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Following an exploratory factor analysis, factor scores may be computed and used in subsequent 
analyses.  Factor scores are composite variables which provide information about an individual’s 
placement on the factor(s). This article discusses popular methods to create factor scores under two 
different classes: refined and non-refined.  Strengths and considerations of the various methods, and for 
using factor scores in general, are discussed. 

 
Exploratory factor analysis (EFA) has been used as an 
analytical tool in educational research.  The methods 
may be used with novel or exploratory research 
scenarios as a precursor to latent variable modeling or 
confirmatory factor analyses (CFA) (Schumaker & 
Lomax, 2004). However, in many research situations, 
EFA is used as the focal methodology.  Practitioners 
may use EFA for a variety of purposes such as reducing 
a large number of items from a questionnaire or survey 
instrument to a smaller number of components, 
uncovering latent dimensions underlying a data set, or 
examining which items have the strongest association 
with a given factor. Once a researcher has used EFA and 
has identified the number of factors or components 
underlying a data set, he/she may wish to use the 
information about the factors in subsequent analyses 
(Gorsuch, 1983). For example, researchers may want to 
identify an individual’s placement or ranking on the 
factor(s), use the information with hypothesis tests to 
determine how factor scores differ between groups, or 
to incorporate factor information as part of a regression 
or predictive analysis.  To use EFA information in 
follow-up studies, the researcher must create scores to 
represent each individual’s placement on the factor(s) 

identified from the EFA.  These factor scores1  may then be 
used to investigate the research questions of interest.  

This article will describe ways in which a researcher 
may create factor scores following an EFA and will 
discuss the advantages and disadvantages among the 
methods.  There are two primary classes of computing 
factor scores: refined methods to develop factor scores 
require technical analyses, while non-refined methods 
involve non-sophisticated procedures.  In this article, we 
discuss issues related to computing factor scores so 
practitioners may make informed decisions when 
choosing among methods.   

Using and Computing Factor Scores 
Creation and use of factor scores is an option in EFA 
and with covariance structural modeling (e.g., CFA, 
structural equation modeling) situations.  The distinction 
of which methodology to use (EFA, CFA, structural 
                                                 
1 We recognize that the EFA literature makes a distinction between 
factor scores and factor score estimates, where factor scores 
generally refer to situations where the generated factor scores are 
unique and factor score estimates relate to solutions where there 
can be more than one possible solution for the factor score.  To 
simplify the discussion, this article will refer to factor scores 
meaning all types of scores indicating relative placement on an 
identified factor following an EFA. 
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models) depends on many issues, such as the goal of the 
project, the nature of the work (i.e., exploratory or 
confirmatory research), and even issues such as 
researchers’ knowledge of methodology, statistical 
techniques, and software. While latent variable modeling 
procedures are very popular, use of factor scores in the 
EFA framework is taught in graduate courses in research 
methods, included in many multivariate textbooks (e.g., 
Hair, Black, Babin, Anderson, & Tatham, 2006) and 
used in educational research situations. 

To examine situations where factor scores were 
used, a brief literature review of peer reviewed articles 
from the social sciences was conducted using the 
PSYCINFO database. The key words “factor analysis” 
and “factor scores” were used to identify articles. We 
examined recent articles published between the years 
2000 - 2009, inclusive.  The search uncovered a total of 
229 application articles that created and used factor 
scores in subsequent analyses. The articles spanned a 
variety of disciplines including education, psychology, 
public health and law.  Factor scores were used for 
various purposes in the field of educational research. For 
example, Kawashima and Shiomi (2007) used EFA with 
a thinking disposition scale. The analyses uncovered 
four factors related to high school students’ attitudes 
towards critical thinking.  Using students’ factor scores, 
Analysis of Variance was conducted by factor to 
investigate student differences in attitude by grade level 
and gender. Similarly, EFA was adopted by Bell, 
McCallum, and Cox (2003) in their research of cognitive 
elements underlying reading. After the factor solution 
was determined, factor scores were calculated for each 
factor, and were used in the follow-up multiple 
regression analyses to investigate the capability of the 
factors in predicting selected reading and writing skills.  

While articles which used factor scores with EFA 
and also confirmatory factor analysis CFA procedures 
were noted in our brief literature review, the majority of 
these articles (123 or 53.7%) used factor scores 
following EFA rather than CFA procedures 2 . 
Additionally, many studies using factor scores did not 
clarify the computation procedure used to create the 
factor scores. 

