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The Contributions of Reliability and Pretests to Effective Assessment
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This paper shows how the reliability of measures and the use of pretests (or covariates) both have the
potential to increase the statistical power in research designs. Tables are presented that show how specific
changes in these factors can dramatically reduce the sample size necessary to determine whether an
intervention is effective, thus potentially improving the effectiveness of assessment in terms of reducing the
time and cost of collecting scientific support for new practices.

Schools, colleges, and universities are increasingly turning to the assessment of learning outcomes to evaluate the
effectiveness of their programs. Unfortunately, for institutions with few students per year, it may take years to
accumulate a large enough sample size to form statistically sound conclusions about the effectiveness of an instructional
practice. Even for institutions with larger student populations, the collection of a large sample may be cost-prohibitive.
This paper shows how improving the reliability of outcome measures and including pretests or covariates in the
assessment process increase statistical power and can dramatically reduce the required sample size, thus enabling an
organization to collect supportive evidence more quickly and inexpensively. Some background on statistical power in
research designs, and the use of pretests in particular, will be offered before presenting tables that describe the
interrelationships among assessment reliability, pretests, power, and sample size.

Background
Statistical Power in Research Designs

Assessment measures are often used as part of a tracking study of some sort, and often in cohort designs. Assessment
measures may include exams, such as a final given to all students who complete an algebra course. The same exam can
be given each semester, and the data then combined to enable tracking of improvements in algebra achievement from
semester to semester or year to year. In the cohort design, the people who completed the school’s program in the past
can be seen as a control group (e.g., last year’s algebra students) and those who completed the program more recently,
after some instructional change occurred in the program, can be seen as a treatment group (e.g., this year’s algebra
students). These groups may also be represented in an experimental design using concurrent programs, where a control
group receives the conventional form of education and the treatment group receives some new form of instruction.

One of the keys to achieving meaningful results with experimental designs is statistical power, which is the ability to
detect statistically significant differences. The greater the statistical power in an experiment, the greater the chances of
finding a statistically significant result. One type of power analysis is the determination of how large a sample must be
drawn in order to have a reasonable chance of achieving statistical significance when an effect is present. A commonly
used threshold in these analyses is .80 (Cohen, 1977, p. 56), meaning the researcher asks how large a sample is
necessary to have an 80% chance of detecting a statistically significant difference, if the expected difference exists.

The analysis of power is dependent on how large a difference the researcher expects to find. In most statistical analyses,
it is assumed that the null hypothesis is true, that is, the control group and the treatment group have exactly the same
outcomes. In power analyses, it is assumed that the control group and the treatment group will have some specific
difference in outcomes. Assuming some specific difference, or effect size, is necessary to be able to estimate the
probability of detecting a difference of that magnitude. Many methods are available for specifying the size of the
expected difference in outcomes, but one common measure of effect size is the standardized mean difference in outcome
measures (d), which Cohen (1977) describes as

1) d=Im;—mylls

In this equation, m; and mg are the mean scores from the two groups of students to be compared, and s is the standard

deviation of the scores. Thus, d is essentially the mean difference between two groups in standard deviation units. For
assessment professionals with some experience or expertise in an area, the a priori estimation of the expected differences
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is not difficult. For example, Bloom (1976) offers estimates of effect sizes for a variety factors that affect educational
outcomes, such as cognitive entry behaviors or classroom size.

In this paper, the analysis of power is developed from a test for differences across two groups, the ¢-test. Although the
power of the ¢-test has been extensively studied and the importance of assessment reliability, the use of pretests, and
effect size is well noted (see, for example, Lipsey, 1990), one unique aspect of this paper is that it shows how these factors
affect sample size in combination. Starting with the basic equation for the power of a ¢-test, various substitutions are
made to include the reliability of the assessment measures, the use of pretests, and the effect size (d) in the power
equation (the detailed derivation is in the Appendix).

