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This article argues that the general practice of describing interrater reliability as a single, unified concept is
at best imprecise, and at worst potentially misleading. Rather than representing a single concept, different
statistical methods for computing interrater reliability can be more accurately classified into one of three
categories based upon the underlying goals of analysis. The three general categories introduced and
described in this paper are: 1) consensus estimates, 2) consistency estimates, and 3) measurement estimates.
The assumptions, interpretation, advantages, and disadvantages of estimates from each of these three
categories are discussed, along with several popular methods of computing interrater reliability coefficients
that fall under the umbrella of consensus, consistency, and measurement estimates. Researchers and
practitioners should be aware that different approaches to estimating interrater reliability carry with them
different implications for how ratings across multiple judges should be summarized, which may impact the
validity of subsequent study results.

Many educational and psychological studies require the use of independent judges, or raters, in order to quantify some
aspect of behavior. For example, judges may be used to score open-response items on a standardized test, to rate the
performance of expert athletes at a sporting event, or to empirically test the viability of a new scoring rubric. Judges are
most often used when behaviors of interest cannot be objectively scored in a simple right/wrong sense, but instead
require some rating of the degree to which observed behaviors represent particular levels of a construct of interest (e.g.,
athletic excellence, history competence). The task of judging behavior invites some degree of subjectivity in that the
rating given will depend upon the judge’s interpretation of the construct. One strategy for reducing subjectivity is to
develop scoring rubrics (Mertler, 2001; Moskal & Leydens, 2000; Tierney & Simon, 2004). The purpose of training
judges how to interpret a scoring rubric and consistently apply the levels of a rating scale associated with the rubric is to
impose some level of objectivity onto the rating scale.

Across all situations involving judges, it is important to estimate the degree of interrater reliability, as this value has
important implications for the validity of the study results. If two judges cannot be shown to reliably rate individuals
based on observed behaviors, then any subsequent analyses of the ratings given by those judges will yield spurious
results. Furthermore, interrater reliability must be demonstrated anew for each new study, even if the study is using a
scoring rubric or instrument that has been shown to have high interrater reliability in the past. Interrater reliability
refers to the level of agreement between a particular set of judges on a particular instrument at a particular time. Thus,
interrater reliability is a property of the testing situation, and not of the instrument itself.

A number of central textbooks in the field of educational and psychological measurement and statistics (e.g., Cohen,
Cohen, West, & Aiken, 2003; Crocker & Algina, 1986; Hopkins, 1998; Winer, 1962) describe interrater reliability as if it
were a single, unitary concept. In this article, I will argue that the widespread practice of describing interrater reliability
as a single, universal concept is at best imprecise, and at worst potentially misleading. Instead, researchers and
practitioners should begin to use more precise language to indicate the specific type of interrater reliability being
discussed. Although there are numerous statistical methods for computing interrater reliability, I propose that those
most commonly reported in the literature generally can be classified into one of three categories: 1) consensus estimates,
2) consistency estimates, or 3) measurement estimates. Reporting a single interrater reliability statistic without
discussing the category of interrater reliability the statistic represents is problematic because the three different
categories carry with them different implications for how data from multiple judges should be summarized most
appropriately.

This article will describe the assumptions, interpretation, advantages, and disadvantages of consensus, consistency, and
measurement estimates of interrater reliability. In addition, the article will also discuss some popular statistical
methods for computing interrater reliability that fall under the umbrella of each of these three major categories.

Consensus Estimates

General Description
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Consensus estimates of interrater reliability are based on the assumption that reasonable observers should be able to
come to exact agreement about how to apply the various levels of a scoring rubric to the observed behaviors. If two
judges come to exact agreement on how to use the rating scale to score behaviors, then the two judges may be said to
share a common interpretation of the construct.

Consensus estimates tend to be the most useful when data are nominal in nature and different levels of the rating scale
represent qualitatively different ideas. For example, Stemler and Bebell (1999) conducted a study aimed at detecting
the various purposes of schooling articulated in school mission statements. Judges were given a scoring rubric that
listed 10 possible thematic categories under which the main idea of each mission statement could be classified (e.g.,
social development, cognitive development, civic development). Judges then read a series of mission statements and
attempted to classify each sampling unit according to the major purpose of schooling articulated. If both judges
consistently rated the dominant theme of the mission statement as representing elements of citizenship, then they were
said to have communicated with each other in a meaningful way because they had both classified the statement in
exactly the same way. If one judge classified the major theme as social development, and the other judge classified the
major theme as citizenship, then a breakdown in shared understanding occurred. In that case, the judges were not
coming to a consensus on how to apply the levels of the scoring rubric.