Although factor scores following EFA are still in 
use, the practice has been controversial in the social 
sciences for many years (e.g., Glass & Maguire, 1966). 
                                                 
2 Of the 229 application articles using factor scores: 123 articles 
(53.7%) used EFA, 43 articles (18.8%) used latent variable modeling 
or confirmatory factor analysis procedures, and 63 articles (27.5%) 
did not provide sufficient information on the methodology used. 

For example, many factor score methods are built on the 
assumption that the resulting factor scores will be 
uncorrelated; however, orthogonal factors are often the 
rarity rather than the norm in educational research. 
Increased knowledge of the requirements underlying 
many of the factor score methods may provide 
assistance to researchers interested in using these 
techniques.   

There are two main classes of factor score 
computation methods: refined and non-refined.  
Non-refined methods are relatively simple, cumulative 
procedures to provide information about individuals’ 
placement on the factor distribution. The simplicity 
lends itself to some attractive features, that is, 
non-refined methods are both easy to compute and easy 
to interpret.  Refined computation methods create factor 
scores using more sophisticated and technical 
approaches. They are more exact and complex than 
non-refined methods and provide estimates that are 
standardized scores.  

Non-refined Methods  
Non-refined methods are simple to use. Under the class 
of non-refined methods, various methods exist to 
produce factor scores. The most frequently used 
methods are described below.  

1. Sum Scores by Factor 
One of the simplest ways to estimate factor scores for 
each individual involves summing raw scores 
corresponding to all items loading on a factor (Comrey 
& Lee, 1992). If an item yields a negative factor loading, 
the raw score of the item is subtracted rather than added 
in the computations because the item is negatively 
related to the factor.  For this method (as well as for the 
following non-refined methods) average scores could be 
computed to retain the scale metric, which may allow for 
easier interpretation. Also, average scores may be useful 
to foster comparisons across factors when there are 
differing numbers of items per factor. 

The sum score method may be most desirable when 
the scales used to collect the original data are “untested 
and exploratory, with little or no evidence of reliability or 
validity” (Hair et al, 2006, p. 140). In addition, summed 
factor scores preserve the variation in the original data. 
Tabeachinck and Fidell (2001) noted that this approach 
is generally acceptable for most exploratory research 
situations. 

While sum scores may be acceptable for many 
studies, there are some considerations.  First, all items on 
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a factor are given equal weight, regardless of the loading 
value.  Therefore, items with relatively low loading 
values are given the same weight in the factor score as 
items with higher loading values.  If items are on 
different metrics, ignoring different amounts of 
variability in the observed variables might result in less 
reliable factor scores.  A remedy is to standardize 
variables on different metrics before running EFA.  
Lastly, summing items is straight forward if simple 
structure is present. The researcher must decide how to 
accommodate cross-loading items and how the items 
may impact interpretation if the items used to compute 
each factor score are not independent.    

2. Sum Scores – Above a Cut-off Value 
An easy way to consider an item’s relationship to the 
factor when creating a factor score is to include only 
items with loading values above a cut-off value in the 
computations. By doing so, researchers are only using 
“marker” variables in the computation. However, the 
cut-off value to use is an arbitrary decision. For example, 
one researcher may include items above a cut-off of .30 
while another researcher may include items above a 
higher level.  While this method only includes items 
above the cut-off in the calculations, the variability in the 
raw data is not preserved. 

3. Sum Scores - Standardized Variables 
 As compared to the previous two methods, summing 
standardized variables involves a somewhat more 
sophisticated computation approach. This option is 
recommended to deal with observed variables that may 
vary widely with respect to the standard deviation values 
of the raw data.  Before summing, raw scores are 
standardized to the same mean and standard deviation. 
The researcher may decide to sum standardized scores 
of all items loaded on a factor or to decide to sum scores 
for items with a loading values above a cut-off value.  
However, this method is not necessarily more 
advantageous than the previous methods if standard 
deviations of the raw data do not vary widely.  