The Effects of Pretests and Covariates

The effect of a pretest on assessment effectiveness is primarily a function of how well that pretest correlates with the
final assessment, or posttest. Higher pretest-posttest correlations indicate that the pretest explains more variance in the
posttest, leaving less variance unexplained. Thus, if there is any variance in the final assessment due to the effect of a
new instructional form, that variance will be more obvious. Although the use of meaningful pretests is generally
possible, they are sometimes impractical. For example, in an educational setting, students may have little incentive to
carefully complete a pretest on the first day of class, and so the pretest reliability may be poor. In addition, beginning
students may have so little knowledge of a content area that their test responses are not consistent with a meaningful
scale, and thus the pretest-posttest correlation may be so low that the pretest is virtually useless for statistical purposes.
For example, Bacon (2002) reported pretest-posttest correlations from a junior-level business college course of around
.30, even though the final exam had a reliability of .92. At this level, the pretest reduces the total variance in the
posttest by only about 10% (see also Equation A6), an amount many would consider to be not worth the trouble (e.g.,
Reichardt, 1979).

When pretests are impractical, or when additional explained variance is desired, covariates may be considered. Itis
important to note that because the key characteristic of the pretest is its correlation with the posttest, any reasonable
covariate or set of covariates may be used instead of or in addition to a pretest, as long as the experimental groups are
equivalent. For example, in Bacon’s (2002) study, although the pretest was not highly correlated with the final exam,
grade point average was correlated with the final exam at the .63 level. Pretests and covariates alike are generally
modeled as covariates in subsequent statistical tests (Reichardt, 1979). It should be noted, however, that in the case of
non-equivalent group designs, using covariates might lead to bias if there are systematic differences across the groups
(see especially Reichardt, 1979, p. 169). A pretest would be preferred under these conditions. For simplicity in
describing the tables presented later in this paper, the variable or set of variables that may be used as covariates are
lumped together and referred to as “the pretest.”

It is also important to note that the observed pretest-posttest correlation (oxyopserveq) 1S related to the reliability of the
posttest measure (pyy) and the reliability of the pretest (oxx) through the following the relation

) Favicpsaved) = N Cxx Cxvirae)d Prr .

Thus, in practice, improvements to the posttest measure reliability will also increase the pretest-posttest correlation.
Methodology

To understand the effects of assessment reliability, pretests, and effect size on study design, meaningful values for these
variables will be inserted in the equations from the Appendix and the required sample sizes tabulated. Cohen (1977, p.
56) makes a compelling case that a meaningful value for the acceptable level of power would be .80, and recognizes .05
as a very commonly used a level, so these values will be used in the analysis here. In terms of reliability, Cohen (1977)
notes that reliabilities (py,) of around .70 are commonly observed. Nunnally (1978, p. 245) considers .70 to be an
acceptable level for early stages of basic research, but suggests that .80 or higher would be more appropriate in some
applied settings. In pilot tests, especially with performance assessments (Sax, 1997, p. 167), lower reliabilities may often
be observed. Therefore, the set of reliabilities of .5, .7, and .9 will be used here.

In considering meaningful values of the pretest-posttest relationship for the present analysis, one must recognize that
in practice many studies use no pretest at all, effectively setting the pretest-posttest correlation (oxy) equal to 0. At the

high end of pxy it should be noted that the correlation with the pretest cannot exceed the square root of the reliability of
the posttest (Equation 2). Therefore, the set of pretest-posttest correlations of 0, .3, .5, and .7 will be used here.

Meaningful values for effect sizes can be found in Cohen (1977), although different standards may be appropriate for
academic research in educational psychology (see Osborne, 2003). Cohen (1977) describes small, medium, and large

standardized mean differences (d) in the social sciences as .2, .5, and .8, respectively. (These correspond to RZ values of
.01, .09, and .25 respectively, p. 79.) These guidelines reflect the assumption that the reliability of measurement in

these studies is often in the neighborhood of .70 (p. 79-81). From Equation A5, we can see that when p,, is .70 and er
is 1.0 (as standardized here), the total variance would be 1.43 (1.0/.70) and thus the observed standard deviation would
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be 1.20. Therefore, to model Cohen’s observed effect sizes of .2, .5, and .8 will require “true effect sizes” of .24, .60, and
.96, respectively (.2x1.2, .5x1.2, and .8x1.2, respectively). These true effect sizes (ES7) are used in the tables and the

figure presented in this paper.

