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While linear programming is a common tool in business and industry, there have not been many applications in 
educational assessment and only a handful of individuals have been actively involved in conducting 
psychometric research in this area. Perhaps this is due, at least in part, to the complexity of existing software 
packages. This article presents three applications of linear programming to automate test assembly using an 
add-in to Microsoft Excel 2007. These increasingly complex examples permit the reader to readily see and 
manipulate the programming objectives and constraints within a familiar modeling environment. A spreadsheet 
used in this demonstration is available for downloading. 

 

Advances in educational measurement and technology 
continue to afford psychometricians new ways to deal 
with complex measurement problems.  For example, 
measurement researchers (e.g. Armstrong, Jones, 
Kunce, 1998; Luecht, 1998; van der Linden, 1998) have 
recently outlined mathematical procedures1 that, when 
used with generic optimization software such as ILOG 
OPL-CPLEX and LINGO, can automate the process of 
selecting questions from large item banks to construct 
parallel tests.  Parallel tests are important in large-scale 
testing programs because they are equivalent in terms of 
both content and statistical properties and are 
considered interchangeable which leads to many 
practical benefits.  Automated test assembly (ATA) is 
the most efficient and effective way to construct parallel 
tests.  Unfortunately, however, existing software 
packages remain largely inaccessible to the wider 
psychometric community because of their complicated 
and unfamiliar modeling platforms.  That is, in order to 
model ATA problems using available optimization 
software, psychometricians often require additional 
training in unfamiliar programming languages which 
might be acting as a deterrent to their widespread use.    

In a recent review of the utility of conducting ATA 
in Microsoft Excel 2007 with a premium solver upgrade, 
Cor, Alves, and Gierl (2008) conclude that Excel offers a 
user-friendly modeling context that, combined with its 

popularity, could be used to bring ATA to a wider 
psychometric audience.  The following paper builds on 
the Cor et al (2008) review by providing an in-depth 
description of how to model and solve three increasingly 
complex test assembly problems using Microsoft Excel 
2007 and the Premium Solver Platform upgrade. 

AUTOMATIC TEST ASSEMBLY:  
AN OVERVIEW 

In Item Response Theory, the measurement precision of 
a test is characterized by its test information function.  
Test information functions indicate the strength of a test 
at each point on an ability scale (Davey & Pitoniak, 
2006). ATA is possible is because of the property of 
conditional item independence (see Lord, 1980).  Due to 
conditional item independence, the total information 
provided by a test at any one point on the ability scale 
can be defined as the sum of the information at that 
point provided by the individual items included in the 
test. This property allows assembly problems to be 
modeled as systems of linear equations. Once modeled, 
optimization algorithms can be employed to efficiently 
search the solution space of possible combinations of 
test items that serve to optimally satisfy both 
psychometric and content specifications. 

Test assembly models are specified using a system 
of equations that define decision variables, an objective 
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function, and constraints associated with the problem.  
Decision variables are values that optimization 
algorithms change in order to find the solution to a given 
problem.  In test assembly, the decision variables are 
defined as 1’s and 0’s to indicate whether an item is 
included (1) or excluded (0) in the final form.  
Mathematically, decision variables in test assembly 
problems are expressed as follows: 

{1 if item  is included in test form t
0 if item  is not included in test form t

i
it ix =  (1)

The objective function is the equation that 
fluctuates when decision variables change. Different test 
assembly problems have different objective functions.  
For example, in some testing situations the goal is to 
generate parallel tests that maximize the information at 
certain points on the ability scale.  In these instances, the 
objective function can be mathematically represented as 
follows: 

Maximize: Ii(θkt )xit
i

∑
k

∑
t

∑  (2)

In words, Equation 2 states that the sum of the 
information, I, across all items, i, across each specified 
level of ability, θk, across each test, t, multiplied by the 
decision variable xit should be maximized.  

The next types of equations in the model are the 
test assembly constraints.  In general, constraints define 
the boundaries that restrict how high, low, or close to a 
specified value an objective function can get.  In test 
assembly problems, there are two types of constraints - 
item level and test level.  Item level constraints are used 
to restrict or force the use of items that are not wanted 
or required on the final form.  For example, the test 
developer, using a test bank made up of items that have 
been calibrated using a 3 parameter item response 
model, may want to restrict the selection of items to 
those with guessing parameters, ci, less than 0.30.  This 
item level constraint is represented mathematically as in 
Equation 3: 

 

( ) 0.30it itx c ≤ for all items i on all test forms t (3)

Other item level constraints include item 
life/overlap, item difficulty, reading level, or any item 
attribute that is discretely associated with items in the 
test bank.   

Test level constraints are used to specify the 
attributes of the final form.  These types of constraints 

can be psychometric or content related.  For example, a 
test developer may wish to include exactly 9 items that 
belong to content category C1 on each test form.  This 
content related constraint is represented mathematically 
in the following way: 

1

9
C

it
i V
x

∈

=∑  (4)

In words, Equation 4 states that the sum of the items 
that are a subset of content category C1 must equal nine. 