4. Weighted Sum Scores  

The preceding methods do not involve item loading 
values in the computations, thereby disregarding the 
strength (or lack of strength) for each item. As a remedy, 
sum scores can be created where the factor loading of 
each item is multiplied to the scaled score for each item 
before summing. This method can be applied to all the 
items loaded on one factor, or only to items with factor 
loadings above a specific cut-off value. Further, this 

method can be conducted after scaling the items to the 
same mean and standard deviation. 

Because different weights (i.e., factor loading 
values) are applied to each item, one advantage of the 
weighted sum score method is that items with the 
highest loadings on the factor would have the largest 
effect on the factor score. However, one of the potential 
problems with this method is that the factor loadings 
may not be an accurate representation of the differences 
among factors due to a researcher’s choice of extraction 
model and/or rotation method. In other words, to 
simply weight items based on factor loadings might not 
result in a significant improvement over the previous 
methods.  

Non-refined factor scores are, in general, thought to 
be more stable across samples than refined methods 
(Grice & Harris, 1998). This means that the obtained 
results do not heavily depend on the particular sample 
used.  However, without a sophisticated technical 
computation procedure, researchers should take caution 
when creating and using this class of factor scores. For 
example, non-refined methods do not achieve a set 
mean and/or standard deviation for each of the factor 
scores. Instead, the mean and standard deviation of the 
factors will be dependent upon the characteristics of the 
items (e.g., scale of measurement, variability in data, 
etc.).  Also, non-refined methods may produce factor 
scores which are correlated, even if the EFA solution is 
orthogonal (Glass & Maguire, 1966).  While many 
situations involve oblique EFA solutions, the 
relationships among factors may not be accurately 
reproduced between factor scores. Finally, while 
non-refined methods are not obtained by a default 
routine with statistical software such as SPSS or SAS, the 
procedures can be easily programmed. 

 
Refined Methods  
Refined procedures may be applied when both principal 
components and common factor extraction methods are 
used with EFA.  Resulting factor scores are linear 
combinations of the observed variables which consider 
what is shared between the item and the factor (i.e., 
shared variance) and what is not measured (i.e., the 
uniqueness or error term variance) (Gorsuch, 1983).  
The most common refined methods use standardized 
information to create factor scores, producing 
standardized scores similar to a Z-score metric, where 
values range from approximately -3.0 to +3.0.  However, 
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instead of unit standard deviation, the exact value can 
vary.  

Methods in this category aim to maximize validity 
by producing factor scores that are highly correlated 
with a given factor and to obtain unbiased estimates of 
the true factor scores. Furthermore, these methods 
attempt to retain the relationships between factors. In 
other words, when the EFA solution is orthogonal, the 
factor scores should be uncorrelated with other factors 
and when the solution is oblique, the correlations among 
factor scores should be the same as the correlations 
among factors (Gorsuch, 1983).   

For the refined methods described, we provide 
information on how to execute these options using three 
popular statistical packages: SAS (version 9.12), SPSS 
(version 17), and R (version 2.9.0). We recognize that 
this presentation is a non-technical overview of the 
methods; the interested reader is referred to other 
sources for a more detailed discussion of the 
methodology (e.g., Gorsuch, 1983; Comrey & Lee, 1992) 
as well as the formulas underlying the methods (e.g., 
Hershberger, 2005).  The formulas for all methods are 
also provided in the appendix. 

1. Regression Scores.  
Thurstone (1935) used a least squares regression 
approach to predict factor score(s). Regression factor 
scores predict the location of each individual on the 
factor or component. This procedure differs from the 
non-refined weighted sum method, in that the weighed 
sum non-refined procedure reflects the extent to which 
the factor or component estimated is manifested by each 
individual case; the method does not use an underlying 
model to predict an “optimal” factor score. 

Following regression terminology, with this 
method, independent variables in the regression 
equation are the standardized observed values of the 
items in the estimated factors or components. These 
predictor variables are weighted by regression 
coefficients, which are obtained by multiplying the 
inverse of the observed variable correlation matrix by 
the matrix of factor loadings and, in the case of oblique 
factors, the factor correlation matrix. As opposed to a 
simple weighted sum, the least squares regression is a 
multivariate procedure, which takes into account not 
only the correlation between the factors and between 
factors and observed variables (via item loadings), but 
also the correlation among observed variables, as well as 
the correlation among oblique factors (for oblique EFA 

solutions). The factor scores are the dependent variables 
in the regression equation. 

