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This paper describes and evaluates the use of measurement decision theory (MDT) to classify examinees based 
on their item response patterns. The model has a simple framework that starts with the conditional probabilities 
of examinees in each category or mastery state responding correctly to each item. The presented evaluation 
investigates: (1) the classification accuracy of tests scored using decision theory; (2) the effectiveness of different 
sequential testing procedures; and (3) the number of items needed to make a classification. A large percentage of 
examinees can be classified accurately with very few items using decision theory. A Java Applet for self 
instruction and software for generating, calibrating and scoring MDT data are provided. 

 
In the introduction to their classic textbook, Cronbach 

and Gleser (1957) argue that the ultimate purpose for testing 
is to arrive at classification decisions. Many of today’s 
decisions are indeed binary, e.g., whether to hire someone, 
whether a person has mastered a particular set of skills, 
whether to certify an individual. Categorical, as opposed to 
continuous, outcomes are also common, e.g., the percent of 
students that perform at the basic, proficient, or advanced 
level in state assessments. 

IRT models have been applied to help make classification 
decisions by laboriously placing individuals on ability scales 
and then using cut-points to make classifications. IRT models, 
however, are not always applicable in practical situations. IRT 
is fairly complex, relies on several fairly restrictive 
assumptions, requires large calibration samples, and may not 
make efficient use of questions when the goal is simple 
classification. Classification is a simpler outcome and a 
simpler measurement model should suffice. This paper 
presents and evaluates the use of decision theory as a tool for 
classifying examinees based on their item response patterns. 

Often credited to Wald (1939, 1947, 1950), perhaps first 
applied to measurement by Cronbach and Gleser (1957), and 
now widely used in engineering, agriculture, and computing, 
decision theory provides a simple model for the analysis of 
categorical data. Applied to measurement, decision theory 
requires only one key assumption - that the items are 
independent. Thus, the tested domain does not need to be 
unidimensional, examinee ability does not need to be 
normally distributed, and one doesn’t need to be as concerned 

with the fit of the data to a theoretical model as is the case 
with item response theory (IRT) or in most latent class 
models. Very few pilot test examinees are needed and, with 
very few items, classification accuracy can exceed that of item 
response theory. Further, as this article hopes to show, this 
simpler model can be relatively easy to explain.  

Given these features, it is surprising that decision theory 
has not attracted wider attention within the measurement 
community. Indeed, much of the computerized classification 
testing (CCT) literature reviewed by Thompson (2007) and by 
Parshall, Spray, Kalohn and Davey (2006) relies on IRT. The 
decision theory model can work well for small sample license 
and certification examinations, as the routing mechanism for 
intelligent tutoring systems, for end-of-unit examinations, and 
for adaptive testing.  

Key articles in the mastery testing literature of the 1970s 
employed decision theory (Hambleton and Novick, 1973; 
Huynh, 1976; van der Linden and Mellenbergh, 1978) and 
should be re-examined in light of today’s measurement 
problems. Lewis and Sheehan (1990) and others used decision 
theory to adaptively select testlets and items. Kingsbury and 
Weiss (1983), Reckase (1983), and  Spray and Reckase (1996) 
have used decision theory to determine when to stop testing. 
Most of the research to date has applied decision theory to 
testlets or test batteries or as a supplement to item response 
theory and specific latent class models. Notable articles by 
Macready and Dayton (1992), Vos (1997), and Welch and 
Frick (1993) illustrate the less prevalent item-level application 
of decision theory examined in this paper.  



Practical Assessment, Research & Evaluation, Vol 14, No 8 Page 2 
Rudner, Measurement Decision Theory 
 

This paper presents an overview and the key concepts of 
the measurement decision theory model and illustrates them 
using a binary classification (pass/fail) case and a sample three 
item test. The quality of the model is demonstrated by 
examining 1) the classification accuracy of tests scored using 
decision theory, 2) the effectiveness of different sequential 
testing procedures by comparing classification accuracies 
against those of different IRT scenarios, and 3) the number of 
items needed to make a classification. 

BACKGROUND 
The objective is to form a best estimate as to the mastery 

state (classification or latent state) of an individual examinee 
based on the examinee’s item responses, a priori item 
information, and a priori population classification proportions. 
Thus, the model has four components: 1) possible mastery 
states for an examinee, 2) calibrated items, 3) an individual’s 
response pattern, and 4) decisions that may be formed about 
the examinee. 

The first component is the set of K possible mastery 
states, that take on values mk. In the case of pass/fail testing, 
there are two possible states and K=2. The second 
component is a set of N pre-calibrated items for which the 
probability of each possible observation, usually right or 
wrong, given each mastery state is known a priori. Individual 
responses to the set of items form the third component. Each 
item is considered to be a discrete random variable 
stochastically related to the mastery states and realized by 
observed values zN,. Each examinee has a response vector, z, 
composed of z1, z2, ... zN. 