This concludes our brief overview of how to define 
systems of equations required to set up mathematical 
models to solve ATA problems. For a detailed 
description of the various types of objective functions 
and constraints that can be included in test assembly 
models, readers are referred to van der Linden (2005).  
We now turn to demonstrating how to represent and 
solve test assembly problems using Excel. In order to 
provide readers with a sense for how these problems can 
be set up in Excel, demonstrations with three 
increasingly large and diverse test assembly problems are 
described.  

THREE DEMONSTRATIONS 

Example 1: Small Scale Simultaneous Test 
Assembly 

 This first problem demonstrates how Excel can be used 
to model simple test assembly problems that, although 
small, were once considered not solvable in Excel (see 
van der Linden, 2005). In this scenario, the goal of the 
test assembly problem is to simultaneously produce 
three parallel tests containing ten items that are 
maximally informative and parallel at three points on the 
ability scale. For this problem, a set of 55 previously 
simulated items from an introductory course in item 
response theory were used2. The means of the a, b, and c 
parameters for these simulated items were 0.91, -0.14, 
and 0.20 respectively. Figure 1 shows the item 
information curves for each of the 55 items.   

Figure 1 shows that, even in this small test assembly 
problem, trying to select three sets of ten items that 
result in statistically parallel tests (tests with overlapping 
information functions) is a difficult prospect. 
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Figure 1. Item Information Curves for the 55 Items in 
Example 1 

 

Figure 2 shows how the item bank was represented 
in Excel.   The bank contains the a, b, and c parameters, 
the content categorization of each item, and the 3 

parameter logistic information at the specified levels of 
ability3. In this example, items were simulated to be 
mutually exclusive in terms of content4.  For example an 
item that measured content category A, has a 1 in the 
content column for A and 0’s in the remaining columns.  
We now turn to describing how the model for this 
problem is represented in Excel (shown in Figure 3). For 
the purposes of the paper we limit our explanations to 
verbal descriptions of the spreadsheets and how they are 

set up.  For full mathematical definitions of each 
problem, readers are referred to Appendix A. 

Figure 3 shows how the unsolved model is 
represented in Excel. Each part of the model is 
described in turn. First, readers are referred to the table 
titled “Item level Decision Variables” in the middle left 
portion of the spreadsheet.  This part of the model is 
used to specify the decision variables and the item level 
constraints for the problem.  The blank cells in this table 
represent the item decision variable matrix (item x test 
form). These cells are the values that the solver algorithm 
change in order to search for an optimal solution.  In the 
model, these cells are constrained to be binary so that a 
‘1’ indicates an item has been chosen for the associated 
test and a ‘0’ means it was not. 

The problem states that items are to be used only 
once across the three tests.  In order to meet this overlap 

constraint the column directly to the left of the item 
decision variable matrix (starting at cell E15), which 
represents the sum of the decision variables across the 
three tests, is constrained to be less than or equal to one.  
For example, if item one was assigned to test one, it 
could not be assigned to tests two or three because it 
would violate the constraint that the sum across the 
three forms must be less than or equal to one.  We now 
turn to the content specifications for this problem.    

Figure 2. Item Banking in Excel 
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The content specifications state that each test must 
contain two items from content category A, three items 
from content category B, two items from content 
category C, and three items from content category D.  In 
order to build this specification into the model, the 
required values are directly input into the grey cells in the 
content specification table at the top left quadrant of the 
spreadsheet. The number of items measuring each 
content category on each test is then calculated in the 
rows below the entered specifications.  These cells are 
defined to equal the sum of the product of the decision 
variables assigned to each item for each test and its 
category classification from the item bank (also a binary 
variable).  For example, if in the solution to the problem, 
items three and seven are indicated as being included in 
test one and these items are the only items on the test 
measuring content category A, the value in cell B10 
would equal two.   In the model, the values in the cells in 
these rows (one row per test) must be less than or equal 
to the values in the grey cells entered above5.   

We now turn to the problem of specifying the 
objective function for this problem. In order to make 
the test maximally informative at the specified levels of 

ability, the objective function was formulated to 
minimize the difference between the resulting test 
information curves and an absolute target information 
curve (for a detailed description of this type of 
formulation see van der Linden, 2005, p. 109). The 
absolute targets for this problem are calculated by 
considering the best three tests that the item bank could 
hypothetically produce.  When unconstrained, the most 
parallel three tests this item bank can produce will evenly 
share the total information available at each level of 
ability. For example, if the total information available at 
θ1 = -1 is 11.29, the hypothetical target for the three test 
forms is 11.29/3 = 3.76. For this problem, three 
arbitrary levels of ability are considered, θ1 = -1, θ2 = 0, 
and θ3 = 1.  The same procedure is used to determine the 
absolute targets for θ2 = 0 and θ3 = 1.  The targets are 
entered in the grey cells of the Curve 
Specification/Constraint table in the upper right 
quadrant of the spreadsheet shown in Figure 2.  Each 
test has the same absolute targets. 