Consensus estimates also can be useful when different levels of the rating scale are assumed to represent a linear
continuum of the construct, but are ordinal in nature (e.g., a Likert scale). In that case, the judges must come to exact
agreement about the quantitative levels of the construct under investigation, rather than attempting to evaluate
qualitative differences in scoring categories, as in the previous example.

If judges can be trained to the point where they agree on how to interpret a rating scale, then scores given by the two
judges may be treated as equivalent. Thus, the remaining work of rating subsequent items can be split between the
judges without both judges having to rate all items. Furthermore, the summary scores may be calculated by simply
taking the score from one of the judges or by averaging the scores given by all of the judges since high interrater
reliability indicates that the judges agree about how to apply the rating scale. A typical guideline found in the literature
for evaluating the quality of interrater reliability based upon consensus estimates is that they should be 70% or greater.

Popular Methods for Computing Consensus Estimates

Perhaps the most popular method for computing a consensus estimate of interrater reliability is through the use of the
simple percent-agreement figure. Percent agreement is calculated by adding up the number of cases that received the
same rating by both judges and dividing that number by the total number of cases rated by the two judges. The percent
agreement statistic has several advantages. For example, it has a strong intuitive appeal, it is easy to calculate, and it is
easy to explain.

The statistic also has some distinct disadvantages, however. For example, if the behavior of interest has a low incidence
of occurrence in the population, then it is possible to get artificially inflated percent-agreement figures simply because
most of the values fall under one category of the rating scale (Hayes & Hatch, 1999). Another disadvantage to using the
simple percent-agreement figure is that it is often time consuming and labor intensive to train judges to the point of
exact agreement.

Several other kinds of consensus estimates are also commonly reported in the literature. One popular modification of the
percent-agreement figure found in the testing literature involves broadening the definition of agreement by including
the adjacent scoring categories on the rating scale. For example, on a rating scale with levels ranging from 1-7, judges
would not need to come to exact agreement about the ratings they assign. So long as the ratings did not differ by more
than one point above or below the other judge, then the two judges would be said to have reached consensus. This
approach is advantageous in that it relaxes the strict criterion that the judges agree exactly. On the other hand, percent
agreement using adjacent categories can lead to inflated estimates of interrater reliability if there are only a limited
number of categories to choose from (e.g., a 1-4 scale). If the rating scale has a limited number of points, then nearly all
points will be adjacent, and it would be surprising to find agreement lower than 90%. The technique of using adjacent
categories results in a situation where the percent agreement at the extreme ends of the rating scale is almost always
lower than in the middle.

A third consensus estimate of interrater reliability is Cohen’s kappa statistic (Cohen, 1960, 1968). Cohen’s kappa was
designed to estimate the degree of consensus between two judges after correcting the percent-agreement figure for the
amount of agreement that could be expected by chance alone based upon the values of the marginal distributions (see
Stemler, 2001 for a practical example with calculation). The interpretation of the kappa statistic is slightly different
than the interpretation of the percent-agreement figure. A value of zero on kappa does not indicate that the two judges
did not agree at all; rather, it indicates that the two judges did not agree with each other any more than would be
predicted by chance alone. Consequently, it is possible to have negative values of kappa if judges agree less often than
chance would predict. Landis and Koch (1977) suggest that kappa values from 0.41-0.60 are moderate, and that values
above 0.60 are substantial. Kappa is a highly useful statistic when one is concerned that the percent-agreement statistic
may be artificially inflated due to the fact that most observations fall into a single category.

The major disadvantage to the kappa coefficient is that it is can be somewhat difficult to interpret. Uebersax (1987) has
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noted that one major problem is that values of kappa may differ depending upon the proportion of respondents falling
into each category of a rating scale. Thus, kappa values for different items or from different studies cannot be
meaningfully compared unless the base rates are identical. Consequently, although the statistic gives some indication
as to whether the agreement is better than that predicted by chance alone, it is difficult to apply the kinds of rules of
thumb suggested by Landis and Koch for interpreting kappa across different circumstances.