The last component is the decision space. One can form 
any number of D decisions based on the data. Typically, one 
wants to determine the mastery state and there will be D=K 
decisions. With adaptive or sequential testing, a decision to 
continue testing will be added and thus there will be D=K+1 
decisions.  Each decision will be denoted dk. 

Calibration starts with the proportion of examinees in the 
population that are in each of the K categories and the 
proportion of examinees within each category that respond 
correctly. The population proportions can be determined a 
variety of ways, including from prior testing, transformations 
of existing scores, existing classifications, and judgment. In 
the absence of information, equal priors can be assumed. The 
proportions that respond correctly to each item can be 
derived from a pilot test involving examinees who have 
already been classified or transformations of existing data. 
Once these sets of priors are available, the items are 
administered to new examinees, responses (z1, z2, ... zN) are 
observed,  and then a classification decision, dk, is made based 
on the responses to those items.  

In this paper, pilot test proportions are treated as prior 
probabilities and the following notation is used: 

Priors 

P(mk)  - the probability of a randomly selected examinee 
having a mastery state mk  

P(zi|mk) - the probability of response zi  given the k-th 
mastery state 

Observations 

z - an individual’s response vector  z1, z2, ..., zN where zi ∈  

(0,1) 

An estimate of an examinee’s mastery state is formed 
using the priors and observations. By Bayes Theorem, 

 (1)

The posterior probability P(mk|z)  that the examinee is of 
mastery state mk given his response vector, z, is equal to the 
product of a normalizing constant (c), the probability of the 
response vector given mk, and the prior classification 
probability. For each examinee, there are K probabilities, one 
for each mastery state. The normalizing constant in formula 
(1),  

K

k k
k=1

1

P( |m ) P(m )
c =
∑ z

 
assures that the sum of the posterior probabilities equals 1.0.  

Assuming local independence, 

 
(2)

The probability of the response vector is equal to the 
product of the conditional probabilities of the item responses. 
In decision theory, the local independence assumption is also 
called the “naive Bayes” assumption. We will naively assume 
the local independent assumption is true and proceed with 
our analysis. 

In this paper, each response is either right (1) or wrong (0) 
and P(z1=0|mk) = 1- P(z1=1|mk). The model is equally 
applicable to polytomous scoring. 

Three key concepts from decision theory applied in this 
paper are briefly discussed next.  

1. decision rules - alternative procedures for classifying 
examinees based on their response patterns,  

2. sequential testing - alternative procedures for 
adaptively selecting items based on an individual’s 
response pattern, and  

3. sequential decisions - alternative procedures for 
determining whether to continue testing. 

N

k i k
i=1

P( |m ) = P(z |m )∏z

k k kP (m | ) =    P ( |m ) P (m )cz z
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Melsa and Cohn (1978) present an excellent overview of 
decision theory. That manuscript was the inspiration for this 
research and is well worth reading.  

The model is illustrated here with an examination of two 
possible mastery states m1 and m2 and two possible decisions 
d1 and  d2 which are the correct decisions for m1 and m2, 
respectively. The examples use a three-item test with the item 
statistics shown in Table 1. Further, also based on prior test 
data, the classification probabilities are P(m1)=0.2 and 
P(m2)=1-P(m1) = 0.8.In the example, the examinee’s response 
vector is [1,1,0]. 

Table 1: Conditional probabilities of a correct 
response, P(zi=1|mk) 

 Item 1 Item 2 Item 3 

Masters (m1)  .6 .8 .6 

Non-masters (m2) .3 .6 .5 

 

DECISION RULES 
Upon administering a set of pre-calibrated items, one can 

compute P(z|mk), the probability of the response vector 
given each of K possible classifications, and P(mk|z), the 
posterior classification probabilities that consider the prior 
classification probabilities. The task then is to classify the 
examinee in one of the K mastery states.  

From (2), the probabilities of the vector z= [1,1,0], if the 
examinee is a master, is .6*.8*.4 = .19,  and .09 if he is a 
non-master. That is, P(z|m1)=.19 and P(z|m2)=.09, or 
normalized P(z|m1)= .68 and P(z|m2)=.32. 

A sufficient statistic for decision making is the likelihood 
ratio  

2

1

( | )( )
( | )

p mL
p m

=
zz
z  

which for the example is L(z)= .09/.19 = .47.  This is a 
sufficient statistic because all decision rules can be viewed as a 
test comparing L(z) against a criterion value  λ. 

 
(3)

 

The value of λ reflects the selected approaches and 
judgments concerning the relative importance of different 
types of classification error.    

Maximum-likelihood decision criterion 

This is the simplest decision approach and is based solely 
on the conditional probabilities of the response vectors given 
each of the mastery states, i.e.  P(z|m1) and P(z|m2). The 

concept is to select the mastery state that is the most likely 
cause of the response vector and can be stated as :   

Given a set of item responses z, make decision dk if it is most likely that 
mk generated z. 