Setting the left side of Equation A1 at .80, and substituting the values mentioned above for pyy, pxy, and ESpinto the

right side (via Equation A9), the sample size value that balanced the equation was noted. The GoalSeek function in MS
Excel was used to solve for sample size values at various levels of the other variables in the model. In the special cases
where py,, =.70 and pxy = 0, the results were 1dentical (within rounding error) to those reported in Table 2.3 in Cohen
1977).

Results and Discussion

The effects of reliability, the use of pretests, and the effect size on the required sample sizes are shown in Figure 1. (The
figure was simplified by setting the control and treatment group sizes equal, but later analyses will allow these to
differ.) Figure 1 shows that over the range of values shown here, the effect size appears to have the most dramatic
impact on the size of the sample required. An effect size (ES7) of .2 would require 840 subjects (420 each in the control
and treatment groups) to have an 80% chance of detecting a significant difference (at the .05 level, two-tailed). However,
if the effect size were .95, the required total sample would be only 40 (20 each in each group, assuming the pretest-
posttest correlation, pxy, = .50 and the outcome measure reliability, pyy, = .70). The reliability of the outcome measure

and the use of a pretest were similar in their effectiveness over a reasonable range of values. The required group sizes
would drop from about 150 to about 75 as the reliability increases from .5 to .95 (assuming pxy = .50, ESp = .40), while
the required group sizes would drop from about 140 to about 60 as the pretest-posttest correlation increases from .2 to
.75 (assuming pyy=.70 and ESp=.40). Although effect size is found to be a major driver of sample size, in practice an

assessment professional may not have control over the size of the improvements in outcomes. Also, as noted earlier, in
practice improvements in outcome measure reliability will generally lead to improvements in the pretest-posttest
correlation. Therefore, we can conclude from this analysis that outcome measure reliability and the effective use of
pretests both warrant close attention in the design of assessment plans.

Figure 1: The effects of reliability, pretest-posttest correlation, and
effect size on the sample sizes necessary to have an 80% chance of
detecting a statistically significant difference.
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Tables 1, 2, and 3 show the sample sizes required for small, medium, and large effect sizes, respectively, given various
assessment reliabilities and pretest-posttest correlations. A hypothetical example will be offered to show how these
tables could be used to evaluate an assessment system. Suppose a school decided to implement an assessment system
wherein the learning outcomes of students would be assessed each year, using tests or similar measures, and these
outcomes would be compared to prior years. The system would include statistical analyses to evaluate the effect of
changes in the curriculum, and these analyses would form the basis of decisions to retain or reject changes. Thus, the
system can be seen as a closed feedback loop. Suppose this system had been in place for one year, and at the end of that
year, a new curriculum was to be introduced that was expected to lead to improvements in learning outcomes. The
assessment system didn’t use pretests and used a locally-developed outcome measure with a reliability of only .50. Such
a system might be obtained from portfolio-based assessments with poorly trained graders or weak rubrics, or from tests
that have not been subjected to item analysis. At this school, 60 students finish this level each year, so the control
sample is 60. Suppose further that the changes to be expected in outcomes corresponded to medium effect sizes (based
on studies reported in Bloom, 1976). Table 2 (second column from the left) shows that a sample of 166 more students
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would be needed to comprise the treatment group in order to have an 80% chance of detecting a statistically significant
improvement. At this school, the assessment system would take nearly three more years (nearly four all together,
including the control year) to collect the data before a sufficiently powerful statistical evaluation could be made.

Table 1: Required treatment sample sizes for a given control sample (n (), reliability (oyy),
and pretest-posttest correlation (oxy) and a small true expected effect size (ESp= .24).

PYY ™ PYY = PYY ™
b 7 9

PXY= PXY= PXY~= PXY= PXY~™ PXY= PXY= PXY= PXY~ PXY~= PXY~= PXY~

ng 0 .3 5 i 0 3 %) 7 0 3 5 i
10 %* * %* * * * * * * * % *
20 %* * %* * * * * * * * %* *
40 %* * %* * * * * * * * %* *
60 % * % * * * * * * * %* *
100 * * * * * * * 10908 * * * 345
150 * * * 1904 * * 5090 298 * 1708 473 162
200 * * * 460 7063 1564 542 199 629 447 266 127

400 855 656 420 214 381 319 231 133 244 211 1589 96

1000 375 330 257 162 242 216 171 110 179 160 128 84

2000 315 283 228 149 216 194 158 104 164 148 120 81

1000000 273 248 204 139 195 177 146 99 151 138 113 77

nc=nr 546 497 410 279 390 355 293 200 304 276 228 156

* No n7 sample size would be sufficient to achieve 80% power under these conditions.