For a review of several other less frequently used methods for computing interrater reliability, some of which fall within
the general category of consensus estimates of interrater reliability (e.g., Jaccard’s J, The G-Index), see Barrett (2001).

Advantages of Consensus Estimates

One particular advantage of the consensus approach to estimating interrater reliability is that the calculations are
easily done by hand. A second advantage is that the techniques falling within this general category are well suited to
dealing with nominal variables whose levels on the rating scale represent qualitatively different categories. A third
advantage is that consensus estimates can be useful in diagnosing problems with judges’ interpretations of how to apply
the rating scale. For example, inspection of the information from a crosstab table may allow the researcher to realize
that the judges may be unclear about the rules for when they are supposed to score an item as zero as opposed to when
they are supposed to score the item as missing. A visual analysis of the output allows the researcher to go back to the
data and clarify the discrepancy or retrain the judges.

Finally, when judges exhibit a high level of consensus, it implies that both judges are essentially providing the same
information. One implication of a high consensus estimate of interrater reliability is that both judges need not score all
remaining items. For example, if there were 100 tests to be scored after the interrater reliability study was finished, it
would be most efficient to ask Judge A to rate exams 1-50 and Judge B to rate exams 51-100, because the two judges
have empirically demonstrated that they share a similar meaning for the scoring rubric. In practice, however, it is
usually a good idea to build in a 30% overlap between judges even after they have been trained in order to provide
evidence that the judges are not drifting from their consensus as they read more items. Such an approach would suggest
that Judge A rate items 1-35 by himself (35 items), Judge B should rate items 66—-100 by herself (35 items), and both
judges should rate students 36—65 (30 items).

Disadvantages of Consensus Estimates

One disadvantage of consensus estimates is that interrater reliability statistics must be computed separately for each
item and for each pair of judges. Consequently, when reporting consensus-based interrater reliability estimates, one
should report the minimum, maximum, and median estimates for all items and for all pairs of judges.

A second disadvantage is the amount of time and energy it takes to train judges to come to exact agreement is often
substantial. In some instances it may not be important for the judges to come to exact agreement: for example, if the
exact application of the levels of the scoring rubric is not important, but rather a means to the end of getting a summary
score for each respondent.

Third, as Linacre (2002) has noted, training judges to a point of forced consensus may actually reduce the statistical
independence of the ratings, and threaten the validity of the resulting scores.

Finally, consensus estimates can be overly conservative if two judges exhibit systematic differences in the way that they
use the scoring rubric but simply cannot be trained to come to a consensus. As we will see in the next section, it is
possible to have a low consensus estimate of interrater reliability while at the same time having a high consistency
estimate, and vice versa. Consequently, sole reliance on consensus estimates of interrater reliability might lead
researchers to conclude that “interrater reliability is low,” when it may be more precisely stated that the consensus
estimate of interrater reliability is low.

Consistency Estimates
General Description

Consistency estimates of interrater reliability are based upon the assumption that it is not really necessary for two
judges to share a common meaning of the rating scale, so long as each judge is consistent in classifying the phenomenon
according to his or her own definition of the scale. For example, if Judge A assigns a score of 3 to a certain group of
essays, and Judge B assigns a score of 1 to that same group of essays, the two judges have not come to a consensus about
how to apply the rating scale categories, but the difference in how they apply the rating scale categories is predictable.

Consistency approaches to estimating interrater reliability are most useful when the data are continuous in nature,
although the technique can be applied to categorical data if the rating scale categories are thought to represent an
underlying continuum along a unidimensional construct. Values greater than 0.70 are typically acceptable for
consistency estimates of interrater reliability (Barrett, 2001).

It is important to recognize that although consistency estimates may be high, the means and medians of the different
judges may be very different. Thus, if one judge consistently gives scores that are two points lower on the rating scale
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than does a second judge, the scores will ultimately need to be corrected for this difference in judge severity if the final
scores are to be summarized or subjected to further analyses.

