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The first part of this paper describes the use of the robust zR statistic to link test forms using the Rasch 
(or one-parameter logistic) model. The procedure is then extended to the two-parameter and 
three-parameter logistic  and two-parameter partial credit (2PPC) models.  A real set of data was used 
to illustrate the extension. The linking results illustrate the efficacy of the robust zR vis-à-vis some of 
the most commonly used processes such as the Stocking and Lord (1983) linking process. 

 
Educational and psychological assessments often require 
the use of different forms of the same test. These forms 
usually have a set of common items that are used to link 
all resulting scores to a common scale. Item response 
theory (IRT) software such as the Rasch WINSTEPS 
(Linacre, 2006) and PARSCALE (Muraki & Bock, 1997) 
have been used for linking purposes.  Although there are 
many ways to accomplish this task, most statewide 
assessment programs rely on the “anchor test” design 
for yearly linking. In many situations, this design calls for 
a separate calibration of each form and then a process to 
link all these forms together though a set of “stable” 
common items. The selection of the common items (aka 
linkers) is usually based on several criteria. During test 
form construction, potential linkers are chosen to reflect 
overall test content and the range of item difficulty level. 
Linkers are typically chosen to be not too easy or too 
difficult.  Once the tests are administered, final linkers 
are oftentimes restricted to common items which are 
reasonably stable across the forms to be linked.  It may 
be noted that when a common test form is administered 
to two different groups of examinees (i.e. all items are 
treated as linking items), then stability in item parameters 
is prerequisite for the invariance of the construct under 
measurement between these two groups.  

 For technical work based on the Rasch model, the 
robust zR statistic (Huynh, 2000; Huynh & Rawls, 2009) 

has been used widely in large-scale assessment programs 
(including South Carolina, Arkansas, Maryland, 
Minnesota, and New Mexico) in detecting items that are 
unstable (outliers) in yearly linking/equating. The 
statistic has also been used in studying stability of item 
parameters across gender and ethnicity groups (Kim & 
Huynh, 2009).  The purpose of this study is to extend the 
use of the robust zR statistic to the three- parameter 
logistic (3PL) and two-parameter partial credit (2PPC) 
models.  A real set of data will be used to illustrate the 
extension. The linking results also will be used to 
illustrate the efficacy of the robust zR vis-à-vis some of 
the most commonly used processes such as the Stocking 
and Lord (1983) linking process. 

Use of Robust z Statistic in Detecting Outliers 

The robust z statistic originates from robust/resistant 
statistical procedures. (see Hogg, 1979; Huber, 1964; and 
Huynh, 1982). Huynh took note that most procedures 
for detecting outliers are based on a “robustification” of 
the traditional z statistic. Let D be a variable. 
Traditionally the z statistic is defined as z = (D – 
mean)/standard deviation. However, both the mean and 
standard deviation (SD) are influenced by outlying 
observations. So in order to pinpoint precisely at the 
outliers, it may be more efficient to look for a z-like 
statistic that is not affected by the outliers. Let Md and 
IQR be the median and inter-quartile range. For the 
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normal distribution, the IQR is equal to 1.35 × SD or SD 
= 0.74 × IQR or 0.74(IQR). With the quantity 
0.74(IQR) emulating the standard deviation, a robust 
version of the traditional z statistic can be taken as the 
ratio  zR = (D – Md)/[0.74(IQR)]. When the D values 
come from a normal distribution, the robust zR statistic 
follows (asymptotically) a normal distribution with zero 
mean and unit standard deviation. A level of significance 
(two-tailed alpha) may be selected and a positive critical 
value z* may be set. Items with a robust zR  smaller than 
z* in absolute value will be declared “stable” and other 
items with a robust zR greater than or equal to z* in 
absolute value will be declared as “unstable.”  It may be 
noted that some traditional definitions of “outliers” can 
be framed within the robust zR context. For example, 
Agresti and Finlay (2009; p. 54) suggest that an 
observation is an outlier if it falls more than 1.5(IQR) 
above the upper quartile or more than 1.5(IQR) below 
the lower quartile. Assuming that the median is 
equidistant from the upper and lower quartiles, it can be 
verified that the above definition corresponds to the 
critical value z* = 2.7.      