In order to force the solver algorithm to search for 
the solution that minimizes the difference between the 
absolute targets and the actual information included in  

Figure 3. Defining a Simple Simultaneous Test Assembly Problem in Excel 
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Figure 4. Specifying a Simultaneous Test Assembly Problem in Solver
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the test, a new variable, ‘y’, that represents the absolute 
maximum difference between the targets and the actual 
information is defined in cell G14.  This cell becomes 
both the objective and a variable that is free to change 
when solving the problem.  In order to find a solution to 
the problem that minimizes the value of y, three types of 
cells are defined.  First, the actual amount of information 
for each test at each level of ability based on a given 
solution is calculated in cells G9:O9.  These cells 
calculate the sum of the product of the decision variables 
for each item on each test and the information that each 
item provides at the specified level of ability.  For 
example, if a given solution indicated that items one 
through ten are to be included in test one, the actual 
amount of information at θ1 = -1 for test one is simply 
the sum of the information provided by each of these 
items at this level of ability (recall that the information at 
various levels of ability is calculated in the item bank).  

Next, the upper bounds on the difference between 
the target and the actual information for each level of 
ability on each test are defined.  These values are 
calculated as the specified target plus ‘y’ (shown in cells 
G11:O11). Finally, the lower bounds on the difference 
between the target and the actual information for each 
level of ability on each test are defined.  These values are 
calculated as the specified target minus ‘y’(shown in cells 
G12:O12).  In order to ensure the solution produces a 
value of ‘y’ that is within the calculated upper and lower 
bounds, constraints indicating that the actual 
information from the calculated total information (cells 
G9:O9) is less than the upper bounds and greater than 
the lower bounds of each individual target are added.  A 
description of how each of the constraints and variables 
described above are specified in the Solver interface is 
provided next. 

Figure 4 shows the solver interface as it appears in 
the latest version of Excel 2007. The solver interface 
described in this paper is the most up to date version of 
solver that can be installed and used with Excel 20076.  
This platform differs from the factory installed version 
of solver and the version of Solver evaluated by Cor et 
al. (2008) but requires the same basic specification 
strategy.  

For the purposes of this demonstration we focus on 
the Solver Options and Model Specifications menu 
shown on the far right of the spreadsheet in Figure 4.  
Specifying a model in solver involves filling in the 
different branches of the modelling tree under the 
Model tab in the Solver Options and Model 
Specifications menu on the right hand side of the sheet.  

For example, by selecting the branch titled Objective 
and then clicking the add button at the top left of the 
menu, users can select the cells they want to be specified 
as the objective.  Once selected users are prompted to 
specify whether the objective is to be maximized, 
minimized, set to a value of zero, or set to a specific 
value. In this problem, the objective was specified to 
minimize the value in cell G14. 

The same basic procedure is used to specify all of 
the components of the model.  To specify the decision 
variables, the Variables branch is selected and the 
appropriate cells are chosen from the spreadsheet.  In 
this example, the variables are located in the item x test 
form matrix as well as in cell G14.  Next, users begin to 
define the constraints.  For example, in order to add 
content constraints to the model, cells B10:E10 must be 
constrained to be less than or equal to cells B9:E9.  After 
defining all the constraints described in the model (item 
overlap constraints and target bounds) users turn to 
specifying variable bounds.  That is, recall that the item 
decision variables must be bound to be integers.  In 
order to facilitate this constraint, the Model tab includes 
an Integer branch where users add the cells in the item x 
test form matrix.  The last thing that must be constrained 
for this problem is the range for ‘y’.  That is, ‘y’ 
represents the maximum absolute difference between 
the target and the actual information calculated for each 
test.  As a result, ‘y’ cannot be less than zero.  Users 
specify this constraint in the Bound branch under the 
Model tab7.  This concludes the description of all 
information that must be entered into the Solver 
interface in order to solve the problem. 

After fully defining the assembly problem in the 
Solver Options and Model Specifications interface, users 
select an engine to solve the optimization problem.  
Without getting too technical, most ATA problems can 
be solved using the Large-scale LP engine which is 
suitable for Mixed Integer Programming problems with 
an unlimited number of variables and unlimited 
constraints. In cases where the Large-scale LP engine is 
taking a substantial amount of time to solve the 
problem, the Gurobi engine can be used to solve all test 
assembly problems.  However, there is a substantial cost 
difference between the two engines so.   

In order to start the solution of the problem, users 
click on the play button at the top right of the Solver 
Options and Model Specifications interface.  The display 
automatically switches to the Output tab and begins to 
show solution progress.  Once a solution has been found 
or the iteration or time limits have been reached, users  
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Figure 4. Solution to Simple Simultaneous Test Assembly Problem
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are presented with a window stating the status of the 
solution.  Given a successful solution with all constraints 
being met, users select ‘ok’ and are directed back to the 
sheet.  Figure 4 shows the solution to this problem.  

The Output tab (shown in the far right of Figure 4) 
displays the solution time and other solution 
characteristics for the problem.  Using the Large-Scale 
LP engine on a computer with a 2.0 GHz processor and 
1.0 GB of RAM, a satisfactory solution8 to the test 
assembly problem was found in 1 minute and 48 
seconds that satisfied all the problem constraints.  The 
items selected for each test are indicated in the item x test 
form matrix.  Using these values and the data in the item 
bank, the item information curves for each form are 
automatically generated in the graph shown in the 
middle of the spreadsheet.  Based on the overlap of 
these curves, the tests generated appear statistically 
parallel.  Finally, we see that the maximum difference 
between the target and the actual total information for 
each test at each ability level was 1.301. We now turn to 
an example that is based on real item data.  This 
concludes the first demonstration. 
Example 2 - Observed-Score Pre-Equating using 
ATA 

 The first test assembly demonstration, although 
sophisticated, was rather small by test assembly 

standards.  That is, the model had only 166 variables and 
86 constraints.  In this second example, a larger more 
real world example is demonstrated.  

