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Many of us in the social sciences deal with data that do not conform to assumptions of normality 
and/or homoscedasticity/homogeneity of variance.  Some research has shown that parametric tests 
(e.g., multiple regression, ANOVA) can be robust to modest violations of these assumptions.  Yet the 
reality is that almost all analyses (even nonparametric tests) benefit from improved the normality of 
variables, particularly where substantial non-normality is present.  While many are familiar with select 
traditional transformations (e.g., square root, log, inverse) for improving normality, the Box-Cox 
transformation (Box & Cox, 1964) represents a family of power transformations that incorporates and 
extends the traditional options to help researchers easily find the optimal normalizing transformation 
for each variable.  As such, Box-Cox represents a potential best practice where normalizing data or 
equalizing variance is desired.  This paper briefly presents an overview of traditional normalizing 
transformations and how Box-Cox incorporates, extends, and improves on these traditional 
approaches to normalizing data.  Examples of applications are presented, and details of how to 
automate and use this technique in SPSS and SAS are included. 

 

Data transformations are commonly-used tools that can 
serve many functions in quantitative analysis of data, 
including improving normality of a distribution and 
equalizing variance to meet assumptions and improve 
effect sizes, thus constituting important aspects of data 
cleaning and preparing for your statistical analyses.  
There are as many potential types of data 
transformations as there are mathematical functions.  
Some of the more commonly-discussed traditional 
transformations include: adding constants, square root, 
converting to logarithmic (e.g., base 10, natural log) 
scales, inverting and reflecting, and applying 
trigonometric transformations such as sine wave 
transformations.   

While there are many reasons to utilize 
transformations, the focus of this paper is on 
transformations that improve normality of data, as both 
parametric and nonparametric tests tend to benefit from 
normally distributed data (e.g., Zimmerman, 1994, 1995, 
1998).  However, a cautionary note is in order.  While 
transformations are important tools, they should be 

utilized thoughtfully as they fundamentally alter the 
nature of the variable, making the interpretation of the 
results somewhat more complex (e.g., instead of 
predicting student achievement test scores, you might be 
predicting the natural log of student achievement test 
scores). Thus, some authors suggest reversing the 
transformation once the analyses are done for reporting 
of means, standard deviations, graphing, etc.  This 
decision ultimately depends on the nature of the 
hypotheses and analyses, and is best left to the discretion 
of the researcher. 

Unfortunately for those with data that do not 
conform to the standard normal distribution, most 
statistical texts provide only cursory overview of best 
practices in transformation.  Osborne (2002, 2008a) 
provides some detailed recommendations for utilizing 
traditional transformations (e.g., square root, log, 
inverse), such as anchoring the minimum value in a 
distribution at exactly 1.0, as the efficacy of some 
transformations are severely degraded as the minimum 
deviates above 1.0 (and having values in a distribution 
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less than 1.0 can cause mathematical problems as well).  
Examples provided in this paper will revisit previous 
recommendations. 

The focus of this paper is streamlining and 
improving data normalization that should be part of a 
routine data cleaning process.  For those researchers 
who routinely clean their data, Box-Cox (Box & Cox, 
1964; Sakia, 1992) provides a family of transformations 
that will optimally normalize a particular variable, 
eliminating the need to randomly try different 
transformations to determine the best option.  Box and 
Cox (1964) originally envisioned this transformation as a 
panacea for simultaneously correcting normality, 
linearity, and homoscedasticity.  While these 
transformations often improve all of these aspects of a 
distribution or analysis,  Sakia (1992) and others have 
noted it does not always accomplish these challenging 
goals.   

Why do we need data transformations? 
Many statistical procedures make two assumptions that 
are relevant to this topic:  (a) an assumption that the 
variables (or their error terms, more technically) are 
normally distributed, and (b) an assumption of 
homoscedasticity or homogeneity of variance, meaning 
that the variance of the variable remains constant over 
the observed range of some other variable.  In regression 
analyses this second assumption is that the variance 
around the regression line is constant across the entire 
observed range of data.  In ANOVA analyses, this 
assumption is that the variance in one cell is not 
significantly different from that of other cells.  Most 
statistical software packages provide ways to test both 
assumptions. 

Significant violation of either assumption can 
increase your chances of committing either a Type I or II 
error (depending on the nature of the analysis and 
violation of the assumption).  Yet few researchers test 
these assumptions, and fewer still report correcting for 
violation of these assumptions (Osborne, 2008b).  This 
is unfortunate, given that in most cases it is relatively 
simple to correct this problem through the application 
of data transformations.  Even when one is using 
analyses considered “robust” to violations of these 
assumptions or non-parametric tests (that do not 
explicitly assume normally distributed error terms), 
attending to these issues can improve the results of the 
analyses (e.g., Zimmerman, 1995). 