Use of Robust zR in Detecting Unstable Items 
in the Rasch Model 

Now let R1 and R2 be the Rasch item difficulties 
obtained from two separate calibrations. There are two 
sets of Rasch item difficulties for the linkers. Let D = R1 
– R2 and zR be the robust statistic associated with each D 
discrepancy.  The South Carolina (SC) linking protocols 
(2001) calls for two quality indices for Rasch linking: 
ratio (RSD) of the standard deviations of R1 and R2  and 
the correlation (CORR) between R1 and R2. Under 
perfect conditions for linking, the two sets of Rasch 
difficulties differ by a constant; thus the optimal values 
for CORR and RSD are exactly 1. However, due to 
sampling fluctuations in the calibration process, these 
values tend to depart from the optimal values. The SC 
protocol for “acceptable linking results” calls for two 
criteria: (a) the correlation CORR to be at least .95 and 
(b) the RSD to be within .9 and 1.1. The next paragraph 
summarizes the justifications provided by Huynh (2009) 
for these benchmark values. 

According to Huynh (2009), the benchmark value 
for CORR is a result of a study by Yen (1987) who found 
that the correlation between the true value of the item 
location parameter and its estimate was better than 0.97 
in many situations. Within the context of classical test 
theory, the correlation between true and estimated 
values can be treated as a validity coefficient (rval)   
whereas the correlation between two estimated values 

can be treated as a reliability coefficient (rrel). Since 

val relr r< , we have 2
rel valrr > . Since rval is at least 0.97, 

the other coefficient rrel is at least (0.97)2 or about 0.95. 
Also according to Huynh, the two bounds for the ratio 
RSD are the results of the significance test that the 
population value of this ratio is one. When the standard 
deviations of R1 and R2 are equal (i.e. when RSD = 1), 
Pearson correlation between the quantities (R1 + R2) and 
(R1 - R2) is exactly zero. The traditional t test for the null 
hypothesis (Ho) of zero correlation can be used to check 
that the hypothesis that RSD is equal to 1. Assuming a 
correlation of 0.95 between R1 and R2 and at the 5% 
level of significance, the null hypothesis that true value 
of RSD is 1 is acceptable if the observed value of RSD is 
between 0.9 and 1.1.  

When both criteria for “acceptable linking results” 
are satisfied, then all items are treated as “stable” and all 
potential linkers are used in the linking process. 
However, if one of the criteria does not hold, then some 
very unstable items will be deleted, starting with items 
with largest robust zR statistic. (The zR statistics are 
computed only once.) This process is stopped when 
either the criteria are met or 20% of potential linkers 
have already been deleted. Huynh noted that, in 
assessment situations like the South Carolina Basic Skills 
Assessment Program (BSAP), each test has several 
strands (subtests), each with about five items, and it 
would not be desirable to delete more than one item 
(20%) for each subtest.    

Extension of Methodology Based on Robust z to 
3PL Models 

Let 1a  and 1b  be the slope and location of a given item 
in the 3PL model for one group of students (first 
calibration). Let 2a  and 2b  be the same parameters for 
another group of students (second calibration). Linking 
the second set of item parameters to the first set requires 
determination of two constants A and B that set the 
following two transformations: 

 2 1, andAaa =  

 1
2

( ) .b
A

b B−
=  

Note that these transformation equations do not 
involve the pseudo-chance (“c”) item parameter. When 
the two sets of calibrated item parameters are perfectly 
linked, the two constants A and B are identical for all 
linkers. However, due to sampling variations, the 
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equations usually do not hold for all these items. So a 
statistical process has to be used to find to constants A 
and B that fit (in some statistical sense) the calibrated 
parameters of all items. Once the fitting constants A and 
B are found, then can be used to find the estimated 
parameters of items what are not part of the linking 
items. 

There are a variety of methods to fit the linking 
constants A and B to the calibrated item data of the 
linkers. Among them are the Mean-Mean, Mean-Sigma, 
Haebra, and Stocking-Lord methods (Haebara, 1980; 
Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 
1983). A new method that is based on robust zR statistics 
for both the “a” (slope) and “b” (location) parameters is 
described next.  