Popular Methods for Computing Consistency Estimates

Perhaps the most popular statistic for calculating the degree of consistency between judges is the Pearson correlation
coefficient. The Pearson correlation coefficient can be computed by hand (Glass & Hopkins, 1996), or can easily be
computed using most statistical packages. One beneficial feature of the Pearson correlation coefficient is that the scores
on the rating scale can be continuous in nature (e.g., they can take on partial values such as 1.5). Like the percent-
agreement statistic, the Pearson correlation coefficients can be calculated only for one pair of judges at a time and for
one item at a time.

A potential limitation of the Pearson correlation coefficient is that it assumes that the data underlying the rating scale
are normally distributed. Consequently, if the data from the rating scale tend to be skewed toward one end of the
distribution, this will attenuate the upper limit of the correlation coefficient that can be observed.

Another popular consistency estimate of interrater reliability is Spearmans’s rank coefficient. The Spearman rank
coefficient provides an approximation of the Pearson correlation coefficient, but may be used in circumstances where the
data under investigation are not normally distributed. For example, rather than using a continuous rating scale, each
judge may rank order the essays that he or she has scored from best to worst. In this case, then, since both ratings being
correlated are in the form of rankings, a correlation coefficient can be computed that is governed by the number of pairs
of ratings (Glass & Hopkins, 1996). The major disadvantage to Spearman’s rank coefficient is that it requires both
judges to rate all cases.

In situations where multiple judges are used, another approach to computing a consistency estimate of interrater
reliability would be to compute Cronbach’s alpha coefficient (Crocker & Algina, 1986). Cronbach’s alpha coefficient is a
measure of internal consistency reliability and is useful for understanding the extent to which the ratings from a group
of judges hold together to measure a common dimension. If the Cronbach’s alpha estimate among the judges is low, then
this implies that the majority of the variance in the total composite score is really due to error variance, and not true
score variance (Crocker & Algina, 1986).

The major advantage of using Cronbach’s alpha comes from its capacity to yield a single consistency estimate of
interrater reliability across multiple judges. The major disadvantage of the method is that each judge must give a
rating on every case, or else the alpha will only be computed on the bases of a subset of the data. In other words, if just
one rater fails to score a particular individual, that individual will be left out of the analysis. In addition, as Barrett
(2001) has noted, “...because of this ‘averaging’ of ratings, we reduce the variability of the judges ratings such that when
we average all judges ratings, we effectively remove all the error variance for judges.” (p. 7).

For further information regarding various consistency estimates of interrater reliability, see Bock, Brennan, and
Muraki (2002), Burke and Dunlap (2002), LeBreton, Burgess, Kaiser, Atchley, and James (2003), and Uebersax (2002).

Advantages of Consistency Estimates

There are three major advantages to using consistency estimates of interrater reliability. First, the approach places less
stringent demands upon the judges in that they need not be trained to come to exact agreement with one another so
long as each judge is consistent within his or her own definition of the rating scale (i.e., exhibits high intrarater
reliability). It is sometimes the case that the exact application of the levels of the scoring rubric is not important in itself.
Instead, the scoring rubric is a means to the end of creating scores for each participant that can be summarized in a
meaningful way. If summarization is the goal, then what is most important is that each judge apply the rating scale
consistently within his or her own definition of the rating scale, regardless of whether the two judges exhibit exact
agreement. Consistency estimates allow for the detection of systematic differences between judges, which may then be
adjusted statistically. For example, if Judge A consistently gives scores that are 2 points lower than Judge B does, then
adding 2 extra points to the exams of all students who were scored by Judge A would provide an equitable adjustment to
the raw scores.

A second advantage of consistency estimates is that certain methods within this category (e.g., Cronbach’s alpha) allow
for an overall estimate of consistency among multiple judges. In addition, consistency estimates readily handle
continuous data.

Disadvantage of Consistency Estimates

One disadvantage of consistency estimates is that if the construct under investigation has some objective meaning, then
it may not be desirable for the two judges to “agree to disagree.” Instead, it may be important for the judges to come to
an exact agreement of the scores that they are generating.

A second disadvantage of consistency estimates is that judges may not only differ systematically in the raw scores they
apply, but also in the number of rating scale categories they use. In that case, a mean adjustment for a severe judge

may provide a partial solution, but the two judges may also differ on the variability in scores they give. Thus, a mean
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adjustment alone will not effectively correct for this difference.