In many large-scale testing programs, equating 
procedures are used to place successive year’s test scores 
on the same scale so that reported scores have the same 

meaning from year to year. One way to limit the amount 
of equating that is required is to try to construct 
successive tests so that they have overlapping test 
characteristic curves.  Test characteristic curves are 
calculated as the linear combination of the item 
characteristic curves for any given test.  In a similar way 
that we were able to use ATA to model linear 
combinations of item information, the linear 
combinations of item characteristic curves can be used 
as a basis for the model. 

In this example, the goal of the test assembly 
problem is to create a new version of a criterion 
referenced achievement test that has the same test 
characteristic curve as the original form.  In order to set 
this problem up, a bank consisting of 168 science nine 
achievement test items administered to approximately 
40,000 Canadian students from 1995 to 1999 was 
assembled.  Using BILOG, the 3-PL parameters for 
each item were estimated so that all parameters were 
placed on the 1995 scale9.  Figure 5 shows the item bank 
data for this problem.  The only difference between the 
bank shown in example one and the current bank is that 
instead of showing the calculations for item information, 
this bank shows the calculation of the 3-PL probabilities.  
The model defining this problem is defined next.  

 

In the present problem, a test is to be constructed 
that contains the same number of items from the six 
content categories as was included in a pre-specified 
reference test. Further, in order to facilitate future 
linking, 23 of the items on the new form must be 
common to both the reference test and the new test.  

Figure 5. Pre-equating Item Bank 
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Finally, the new test must minimize the difference 
between the observed cut scores of the reference test 
(θaccep = -0.80 and θexcel = 0.80) and the new test. Figure 6 
shows the unsolved model for this problem. For the 
sake of brevity, only new aspects of the model will be 
described in detail for this test assembly problem. Once 
again, readers are referred to Appendix A for a full 
mathematical representation of the model. 

Similarities between this model and the model 
described in example one include the way in which the 
item decision variables, the content specifications, and 
the objective function have been formulated. That is, the 
same formulas that were used to specify these 
components in the previous example, with one 
exception, are also used in this model.   The exception is 
the values calculated in cells J3:K3.  That is, rather than 
calculating the total information for each test at each 
ability level as was done in example one, the observed 
cut scores at the indicated levels of ability are calculated 
instead (cells J3:K3).  Observed cut scores are calculated 
as the sum of the product of the calculated 3-PL 
probabilities and the decision variables describing 
whether each item is included in the test for each of the 
two cut scores (θaccep = -0.80 and θexcel = 0.80). The cut 
score targets are obtained directly from the test 
characteristic curve of the reference form. The graph in 
the lower right quadrant of the spreadsheet shows the 
target test characteristic curve based on the items 
included in the reference test. The target cut-score 
values based on this curve are Taccep = 28 and Texcel = 44, 
respectively.  The new features of the present model are 
described next. 

First, the model includes the specification of the 
reference form data starting in cell B16.  These values 
function in a similar way as item decision variables do in 
that they represent whether or not an item is included in 
the reference test.  They differ in that, for this problem, 
these values are fixed and are only used as a basis for 
calculating item overlap constraints.  Next, the total item 
constraint is specified in cell B9.  This value is calculated 
as the sum of the item decision variables for the new 
form.  It is included in the model so that the total items 
in the new form can be constrained to the specified 
value of 55.  Finally, sets of cells constraining the 
problem to have 23 items that overlap between the new 
and old form are included in the model.  

Specifically, a new set of overlap decision variables, 
zi, are defined (starting at cell D16) to represent whether 
each item is included in one, zi = 0, or both of the tests, zi 

= 1.  In other words, the Solver algorithm is free to 
change these values in order to find the best 
combination of overlapping items to minimize ‘y’. To 
ensure that exactly 23 items overlap, the sum of the 
overlap variables (zi) is calculated in cell B12 and is 
constrained to equal the specified value in cell B11.  
Next, to facilitate the proper selection of overlap 
decision variables, these variables are constrained to be 
greater than or equal to sum of the item level decision 
variables across the two forms minus one (starting at cell 
F16).  Finally, the sum of the item variables (starting at 
cell E16) are constrained to be less than or equal to two 
times the overlap variable for each item (starting at cell 
G16).  Readers are referred to van der Linden (2005, p. 
144) for a complete explanation of how these sets of 
constraints function to control for item overlap. 