Based on this criterion, one would classify the examinee 
as a master - the most likely classification. Using likelihood 
ratio testing, the decision rule is formula (3) with λ = 1.0.  This 
criterion ignores the prior information about the proportions 
of masters and non-masters in the population. Equivalently, it 
assumes the population priors are equal. With the example, 
few examinees are masters, P(mk)=.20. Considering that the 
conditional probabilities of the response vectors are relatively 
close (.19 and .09), this classification rule may not result in a 
good decision. 

Minimum probability of error decision criterion 

In the binary decision case,  two types of errors are 
possible - decide d1 when m2 is true or decide d2 when m1 is 
true. If one thinks of m1 as the null hypothesis, then in terms 
of statistical theory, the probability of deciding a person is a 
master, d1 when indeed that person is a non-master m2, is the 
familiar level of significance, α and P(d2|m2) is the power of 
the test, β. When both types of errors are equally costly, it may 
be desirous to maximize accuracy or minimize the total 
probability of error, Pe.  This criterion can be stated as: 

Given a set of item responses z, select the decision regions which minimize 
the total probability of error. 

This criterion is sometimes referred to as the ideal observer 
criterion. In the binary case, Pe =P(d2|m1) + P(d1|m2) and the 
likelihood ratio test in formula (2) is employed with 

1

2

( )
( )

P m
P m

λ =
 

With the example, λ=.25 and the decision is  d2 - non-master. 

Maximum a posteriori (MAP) decision criterion 

The maximum likelihood decision criterion made use of 
only the probabilities of the response vector. The minimum 
probability of error criterion added in the use of the prior 
classification probabilities P(m1) and P(m2). The maximum 
likelihood a posteriori decision criterion also uses both 
probabilities of the response vector, P(z|mk) and the prior 
classification probabilities P(mk). 

Given a set of item responses z, decide dk if mk is the most likely mastery 
state. 

By this criterion, one selects the category with the largest 
value from equation (3). In other words,  
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Since from equation (1), P(mk|z)=c P(z|mk) P(mk), MAP 
is equivalent to the minimum probability of error decision 
criterion. MAP is also equivalent to the maximum-likelihood 
decision criterion when the prior probabilities are equal. 

Bayes risk criterion 

A significant advantage of the decision theory framework 
is that one can incorporate decision costs into the analysis.  By 
this criterion, costs are assigned to each correct and incorrect 
decision so the total average costs can be minimized. For 
example, false negatives may be twice as bad as false positives. 
If cij is the cost of deciding di when mj is true, then the 
expected or average cost B is 

           B=(c11 P(d1|m1) + c21 P(d2|m1)) P(m1) + 
                (c12 P(d1|m2) + c22 P(d2|m2)) P(m2) 

(4)

and the criterion can be stated as  

Given a set of item responses z and the costs associated with each decision, 
select dk to minimize the total expected cost. 

By this criterion, one selects the category with the 
smallest value from equation (3). This is also called the 
minimum loss criterion and the optimal decision criterion. If costs 
c11=c22=0 and c12=c21=1, then this approach is identical to 
MAP. 

SEQUENTIAL TESTING 
Rather than make a classification decision for an 

individual after administering a fixed number of items, it is 
possible to sequentially select items to maximize information, 
update the estimated mastery state classification probabilities 
and then evaluate whether there is enough information to 
terminate testing. In the measurement literature, this is 
frequently called adaptive or tailored testing. In statistics, this 
is called sequential testing.  

At each step, the posterior classification probabilities 
p(mk|z) are treated as updated prior probabilities p(mk) and 
used to help identify the next item to be administered. To 
illustrate decision theory sequential testing, again consider the 
situation for which there are two possible mastery states m1 
and m2 and use the item statistics in Table 1. Assume the 
examinee responded correctly to the first item and the task is 
to select which of the two remaining items to administer next. 

After responding correctly to the first item, the current 
updated probability of being a master is .6*.2/(.6*.2+.3*.8) = 
.33 and the probability of being a non-master is .66 from 
formula (1).  

The current probability of responding correctly 

(5)

is the sum of the probability of responding correctly if the 
examinee is a master plus the probability if  a non-master. 
Applying (5), the current probability of correctly responding 
to item 2 is P(z2=1)=.8*.33+ .6*.66 = .66 and, for item 3, 

P(z3=1)=.53. The following are some approaches to identify 
which of these two items to administer next. 

