younger population than Sweden.  There were more 
young Costa Ricans inhabiting age groups where 
age-specific death rates would be lower than that of the 
Swedish.  At the same time, more Swedish were of the 
age where age-specific death rates would be higher.  
Comparison of each country’s aggregated data produced 
the paradoxical conclusion that Costa Ricans lived 
longer (or died off less often) than the Swedish.  

Public Safety  

 Engineers and risk analysts often use statistical 
models to aid in decision-making related to road safety.  
Davis (2004, pp. 1124) demonstrated YSP in research on 
the relationship between changes in neighborhood 
speed limits and occurrence of vehicle-pedestrian 
accidents.  He accomplished this by simulating situations 
in which pedestrians ran into the street and stopped in 
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the path of oncoming traffic.  Davis calculated the 
probability that pedestrians might be hit (collision 
probability) while considering the average traffic speed 
and volume at various residential sites (p. 1124).  The 
model was then used to predict how changes in speed 
limit might affect pedestrian safety.  Study results 
indicated reducing speed limits from 30mph to 25mph 
would increase frequency of collisions.   

 In this example, YSP occurs as a result of 
aggregating multi-site data and failure to consider site as a 
moderating variable (pp. 1124-1125).  Hypothetical 
residential site number one had a much lower frequency 
of vehicle-pedestrian accidents than site number two, 
which were attributed to differences in traffic speed and 
volume.  Each site exhibited a decline in frequency of 
collisions when speed limits were lowered in the 
statistical model, yet the aggregated multi-site data did 
not reflect this trend.  In this case, results indicating that 
reducing speed limits from 30mph to 25mph would 
increase frequency of collisions were misleading and 
inaccurate.  Although the study did not involve actual 
data from vehicle-pedestrian accidents, it did provide a 
solid example for the reader and researchers in the field 
of road safety research. 

 

VISUAL REPRESENTATION OF YSP: A 
HEURISTIC DATASET 

Issues of school violence and safety have been 
widely studied in the Post-Columbine era.  Bullying, 
drug use, and firearms constitute major threats to 
student well-being and ability to succeed academically.  
For illustrative purposes, the authors adapted charts 
from Kocik (2001) and Paik (1985), and created a 
plausible YSP narrative pertaining to scores on a 
standardized achievement test and ratings of perceived 
school safety (i.e., responses ranging from 0% = “not at 
all safe” to 100% “completely safe”) representing 
students from four high schools.  Figure 1 contains a 
plot of the correlations (i.e., correlogram) between 
student academic achievement scores and their 
perceived safety.   

When results were viewed for students at the four 
schools independently, each had a positive correlation 
between achievement and safety perceptions (i.e., higher 
achievement scores are related to higher perceived 
safety).  Yet, when looking at the overall correlation 
between these scores in aggregate (i.e., for all students at 
all schools), a negative correlation is seen.  
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Figure 1. Scatterplot of  Student Academic Achievement & 
Perceived Safety at School 

Figure 2 uses the same heuristic dataset, but 
illustrates YSP originating from uneven subgroup sizes 
based on the distribution of student scores by school 
type (i.e., private schools are compared to public 
schools).   
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Figure 2. Student Academic Achievement & Perceived Safety 
at School: Comparison by School Type 

Private schools are represented by the shaded 
circles and contain scores of students enrolled in Schools 
1 and 2.  Public schools are represented by non-shaded 
circles and contain scores of students enrolled in Schools 
3 and 4.  Circle sizes are indicative to the number of 
students within each subgroup (i.e., the larger the circle, 
the more students represented), and the black dot in the 
center of each circle represents the mean score for that 
subgroup.  The broken line connecting circle centroids 
are show the correlation between scores based on school 
type.  The solid line shows the overall correlation for all 
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students.  As seen when the data is examined, a larger 
overall number of private school students scored higher 
on the achievement test and a larger number of public 
students reported higher levels of perceived safety 
ratings.  The relationships between private school 
subgroups and between public school subgroups are 
positive; however, when scores are considered from 
both school types the overall relationship (solid black 
line) between achievement and perceived safety scores 
between subgroups is negative.  

 

MULTI-LEVEL MODELING 
Researchers may assume that what is “true in 

general is true for all individuals in a population” 
(Grimm & Yarnold, 2000, p. 342).  This is not always the 
case.  Most statistical methods have assumptions 
associated with characteristics of variables used in data 
analyses (e.g., shape, dispersion, level of measurement).  
Failure to consider the inherent assumptions in these 
methods may cause researchers to select inappropriate 
statistical tests, particularly with datasets containing 
higher order interactions (See Table 3).  Violations of 
statistical test assumptions often occur when researchers 
attempt to use conventional statistical methods to explore 
hierarchical data (Roberts, 2004, p. 31; wa-Kivilu, pp. 
249-250).    