Table 2: Required treatment sample sizes for a given control sample (n (), reliability (oyy),
and pretest-posttest correlation (oxy) and a medium expected true effect size (ESp= .60).

PYY= PYY = PYY=
5 7 .9

PXY= PXY= PXY= PXY™= PXY~ PXY= PXY= PXY= PXY~ PXY~™ PXY~= PXY~
0 .3 %) 7 0 3 %) 7 0 .3 5 7

|
I

10 * * * * * * * * * * * *
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20

40

60

100

150

200

400

1000

2000

1000000

nc=nr

*

166

79

62

57

49

46

45

44

88

4060

122

67

55

50

44

41

41

40

81

189

75

50

42

40

36

34

33

33

67

53

37

29

27

25

24

23

22

22

46

148

67

46

40

37

34

32

32

31

63

103

56

40

35

33

31

29

29

28

58

60

40

31

28

27

25

24

24

23

48

86

28

22

19

18

17

17

16

16

16

33

65

42

33

29

28

26

25

25

24

50

*

52

36

29

26

25

23

23

22

22

45

217

35

27

23

21

20

19

19

18

18

38

36

19

16

14

14

13

13

13

12

12

26

* No n7 sample size would be sufficient to achieve 80% power under these conditions.

Table 3: Required treatment sample sizes for a given control sample (n), reliability (oyy),
and pretest-posttest correlation (oxy) and a large expected true effect size (ESp = .96).

[=
I

10

20

40

60

100

150

200

PYY =

5

PYY =

i

PYY=

9

PXY= PXY= PXY= PXY™

PXY= PXY= PXY= PXY=

PXY= PXY= PXY= PXY=

0 3 %) 7 0 3 %) 7 0 3 5 7
* * * 80 * * 128 20 213 77 31 12
128 78 40 17 35 28 19 10 20 17 12 7
31 27 20 12 19 16 13 8 13 12 9 6
25 22 17 11 16 14 11 7 12 10 8 5
21 19 15 10 14 13 10 7 11 10 8 5
20 18 14 9 13 12 10 7 10 9 8 5
19 17 14 9 13 12 10 6 10 9 7 5
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400 18 16 13 9 13 11 9 6 10 9 7 5

1000 17 16 13 9 12 11 9 6 10 9 7 5

2000 17 16 13 9 12 11 9 6 10 9 7 5

1000000 17 16 13 9 12 11 9 6 9 9 7 5

nc=nr 35 32 27 19 25 23 19 14 20 18 15 11

* No n7 sample size would be sufficient to achieve 80% power under these conditions.

To continue the hypothetical example, now imagine that an assessment professional noticed the low reliability of the
measures in a pilot study and, realizing that four years is too long to wait for feedback, immediately made changes to the
measures. Suppose the outcome measure’s reliability were improved to .90, and a pretest (perhaps prior grades, or
standardized test scores from another source, if the treatment and control groups were fairly equivalent) were added
that correlated with the outcome measure at the .70 level. Still looking in Table 2 (the underlying effect size has not
changed), the far right column indicates that now only 16 students would be necessary for the treatment sample.
Further, if the school was able to implement the control and the pretest in the same year, perhaps to different groups of
students, the size of each group need only be 26 (from the bottom row of Table 2). Thus, the school’s assessment system
could make a sufficiently powerful quantitative evaluation in one year or less. Of course, with smaller sample sizes, the
researcher must always watch for outliers, and statistical significance at the .05 level may not always be necessary to
make reasonable decisions, but from this example it is clear that by improving the reliability of the measures and using
predictive pretests, assessment systems may obtain sound conclusions in a much more timely manner.

Concluding Remarks

The analysis and the examples presented here demonstrate how improvements in reliability of outcome measures and
the use of predictive pretests (or covariates if appropriate) can lead to striking improvements in assessment systems. By
reducing the sample sizes required for sound assessment, assessment systems so improved may provide feedback to
program administrators in a much more timely and cost-effective manner. The systematic collection and distribution of
measures that may function as useful covariates may thus be seen as an important aspect of building a school’s
assessment system. Conversely, if reliability and pretest issues are ignored, assessment systems may amount to little
more than bureaucratic overhead with little hope of providing useful information. Increased attention to the
measurement issues described here may therefore be essential to the success of assessment programs.