Minimum expected cost 

This approach to sequential testing defines the optimal 
item to be administered next as the one with the lowest 
expected cost. Minimum expected cost is often associated 
with sequential testing and has been applied to measurement 
problems by Lewis and Sheehan (1990), Macready and 
Dayton (1992), Vos (1999), and others.  Equation (4) 
provided the decision cost as a function of the classification 
probabilities. If c11=c22=0 then 

          B=c21 P(d2|m1) P(m1) + c12 P(d1|m2) P(m2) (6)

In the binary decision case, the probabilities of making a 
wrong decision are one minus the probabilities of making a 
right decision. The probabilities of making a right decision 
are, by definition, the posterior probabilities given in (1). 
Thus, with c12=c21=1, the  Bayes cost after administering the 
first question is B=1*(1-.33)*.33 + 1*(1-.66)*.66 = .44.1 

The following steps can be used to compute the expected 
cost for each remaining item. 

1. Assume for the moment that the examinee will 
respond correctly. Compute the posterior 
probabilities using (1) and then costs using (6). 

2. Assume the examinee will respond incorrectly. 
Compute the posterior probabilities using (1) and 
then costs using (6). 

3. Multiply the cost from step 1 by the probability of a 
correct response to the item. 

4. Multiply the cost from step 2 by the probability of an 
incorrect response to the item. 

5. Add the values from steps 3 and 4. 

Thus, the expected cost is the sum of the costs of each 
response weighted by the probability of that response. If the 
examinee responds correctly to item 2, then the posterior 
probability of being a master will be 
(.8*.33)/(.8*.33+.6*.66)=.40 and the associated cost will be 
1*(1-.40)*.40+1*(1-.60)*.60 =.48. If the examinee responds 
incorrectly, then the posterior probability of being a master 
will be (.2*.33)/(.2*.33+.4*.66)=.20 and the associated cost 
will be 1*(1-.20)*.20+1*(1-.80)*.80 =.32. Since the probability 
of a correct response from (5) is .66, the expected cost for 
item 2 is .66*.48+(1-.66)*.32 = .42.  

The cost for item 3 is .47 if the response is correct and .41 
if incorrect. Thus, the expected cost for item 3 is 
.53*.47+(1-.53)*.41 = .44. Since item 2 has the lowest 
expected cost, it would be administered next. 

Information gain  

This entire essay is concerned with the use of prior item 
and examinee distribution information in decoding response 

1 1 2 2( 1) ( 1| ) ( ) ( 1| ) ( ),i i iP z P z m P m P z m P m= = = + =
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vectors. The commonly used measure of information from 
information theory, Shannon (1948) entropy, is applicable 
here (see Cover and Thomas, 1991): 

 (7) 

where pk is the proportion of S belonging to class k. Entropy 
can be viewed as a measure of the uniformness of a 
distribution and has a maximum value when  pk = 1/K for all 
k. Since the goal is to have a peaked distribution of P(mk),  one 
wants the lowest possible value of H(S). One should next 
select the item that has the greatest expected reduction in 
entropy, i.e. H(S0) - H(Si), where H(S0) is the current entropy 
and H(Si) is the expected entropy after administering item i. 
This expected entropy is the sum of the weighted conditional 
entropies of the classification probabilities that correspond to 
a correct and to an incorrect response: 

H S p z H S z
p z H S z

i i i i

i i i

( ) ( ) ( |
( ) ( | )

= = = +
= =

1 1)
0 0

 (8)

This can be computed using the following steps: 

1. Compute the normalized posterior classification 
probabilities that result from a correct and  an 
incorrect response to item i using (1). 

2. Compute the conditional entropies (conditional on a 
right response and conditional on an incorrect 
response) using (7). 

3. Weight the conditional entropies by their 
probabilities using (8). 

Table 2 shows the calculations with the sample data.

 

Table 2: Computation of expected classification entropies for items 2 and 3. 

 Response 

(zi) 

Posterior 
classification 
probabilities 

Conditional 
entropy P(zi) H(Si) 

Item 2 Right P(m1)=.40 .97 .66 .89 
  P(m2)=.60    
 Wrong P(m1)=.20 .72 .33  
  P(m2)=.80    
Item 3 Right P(m1)=.38 .96 .53 .92 

  P(m2)=.62    

 Wrong P(m1)=.29 .87 .47  

  P(m2)=.71    

 

After administering the first item, P(m1)=.33, P(m2)=.66, 
and H(S)=.91. Item 2 results in the greatest expected entropy 
gain and should be administered next.  

A variant of this approach is relative entropy, which is 
also called the Kullback-Leibler (1951) information measure 
and information divergence. Chang and Ying (1996), Eggen 
(1999), Lin and Spray (2000) have favorably evaluated K-L 
information as an adaptive testing strategy. 

The reader should note that after administering the most 
informative items, the expected entropy for all the remaining 
items could be greater than H(S) and result in a loss of 
information. That is, the classification probabilities would be 
expected to become less peaked. One may want to stop 
administering items when there are no items left in the pool 
that are expected to result in information gain, although the 

author does not know of any study that has investigated this 
logical termination rule. 