A third disadvantage of consistency estimates is that they are highly sensitive to the distribution of the observed data.
In other words, if most of the ratings fall into one or two categories, the correlation coefficient will necessarily be deflated
due to restricted variability. Consequently, a reliance on the consistency estimate alone may lead the researcher to
falsely conclude that interrater reliability was poor without specifying more precisely that the consistency estimate of
interrater reliability was poor and providing an appropriate rationale.

Measurement Estimates
General Description

Measurement estimates are based upon the assumption that one should use all of the information available from all
judges (including discrepant ratings) when attempting to create a summary score for each respondent. In other words,
each judge is seen as providing some unique information that is useful in generating a summary score for a person. As
Linacre (2002) has noted, “It is the accumulation of information, not the ratings themselves, that is decisive” (p. 858).
Consequently, under the measurement approach, it is not necessary for two judges to come to a consensus on how to
apply a scoring rubric because differences in judge severity can be estimated and accounted for in the creation of each
participant’s final score.

Measurement estimates are best used when different levels of the rating scale are intended to represent different levels
of an underlying unidimensional construct (e.g., mathematical competence). They are also useful in circumstances
where multiple judges are involved in administering ratings, and it is impossible for all judges to rate all items.

Measurement estimates allow for the creation of a summary score for each participant that represents that participant’s
score on the underlying factor of interest, taking into account the extent to which each judge influences the score.

Popular Methods of Computing Measurement Estimates

One popular measurement estimate of interrater reliability is computed using the factor analytic technique of principal
components analysis (Harman, 1967). Using this method, multiple judges may rate a set of participants. The judge’s
scores are then subjected to a principal components analysis to determine the amount of shared variance in the ratings
that could be accounted for by the first principal component. The percentage of variance that is explainable by the first
principal component gives some indication of the extent to which the multiple judges are reaching agreement. If the
shared variance is high (e.g., greater than 60%), then this gives some indication that the judges are rating a common
construct.

Once interrater reliability has been established in this way, each participant may then receive a single summary score
corresponding to his or her loading on the first principal component underlying the set of ratings. This score can be
computed automatically by most statistical packages. The advantage of this approach is that it assigns a summary score
for each participant that is based only on the relevance of the strongest dimension underlying the data. The
disadvantage to the approach is that it assumes that ratings are assigned without error by the judges.

Another popular method for computing a measurement estimate of interrater reliability has been through the use of
generalizability theory (Shavelson & Webb, 1991). Linacre (1994) has noted that the goal of a generalizability study is
to determine,

...the error variance associated with each judge’s ratings, so that correction can be made to ratings awarded
by a judge when he is the only one to rate an examinee. For this to be useful, examinees must be regarded as
randomly sampled from some population of examinees which means that there is no way to correct an
individual examinee’s score for judge behavior, in a way which would be helpful to an examining board. This
approach, however, was developed for use in contexts in which only estimates of population parameters are of
interest to researchers (p. 29).

A third measurement approaches to estimating interrater reliability is through the use of the many-facets Rasch model
(Linacre, 1994). Recent advances in the field of measurement have led to an extension of the standard Rasch
measurement model (Rasch, 1960/1980; Wright & Stone, 1979). This new, extended model, known as the many-facets
Rasch model, allows judge severity to be derived using the same scale (i.e., the logit scale) as person ability and item
difficulty. In other words, rather than simply assuming that a score of 3 from Judge A is equally difficult for a
participant to achieve as a score of 3 from Judge B, the equivalence of the ratings between judges can be empirically
determined. Thus, it could be the case that a score of 3 from Judge A is really closer to a score of 5 from Judge B (i.e.,
Judge A is a more severe rater). Using a many-facets analysis, each essay item or behavior that was rated can be
directly compared.

In addition, the difficulty of each item, as well as the severity of all judges who rated the items, can also be directly
compared. For example, if a history exam included five essay questions and each of the essay questions was rated by
three judges (two unique judges per item, and one judge who scored all items), the facets approach would allow the

researcher to directly compare the severity of a judge who rated only Item 1 with the severity of a judge who rated only
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Item 4. Each of the 11 judges (2 unique judges per item + 1 judge who rated all items = 5*2 + 1 = 11) could be directly
compared. The mathematical representation of the many-facets Rasch model is fully described in Linacre (1994).