How does one tell when a variable is violating 
the assumption of normality? 

There are several ways to tell whether a variable deviates 
significantly from normal.  While researchers tend to 
report favoring "eyeballing the data," or visual 
inspection of either the variable or the error terms (Orr, 
Sackett, & DuBois, 1991), more sophisticated tools are 
available, including tools that statistically test whether a 
distribution deviates significantly from a specified 
distribution (e.g., the standard normal distribution).  
These tools range from simple examination of skew 
(ideally between -0.80 and 0.80; closer to 0.00 is better) 
and kurtosis (closer to 3.0 in most software packages, 
closer to 0.00 in SPSS) to examination of P-P plots 
(plotted percentages should remain close to the diagonal 
line to indicate normality) and inferential tests of 
normality, such as the Kolmorogov-Smirnov or 
Shapiro-Wilk's W test (a p > .05 indicates the distribution 
does not differ significantly from the standard normal 
distribution;  researchers wanting more information on 
the K-S test and other similar tests should consult the 
manual for their software (as well as Goodman, 1954; 
Lilliefors, 1968; Rosenthal, 1968; Wilcox, 1997)).  

Traditional data transformations for 
improving normality 

Square root transformation.  Most readers will be 
familiar with this procedure-- when one applies a square 
root transformation, the square root of every value is 
taken (technically a special case of a power 
transformation where all values are raised to the one-half 
power).  However, as one cannot take the square root of 
a negative number, a constant must be added to move 
the minimum value of the distribution above 0, 
preferably to 1.00.  This recommendation from Osborne 
(2002) reflects the fact that numbers above 0.00 and 
below 1.0 behave differently than numbers 0.00, 1.00 
and those larger than 1.00.  The square root of 1.00 and 
0.00 remain 1.00 and 0.00, respectively, while numbers 
above 1.00 always become smaller, and numbers 
between 0.00 and 1.00 become larger (the square root of 
4 is 2, but the square root of 0.40 is 0.63).  Thus, if you 
apply a square root transformation to a continuous 
variable that contains values between 0 and 1 as well as 
above 1, you are treating some numbers differently than 
others, which may not be desirable.  Square root 
transformations are traditionally thought of as good for 
normalizing Poisson distributions (most common with 
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data that are counts of occurrences, such as number of 
times a student was suspended in a given year or the 
famous example of the number of soldiers in the 
Prussian Cavalry killed by horse kicks each year 
(Bortkiewicz, 1898) presented below) and equalizing 
variance. 

Log transformation(s).  Logarithmic transformations 
are actually a class of transformations, rather than a 
single transformation, and in many fields of science 
log-normal variables (i.e., normally distributed after log 
transformation) are relatively common.  Log-normal 
variables seem to be more common when outcomes are 
influenced by many independent factors (e.g., biological 
outcomes), also common in the social sciences.  

In brief, a logarithm is the power (exponent) a base 
number must be raised to in order to get the original 
number.  Any given number can be expressed as yx in an 
infinite number of ways.  For example, if we were talking 
about base 10, 1 is 100, 100 is 102, 16 is 101.2, and so on.  
Thus, log10(100)=2 and log10(16)=1.2.  Another 
common option is the Natural Logarithm, where the 
constant e (2.7182818…) is the base.  In this case the 
natural log of 100 is 4.605.  As this example illustrates, a 
base in a logarithm can be almost any number, thus 
presenting infinite options for transformation. 
Traditionally, authors such as Cleveland (1984) have 
argued that a range of bases should be examined when 
attempting log transformations  (see Osborne (2002) for 
a brief overview on how different bases can produce 
different transformation results).  The argument that a 
variety of transformations should be considered is 
compatible with the assertion that Box-Cox can 
constitute a best practice in data transformation. 

Mathematically, the logarithm of number less than 0 
is undefined, and similar to square root transformations, 
numbers between 0 and 1 are treated differently than 
those above 1.0.  Thus a distribution to be transformed 
via this method should be anchored at 1.00 (the 
recommendation in Osborne, 2002) or higher.   