The last step to solve this problem is to specify the 
model in the Solver Options and Model Specification 
tab on the far right of Figure 6.  The same procedures are 
used to define the decision variables, constraints, 
bounds, and integer constraints for this problem as were 
used in example 1.  Figure 7 shows the solution to the 
observed score pre-equating problem. Using the Large 
Scale LP engine on a computer with a 2.0 GHz 
processor and 1 GB of RAM, the solution time for this 
problem was 2 minutes and 55 seconds.  The problem 
involved 337 variables and 348 constraints.  The graph 
of the test characteristic curves in the bottom right 
quadrant of the spreadsheet of Figure 7 shows how the 
new test characteristic curve almost perfectly parallels 
the reference form.  Further, there is almost no 
difference between the new test cut scores and the 
specified targets. Finally, all constraints were satisfied.  
We now turn to example 3. 

Example 3: Large-Scale Balanced Incomplete 
Block Design 

Example three constitutes the largest and most 
advanced problem of the three demonstrated in this set.  
In this example, the goal of the test assembly problem is 
to generate 26 parallel forms in a balanced incomplete 
block design (BIB).  An item bank consisting of 613 
grade 4 mathematics items from the Brazilian National 
Basic Education Assessment System (Sistema Nacional 
de Avaliação da Educação Básica - SAEB) is used to 
solve this problem.   The bank includes the 3-PL item 
parameters along with content categorization based on 4 
mutually exclusive themes and 28 mutually exclusive 
descriptor categories. Figure 8 shows how the bank is 
represented in Excel. 
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Figure 6. Observed Score Pre-equating Model 
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Figure 7.  Solution to Observed Score Pre-Equating Model 
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The bank includes the item number, the 3PL IRT 
parameters, four content themes, and 28 content 
categories (Figure 8 displays only 4 of the 28 
descriptors). Also included in the bank is the item 
information function specified at multiple points on the 
theta scale (the figure displays only four of these points: 
−2.0, −1.84, 1.84, 2.0). 

The BIB requirement necessitates two stages of 
optimization in order to solve this problem.  In the first 
stage, 13 parallel blocks consisting of 13 unique items are 
assembled.  In stage two the 13 blocks are organized into 
26 parallel forms in a BIB design.  The model for the 
first stage of the problem is presented in Figure 9 with 
the complete mathematical representation presented in 
Appendix A.  

Once again, this model contains the usual suspects, 
the decision variables (represented in an item×test block 
matrix in cells B27 to N637), constraints, and an 
objective function (cell O23).  The unique features of 
this problem include more complex content constraints 
and a new way of formulating the objective function.  
Each of these new features are discussed in turn.  First, 
the content constraints in the problem are modelled at 
two levels.  At the broadest level, each block must 
contain a specific number of items that measure each 
curriculum theme.  These constraints are formulated in 
the same way as was described in the two previous 
examples (cells B5:E18).  At a more specific level, there 

is a requirement that when taken together, the test 
blocks must have sampled the specified number of items 
for each descriptor (descriptors are nested within 
themes).  In order to accommodate this constraint more 
relaxed content constraints were employed.  That is, in 
order to facilitate a solution the total number of items 
measuring each descriptor (cells F20:AG20) was allowed 
to vary within plus or minus one of the specified 
requirements (cells F5:AG5).  

The other unique aspect of this model is how the 
objective function was formulated.  In this example the 
goal has no specific target.  That is, the goal is to 
maximize the information provided at the hypothetical 
cut score of θ = 1.  This formulation is much simpler 
than the previous examples and involves pushing the 
sum of the information provided across all test blocks at 
θ = 1 (calculated in cell O23) to its maximum.  Although 
this formulation is simpler, it can be problematic 
because it does not necessitate a parallel solution. That 
is, the original formulation can result in an uneven 
spread of the information across the test blocks.  In 
order to spread the information out evenly across the 
blocks, a second round of optimization is required.  In 
the second round of optimization, the total information 
for each test block (cells B23:N23) is constrained to be 
less than or equal to the average information produced 
for each block in the first round of optimization.  For 
this problem, the first optimization run resulted in

 
 
Figure 8. Large-Scale BIB Item Bank 
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Figure 9.  Stage 1 of Large-Scale BIB Model 
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Figure 10.  Stage I of the Large-Scale BIB solution  
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Figure 11. Model and Solution for Stage II of the Large-Scale BIB Problem 
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average information of 21.7 for each block of items.  
After solving the problem a second time with the new 
constraint that no one block could have more than 21.7 
units of information, a more parallel solution was found.  

Figure 10 shows the solution to the problem.  Due 
to the large size of this model (7969 variables and 2108 
constraints), the Gurobi Solver engine was used to solve 
the problem.  Using a computer with a 2.0 GHz 
processor and 1.0 GB of RAM, the first round of 
optimization took 24.69 seconds.  The second round of 
optimization (with the added constraint that test blocks 
could not exceed 21.7 units of information) was stopped 
after 5 minutes and 58 seconds because a strong enough 
solution had been reached. All constraints were satisfied 
and the solution produced 13 blocks that provided total 
information ranging between 21.6 and 21.7 units of 
information.  