Maximum discrimination 

When the purpose of the test is to classify examinees, the 
optimal IRT item selection strategy is to sequence items based 
on their information at the cut score (Spray and Reckase, 
1994). The analog here is to select the item that best 
discriminates between the two most likely mastery state 
classifications. One such index is 

1

( 1| )log
( 1| )

i k
i

i k

p z mM
p z m +

=
=

=  
where mk and mk+1 are currently the two most likely mastery 
states. In the binary case, mk and mk+1 are always m1 and m2 
and the item order is the same for all examinees. 

H S p pk
k

K

k( ) log= −
=
∑

1
2
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SEQUENTIAL DECISIONS 
This paper has discussed procedures for making a 

classification decision and procedures for selecting the next 
items to be administered sequentially. This section presents 
procedures for deciding when one has enough information to 
hazard a classification decision. One could make this 
determination after each response. 

Perhaps the simplest rule is the Neyman-Pearson decision 
criteria - continue testing until the probability of a false 
negative, P(d2|m1), is less than a preselected value α. Suppose 
α= .05 was selected. After the first item, the probability of 
being a non-master is P(m1|z) = .66. If the examinee is 
declared a non-master, then the current probability of this 
being a false negative is (1-.33). Because this is more than α, 
the decision is to continue testing.  

A variant of Neyman-Pearson is the fixed error rate criterion 
- establish two thresholds, α1 and α2, and continue testing until 
P(d2|m1) < α1 and P(d1|m2) < α2. Another variant is the cost 
threshold criteria. Under that approach, costs are assigned to 
each correct and incorrect decision and to the decision to take 
another observation. Testing continues until the cost 
threshold is reached. A variant on that approach is to change 
the cost structure as the number of administered items 
increases. 

Wald’s (1947) sequential probability ratio test (SPRT, 
pronounced spurt) is clearly the most well-known sequential 
decision rule. SPRT for K multiple categories can be 
summarized as 

1

( ) 1
( )

k
k

k
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P md if
P m
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where the P(mj)’s are the normalized posterior probabilities, α 
is the acceptable error rate, and 1-β is the desired power. If the 
condition is not meet for any category k, then testing 
continues. There is a sizeable and impressive body of 
literature illustrating that SPRT is very effective as a 
termination rule for IRT-based computer adaptive tests (c.f. 
Reckase, 1983; Spray and Reckase, 1994, 1996; Lewis and 
Sheehan, 1990; Sheehan and Lewis, 1992). 

Methodology 

The model is evaluated by addressing the following 
research questions: 

1. Does decision theory result in accurately classified 
examinees?  

2. Are the different sequential testing procedures using 
decision theory as effective as item selection based on 
maximum information using item response theory? 

3. How many items need to be administered to make 
accurate classifications?  

These questions are addressed using two sets of simulated 
data. In each case, predicted mastery states are compared 
against known, simulated true mastery states of examinees 

Data Generation 

These questions are addressed using simulated responses 
based on IRT parameters for items from the 1999 Colorado 
State Assessment Program (CSAP) fifth-grade mathematics 
test (Colorado State Department of Education, 2000) and the 
1996 National Assessment of Educational Progress (NAEP) 
State Eighth Grade Mathematics Assessment (Allen, Carlson, 
and Zelenak, 2000). Birnbaum’s (1968) three parameter 
model was used. Key statistics for these tests are given in  
Table 3. 

Reliability here was computed as the square root of 1 
minus the squared standard error where the standard error 
was weighted by the distribution of a N(0,1) sample. The 
chance level is ∑ P(mk)2, the probability of a correct 
classification given the cut scores for an examinee randomly 
selected from a normal distribution. 

The simulated state-NAEP draws from a large number of 
items and a very reliable test. The cut scores correspond to the 
IRT theta levels that delineate state-NAEP’s Below Basic, 
Basic, Proficient, and Advanced ability levels. The relatively 

Table 3: Descriptive statistics for simulated tests. 

 Simulated test 

 CSAP State NAEP 

No of items in pool 54 139 

Mean a .78 .94 

Mean b -1.25 .04 

Mean c .18 .12 

Mastery states 2 4 

Cut score(s) -.23 -.23, .97, 1.65 

For a N(0,1) sample   

Proportions in each 
mastery state 

.41, .59 

 

.41, .42, .12, .05 

 

Reliability .83 .95 

Chance level .52 .36 
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small proportion of examinees for the Advanced level and the 
use of four mastery state classifications provide a good test for 
decision theory.  

The CSAP is a shorter test of lower reliability and the 
sample of items has mean difficulty (mean b) well below the 
mean examinee ability distribution. Because classification 
categories are not reported for CSAP, the 
mastery/non-mastery cut score used in the study was 
arbitrarily selected to correspond to the 41th percentile. 

Examinees were simulated by randomly drawing an 
ability value from normal N(0,1) and uniform (-2.5, 2.5) 
distributions and classifying each examinee based on this true 
score according to the corresponding cut score interval.  
Probabilities of a correct response were computed using 
Birnbaum’s  (1968) three-parameter IRT model and then 
probabilistically converted to observable dichotomous scores.  