Under this process, the computed factor scores are 
standardized to a mean of zero; however, the standard 
deviation of the distribution of factor scores (by factor) 
will be 1 if principal components methods are used and 
will be the squared multiple correlation between factors 
and variables (typically used as the communality 
estimate) if principal axis methods are used (Tabachnick 
& Fidell, 2001).    

Regression based factor scores can be easily 
obtained with popular statistical software packages. SAS 
computes regression factor scores and the results can be 
saved in an output data set specified in the OUT= 
option of the PROC FACTOR statement. In SPSS, 
regression factor scores are obtained by clicking the 
Scores button in the Factor Analysis window, checking 
the “Save as variables” box in the Factor Analysis: 
Factor Scores window and selecting “Regression” 
(default) from the three options provided.  In the 
computer package, R, regression factor scores are 
produced when an option scores = “regression” is added 
to the FACTANAL function, e.g. fact1<- 
FACTANAL(x, factors, scores= c(“regression”), 
rotation= “varimax”). 

2. Bartlett Scores.  

With Bartlett’s approach, only the shared (i.e., common) 
factors have an impact on factor scores.  The sum of 
squared components for the “error” factors (i.e., unique 
factors) across the set of variables is minimized, and 
resulting factor scores are highly correlated to their 
corresponding factor and not with other factors. 
However, the estimated factor scores between different 
factors may still correlate. 

 Bartlett factor scores are computed by multiplying 
the row vector of observed variables, by the inverse of 
the diagonal matrix of variances of the unique factor 
scores, and the factor pattern matrix of loadings. 
Resulting values are then multiplied by the inverse of the 
matrix product of the matrices of factor loadings and the 
inverse of the diagonal matrix of variances of the unique 
factor scores. 

One advantage of Bartlett factor scores over the 
other two refined methods presented here is that this 
procedure produces unbiased estimates of the true 
factor scores (Hershberger, 2005).  This is because 
Bartlett scores are produced by using maximum 
likelihood estimates – a statistical procedure which 
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produces estimates that are the most likely to represent 
the “true” factor scores.  

Bartlett factor scores can be computed in SPSS 
under the FACTOR menu by checking the “Save as 
variables” box in the Factor Analysis: Factor Scores 
window and selecting “Bartlett” from the options 
provided.  In R, Bartlett’s factor scores can be computed 
using a procedure similar to that used to obtain the 
regression factor scores, but including the option 
scores= “Bartlett”.  

3. Anderson-Rubin Scores.   

The method proposed by Anderson and Rubin (1956) is 
a variation of the Bartlett procedure, in which the least 
squares formula is adjusted to produce factor scores that 
are not only uncorrelated with other factors, but also 
uncorrelated with each other. Computation procedures 
are more complex than the Bartlett method and consist 
of multiplying the vector of observed variables by the 
inverse of a diagonal matrix of the variances of the 
unique factor scores, and the factor pattern matrix of 
loadings for the observed variables. Results are then 
multiplied by the inversion of the symmetric square root 
of the matrix product obtained by multiplying the 
matrices of eigenvectors (characteristic vectors of the 
matrix) and eigenvalues (characteristic roots of the 
matrix)3. The resulting factor scores are orthogonal, with 
a mean of 0 and a standard deviation of 1. They can be 
automatically generated in SPSS by selecting the 
Anderson and Rubin option in the Factor Analysis: 
Factor Scores window.  

Each of the three refined methods has advantages 
as well as drawbacks. The main advantage of the 
regression method is that it maximizes validity.  This 
means that the procedure provides the highest 
correlations between a factor score and the 
corresponding factor. Nevertheless, regression estimates 
are not unbiased estimates of true factor scores and 
could correlate with other factors and factor scores, even 

                                                 
3  Characteristic roots (eigenvalues) and characteristic vectors 
(eigenvectors) are used in factor analysis for matrix 
decomposition.  Eigenvalues are scalars (i.e., one number) that 
show the proportion of variance accounted for by each factor. 
The matrix used in the calculations is of order m x m (where m = 
number of factors) with eigenvalues on the diagonal and 0’s on 
the off diagonal.  Eigenvectors are vectors, which contain one 
value for each variable in the factor analysis. When eigenvectors 
are multiplied by the square root of the eigenvalue, the factor 
loading is produced.  See Gorsuch (1983) for more information. 
 