In stage 2 of the problem, blocks are combined into 
26 parallel forms subject to the following two 
constraints.  First, each final form must contain exactly 
three blocks of items. Second, each block must appear a 
total of 6 times across the forms.  To model these 
constraints, the same principles used to set up the 
overlap constraints in example two are applied.  That is, 
test blocks are treated as items that are constrained in 
terms of how many times they can overlap across the 
final forms. Figure 11 shows how stage two of the 
problem is modeled in Excel as well as the associated 
solution.  Because this model does not introduce any 
new modeling components, the modeling sheet is not 
explained. Once again, readers are referred to Appendix 
A for a complete mathematical definition of the 
problem.  Also, a detailed description of how to define 
overlap constraints for the blocks can be found in van 
der Linden (2005, p. 152)   

Once again, due to the complexity of this problem 
(2366 variables and 4174 constraints), the Gurobi Solver 
engine was used.  A solution time of 18.02 seconds was 
indicated on a computer with a 2.0 GHz processor and 
1GB of RAM.  All constraints were satisfied and the best 
possible solution is reported.  As a point of comparison, 
Figure 13 shows the information curves that resulted 
from the actual manual assembly process used to 
construct forms along with the information curves 
produced based on the automated test assembly model. 

Figure 12 shows that the tests constructed based on 
the automated model are more parallel and more 
uniform across the ability scale that the tests created 
manually.  It should be noted however, that the 

automated test assembly solution shown in Figure 13 
does not include all constraints that would have been 
required to produce the manual test assembly solution 
on the left.  That being said, more constraints would not 
be expected to change the nature of the comparison 
dramatically.  The test information curves would be 
expected to provide less overall information but would 
still be highly statistically parallel (the curves would still 
overlap) in comparison to the manually generated forms. 

Manual Solution Automated Solution 

  
Figure 12. Comparing the Manual and Automated Test 
Assembly Solutions. 

   

SUMMARY 

The above demonstration served as an introduction to 
how to model and solve test assembly problems using 
Microsoft Excel 2007 and the newly updated Solver 
platform.  We have taken readers through increasingly 
large and complex test assembly problems and have 
shown that ATA in Excel is feasible.  In our experience, 
learning to model test assembly problems in Excel is not 
a problem for psychometricians already familiar with the 
speadsheet program.  Further, the actual program 
interface for the Solver add-in is user friendly and self 
explanatory. It is concievable that after some intitial 
instruction, users would be able to set up basic test 
assembly spreadsheets in a mater of a couple hours.  
Once basic ATA sheets are created, users can 
continually modify sheets to become increasingly more 
sophisticated in terms of the number of and types of 
constraints they contain.  

Having solved the three increasingly large test 
assembly problems, it is now possible to comment on 
the factors that affect solution times.  Solution times for 
the three examples varied from 18.2 seconds to 5 
minutes and 58 seconds.  The primary factor affecting 
solution time was the nature of the constraints and 
objective function modeled in each test assembly 
problem.  Specifically, absolute constraints and targets 
lead to longer solution times than more open targets.  
For example, in the BIB example, when the objective 
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was to merely maximize the information at a single point 
on the ability scale (part one of stage one and stage two), 
solution times were fast (24 and 18 seconds 
respectively).  Alternatively, with multiple absolute 
targets (example 1, 2, and step two of stage one of 
example 3), solution times were much longer (1 min 48 
sec, 2 min 55 sec, and 5 min 58 sec respectively).  Even 
though there is substantial variation in solution time.  In 
comparison to manual test assembly procedures, which, 
depending on the program, require days or even weeks 
to generate multiple forms, ATA in Excel is extremely 
less time intensive.10 

In general, the above discussion paints modeling in 
Excel as a straightforward and easy to learn process.  
There are, however, some limitations.  For example, 
with more sophisticated constraints, modelling in a 
spreadsheet becomes unwieldy and inefficient. In these 
situations a more flexible modeling language becomes 
more appealing.  Also, cost might be a concern for some 
users11.  For example, small business users may find the 
cost too high to justify.  Alternatively, for users involved 
in large testing programs interested in implementing 
ATA, cost reductions that will result from increased 
efficiency in test construction are expected to more than 
offset any initial investment. At the end of the day, we 
hope that because Excel is so widley used, 
demonstrating its utility in solving all types of test 

assembly problems will, at the very least, help to bring 
ATA and all of its benefits to the wider psychometric 
community.  
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Notes 

1. For a complete overview and step-by-step guide on how to model various test assembly problems, readers are 
referred to Wim van der Linden’s (2005) book entitled “Linear models for optimal test design”. 

2. The simulated items were not generated by the authors of this paper and as a result were not in any way 
designed to facilitate a tractable solution to the present test assembly problem. 

3. Due to a lack of readability of the screenshot that would have shown the full 55-item bank, only a portion of 
it can be shown in the figure. 

4. Item content can be categorized in more complicated ways.  For example, in the third demonstration, content 
categorization is done at two hierarchical levels. This leads to dependencies that do not cause problems for 
ATA models. 

5. An exact constraint is not used for each category because this constrains the problem more than it needs to be.  
That is, the solution will always push the less than or equal to constraint to its maximum in order to produce 
the best possible solution.  For a complete explanation, readers are referred to van der Linden, 2005 p. 56-57. 