Thus, for each simulated examinee, there is a 
corresponding true score (θ), corresponding latent state (mk), 
and a response vector (z). The proportions of examinees in 
each latent state are, by definition, the prior classification 
probabilities, P(mk). The latent states and the response vectors 
were used to compute the conditional prior probabilities of 
each response zi given each mastery state mk, P(zi|mk). The 
specific design of each simulation is discussed along with the 
results in the next section. 

Data Recovery 

For decision theory approaches, maximum a posterior 
(MAP) probabilities were used to determine the observed 
examinee classifications. For the IRT approaches, theta-hats 
were estimated using the Newton-Raphson iteration 
procedure outlined in Lord (1980). Examinees were then 
classified into the category corresponding to the theta interval 
containing the estimated theta. 

The reader should note that decision theory approaches 
do not incorporate any information concerning how the data 
were generated, or any information concerning the 
distribution of ability within a category.  

The simulation compares favorable scenarios for both 
decision theory and IRT. The examinees in the calibration 
sample are classified without error, thus providing accurate 
priors for applying decision theory. The data also fit the IRT 
model perfectly. 

Because the data are generated using an IRT model with a 
continuous theta scale, decision theory with a finite number of 
discrete categories presents a mis-specified model for 
recovering the data. From an IRT perspective, the probability 
of a correct response increases within each slice of the theta 
scale and theta increases within each slice as well. As a result, 
the response patterns are more alike within each slice and 
local independence is clearly violated. This might present a 
problem if one were to use IRT to directly recover the latent 
classes.  

While the data were generated using a continuous theta 
scale, this analysis takes a decision theory perspective. The 
underlying distributions within each category are not of 
interest. Examines within the same latent class are treated as if 
they have the same ability. The probabilities of a correct 
response are considered to be the same for all members of the 
same class.  Thus, while this analysis invokes the “naive 
Bayes” local independence assumption, within-class local 
independence is not an issue.   

Analysis 

Classification accuracy using a simple decision theory 
model is compared to accuracy using a more complicated item 
response theory model. Accuracy was defined here as the 
proportion of correct state classifications. In order to 
compare results with different numbers of categories, in this 
case 2 for CSAP and 4 for NAEP, accuracies were converted 
to Proportion Reduction in Error (PRE): 

(% accurate classification - % accurate by chance)
(100%- % accurate by chance)

PRE =
 

PRE is 0.0 when the rule in question is useless and 1.0 
when the rule is perfect. 

SIMULATIONS AND RESULTS 
Classification Accuracy 

A key question is whether use of the model will result in 
accurate classification decisions.  Accuracy was evaluated 
under varying test lengths, datasets, and underlying 
distributions. Test lengths were varied from 3 items to the size 
of the item pool by randomly selecting items from the CSAP 
and NAEP datasets. For each test length, 1,000 examinees 
from a normal N(0,1) distribution and 1,000 examinees from 
a uniform U(-2.5,2.5) distribution along with their item 
responses were simulated.  Each condition was then 
replicated 100 times.  

The results for select test sizes with the CSAP and NAEP 
are shown in Table 4. For CSAP, there is virtually no 
difference between the accuracies of decision theory scoring 
and IRT scoring with either the uniform or normal underlying 
ability distributions. With the NAEP items, four classification 
categories, and normal examinee distributions, decision 
theory was consistently more accurate than IRT scoring. With 
uniform distributions, IRT has a slight advantage until the test 
length reaches 30 items. 

Sequential Testing Procedures 

For this analysis, two data sets of 10,000 normally 
distributed N(0,1) examinees and their responses to the CSAP 
and state-NAEP items were generated. Using these fixed 
common datasets, items were selected and mastery states were 
predicted using three sequential testing approaches (minimum 
cost, information gain, and maximum discrimination) and 
three IRT approaches. 
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Table 4: Proportion Reduction in Error of simulated 
examinations using MAP decision theory and IRT 
scoring by item bank, test size and underlying ability 
distribution. 

  uniform normal 

 size map irt map irt 

CSAP items, 2 categories 

  5 0.697 0.681 0.508 0.487 

 10 0.798 0.782 0.607 0.595 

 15 0.847 0.827 0.667 0.657 

 20 0.871 0.851 0.704 0.696 

 25 0.889 0.871 0.729 0.721 

 30 0.901 0.883 0.750 0.746 

State-NAEP items, 4 categories 

  5 0.293 0.453 0.387 0.275 

 10 0.475 0.556 0.497 0.426 

 15 0.572 0.625 0.560 0.500 

 20 0.630 0.660 0.615 0.566 

 25 0.670 0.691 0.645 0.607 

 30 0.710 0.713 0.671 0.642 

 35 0.743 0.736 0.693 0.670 

 40 0.765 0.749 0.706 0.684 

 

The decision theory approaches are applied as described 
earlier. For the minimum-cost decision theory approach, the 
costs of deciding di when mj is true were set symmetrically at 
|i-j| for all i, j. After the desired number of items were 
administered, all examines were classified using MAP. 