Notes

The author gratefully acknowledges the insightful comments received from Kim A. Stewart, Charles S. Reichardt,
Melvin M. Mark, and two anonymous reviewers on earlier drafts. The financial assistance from the Daniels College of
Business that was instrumental in completing this research is also gratefully acknowledged.

Appendix

This appendix shows how the power of a ¢-test used to compare a control group with a treatment group in a pretest-
posttest experimental design can be described in terms of the reliability of the posttest, the pretest-posttest correlation,
the sample size, and the effect size. The development starts with an approximation of the power of the ¢-test, from Hays
(1981, p. 288).

s ;52
(A1) Power =1 —prob. 2v

where v isthe degrees of freedom, or the size of the control group plus the size of the treatment group minus 2 (n¢c+ nyp
- 2)7

¢ is the critical value of the ¢t statistic evaluated at a selected a level with v degrees of freedom, and
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4 1s the noncentrality parameter.

The noncentrality parameter in Equation Al captures the expected difference between the two groups, and is
closely related to Cohen’s (1977) d, described in the body of the paper. The noncentrality parameter is analyzed more
closely here in order to model the factors that contribute to the standard deviation of the mean difference. In more
detail, then, the noncentrality parameter is a function of the expected difference in the populations divided by the
standard error of that difference, or

5= 95'5(|ﬂc - furD
(A2) est. 5. Ung.

where lete = s | represents the absolute difference in means between the control group and the treatment group and “ap.

1s the estimate of the pooled standard error of the mean difference. For simplicity in this analysis, we make the common

assumption that the variance in the two groups is the same, so “a#. can be estimated (Hayes, 1981, p. 285) as

1 1
Ty = c:lj{—+—]
(A3) est. ‘w g M

This analysis is now extended to accommodate differences in the reliability of the outcome measure, p,,, (also

>

assumed to be the same across treatment and historical groups). Note that reliability is the ratio of true score variance,
a?}'ue, to total variance, Toras (Nunnally, 1978, p. 200), or

= T
A T T

This can be re-arranged to show how the total observed variance is a function of the true variance and the reliability of
the measure, or

— a??ue
Total —

(Ab5) P,

From Equation 5 it is clear that if we assume that the variance in the underlying phenomenon (@?m-) remains the same

no matter how reliably it is measured, then increasing the reliability will be equivalent to reducing the error variance,
thus reducing the total variance and increasing the power of the test.

The total observed variance can also be reduced by the use of a pretest. The critical property of this pretest in this
analysis is the correlation between the pretest and the final outcome assessment (the posttest), or pxy. The remaining

unexplained variance, err , after controlling for the pretest would be (Reichardt, 1979, p. 157)
(A6)  T7 = Tnul(l— Oy

From Equation A6 it should be clear that as the correlation between the pretest and posttest (oxy) increases, the

remaining unexplained variance decreases. The combined variance-reducing effects of outcome measure reliability and
the use of pretests can be described by combining Equations A5 and A6, yielding

— J?!me(l_ p:i’}")
= —=

(A7) Ly

Substituting this more detailed analysis of the variance in outcome measures into Equation A3 yields

o JM[LLJ
(A8) est. w Py Ho  #p

The relationships among the quantities of interest can now be generally described by assuming a type of
standardization of the measures. The difference in the means, |r”c ~Hy |, will now be described in terms of Cohen’s
standardized effect size, d. Cohen describes the effect size of a comparison of means as the difference in means divided

by the standard deviation (Cohen, 1977, p. 20). To standardize the analysis used here, T will be set to 1.0, creating a

measure of the “true” standardized effect. Combining Equations A2 and A8 yields a more complete formula for the
noncentrality parameter as
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B

\I(l—ph){i+LJ
(A9) est. P W e Hr

Substituting Equation A9 into Equation A1 yields a relation describing the power of a ¢-test that integrates the
posttest reliability, the pretest-posttest correlation, the sample size, and the effect size.
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