6. Readers interested in trying out the problem described in Example 1 can download the Excel file used to 
model the problem from the PARE site http://pareonline.net/sup/v14n14/ata.xlsx.  A 30-day trial version of 
the Solver Add-in components required to run the sheet can be downloaded from 
http://solver.com/dwnxls.php. 
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7. The Bound branch is not viewable in Figure 3.  In the actual file, this branch appears in sequence following the 
Constraints branch in the Model tree. 

8. The solution provided to this problem is not the optimal solution.  That is, the solver had reached a maximum 
time constraint set for the engine and automatically prompted us to choose if we would like to stop.  Given 
that the best possible solution (shown in the bottom of the output tab) was 1.28, and the current solution of 
1.301, a decision was made to stop the search because the solution provided was deemed strong enough. 

9. Parameter equating is made possible because of the linking structure employed in the original administration. 

10. Solution times will also vary depending on which Solver engine is used.  For the most part, more expensive 
engines can be expected to result in faster solution times. 

11. The total onetime cost of the configuration used to solve each of the examples in this demonstration is $9325.  
Academic discounts are available for professors and students.  Further, the configuration used in this paper is 
more sophisticated than is required for most test assembly problems.  Users are encouraged to contact Solver 
support to determine the configuration that best suits their specific optimization needs.  For example, the 
problems in this paper could have been solved with a configuration costing $6490.  This configuration would 
have lead to slightly slower solution times.  For a complete price list visit http://www.solver.com/pricexls.php 
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APPENDIX A 

Mathematical Model for Example 1 

The decision variable for this problem (and for the remaining problems in this investigation) is represented by 
equation A1. 

{1
0itx =  (A1)

The decision variable is constrained so that it can only take the form of a one or a zero.  Within the excel framework 
this constraint can be accomplished by using equation A2. 

{1 if item  is included in test form t
0 if item  is not included in test form tbinary;i.e. i

it it ix x=  (A2)

The following multiple test level constraints (as generalized by equation A3) ensure that each item, i, can only be used for 
one test, t, i.e. no item overlap.  This general expression results in 55 constraints.  

3

1
1it

t
x

=

≤∑   for all i (A3)

There are 12 content constraints (4 categories x 3 forms) that are used to restrict the total number of items in each content 
category, Vc, to the corresponding specification, CSpec, for each test (equation A4).     

∑
∈

≤
cVi

specit Cx   for all t  (A4)

It should be noted that although it appears that this general expression would admit solutions with fewer than the 
required number of items from each content category; this will never be the case.  The solution to this problem will 
necessarily reach the upper bound set by each of the content specifications because each test form can only gain more 
information as result of the inclusion of more items.  Inequalities are used because they tend to be less restrictive on 
linear programming algorithms and results in faster solution times as well as a lower likelihood of infeasibility.   

 In order to facilitate a solution to this problem, the constraints described above must be applied to an 
objective function. Equations A5 through A7b define the objective function and system of constraints required to 
achieve an absolute target test information curve required for this problem. 

 

objective: minimize y  (A5)

 

Subject to: 

0y ≥  (A6)

I i(θkt )xit ≥ Tkt − y
i

∑
I i(θkt )xit ≤ Tkt + y

i

∑
 for all levels of ability, k, and all tests, t    

(A7a 
& 

A7b)

For this problem, equations 6a and 6b result in 9 curve constraints that restrict the sum of the information for the 
items included in each test, t, at each ability level, k, to be between the upper and lower bounds of the absolute targets, 
Tkt.   
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Mathematical Model for Example 2 

Stage I: Creating the Reference Form 

The goal of this problem is to create a new test, t, with specific cut scores at the acceptable (θaccep) and excellent (θexcel) 
levels of achievement.  The two decision variables required to formulate this problem are xi, which allows items to be 
selected or not selected for the new test, and y, which represents the maximum absolute difference between the target 
cut scores and the actual cut scores on the reference form.  Both variables, shown in equations 8 and 9, are free to 
change so that an optimal solution to the problem can be found.   The item level decision variable, xi, is constrained to 
be either a one or a zero using equation 10. 

 
xit (A8)

yt (A9)

{1 if item  is included in test form t
0 if item  is not included in test form tbinary;i.e. i

it it ix x=  (A10)

 

The objective function for this problem is to minimize the absolute maximum difference, y, between the target cut 
scores and the actual cut scores.  In order to initiate this objective, a set of psychometric test level constraints must be 
implemented.  Equations A11 through A16 produce five psychometric constraints that constrain y. 
 

minimize  y  (A11)

Pi θaccep( )
i=1

168

∑ ≤ Taccep + y  (A12)

Pi θaccep t( )( )
i=1

168

∑ ≥ Taccep t( ) − yt  (A13)

Pi θexcel t( )( )
i=1

168

∑ ≤ Texcel t( ) + yt  (A14

Pi θexcel t( )( )
i=1

168

∑ ≥ Texcel t( ) − yt  (A15

y ≥ 0 (A16)

 

Equation A17 produces a test level constraint that ensures the reference form contains exactly 55 items.  Equation 
A18, results in six content constraints ensuring that the reference form meets the test blue print specifications, Cspec, for 
each content category, C.     

xit
i=1

168

∑ = 55  (A17)

xit =Cspec
i∈C

∑  for all content categories C (A18)
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The new test form must contain 23 items in common with the reference form.  This common item specification 
requires an additional decision variable that describes whether item i has been assigned to forms t and t’.  Equation A19 
is used to specify the overlap decision variables for this stage of the problem.  Like xi, zitt’ must be constrained to be 
either a one or a zero as shown in equation A20. 