when the EFA solution is orthogonal. Bartlett factor 
scores are also highly correlated with the factor being 
estimated (Gorsuch, 1983).  This method has the 
additional advantage that factor scores only correlate 
with their own factor in an orthogonal solution. Finally, 
resulting coefficients are unbiased and, therefore, more 
accurate reflections of the cases’ location on the latent 
continuum in the population. The most important 
disadvantage of the Bartlett approach is that there may 
be a relationship among the factor scores from different 
factors in an orthogonal solution. The Anderson-Rubin 
method produces factor scores that are orthogonal when 
the solution is orthogonal. On the other hand, even 
though the factor scores have reasonably high 
correlations with the corresponding factor, they may 
also correlate with other factors in an orthogonal 
solution, and the factor scores are not unbiased 
(Gorsuch, 1983). In conclusion, none of the refined 
methods can concomitantly maximize validity, maximize 
the correlation between factor scores and their parent 
factor, and provide uncorrelated estimates for 
orthogonal factors. Table 1 summarizes advantages and 
disadvantages of the different refined methods.   

Considerations 
While factor scores following EFA are relatively easy to 
create and may be useful for follow-up analyses, caveats 
to using these scores, regardless of the method used to 
compute them, should be noted.  First, factor scores are 
sensitive to the factor extraction method and rotation 
method used to create the EFA solution.  Just as 
researchers are likely to obtain different solutions when 
different extraction and/or rotation method are used, 
factor scores obtained with different EFA selections 
may be different as well.  This could affect follow-up 
tests if factor scores for the same case differ widely 
across different EFA methods.  Similarly, the purpose of 
the initial EFA should be conducive to the use of the 
factor scores in further analyses.  Zuccaro (2007) 
discussed potential interpretation problems that may 
arise when refined methods were used to produce 
standardized factor scores, but other variables in the 
follow-up analyses were not standardized. Additionally, 
if EFA is used improperly (e.g., researchers are 
extracting components for data reduction purposes but 
then treating the components as latent variables), 
misleading hypothesis test results may occur (Zuccaro, 
2007). We remind researchers to first determine if EFA 
is acceptable and then to using factor scores, given that 
the EFA met the needs of the initial research question. 
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A second, and paramount, consideration when 
creating factor scores using refined methods is the 
problem of “indeterminacy” of the scores (see Gorsuch, 
1983 and Grice, 2001 for detailed explanations).  
Indeterminacy arises from the fact that, under the 
common factor model, the parameters are not uniquely 
defined, due to the researcher’s choice of the 
communality estimate.  This means that there is not a 
unique solution for the factor analysis results and, 
theoretically, an infinite number of solutions could 
account for the relationships between the items and 
factor(s).  Therefore, it also follows that the factor scores 
are not uniquely defined (Grice, 2001).  As noted by 
EFA researchers, the problem of indeterminacy arises 
with most factor extraction techniques found under the 
common factor model.  EFA methods which have a 
unique solution (i.e., determinant), such as principal 
component analysis and image common factor analysis, 
and their resulting factor scores are thought to be 
unique.  Researchers interested in using factor scores 
need to be aware of the problem of indeterminacy 
because it could impact not only the factor scores but 
also the validity of decisions that rely upon these scores 
(Grice, 2001).  For example, under some conditions, 
rankings of cases in a data set may vary widely based on 
different methods to compute factor scores, leaving a 
researcher unsure as to which ranking to trust. 

 Grice (2001) suggests researchers examine the 
degree of indeterminacy in their factor solutions using 
three different measures: (1) validity – evidence of 
correlational relationships between factor scores and 
factor(s);  (2) univocality- the extent to which factor 
scores are adequately or insufficiently correlated with 
other factors in the same analysis; and (3) correlational 
accuracy – which reports the extent to which 