Hierarchical or nested data structure is a by-product 
of the human condition.  An individual’s interactions 
with others and his or her environment occur within 
hierarchical structures (i.e., successively larger clusters 
such as families, schools, and communities; wa-Kivilu, 
2003, p. 249).  Each of these contexts has an effect on 
the individual.  According to Roberts (2004), “neglecting 
the fact that individuals…may be nested inside other 
larger clusters will often lead researchers to erroneous 
conclusions about their data” (p. 30).  Thus, outcomes 
are examined across all levels of nested data.  Violating 
test assumptions by using them with hierarchical data 
can cause invalid results “resulting in a Type I error or 
Type II error, or over- or under-estimation of 
significance or effect size(s)” (wa-Kivilu, 2003, p. 250).   

Hierarchical data is particularly problematic for 
researchers.  wa-Kivilu (2003) states that individuals 
within hierarchies are more homogenous “than people 
randomly sampled from the entire population” (p. 250).  
Homogeneity may increase over time with increased 
exposure to other individuals within the hierarchy 
(wa-Kivilu, p. 250).  These individuals will have a higher 
degree of intra-class correlation (i.e., ICC or “amount of 

variance explained by the grouping structure”) than 
individuals from another group (Roberts, 2004, p. 32; 
wa-Kivilu, p. 250).  When ICC exists within a dataset, 
“the assumption of independent observations has been 
violated” (Roberts, p. 32; wa-Kivilu, p. 250).  
Conventional statistical tests that rely on this assumption 
cannot be used for most hierarchical data analyses 
(Roberts, p. 32; wa-Kivilu, p. 250).   

Hierarchical Linear Modeling 

After considering the historical and theoretical 
origins of YSP, one might inquire “How can knowledge 
of multi-level modeling techniques help researchers to 
resolve YSP?”  Multi-level analyses allow researchers to 
track how individual members of a group change over 
time, as well as how this change relates to other variables 
(Grimm & Yarnold, 2000, p. 343).  They are robust to 
violations of “assumptions of independence, linearity, 
reliability of measurement and normality” (wa-Kivilu, 
2003, p. 250).  These assumptions combined with the 
implied hierarchical levels of data are vital to efficient 
and effective statistical analyses (Grimm & Yarnold, p. 
343; Roberts, pp. 30-31; wa-Kivilu, p. 250).  

Researchers and statisticians have created an array 
of programs appropriate for analyzing hierarchical 
datasets over the past two decades (O’Connell & 
McCoach, 2004; Roberts, 2004.  Multi-level modeling 
may be performed using general statistical analysis 
programs such as SAS and SPSS, or specialized 
programs such as Hierarchical Linear Modeling (HLM), 
MLwiN, and Mplus.  For the purposes of this paper, we 
will focus on HLM as we have had basic exposure to this 
software package.   

 The HLM program allows researchers to build an 
initial hierarchical model (the null model) and to test it 
against hypothesized regression models (Roberts, 2004).  
The null model must contain at least two levels (e.g., 
students within schools); level-1 refers to the lowest unit 
within the model.  In addition to information on nesting, 
levels provide information concerning fixed and random 
coefficients, variance, and covariates within the 
regression model.  A basic two-level HLM model 
contains at least one dependent/outcome variable 
derived from individual scores or measures (level-1) and 
independent/predictor (parameter) variables, those 
related to membership within a group, in Level-2.  Error 
terms are also added to the model to address variance 
due to nesting within the dataset.   

The HLM 2-level model building process generally 
involves creating a null or benchmark model (Roberts, 
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2004).  This null model contains fixed estimates for the 
intercept and random error variance estimates for the 
individual (level-1) and group (level-2), but no level-2 
predictor variables.  HLM is similar to an ANOVA in 
that the null model tests groups’ deviations from the 
overall grand mean of the dependent variable (i.e., between 
group differences in the dependent variable) and uses 
the initial parameter estimates as a “yardstick” for 
successive models.  However, HLM parameter estimates 
will differ somewhat from ANOVA because they are 
created using Empirical Bayes estimation, resulting in 
shrinkage of outliers towards the mean.   The next step 
in model building involves creating a random intercept 
or random coefficient model (Roberts, 2004).  The 
model is run by adding level-2 predictor variables one at 
a time.  Each new model also contains estimates for new 
slopes, intercepts, and related variances; outputs are 
interpreted to determine the fixed or random effect for 
each new parameter and the unique variance it 
contributes to the model (i.e., variation in individual 
scores based on a facet of group membership). A 
Chi-Square statistic is generated by testing the new 
model against the null and determining whether adding 
the new parameter generates significant variance in the 
slopes and intercepts among groups.  Model fit statistics 
consider “parsimony” within the model and can be used 
in conjunction with the Chi-Square statistic to determine 
whether the “overall model fit” increases or decreases 
with the addition of a specific parameter. If the 
parameter fails to explain a significant amount of 
variance within the dependent variable, it may be 
removed from the model.  The process continues until 
the full model is constructed and deemed to have a 
“good fit.” 