Under the first of the three IRT approaches, the items 
with the maximum information at the examinee’s true score 
were sequentially selected without replacement. While this is 
not feasible in real life, it presents a best case scenario when 
the goal is to obtain accurate estimates along the entire theta 
scale. Under the second IRT approach, the items with the 
maximum information at the examinee’s currently estimated 
ability level were sequentially selected without replacement. 
This is a realistic and practical approach when the goal is to 
obtain accurate estimates along the entire theta scale. 
Following the suggestion of Spray and Reckase (1994), the 
third approach sequentially presented the items with the 
maximum information at the cut score closest to the 
examinee’s currently estimated ability level. This approach is 
optimal when the goal is to classify examinees into one of a 
discrete number of score groups. After the desired number of 

items were administered, all examines were classified into the 
score group corresponding to the terminal estimate of theta. 

As shown in Table 5, there is not a great deal of variance 
across the different approaches. The minimum cost and 
information gain decision theory approaches consistently 
out-performed the first two IRT approaches, and 
out-performed the IRT cut score approach when 20 or fewer 
items were administered.  The fact that the classification 
accuracies for these two decision theory methods are almost 
identical implies that they tend to select the same items. 
Optimized to make fine distinctions across the ability scale, 
the first two IRT approaches are less effective if one is 
interested in making coarser mastery classifications. The 
simple maximum discrimination approach was not as 
effective as the others, but was reasonably accurate. 

Sequential decisions 

After each item was administered above, Wald’s SPRT 
was applied to determine whether there was enough 
information to make a decision and terminate testing. Error 
rates where set to α=β= .05. Table 6 shows the proportion of 
examinees for which a classification decision could be made, 
the percent of those examinees that were correctly classified, 
PRE, and the mean number of administered items as a 
function of maximum test length using items from 
state-NAEP. With an upper limit of only 15 items, for 
example, some 75% of the examinees were classified into one 
of the 4 NAEP score categories. A classification decision 
could not be made for the other 25%. Eighty-eight percent of 
the classified examinees were classified correctly and they 
required an average of 9.1 items. SPRT was able to quickly 
classify examinees at the tails of this data with an underlying 
normal distribution. 

The proportions classified and the corresponding 
accuracy as a function of the maximum number of items 
administered from Table 6 are shown in Figure 1. The 
proportion classified curve begins to level off after about a 
test size limit of 30 items. Accuracy is fairly uniform after a 
test size limit of about 10 or 15 items. 

DISCUSSION 
The simple measurement model presented in this paper is 
applicable to situations where one is interested in categorical 
information. The model has a very simple framework - one 
starts with the conditional probabilities of examinees in each 
mastery state responding correctly to each item. One can 
obtain these probabilities from a very small pilot sample. 

An individual’s response pattern is evaluated against the 
conditional probabilities. One computes the probabilities of 
the response vector given each mastery level. Using Bayes’ 
theorem, the conditional probabilities can be converted to a 
posteriori probabilities representing the likelihood of each 
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Table 5: Proportion Reduction in Error for sequential testing methods as a function of 
maximum test length. 

 Max No of 
items 

IRT Approaches Decision Theory Approaches 

Max I(θ) Max I(θ’) Max I(cut) Max Disc Min Cost Info Gain

CSAP items, 2 categories 

 5 0.607 0.564 0.661 0.564 0.661 0.661 

 10 0.702 0.679 0.706 0.690 0.715 0.717 

 15 0.729 0.733 0.748 0.727 0.752 0.750 

 20 0.756 0.760 0.775 0.779 0.770 0.764 

 25 0.772 0.783 0.787 0.779 0.787 0.789 

State NAEP items, 4 categories 

 5 0.576 0.447 0.530 0.418 0.596 0.594 

 10 0.645 0.640 0.659 0.546 0.681 0.675 

 15 0.704 0.682 0.704 0.646 0.720 0.714 

 20 0.723 0.722 0.737 0.709 0.737 0.736 

 25 0.748 0.750 0.761 0.741 0.755 0.755 

 30 0.756 0.770 0.772 0.756 0.767 0.767 

 

Table 6: Proportion of examinees classified using SPRT, information gain,
and state-NAEP items,  the accuracy of their classifications, and the mean 
number of administered items as a function of the maximum number of
administered items. 