correlations among the estimated factor scores match 
the correlations among the factors themselves.  Table 1 
includes these three measures to illustrate differences 
among the refined methods.  As noted by Grice, a high 
degree of indeterminacy may suggest that a researcher 
re-examine the number of factors needed or to disregard 
(or at least, use cautiously), scores from factors which 
illustrate questionable results.  Interested readers should 
refer to Grice (2001) for an in-depth discussion of 
indeterminacy, illustrations of how to evaluate if it is 
present, and a link to SAS programs to examine 
solutions for indeterminacy. While popular software 
programs do not yet routinely provide all of these tests, a 
test for validity using the multiple correlation value is 
routinely available under the regression method of SPSS 
when orthogonal factors are requested and with SAS for 
both orthogonal and oblique solutions.  Higher values of 
the multiple correlation suggest greater validity evidence, 
meaning greater determinacy of the factor scores. This 
information is very important for researchers to consider 
because EFA is an internally driven procedure, and thus, 
results may be sample specific (Costello & Osborne, 
2005).  Given the problems with EFA, researchers 
creating factor scores are urged to replicate the factor 
structure to ensure that the solution is stable before 
creating and using factor scores. Factor scores may also 
be examined for indeterminacy using the procedures 
described above.  

A third issue deals with data quality. Once factor 
scores are obtained, this set of data requires screening 
and examination to ensure that distribution(s) of factor 
scores meet assumptions required by the statistical 
methodology to be used for follow-up testing.  While 
recommendations for data screening and checking 
assumptions are common before beginning statistical 

 
Table 1: Advantages and Disadvantages of Refined Methods to Compute Factor Scores 
Factor scores are… 
 …correlated to 

the estimated 
factor. (Validity) 

…uncorrelated to 
other orthogonal 

factors. 
(Univocality) 

…uncorrelated to factor 
scores from other 
orthogonal factors. 

(Correlational Accuracy) 

…unbiased 
estimates of 
factor score 
parameters. 

Regression 
scores 

Maximal No No No 

Bartlett factor 
scores 

High Yes No Yes 

Anderson & 
Rubin factor 
scores 

Acceptable No  Yes  No 
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analyses, it deserves repeating in the context of factor 
scores.  Factor scores are “new” data for a follow-up 
analysis and are subject to the same screening 
recommendations.  Factor scores may be skewed and/or 
non-normal, especially if non-refined methods were 
used to create the scores. Further action (e.g., 
transformations) may be needed before using factor 
scores in subsequent analyses.  Failure to properly screen 
the factor scores may result in results of hypothesis tests 
that could provide misleading or even incorrect 
information.   

Lastly, we wish to recognize that factor scores can 
be computed in the context of CFA.  CFA and its uses 
differ from EFA; however, the factor scores created 
through CFA are similar in the sense that they can be 
used to identify ranking on a latent variable and used in 
follow-up analyses. CFA methods have additional 
advantages over EFA, including conducting 
measurement at the latent level, distinguishing the error 
component from what is shared with a factor, including 
multiple fit indices, and allowing for much greater 
flexibility in constructing a model (Bollen, 1989). Factor 
scores computed in the CFA context typically use similar 
methods as described here. The interested reader should 
refer to discussions of factor scores in the CFA 
framework (e.g., Bollen, 1989). 

In summary, this discussion introduced the topic of 
factor scores within the EFA framework, described 
different methods to create factor scores, and provided 
advantages and disadvantages among the different 
methods. The appendices provided summarize the 
preceding discussion of factor scores in a table for use as 
a reference tool and also provide additional information 
on the computation of factor scores under the refined 
methods.  We hope that this discussion will help to 
illustrate choices, considerations, and caveats when 
creating and using factor scores.    
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Appendix  1: Non-Refined Methods to Construct Factor Scores 
Method Procedure Advantages Considerations 

Sum Scores by 
Factor 
 
 
 
Sum Scores 
Above a 
Cut-off Value 

 Sum raw scores 
corresponding to all items 
loading on the factor.  
(Items with negative loadings 
are subtracted in the score 
creation.) 
 
Sometimes a cutoff loading 
value is used and items above 
the cutoff are summed.  

In the metric of what is studied. 
 
Can be averaged to reflect the 
scale of the items. 
 
Easy to calculate and interpret. 
 
If factor scores are used in later 
analyses, sum scores preserve 
variation in the data.  
 
 

Gives items equal weight 
when the weight of item to 
factor (loading values) may be 
very different. 
 
Cutoff is arbitrary. A higher 
cutoff may result in including 
fewer variables used, a lower 
cutoff will include variables 
with a weaker relationship to 
the factor. 

Sum Scores - 
Standardized 
Variables 

Scale raw scores to same mean 
and standard deviation before 
summing. 
 
