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Cognitive diagnostic models (CDM) have been around for more than a decade but their application 
is far from widespread for mainly two reasons: (1) CDMs are novel, as compared to traditional IRT 
models. Consequently, many researchers lack familiarity with them and their properties, and (2) 
Software programs doing CDMs have been expensive and not readily available. The present paper 
presents a reader-friendly introduction to the CDMs and uses the CDM package (Robitzsch, Kiefer, 
Cathrice George, & Uenlue, 2014) in R to demonstrate the application of the generalized 
deterministic-input, noisy-and-gate model (G-DINA; de la Torre, 2011) and interpret the output. R 
is a free open source tool which can be utilized to conduct a range of CDMs which otherwise would 
need separate software programs to run each. 

Cognitive diagnostic models (CDMs) are receiving 
increasingly more attention in conferences, journals, 
and books. They have the capability to provide detailed 
diagnostic feedback about the reason why a given test 
taker might succeed or fail on any given test. Although 
researchers and practitioners are getting more and 
more aware of the CDMs and their effectiveness in 
personifying the “assessment for learning rather than 
assessment of learning”  motto, CDMs have remained 
underutilized for two major reasons (de la Torre, 2009): 
(a) As compared to traditional IRT models, CDMs are 
relatively novel and in some cases, more complex. 
Consequently, many researchers lack familiarity with 
these models and their properties (b) Unlike traditional 
IRT models, which can be analyzed using commercially 
available software, accessible computer programs for 
CDMs are not readily available.  

In what follows, a brief introduction of CDMs is 
presented. Then a discussion of the advantages of 

using the CDM package in R is in order. Furthermore, 
data from Ravand (in press) will be used to walk the 
readers through the R code and the steps required to 
conduct CDM and an accessible annotated 

presentation of outputs generated by the CDM 

package is provided. The data for the present study 
were a random sample (n =5000) of the applicants into 
the English master programs at state-run universities in 
Iran. University Entrance Examination for Master 
programs at state universities (UEE) is a high-stakes 
test that screens the applicants into English Teaching, 
English Literature, and Translation Studies programs at 
M.A. level in Iran. For the purpose of the present 
illustration only the reading comprehension data of the 
GE part of the UEE were used.  

Cognitive Diagnostic Models 

Cognitive diagnostic analysis promotes assessment 
for learning and the learning process as opposed to 
assessment of learning outcomes (Jang, 2008).  Through 
providing detailed diagnostic feedback, it can inform 
teachers to modify instruction and learning in 
classrooms, if needed. CDM is an interdisciplinary 
approach to diagnostic assessment. It is at the interface 
between cognitive psychology and statistical analysis. It 
investigates the relationship between the psychological 
processes and strategies underlying performance on 
items of a given test and the responses provided to 
those items through sophisticated statistical analysis. 
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CDMs are latent class models (Haagenars & 
McCutcheon, 2002) that classify test takers into some 
latent classes according to similarity of their responses 
to test items. They are called restricted latent class 
models because the number of the latent classes is 
restricted by the number of attributes involved in 
answering items of a test. With K attributes underlying 
performance on a given test, the respondents will be 
classified into 2K latent classes (the number 2 indicates 
that there are two possible outcomes for each attribute: 
mastery or nonmastery). In the case of the present 
study, for example, with five attributes required to 
perform successfully on the items of the test under 

study, test takers were classified into 52 32=  latent 
classes.  

CDMs predict probability of an observable 
categorical response from unobservable (i.e., latent) 
categorical variables. These discrete latent variables 
have been variously termed as skill, subskill, attribute, 
knowledge, and ability. In the present paper, the terms 
attribute, skill, and subskill are used interchangeably to 
refer to the discrete latent predictor variables. 

CDMs have been defined by Rupp and Templin 
(2008) as “probabilistic, confirmatory multidimensional 
latent variable models with a simple or complex 
loading structure” (P. 226). They are probabilistic 
models in that each CDM expresses a given 
respondent’s performance level in terms of the 
probability of mastery of each attribute separately, or 
the probability of each person belonging to each latent 
class (Lee and Sawaki, 2009). Like confirmatory factor 
analysis models, CDMs are also confirmatory in nature 
in the sense that latent variables in CDMs are defined a 
priori through a Q-matrix. A Q-matrix (Tatsuoka, 
1985) is the loading structure of a CDM. It is a 
hypothesis about the required skills for getting each 
item right (Li, 2011). It is a matrix of as many rows as 
there items on the test and as many columns as there 
are attributes underlying performance on the test. 
CDMs are also multidimensional latent variable models 
because, unlike IRT models which assign to 
respondents a single score on a continuous scale, they 
assign respondents to multidimensional skill profiles by 
classifying them as masters versus non masters of each 
skill involved in the test. However, CDMs are notably 
different from multidimensional IRT models in that 
the latent variables in CDMs are discrete or categorical 
(e.g., masters/non-masters), whereas ability estimates 
(θ) in multidimensional IRT models are continuous. 

Finally, for the purpose of the CDMs, each item 
typically requires more than one attribute. This leads to 
a complex loading structure where each item is 
specified in relation to multiple attributes. This 
complex loading structure, in terms of 
multidimensional IRT, is known as within-item 
multidimensionality (e.g., McDonald, 1999).  