The general process of the robust zR method is 
described as follows. Equation 1 can be written as: 

2 1log( ) log( ) log( )A a a−= . By writing R1 = log(a1) and  
R2 = log(a2), it can be seen that the robust zR  procedure 
described for the Rasch model can be extended to 
identify items that are unstable in the “log (a)” (slope) 
parameter and needs to be deleted in the linking process. 
The value of log(A) can then be taken as the mean of the 
discrepancy log(a2) - log(a1) of all surviving linkers. The 
value of A will then be computed via the formula A = 
exp[log(A)]. Applying this A value to Equation 2 for all 
linkers that have survived so far, Equation 2 now 
becomes 2 1B bAb= − . By writing  R1 = b1 and  R2 = 
Ab2, it can be seen again that the robust zR  procedure 
described for the Rasch model can be extended to 
identify items that are unstable in the “b” (location) 
parameter and needs to be deleted in the linking process. 
Those that are stable in location may then be used to find 
the linking constant B. This constant is the mean of the 
discrepancy (Ab2 - b1) taking over all surviving linking 
items. 

As noted at the beginning of this section of the 
paper, the linking constants A and B are defined 
theoretically using the slope (“a”) and location (“b”) item 
parameters. The robust zR does not rely on the 
pseudo-chance item parameter (“c”), and conduct the 
data analysis sequentially, first with the slope (“a”) and 
then follow this up with the location (“b”) parameter. It 
may be noted that the “c” parameters are hard to 
estimate, especially when the sample size is small. In fact, 
in a number of situations, the “c” parameter has to be 
fixed at a certain value or certain range to allow to 
calibration process to converge. So it seems to make 
sense to set aside the “c” parameter in fitting the linking 

constants A and B to the item data. It may also be noted 
that there are more sampling fluctuations for the slope 
(“a”) than for the location (“b”) estimates. This seems to 
justify the use of the robust zR for the slope parameter 
first. 

Extension to Mixed-Format 2PPC Items 

Although this expression was developed for 3PL binary 
(multiple-choice) items, it can also be applied to partial 
credit items that follow a two-parameter partial credit 
(2PPC) model (Muraki, 1992, 1993). It may be noted that 
a 2PPC item with k score categories can be explicitly 
defined as (k-1) conditional 2PL binary items. The j-th 
conditional binary item is the “item” that has only (j-1) 
and j as scores. (see Masters, 1982, for a formulation of 
conditional items in the Rasch model.) All conditional 
binary items have identical slope. The location parameter 
of each conditional item is often called “threshold” 
parameters in IRT software such as PARSCALE 
(Muraki & Bock, 1997).  

As for a 3PL model, for a set of 2PPC linking items, 
the robust zR procedure starts with detecting items that 
are unstable along the slope dimension and need to be 
set aside in the linking process. Then the robust zR 
procedure is applied to detect any threshold that is 
unstable along the location dimension and needs to be 
deleted. Theoretically only thresholds that are unstable 
need to be deleted from the calibration process. 
However, operational testing programs such as the 
PACT of South Carolina delete an entire item even if it 
has only one unstable threshold. It seems justified in the 
sense that one threshold is only one part of the item; 
therefore if it is “unstable” then the entire item should 
be considered as “unstable.” 

For the illustrative purposes of this paper, the 
software PARSCALE was used to calibrate the test for 
each group, setting the prior distribution to be the unit 
normal distribution for each group. Mean/mean, 
mean/sigma, Haebara, and Stocking-Lord linking 
constants, A and B, were obtained via the software 
STUIRT (Kim & Kolen, 2004) using item parameter 
estimates from PARSCALE. Equating constants 
obtained from the robust zR method were compared to 
those obtained by the mean/mean, mean/sigma, 
Haebara, and Stocking-Lord procedures. 

An Illustration 

The performance of the robust z procedure will be 
illustrated using a set of archival data from a large-scale 
state assessment program.  The data came from the 
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administration of a math test to 5th grade students in 
2006. The math test has 40 multiple-choice items and 
two constructed response items (with four score 
categories 0, 1, 2, and 3). Group 1 (N = 4045) is 
comprised of one-third of all male students who had free 
or reduced priced lunch.  Group 2 is comprised of 
one-third of all female students who had to pay their 
lunches (N = 3692). As can be seen from Table 1, these 
two groups differ considerably in terms of ability. 