Finally, in addition to providing information that allows for the evaluation of the severity of each judge in relation to all
other judges, the facets approach also allows one to evaluate the extent to which each of the individual judges is using
the scoring rubric in a manner that is internally consistent (i.e., an estimate of intrarater reliability). In other words,
even if judges differ in their own definition of how they use the scale, the fit statistics will indicate the extent to which a
given judge is faithful to his or her own definition of the scale categories across items and people.

Advantages of Measurement Estimates

There are several advantages to estimating interrater reliability using the measurement approach. First, measurement
estimates can take into account errors at the level of each judge or for groups of judges. Consequently, the summary
scores generated from measurement estimates of interrater reliability tend to more accurately represent the underlying
construct of interest than do the simple raw score ratings from the judges.

Second, measurement estimates effectively handle ratings from multiple judges by simultaneously computing estimates
across all of the items that were rated, as opposed to calculating estimates separately for each item and each pair of
judges.

Third, measurement estimates have the distinct advantage of not requiring all judges to rate all items in order to arrive
at an estimate of interrater reliability. Rather, judges may rate a particular subset of items, and as long as there is
sufficient connectedness (Linacre, 1994; Linacre, Englehard, Tatem, & Myford, 1994) across the judges and ratings, it
will be possible to directly compare judges.

Disadvantages of Measurement Estimates

The major disadvantage of measurement estimates is that they are unwieldy to compute by hand. Unlike the
percent-agreement figure or correlation coefficient, measurement approaches typically require the use of specialized
software to compute.

A second disadvantage is that certain methods for computing measurement estimates (e.g., facets) can handle only
ordinal level data. Furthermore, the file structure required to use facets is somewhat counterintuitive.

Comparing Consensus, Consistency, and Measurement Estimates

Table 1 presents a comparison of the key features of consensus, consistency, and measurement approaches to estimating
interrater reliability.

Table 1: Comparison of Consensus, Consistency, and Measurement Approaches to Estimating Interrater
Reliability
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Consensus Consistency Measurement
Purpose Demonstrate exact Functional purpose of Goal is the preserve as much
agreement among getting judges to information as possible from
independent judges consistently apply a scoring | each judge and to incorporate
rubric that information into the
model
Consistent application is a
means to the end of creating
a summary score for each
participant
Nature of the data | Nominal, Ordinal, or Ordinal, Interval, Ratio Ordinal, Interval, Ratio
Interval (if there are few
categories)
Advantages Easy to compute by hand Can be used when rating Provides one statistic that
scales are continuous. allows for direct comparison




Strong intuitive appeal

Effectively deals with
nominal data

Easy to diagnose rater
discrepancies

Makes less stringent
demands about training
judges to exact agreement

Possible to summarize
rating from multiple judges

of the severity of all judges on
all items, even if they did not
rate the same items

Differences in rater severity
are taken into account at the
level of the individual person
(facets) or group
(generalizability theory)

Provides an empirical
estimate of the extent to
which judges consistently
apply the rating scale across
participants

Disadvantages

Must be calculated
separately for each pair of
judges and for each unique
item

Often requires substantial
time and resources to train
judges to exact agreement

Rater independence can be

Magnitude of correlation
coefficients is affected by
distribution of observed
ratings. Can lead to
artificially deflated
estimates.

Can be burdensome to
compute the necessary
adjustments to rater

Difficult to calculate by hand
— requires specialized
software

Structure of the raw data file
may be counterintuitive to
set up (facets)

Does not handle nominal
level data

Cohen’s kappa

Jaccard’s J

Spearman’s rho

Cronbach’s alpha

trained away, thereby severity
threatening the validity of
the summary scores
Example statistics | Percent agreement Pearson’s r Principal components

analysis
Generalizability theory

Facet rater severity indices
and fit statistics

End Goal /
Assumption

Scores from multiple judges
can be averaged once high
consensus has been
demonstrated

Requires some statistical
adjustment for rater
differences before scores
from multiple judges can be
summarized.

Summarizing scores from
multiple judges without
adjusting for differences in
rater severity could threaten
the validity of study
conclusions.