Inverse transformation.  To take the inverse of a 
number (x) is to compute 1/x.  What this does is 
essentially make very small numbers (e.g., 0.00001)  very 
large, and very large numbers very small, thus reversing 
the order of your scores (this is also technically a class of 
transformations, as inverse square root and inverse of 
other powers are all discussed in the literature).  
Therefore one must be careful to reflect, or reverse the 

distribution prior to (or after) applying an inverse 
transformation.  To reflect, one multiplies a variable by 
-1, and then adds a constant to the distribution to bring 
the minimum value back above 1.00 (again, as numbers 
between 0.00 and 1.00 have different effects from this 
transformation than those at 1.00 and above, the 
recommendation is to anchor at 1.00).  

Arcsine transformation.  This transformation has 
traditionally been used for proportions, (which range 
from 0.00 to 1.00), and involves of taking the arcsine of 
the square root of a number, with the resulting 
transformed data reported in radians.  Because of the 
mathematical properties of this transformation, the 
variable must be transformed to the range −1.00 to 1.00.  
While a perfectly valid transformation, other modern 
techniques may limit the need for this transformation.  
For example, rather than aggregating original binary 
outcome data to a proportion, analysts can use logistic 
regression on the original data.   

Box- Cox transformation.  If you are mathematically 
inclined, you may notice that many potential 
transformations, including several discussed above, are 
all members of a class of transformations called power 
transformations.  Power transformations are merely 
transformations that raise numbers to an exponent 
(power).  For example, a square root transformation can 
be characterized as x1/2, inverse transformations can be 
characterized as x-1 and so forth.  Various authors talk 
about third and fourth roots being useful in various 
circumstances (e.g., x1/3, x1/4).  And as mentioned above, 
log transformations embody a class of power 
transformations.  Thus we are talking about a potential 
continuum of transformations that provide a range of 
opportunities for closely calibrating a transformation to 
the needs of the data.  Tukey (1957) is often credited 
with presenting the initial idea that transformations can 
be thought of as a class or family of similar mathematical 
functions.  This idea was modified by Box and Cox 
(1964) to take the form of the Box-Cox transformation: 

-1) / λ  where λ≠0; 

loge(yi) where λ = 0.1 

                                                 
1 Since Box and Cox (1964) other authors have introduced 
modifications of this transformations for special applications and 
circumstances (e.g., John & Draper, 1980), but for most 
researchers, the original Box-Cox suffices and is preferable due to 
computational simplicity. 
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While not implemented in all statistical packages2, 
there are ways to estimate lambda, the Box-Cox 
transformation coefficient using any statistical package 
or by hand to estimate the effects of a selected range of λ 
automatically.  This is discussed in detail in the appendix.  
Given that λ can take on an almost infinite number of 
values, we can theoretically calibrate a transformation to 
be maximally effective in moving a variable toward 
normality, regardless of whether it is negatively or 
positively skewed.3  Additionally, as mentioned above, 
this family of transformations incorporates many 
traditional transformations:   

λ = 1.00: no transformation needed; produces 
results identical to original data 

λ = 0.50: square root transformation 
λ = 0.33: cube root transformation 
λ = 0.25: fourth root transformation 
λ = 0.00: natural log transformation 
λ = -0.50: reciprocal square root transformation 
λ = -1.00: reciprocal (inverse) transformation 
  and so forth.   

 

Examples of application and efficacy of 
the Box-Cox transformation 

Bortkiewicz’s data on Prussian cavalrymen killed 
by horse-kicks.  This classic data set has long been used 
as an example of non-normal (poisson, or count) data.  
In this data set, Bortkiewicz (1898) gathered the number 
of cavalrymen in each Prussian army unit that had been 
killed each year from horse-kicks between 1875 and 
1894.  Each unit had relatively few (ranging from 0-4 per 
year), resulting in a skewed distribution (presented in 
Figure 1; skew = 1.24), as is often the case in count data.  
Using square root, loge, and log10, will improve normality 
in this variable (resulting in skew of 0.84, 0.55, and 0.55, 
respectively).  By utilizing Box-Cox with a variety of λ 
ranging from -2.00 to 1.00, we can determine that the 

                                                 
2 For example, SAS has a convenient and very well done 
implementation of Box-Cox within proc transreg that iteratively tests a 
variety of λ and identifies the  best options for you.  Many resources 
on the web, such as 
http://support.sas.com/rnd/app/da/new/802ce/stat/chap15/se
ct8.htm provide guidance on how to use Box-Cox within SAS. 
3 Most common transformations reduce positive skew but may 
exacerbate negative skew unless the variable is reflected prior to 
transformation.  Box –Cox eliminates the need for this. 

optimal transformation after being anchored at 1.0 
would be a Box-Cox transformation with λ = - 2.00 (see 
Figure 2) yielding a variable that is almost symmetrical 
(skew = 0.11; note that although transformations 
between λ = - 2.00 and λ = - 3.00 yield slightly better 
skew, it is not substantially better).   