 (A19)

{1 if item  is included in test form t
0 if item  is not included in test form tbinary; i.e. i

itt itt iz z′ ′=  (A20)

Equations A21 through A23 generate the item overlap constraints to ensure that exactly 23 items are common 
between the two forms.   

zitt '
i=1

168

∑ = 23  for all t < t’ (A21)

2zitt' ≤ xit + xit '  for all i and t < t’  (A22)

zitt' ≥ xit + xit ' −1  for all i and t < t’ (A23)

 

Mathematical Model for Example 3 

The BIB requirement necessitates two stages of optimization in order to solve this problem.  Stage I requires the 
creation of 13 parallel blocks consisting of 13 unique items, while Stage II organizes the 13 blocks into 26 parallel forms 
in a BIB design.  The following is a description of the models and specifications used to facilitate the solution of each 
stage of the automated test assembly problem. 

Stage I: Creating 13 Parallel Blocks 
The decision variable for this problem, xit, is represented and constrained in the same way as is shown in the previous 
two scenarios (see equations A1 and A2).  In order to ensure no item overlap, 613 overlap constraints (equation A24) are 
imposed on the items. 

13

1

1it
t

x
=

≤∑   for all t (A24)

 

This test assembly problem requires 429 test level constraints. Of these 429 test level constraints, 13 are used to ensure the 
number of items contained in each form equals 13 (equation A25), 52 are used to ensure that each theme specification 
is exactly met (equations A26 to A29), and the remaining 364 are used to ensure that sum of items used to assess each 
descriptor across all forms is within one deviation of the descriptor specifications (as generalized by equations A30 
and A31).   

613

1

13it
i

x
=

=∑   for all t  (A25)

1

2it
i T

x
∈

=∑   for all t (A26)

2

3it
i T

x
∈

=∑   for all t (A27)

3
7it

i T
x

∈

=∑   for all t  (A28)
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4
1it

i T
x

∈

=∑   for all t (A29)

13

1

1it spec
t

x D
=

− ≤∑   for all speci D∈ and all Dspec (A30)

13

1
1it spec

t

x D
=

− ≥∑   for all speci D∈ and all Dspec   (A31)

In order to facilitate a reasonable solution for this problem, the objective function was formulated to maximize the 
information at θ = 0 on the ability scale.  The problem is akin to a criterion referenced testing situation in which the 
most important point on the ability scale is θ = 0.  For the purposes of stage one, the objective function used to 
assemble the 13 blocks is shown in equation A32 where k = 1.   

maximize Ii(θkt )xit
i

∑
k

∑
t

∑  (A32)

The mathematical representation described above concludes the definition of the model required to solve stage one of 
example 3.  

 
Stage II: Implementing BIB 
The objective for this BIB model is to combine the 13 parallel blocks created in Stage I, into 26 parallel test forms.  In 
order to facilitate the assignment of blocks of items to each test form, a new decision variable is required (equation 
A33). 

{1 if block isassigned to test
0 if block isnotassigned to test

j t
jt j tx =  (A33)

The BIB design also requires a decision variable to describe whether pairs of item blocks have been assigned to 
individual test forms.  Equation A34 shows this new decision variable which allows the test developer to constrain the 
total amount of overlap that can exist between item blocks across all resulting test forms.  

{1 if thepair of blocks ( , )isassigned to test
0 if thepair of blocks ( , )isassigned to test

j k t
jkt j k tz =  (A34)

The BIB design for this problem requires the following set of constraints (equations A35 to A39): 
13

1
3jt

j
x

=

=∑   for all t (A35)

26

1
6jt

t

x
=

≤∑   for all j (A36)

26

1

1jkt
t

z
=

=∑   for all j < k (A37)

2 jkt jt ktz x x≤ +   for all t and j < k (A38)

1jkt jt ktz x x≥ + −   for all t and j < k  (A39)

Equation A35 results in 26 individual constraints that force the number of blocks in each test form to be equal to three.  
Equation A36 defines 13 constraints that limit the total number of appearances for each block of items to six, and 
equation A37 creates 78 constraints that force the number of times that each set of blocks can appear together across all 
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of the final test forms to one. The last 78 constraints ensure that each of the final forms share a maximum of 13 items 
with only one of the remaining forms.  The constraints that are generated as a result of equations A38 and A39 ensure 
that pairs of blocks are assigned to each test form only if the individual blocks have also been assigned.  When taken 
together, the last two general expressions result in an additional 4056 constraints. 
Because the total amount of information that can be obtained when these individual forms is fixed, the objective 
function for this optimization problem merely serves as a tool to facilitate the organization of the blocks to meet the 
aforementioned combinatorial constraints.  The objective function that is used to initiate the optimization is shown in 
equation A40. 

Maximize I i(θ)x jt
i

∑
j

∑
t

∑  (A40)

The objective function reported above maximizes the total information at θ = 0 for each of the items included in each 
block across each block included in each final form. 

 