On the surface, HLM is similar to simple linear 
regression (one-level) in that it uses regression equations 
to model parameters.  However, HLM differs from 
simple regression models in that it: 1) incorporates an 
error term for each model level rather than one (assumed 
random) error term for the entire regression equation 
and 2) involves a step-wise model building process 
rather than simultaneously considering all parameters.  
Thus, HLM helps explain variance in individual scores 
due to group membership, offers opportunities to test 
within and between-level interactions and main effects, 
and honors data structure and statistical test 
assumptions.  It has additional utility in that the program 
can also be used to perform other General Linear 
Model-based analyses including ANCOVA, regression, 
and bootstrapping (Roberts, 2004). 

The 2003 National Assessment of Educational 
Progress (NAEP) test provides an illustrative example of 
HLM application relevant to YSP (Braun, Jenkins, & 
Grigg, 2006).  In this pilot study, 4th grade charter and 
non-charter public school students were compared in 
terms of NAEP performance using HLM 
modeling.  Researchers determined that charter school 
students scored significantly lower than their 
non-charter school counterparts, even after adjusting for 
student-level characteristics in the models (i.e., charter 
students averaged 4.7 points lower on the 4th grade 
NAEP mathematics test and 4.2 points on the reading 
test).  The use of HLM in this example aided researchers 
to account for potential confounding due to 
sampling  (e.g., lower numbers of charter schools 
sampled versus non-charter public schools, uneven 
distribution of charter schools across states), 
student-level characteristics (e.g., potential differences 
between public school students and those enrolled in 
charter schools affecting academic performance such as 
parental support), and school-level characteristics (e.g., 
schools located in states with lower mean achievement 
scores versus those in higher scoring states). Thus, their 
final HLM models were more reflective of actual 
academic achievement differences in 4th grade charter 
and non-charter students than analyses that aggregated 
data and failed to account for data structure, potential 
confounders, and unique error terms.  

 

CONCLUSIONS 
The relative ease with which unaccounted for 

moderators, hierarchical data, and data aggregation 
introduce YSP-type effects in data analyses is an 
important research issue.  Spurious and confounding 
variables (i.e., moderators) have potential to distort 
statistical findings (Baker & Kramer, 2002, p. 2; 
Kunisaki, 2005, p. 1674).  For this reason it is imperative 
for researchers to select research study plans that honor 
statistical assumptions and are capable of uncovering 
moderators that may mask or alter the relationship 
between predictor and outcome variables (Clark et al., 
2005, p.1463; Sistrom & Garvan, 2004, p. 18).  Several 
researchers suggest altering study designs to include 
randomized multi-arm trials to isolate the effects of 
unobserved variables (Baker & Kramer, 2002, p. 2; 
Sistrom & Garvan, 2004, p. 18).  Researchers also 
recommend using large cross-sectional studies with 
stratified samples as a means of preserving data’s 
hierarchical structure (Kraemer et al., 2006, p. 606).   
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Additionally, researchers should facilitate on-going 
collaboration with a statistician whenever feasible.  
Failing to involve statisticians in the research design and 
planning stages represents an often “missed 
opportunity.” Statisticians are trained in appropriate 
application of statistical tests and techniques that would 
limit the chance of improperly analyzing data (e.g., using 
techniques that ignore nested data) and using techniques 
such as data aggregation that would lead to unnoticed 
YSP-type effects.  Beyond data analysis, incorporating 
statisticians into research teams insures that data will be 
interpreted and disseminated in a manner that is both 
accurate and effective.   

Until researchers are able to consistently detect the 
counterintuitive and contradictory statistical findings 
resulting from YSP, these effects will continue to lurk 
unnoticed within datasets.  When YSP is undetected in 
datasets, reported study results and interpretations of 
study findings may be erroneous and have potential to 
mislead readers.  Careful study design and thorough 
analysis may prevent researchers from becoming victim 
to this paradox.  Researchers must cautiously consider 
the big picture while remaining mindful of its parts. 
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