Figure 1. Deaths from horse kicks, Prussian Army 1875-1894
 

Figure 2.Box-Cox transforms of horse-kicks with various λ 
 

University size and faculty salary in the USA.  Data 
from 1161 institutions in the USA were collected on the 
size of the institution (number of faculty) and average 
faculty salary by the AAUP (American Association of 
University Professors) in 2005. As Figure 3 shows, the 
variable number of faculty is highly skewed (skew = 2.58), 
and Figure 4 shows the results of Box-Cox 
transformation after being anchored at 1.0 over the 
range of λ from -2.00 to 1.00.  Because of the nature of 
these data (values ranging from 7 to over 2000 with a 
strong skew), this transformation attempt produced a 
wide range of outcomes across the thirty-two examples 
of Box-Cox transformation, from extremely bad 
outcomes (skew < -30.0 where λ < -1.20) to very positive 
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outcomes of λ = 0.00 (equivalent to a natural log 
transformation) achieved the best result. (skew = 0.14 at 
λ = 0.00) .  Figure 5 shows results of the same analysis 
when the distribution is anchored at the original mean 
(132.0) rather than 1.0.  In this case, there are no 
extremely poor outcomes for any of the 
transformations, and one (λ = - 1.20) achieves a skew of 
0.00.  However, it is not advisable to stray too far from 
1.0 as an anchor point.  As Osborne (2002) noted, as 
minimum values of distributions deviate from 1.00, 
power transformations tend to become less effective.  
To illustrate this, Figure 5 shows the same data anchored 
at a minimum of 500.  Even this relatively small change 
from anchoring at 132 to 500 eliminates the possibility 
of reducing the skew to near zero. 

 
Figure 3. Number of faculty at institutions in the USA  
 

Figure 4. Box-Cox transform of university size with various λ,  
anchored at 1.00 
 

Faculty salary (associate professors) was more 
normally distributed to begin with, with a skew of 0.36.  
A Box-Cox transformation with λ = 0.70 produced a 
skew of -0.03.   

To demonstrate the benefits of normalizing data via 
Box-Cox a simple correlation between number of faculty 
and associate professor salary (computed prior to any 
transformation) produced a correlation of r(1161) = 0.49, p 
< .0001.  This represents a coefficient of determination 
(% variance accounted for) of 0.24, which is substantial 
yet probably under-estimates the true population effect 
due to the substantial non-normality present.  Once both 
variables were optimally transformed, the simple 
correlation was calculated to be r(1161) = 0.66, p < .0001.  
This represents a coefficient of determination (% 
variance accounted for) of 0.44, or an 81.5% increase in 
the coefficient of determination over the original.   

 

Figure 5. Box-Cox transform of university size with various λ 
anchored at 132, 500 
 

Student test grades.  Positively skewed variables are 
easily dealt with via the above procedures.  Traditionally, 
a negatively skewed variable had to be reflected (reversed), 
anchored at 1.0, transformed via one of the traditional 
(square root, log, inverse) transformations, and reflected 
again.  While this reflect-and-transform procedure also 
works fine with Box-Cox, researchers can merely use a 
different range of λ to create a transformation that deals 
with negatively skewed data.  In this case I use data from 
a test in an undergraduate Educational Psychology class 
several years ago.  These 174 scores range from 48% to 
100%, with a mean of 87.3% and a skew of -1.75.  
Anchoring the distribution at 1.0 by subtracting 47 from 
all scores, and applying Box-Cox transformation from 
1.0 to 4.0, we get the results presented in Figure 6, 
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indicating a Box-Cox transformation with a λ = 2.70 
produces a skew of 0.02. 

Figure 6. Box-Cox transform of student grades, negatively skewed
 

SUMMARY AND CONCLUSION 
The goal of this paper was to introduce Box-Cox 

transformation procedures to researchers as a potential 
best practice in data cleaning.  Although many of us have 
been briefly exposed to data transformations, few 
researchers appear to use them or report data cleaning of 
any kind (Osborne, 2008b).  Box-Cox takes the idea of 
having a range of power transformations (rather than the 
classic square root, log, and inverse) available to improve 
the efficacy of normalizing and variance equalizing for 
both positively- and negatively-skewed variables.   