Max No of 
items 

Proportion 
Classified Accuracy Prop Reduct 

Error 
Mean No 

of items 

 5 0.260 0.948 0.892 4.6 

10 0.604 0.902 0.797 7.4 

15 0.749 0.880 0.752 9.1 

20 0.847 0.865 0.721 10.2 

25 0.899 0.860 0.710 10.8 

30 0.928 0.857 0.704 11.3 

40 0.960 0.852 0.694 11.8 

50 0.972 0.849 0.688 12.2 

100 0.988 0.847 0.684 13.0 

 

.  
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Figure 1: Proportion of examinees classified and the accuracy 
of those classifications as a function of the maximum number 
of administered items (state-NAEP items, four latent states, 
sequential testing using information gain, sequential decisions 
using SPRT). 

 
mastery state. Using the maximum a posteriori, MAP, decision 
rule, this research found that the model was as good as or 
better than three-parameter item response theory in accurately 
classifying examinees. Accuracy was also identical when 
making binary decisions. The model was noticeably more 
accurate than IRT when classifying examinees into one of 
four categories.  Conceivably, the decision theory model will 
be especially attractive when the IRT assumptions are violated 
or IRT cannot be applied. 

This research examined three ways to adaptively, or 
sequentially, administer items using the model. The traditional 
decision theory sequential testing approach, minimum cost, 
was notably better than the best-case possibility for item 
response theory. Two new approaches were introduced. 
Information gain, which is based on entropy and comes from 
information theory, was almost identical to minimum cost. A 
second, simpler approach using the item that best 
discriminates between the two most likely classifications also 
fared better than IRT, but not as well as information gain or 
minimum cost. The research also showed that with Wald’s 
SPRT, large percentages of examinees can be accurately 
classified with very few items. With only 25 sequentially 
selected items, for example, some 90% of the simulated 
state-NAEP examinees were classified with 86% accuracy. 

A key question not addressed here is the local 
independence assumption. We naively assumed that the 
responses to a given item are unaffected by responses to other 
items. While local independence is often ignored in 
measurement and one might expect only minor violations, its 
role in decision theory  is not fully understood. The topic has 
been investigated in the text classification literature. Despite 
very noticeable and very serious violations, naive Bayes 
classifiers perform quite well. Domingos and Pazzani (1997) 
show that strong attribute dependencies may inflate the 
classification probabilities while having little effect on the 
resultant classifications. They argue that naive Bayes 

classifiers have broad applicability in addition to advantages in 
terms of simplicity, learning speed, classification speed, 
storage space and incrementality. This does not appear to be a 
problem for this measurement application of decision theory. 

Measurement Decision Theory is clearly a simple yet 
powerful and widely applicable model. The advantages of this 
model are many -- it yields accurate mastery state 
classifications, can incorporate a small item pool, is simple to 
implement, requires little pre-testing, is applicable to 
criterion-referenced tests, can be used in diagnostic testing, 
can be adapted to yield classifications on multiple skills, can 
employ sequential testing and a sequential decision rule, and 
should be easy to explain to non-statisticians. 

It is the author’s hope that this research will capture the 
imagination of the research and applied measurement 
communities. The model is already the basis for a highly 
visible commercial tool to help test-takers prepare to for the 
GMAT®. The author can envision a much wider use of the 
model. It is a natural routing mechanism for intelligent 
tutoring systems. Under this model, items could be piloted 
with a few number of examinees to vastly improve 
end-of-unit examinations. Certification examinations could 
be created for specialized occupations with a limited number 
of practitioners available for item calibration. Short tests 
could be prepared for teachers to help make tentative 
placement and advancement decisions.  A small collection of 
items from a one test, say state-NAEP, could be embedded in 
another test, say a state assessment, to yield meaningful 
cross-regional information.  

The research questions are numerous. How can the 
model be extended to multiple rather than dichotomous item 
response categories? How can bias be detected? How 
effective are alternative adaptive testing and sequential 
decision rules? What effect does the location of cut scores 
have on the ability of decision theory to classify examinees? 
Can the model be effectively extended to 30 or more 
categories to provide a rank ordering of examinees? How can 
one make good use of the fact that the data are ordinal? How 
can the concept of entropy be employed in the examination of 
tests? Are there new item analysis procedures that can 
improve decision theory  tests? How can the model be best 
applied to criterion-referenced tests assessing multiple skills, 
each with a few number of items? Why are minimum cost and 
information gain so similar? How can different cost structures 
be effectively employed? How can items from one test be 
used in another? How does one equate such tests?  
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Footnote 

1. The generalized formula for cost in this context is B c P m P mij j
j
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Notes 

1. An interactive tutorial is available on-line at http://pareonline.net/sup/mdt/  . The tutorial allows you to vary the results 
of the a priori parameters, the examinee's response pattern, and the cost structure. Various rules for classifying an 
examinee and sequencing items are then presented along with the underlying calculations.  

2. Software for generating, calibrating, and scoring measurement decision theory data is available at 
http://pareonline.net/sup/mdt/MDTToolsSetup.exe. Updated April 2010, this is version .895. No support is provided. 
If you are interested in the source code please contact the author.  
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