Table 1: Descriptive Statistics  

Student 
Group 

N Mean SD Alpha 

Group 1 4045 21.09 8.22 .86 

Group 2 3692 28.67 8.30 .87 

 

PARSCALE was used to estimate the item 
parameters for each group separately. Each calibration 
set the mean at zero and the standard deviation at one. 
The items parameters (a1, a2; b1, b2; and c1, c2) for Group1 
and Group 2 are reported in the Appendix A.  Items 
with ID from 1 to 40 are for the 40 multiple-choice 
items. Data listed for the codes 41A, 41B, and 41C are 
the common slope and threshold parameter for the three 
non-zero scores 1, 2, and 3 of the first CR items. 
Similarly, data listed for the codes 42A, 42B, and 42C are 
the common slope and threshold parameter for the three 
non-zero scores 1, 2, and 3 of the second CR items. 

The first set of robust z statistics were first 
computed for the difference 1 2log( ) log( )diff aA a= − . 
Using the cut score 1.96 for the robust zR, two items (ID 
= 26 with zR = 4.261; and 38 with zR = -2.88) were 
found to be “unstable” along the slope dimension. 
Based on the remaining 44 data items, the linking 
constant (on the log scale) is -0.19609, which is 
transformed back to A = 0.822 on the original slope 
scale. 

The second set of robust zR statistics was computed 
for the difference 2 1diff AbB b= −  using the 44 “stable” 
items. Using also the cut score 1.96 for the robust zR, six 
items were found to be “unstable” along the location 
dimension. They are listed as follows: ID = 17 (zR = 
2.624); ID = 21 (zR = -2.37); ID = 28 (zR = -2.58); ID = 
33 (zR = 2.399); ID = 35 (zR = 3.924); and ID = 44 (zR = 
1.987). Based on the remaining “stable” items, the 
linking constant was found to be B = 1.072.  

Appendix B lists a sample SAS program for the 
robust z analysis.  

For illustration purposes, the software STUIRT was 
also used to find the linking constants A and B for the 
same set of data. Table 2 reports the results of various 
linking methods. 

Table 2: Results of six linking processes 

Method A B 

Mean/Mean 0.823 1.165 

Mean/Sigma 0.770 1.130 

Haebara 0.802 1.036 

Stocking-Lord 0.823 1.078 

Robust z 0.822 1.072 

 

It is interesting to see that the robust zR results are 
almost identical to those obtained from the 
Stocking-Lord procedure, yet the robust zR method is 
computationally much simpler than the Stocking-Lord 
procedure. This finding applies only to this data set and 
should be considered as suggestive of an interesting 
possibility that needs further research. 

Educational Importance 

IRT models are widely used linking educational 
assessment. The robust zR statistic has proved useful in 
detecting unstable items in the Rasch model. The 
statistic is intuitively appealing and simple to use. This 
paper extends the robust zR to the 3PL binary items and 
2PPC partial credit items. An illustration based on real 
data indicates that the linking constants A and B 
obtained from the robust zR procedure are strikingly 
similar to those obtained from the well-known 
Stocking-Lord procedure. This observation applies only 
to this data set and should be considered as suggestive of 
an interesting possibility that needs further research. 
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APPENDIX A 