As the three examples presented above show, not 
only does Box-Cox easily normalize skewed data, but 
normalizing the data also can have a dramatic impact on 
effect sizes in analyses (in this case, improving the effect 
size of a simple correlation over 80%).   

Further, many modern statistical programs (e.g., 
SAS) incorporate powerful Box-Cox routines, and in 
others (e.g., SPSS) it is relatively simple to use a script 
(see appendix) to automatically examine a wide range of 
λ to quickly determine the optimal transformation.   

Data transformations can introduce complexity into 
substantive interpretation of the results (as they change 
the nature of the variable, and any λ less than 0.00 has the 
effect of reversing the order of the data, and thus care 
should be taken when interpreting results.).  Sakia (1992) 
briefly reviews the arguments revolving around this 
issue, as well as techniques for utilizing variables that 
have been power transformed in prediction or 
converting results back to the original metric of the 
variable.  For example, Taylor (1986) describes a method 

of approximating the results of an analysis following 
transformation, and others (see Sakia, 1992) have shown 
that this seems to be a relatively good solution in most 
cases.  Given the potential benefits of utilizing 
transformations (e.g., meeting assumptions of analyses, 
improving generalizability of the results, improving 
effect sizes) the drawbacks do not seem compelling in 
the age of modern computing.   
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APPENDIX 

Calculating Box-Cox λ by hand 

If you desire to estimate λ by hand, the general procedure is to: 

• divide the variable into at least 10 regions or parts, 
• calculate the mean and s.d. for each region or part, 
• Plot log(s.d.) vs. log(mean) for the set of regions, 
• Estimate the slope of the plot, and use the slope (1-b) as the initial estimate of λ 

As an example of this procedure, we revisit the second example, number of faculty at a university.  After determining 
the ten cut points that divides this variable into even parts, selecting each part and calculating the mean and standard 
deviation, and then taking the log10 of each mean and standard deviation, Figure 7 shows the plot of these data.  I 
estimated the slope for each segment of the line since there was a slight curve (segment slopes ranged from -1.61 for 
the first segment to 2.08 for the last) and averaged all, producing an average slope of 1.02.  Interestingly, the estimated 
λ from this exercise would be -0.02, very close to the empirically derived 0.00 used in the example above. 

 
Figure 7. Figuring λ by hand 

 
Estimating λ empirically in SPSS 

Using the syntax below, you can estimate the effects of Box-Cox using 32 different lambdas simultaneously, choosing 
the one that seems to work the best.  Note that the first COMPUTE anchors the variable (NUM_TOT) at 1.0, as the 
minimum value in this example was 7.  You need to edit this to move your variable to 1.0. 

 
****************************. 
*** faculty #, anchored 1.0 
****************************. 
 
COMPUTE var1=num_tot-6. 
execute. 
 
VECTOR lam(31) /xl(31). 
LOOP idx=1 TO 31. 
- COMPUTE lam(idx)=-2.1 + idx * .1.   
- DO IF lam(idx)=0. 
-   COMPUTE xl(idx)=LN(var1). 
- ELSE. 
-   COMPUTE xl(idx)=(var1**lam(idx) - 1)/lam(idx). 
- END IF. 
END LOOP. 
EXECUTE. 
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FREQUENCIES VARIABLES=var1 xl1 xl2 xl3 xl4 xl5 xl6 xl7 xl8 xl9 xl10 xl11 xl12 xl13 xl14 xl15 
xl16 xl17 xl18 xl19 xl20 xl21 xl22 xl23 xl24 xl25 xl26 xl27 xl28 xl29 xl30 xl31 
  /format=notable 
  /STATISTICS=MINIMUM MAXIMUM SKEWNESS  
  /HISTOGRAM 
  /ORDER=ANALYSIS. 
 
Note that this syntax tests λ from -2.0 to 1.0, a good initial range for positively skewed variables.  There is no reason to 
limit analyses to this range, however, so that depending on the needs of your analysis, you may need to change the 
range of lamda tested, or the interval of lambda.  To do this, you can either change the starting value on the above line: 
 
- COMPUTE lam(idx)=-2.1 + idx * .1. 
 
For example, changing -2.1 to 0.9 starts lambda at 1.0 for exploring variables with negative skew.  Changing  the 
number at the end (0.1) changes the interval SPSS examines—in this case it examines lambda in 0.1 intervals, but 
changing to 0.2 or 0.05 can help fine-tune an analysis.   