Can apply a cutoff loading 
value and only add items above 
the cutoff. 

Useful to deal with observed 
variables that vary widely in 
terms of standard deviation 
units.   
 
Refinement worth effort unless 
observed variables are 
reasonably similar in the size of 
standard deviations.  

If standard deviations of raw 
scores are similar, sum scores 
without standardizing are 
easier to compute. 
 
No weighting given to items 
with higher loadings. 

Weighted 
Sum Scores 

Take into consideration the 
loading values in the factor 
score creation. 
 
Multiply the factor loading to 
the scale score then sum.  
 
Can be applied to items above 
a certain loading value or all 
items on a factor. 

Recognizes the strength (or lack 
of strength) for items.  
 
Items with highest loadings have 
the most affect on the factor 
scores. 
 
 

Possibility that differences in 
factor loadings are due to 
EFA extraction and rotation 
choices. 
 
If differences are due to EFA 
procedures, this method may 
not be better than creating 
summed scale scores. 
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Appendix 1 (continued): Refined Methods to Construct Factor Scores 
Method  Procedure Advantages Considerations  
Regression 
Scores   

Multiple regression used to 
estimate (predict) factor 
scores.  
 
Default procedure to 
compute factor scores in 
SAS and SPSS packages; also 
available in R. 
 

Factor scores are standard scores with a 
Mean =0, Variance = squared multiple 
correlation (SMC) between items and 
factor.  
 
Procedure maximizes validity of 
estimates. 
 

Factor scores are 
neither univocal nor 
unbiased.  
 
The scores may be 
correlated even when 
factors are orthogonal.

Bartlett Method of producing factor 
scores is similar to 
regression method, but 
produces estimates that are 
most likely to represent the 
true factor scores.  
 
Can be computed using 
SPSS or R statistical 
packages. 

Factor scores are standard scores 
(Mean =0, Variance = SMC) 
 
Produces unbiased estimates. 
 
In an orthogonal solution, factor scores 
are not correlated with other factors 
(univocality). 
 
Procedure produces high validity 
estimates between the factor scores and 
factor. 

The scores may be 
correlated even when 
factors are orthogonal. 
 

Anderson-Rubin Method of producing factor 
scores is similar to Bartlett, 
but allows factor scores to 
be uncorrelated when 
factors are orthogonal. 
 
Can be computed using 
SPSS.  

Factor scores have a mean of 0, have a 
standard deviation of 1.  
When the factors are orthogonal, factor 
scores are uncorrelated as well 
(correlational accuracy). 
 
Factor scores have reasonably high 
correlations with their estimated factor 
(validity). 

Factor scores may be 
correlated with the 
other orthogonal 
factors (i.e.,. not 
univocal). 
 
Factor scores are not 
unbiased. 
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Appendix 2: Computation Procedures for Refined Factor Scores 
Factor Scores  Formulae Where… 
Regression 
Scores   

mxmnxmnxmnxm

nxmnxmnxm

nxmxnxm

ARB

ARB

BZF

Φ=

=

=

−

−

∧

1

1
11

 

n – number of observed variables 
m – number of factors 

F
∧

– the row vector of m estimated factor 
scores 

Z – the row vector of n standardized 
observed variables 

B – the matrix of regression of weights 
for the m factors on the n observed 
variables 

R-1 – the inverse of the matrix of 
correlations between the n observed 
variables  

A and A’ – pattern matrices of loadings of 
n observed variables on m factors or 
components 

Ф – the correlation matrix of the m 
factors 

Orthogonal 
Factors: 
Oblique  
Factors: 

Bartlett 
122

1 )'(1
−−−

∧

= nxmnxnmxnnxmnxnxn AUAAUZF xm

 

U-2 – the inverse of a diagonal matrix of 
the variances of the n unique factor scores

Anderson-Rubin 

nxnDnxnnxnnxn

nxmnxnxnxm

XXG

GAUZF
′Λ=

= −−
∧

2/12
11

 

X and X′ – matrices of n x n eigenvectors 
ЛD–  the n x n matrix of eigenvalues  
G  -  the matrix product of eigenvalues 

and eigenvectors 
G—1/2 –  the inverse of the symmetric 

square root of  G 
 

Formulas for refined factor methods were taken from Hershberger, S. L. (2005). 
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