Item Calibration Data for Group 1 and Group 2 

 
ID         a1         a2         b1         b2         c1         c2 
  
 1      0.729      0.650      1.585      0.676      0.134      0.110 
 2      0.846      0.782      0.635     -0.525      0.304      0.316 
 3      0.909      0.816     -0.378     -1.749      0.267      0.161 
 4      0.818      0.787     -0.100     -1.092      0.176      0.149 
 5      0.742      0.611     -0.195     -1.619      0.215      0.145 
 6      0.890      0.888      0.749     -0.406      0.194      0.200 
 7      1.741      1.192      1.246     -0.132      0.267      0.243 
 8      0.907      0.589      1.016      0.006      0.159      0.059 
 9      1.487      1.211     -0.234     -1.352      0.095      0.081 
10      1.228      0.742      0.537     -0.872      0.197      0.075 
11      0.672      0.526      0.070     -1.242      0.089      0.028 
12      1.007      0.690      1.985      0.873      0.272      0.267 
13      1.016      0.996      1.101      0.239      0.229      0.242 
14      0.776      0.816     -0.742     -2.038      0.159      0.189 
15      0.921      0.781      0.463     -0.487      0.162      0.184 
16      0.550      0.507     -0.060     -1.372      0.100      0.121 
17      0.624      0.378      0.477     -1.492      0.259      0.000 
18      0.984      0.976      1.084      0.214      0.167      0.170 
19      0.506      0.473     -2.340     -4.537      0.000      0.000 
20      0.594      0.364      1.068      0.220      0.242      0.151 
21      0.687      0.585     -0.055     -0.686      0.323      0.383 
22      0.541      0.566     -1.045     -2.394      0.000      0.000 
23      0.691      0.511      1.859      0.747      0.196      0.195 
24      0.843      0.718      0.645     -0.467      0.189      0.177 
25      0.530      0.354     -0.689     -3.629      0.000      0.000 
26      0.462      1.080     -2.583     -5.000      0.000      0.000 
27      1.007      0.840      1.922      0.927      0.334      0.352 
28      0.825      0.865      0.709      0.305      0.538      0.647 
29      0.608      0.528      0.499     -0.839      0.125      0.116 
30      1.177      0.814      1.973      1.270      0.511      0.501 
31      0.900      0.555      0.104     -1.618      0.192      0.000 
32      0.861      0.701      0.809     -0.091      0.353      0.286 
33      0.843      0.530      0.640     -1.228      0.103      0.000 
34      1.404      1.220      0.247     -1.019      0.241      0.248 
35      0.446      0.344      0.820     -1.453      0.245      0.064 
36      1.014      0.966      1.837      1.090      0.118      0.150 
37      1.632      1.044      2.129      1.743      0.155      0.126 
38      0.831      0.358      1.012     -1.436      0.132      0.000 
39      1.560      1.192      1.774      1.024      0.215      0.187 
40      0.798      0.615      0.095     -1.358      0.148      0.007 
41A     0.561      0.486      0.784     -0.539      0           0   
41B     0.561      0.486     -0.113     -1.489      0           0 
41C     0.561      0.486      1.166     -0.052      0           0 
42A     0.745      0.737      3.687      2.599      0           0 
42B     0.745      0.737      2.506      1.250      0           0 
42C     0.745      0.737     -0.001     -1.209      0           0 
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APPENDIX B 

Sample SAS Program for Robust z Analysis for Slope and Location Parameters 

%let CV = 1.96; 
Data raw; 
Input   ID  $ a1  a2  b1  b2 ; 
a1log = log(a1); 
a2log = log(a2); 
Adiff = a2log-a1log; 
Kode  = 1; 
Cards; 
 
* Datelines are here; 
; 
 
proc univariate data=raw noprint ; var Adiff; output out=summary Median= MD Mean=Mean 
Qrange=IQR; 
data new1; set summary; kode=1; 
data new2; merge raw new1; by kode; 
data new3; set new2; zrobust=(Adiff-MD)/(0.74*IQR); 
code ="A-unstable"; 
if abs(zrobust) le &CV then code ="A-stable"; 
proc print data=new3 noobs; var ID a1 a2 a1log a2log Adiff zrobust code; 
format a1 a2 a1log a2log Adiff zrobust 5.3; 
run; 
 
data new4; set new3; if code="A-stable"; 
proc means data=new4 noprint; var Adiff; output out=LC1 mean=AlogCon; 
proc print data=LC1; var AlogCon; 
 
data LC2; set LC1; Kode=1; 
Acon=exp(AlogCon); 
proc print data=LC2; var Acon; 
 
data new5; merge new4 LC2; by Kode; 
data new6; set new5; Bdiff=b1-Acon*b2; 
keep ID Kode a1 a2 b1 b2 Bdiff; 
proc univariate data=new6 noprint ; var Bdiff; output out=summary2 Median= MD Mean=Mean 
Qrange=IQR; 
data summary3; set summary2; kode=1; 
 
data new8; merge new6 summary3; by kode; 
data new9; set new8; zrobust=(Bdiff-MD)/(0.74*IQR); 
code ="B-unstable"; 
if abs(zrobust) le &CV then code ="B-stable"; 
proc print data=new9 noobs; var ID b1 b2 Bdiff zrobust code; 
format b1 b2 Bdiff zrobust 5.3; 
data new10; set new9; if code="B-stable"; 
proc means data=new10; var Bdiff; 
run; 
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