Rater severity is
independently estimated and
put onto a linear measure of
underlying factor

Differences in rater severity
can be adjusted for on an
individual and item level in
the algorithm that calculates
participant ability estimates
(facets)

Judges with high infit
statistics may be drifting in
their application of the rating
scale and may need to be
retrained

Intuitively, one may think that if two judges reach consensus, they will also be consistent. Although that is true in some

circumstances, it is not true in others. For example, it is entirely possible for two judges to have an extremely high
consensus estimate of interrater reliability and at the same time have a very low consistency estimate of interrater
reliability. Table 2 provides a practical example of data that give a high consensus estimate and a low consistency
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estimate of interrater reliability. The data indicate that the two judges have rated 80 participants on a single item. The
rating scale for that item ranges from O to 1.

Table 2: Frequencies of ratings for two judges demonstrating
high consensus and low consistency

Judge 2
0 1 Total
76 1 77
Judge 1 1 9 1 3
Total 78 2 80
Percent o
Agreement 96%
Pearson's r 0.39

The reason for the large discrepancy between the consensus and consistency estimates of interrater reliability is because
the Pearson r statistic is heavily influenced by the distribution of the data. Specifically, the Pearson correlation
coefficient is based upon the assumption that the data are normally distributed. The example presented in Table 2
contains ratings that are highly skewed across both judges in that the majority of judge ratings fall into only one of the
rating categories. This leads to an instance of an exceptionally high consensus estimates of interrater reliability (96%
agreement) and at the same time, an exceptionally low consistency estimate (r = 0.36). Thus, it is important to recognize
that some types of interrater reliability may be low simply as a function of the distribution of the data as opposed to
being deflated due to a problem with the scoring rubric or with the judge training.

Conversely, the fact that two judges have a high consistency estimate of interrater reliability does not automatically
imply that they will also have a high consensus estimate. Table 3 provides a practical example of data that give a high
consistency estimate and a low consensus estimate of interrater reliability. The data indicate that the two judges have
rated 60 participants on a single item. The rating scale for that item ranges from O to 4.

Table 3: Frequencies of ratings for two judges demonstrating high
consistency and low consensus

Judge 2
0 1 2 3 4  Total

0 9 0 0 0 0 9

Judge 1 7 5 3 0 0 15

1 2 2 5 9 9 0 25

3 0 1 0 4 5 10

4 0 0 0 0 1 1

Total 18 11 12 13 6 60

Percent 0

Agreement 4%
Pearson'sr 0.80

Table 3 shows that the Pearson correlation coefficient between the judges is 0.80, while their percent-agreement figure is
only 47%. If it is important for the study that the two judges reach exact agreement about how to use the various points
on the rating scale, then the judges will need to be re-trained and/or the scoring rubric will need to be revised. If,
however, the ratings are simply a means to the end of getting a summary score for each participant, then it may be
possible to summarize the scores after using some adjustment factor. It is important to note that if a researcher were to
report a high consistency and low consensus estimate of interrater reliability, but then take no steps to appropriately
correct for the discrepancy when summarizing the data, systematic bias could be introduced into the results, which
would then invalidate inferences from subsequent analyses.

One method for computing the differences in rater severity and incorporating them into the final summary score for
each participant is through the use of the many-facets Rasch model. Table 4 presents a rater-measurement report
generated by the FACETS computer program (Linacre, 1988). The table presents an indication of the severity level of
each individual judge, along with various fit statistics to help in diagnosing the extent to which each judge was
consistent within his or her own use of the scoring rubric. The benefit of this table is that the relative severity of all
judges can be compared simultaneously.

The first column in Table 4 provides the initials for 12 judges who scored the open-response items on the essay portion of
this particular exam. The second column indicates the number of items that were scored by each judge. The third

column, “Measure”, indicates the severity level of each judge along a linear continuum (using a logit scale), where
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higher values indicate more severe judges. The fourth column, “SE”, presents the standard error associated with each of
the rater-severity measures. In general, the more essays a particular judge scored, the smaller the standard error of the
rater severity measure (Myford & Cline, 2002). Finally, columns 5-8 present the fit statistics associated with each judge.

Table 4: Interrater reliability output: Measurement approach

Rater M ofratings Measure S.E InfithdS InfitZ DutfitS  Outfit?
CL 258 og9 0.04 34 9 33 9
Sk 18596 038 0.01 1.4 9 16 9
Abd 1451 0.14 o.o2 22 9 2.1 9
Jd 756 0.1 o.o2 1.3 9 14 9
LM 758 ong o.o2 1.2 5 13 7
Ck 956 oo3 o.o2 1.0 1 1.0 -1
S5G 815 ooz o.o2 1.9 9 20 9
4% 2685 0.o1 0.01 16 9 16 9
ER 3369 -0.02 0.01 1.0 2 1.1 4
Jwy 840 -0.17 o.o2 24 9 25 9
A, 1662 -0.57 o.o2 1.1 4 1.0 a
AR 869 -0.91 0.03 1.0 o g -2

The judge-severity indices (i.e., “Measure”) are useful for estimating the extent to which systematic differences exist
between judges with regard to their level of severity. For example, Judge CL was the most severe rater with an
estimated severity measure of +0.89 logits. Consequently, students whose test items were scored by CL would be more
likely to receive lower raw scores than students who had the same test item scored by any of the other judges. At the
other extreme, Judge AP was the most lenient rater with a rater-severity measure of -0.91 logits. Students who had their
exams scored by AP would be more likely to receive substantially higher raw scores than if the same item were rated by
any of the other judges. The results presented in Table 3 show that there is about a 2-logit spread in systematic
differences in rater severity (from -0.91 to +0.89). This spread indicates that simply assuming that all judges are
defining the rating scales they are using in the same way is not a tenable assumption, and that differences in rater
severity must be taken into account in order to come up with precise estimates of student ability. The many-facets Rasch
model allows for these differences to be incorporated into the final participant ability estimate (Linacre, 1994).

In addition, Table 4 provides a series of fit statistics that are useful for interpreting the degree of intrarater reliability.
Rater infit statistics are interpreted much the same way as item or person infit statistics are interpreted (Bond & Fox,
2001; Wright & Stone, 1979). Infit mean squares greater than 1.3 indicate that there is more unpredictable variation in
the judges’ responses than we would expect based on the model. Infit mean-square values less than 0.7 indicate that
there is less variation in the judges’ responses than we would predict based on the model. Myford and Cline (2002) have
noted that high infit values may suggest that ratings are noisy as a result of the judges’ overuse of the extreme scale
categories (i.e., the lowest and highest values on the rating scale), whereas low infit mean-square indices may be a
consequence of overuse of the middle-scale categories (e.g., moderate response bias).

Summary and Conclusions

Interrater reliability is one of the most important concepts in educational and psychological measurement. Without
demonstrating that two independent judges can be reliably trained to rate a particular behavior, our hope for achieving
objective measurement of behavioral phenomena is diminished. The concept of interrater reliability, however, has
received far less theoretical attention than it warrants. Many key authors in the area of educational and psychological
measurement and statistics have described interrater reliability as if it were a single construct with a single meaning. In
this paper, I have attempted to demonstrate that the broad range of meanings implied by the term interrater reliability
suggest that the field may benefit from increasing the precision of the use of the term interrater reliability. Toward this
end, this article describes one potential framework for categorizing the various statistical methods for computing
interrater reliability into a meaningful system based upon shared assumptions of the aim behind each technique.

When evaluating the results of an interrater reliability study, there are two important components to note. The first is
the specific index of interrater reliability the authors have used. Some statistics include percent-agreement, Cohen’s
kappa, Pearson’s r, Spearman’s rho, percentage of variance accounted for by the first principal component, rater severity
estimates, or fit statistics. Each of these statistics will provide a statistical estimate of the extent to which two or more
judges are applying their ratings in a manner that is predictable and replicable.

The second important thing to note is whether the data are summarized in a manner that is consistent with the
assumptions of the approach to estimating interrater reliability that was used. For example, if a researcher study
reports a high consistency estimate of interrater reliability, this does not imply that the researcher is then free to simply
average the scores across the judges. In fact, simply averaging the scores could lead to spurious results in subsequent
analyses.

At times, it will make sense to report indicators of interrater reliability that represent more than one approach (e.g., both
consensus and consistency estimates) because the distributional properties of the data will artificially deflate one or the
other. The appropriate approach to estimating interrater reliability will always depend upon the purpose at hand.
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