CDM vs.  IRT  

Snow and Lohman (1989), by documenting the 
ways conventional educational psychometric 
measurement (EPM) models such as IRT are limited, 
tacitly pointed to the ways successful use of CDMs can 
overcome those limitations: They (a) explain item 
responses through a substantive psychological theory, 
(b) explicitly delineate the psychological processes that 
collectively underlie the construct measured by a test, 
(c) make realistic assumptions about the variables that 
affect performance on items of a test (as opposed to 
conventional models such as the three-parameter IRT 
model which makes a simplifying assumption that only 
three parameters affect item responses). More 
importantly, unlike conventional EPMs such as IRT, 
which are based on an investigator’s expectations of what 
cognitive processes test takers follow to solve 
problems in test taking situations, CDMs are based on 
empirical evidence of the actual processes and 
strategies followed in these situations. 

All the EPM models aim to provide information 
about position of test takers along (a) latent variable(s) 
underlying performance in any assessment situation. 
Conventional IRT models locate test takers on a 
broadly defined single latent variable, whereas CDMs 
provide information about mastery status of  test takers 
of a set of interrelated separable attributes. Mastery 
status is expressed either in terms of probabilities for 
each person having mastered each separate skill 
involved in answering successfully items of a test or in 
terms of a vector of 0/1s indicating nonmastery and 
mastery, respectively. In a test requiring four subskills, 
for example, a person who has mastered the first two 
attributes but not the last two, might be assigned the 
vector (1,1,0,0) or (.91, .86, .27..32), where 0s and 
probabilities below.5 indicate nonmastery, and 1s and 
probabilities above .5 indicate mastery. 
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Types of CDMs 

Generally speaking, CDMs can be grouped into 
three families, as shown in Table 1:  

 Table 1. CDM Types 

CDM Type Examples Author(s) 

Compen-
satory 

1) deterministic-
input, noisy-or-
gate model 
(DINO) 

Templin & 
Henson (2006) 

 2) compensatory 
reparameterized 
unified model (C-
RUM) 

Hartz (2002) 

Non-
compen-
satory 

1) deterministic-
input, noisy-and-
gate model 
(DINA) 

Junker & Sijtsma 
(2001) 

 2) noncompensator
y reparematerized 
unified model 
(NC-RUM) 

DiBello et al. 
(1995); Hartz 
(2002) 

General 1) general diagnostic 
model (GDM) 

Von Davier (2005) 

 2) log-linear CDM 
(LCDM) 

Henson, Templin 
& Willse (2009) 

 3) generalized 
DINA (G-
DINA) 

de la Torre (2011) 

 

In compensatory models, mastery of one or some 
of the attributes required to get an item right can 
compensate for nonmastery of the other attributes. On 
the contrary, in noncompensatory models lack of 
mastery of one attribute cannot be completely 
compensated by other attributes in terms of item 
performance; that is all the attributes must function in 
conjunction with each other to produce the correct 
answer. General CDMs allow for both types of 
relationships within the same test. Many specific 
CDMs such as DINA, DINO, NC-RUM, C-RUM, and 
ACDM can be derived from the GDINA, for example. 
Thus GDINA allows a different model for each item 
on the same test. For one item, for example, the DINA 
model may be the best choice, for another the DINO, 
and still for the other the C-RUM. 

The probability in a GDINA model that student i 

gets item j correct which requires two attributes �� and 

�� is defined as in Equation 1: 

����� = 1���, … , ��� =                         
��� + ����� + ����� + �������� 

(1) 

The parameter ��� is denoted as the item intercept 

which is the probability of a correct answer to an item 
when none of the required attributes for the item has 
been mastered. For two attributes, there are two main 

effects ��� and ��� and one interaction effect ����. 

For three required attributes ��, �� and ��, the 
probability is defined as in Equation 2: 

����� = 1���, … , ���
=                                              

��� + ����� + ����� + ����� + �������� 
+�������� + �������� + ����������� 

                           
(2) 

For the general formulation of the probability in 
the GDINA model see de la Torre (2011).  

Steps in conducting CDM 

CDMs have been employed in two ways: (a) 
retrofitting (post-hoc analysis) of existing non-diagnostic 
tests to extract richer information and (b) designing a 
set of items or task from the beginning for diagnostic 
purposes. Many of the applications of the CDMs 
(including the present illustration) in educational 
measurement in general and language testing in 
particular are cases of retrospective specification (post-
hoc analysis) of the knowledge and skills evaluated on 
existing non-diagnostic tests. 

The following steps are involved in retrofitting 
CDMs to existing tests: 

1) Specifying the skills and attributes required to 
perform successfully on any given test. This 
stage is the personification of the construct 
representation stage of construct validation, 
proposed by Embretson (1983). 

To define attributes involved in a test, various 
sources such as test specifications, content 
domain theories, analysis of item content, 
think-aloud protocol analysis of examinees’ test 
taking process, and the results obtained by the 
relevant  research in the literature can be 
sought (Embretson, 1991; Leighton & Gierl, 
2007; Leighton, Gierl, & Hunka, 2004). In 
specifying the subskills underlying any given 
test, some considerations need to be taken into 
account. Models with large average number of 
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attributes per item are more likely to be 
unidentified. The finer the grain size of a CDM, 
the richer the diagnostic information provided 
(Alderson, 2005), however, the more stress is 
placed on the capacity of statistical modeling. 
Hartz, Roussos, and Stout (2002) suggested 
there should be at least three items associated 
with each attribute for diagnostically reliable 
information. As Lee and Sawaki (2009b) 
argued, the more detailed the level of 
specification of a Q-matrix, the larger the 
number of required items to represent the 
universe of the attributes in a test. They further 
argued that "In addition, it is likely that the 
more fine-grained the attributes are, the more 
difficult it can become to maintain the 
consistency of diagnosis across occasions or 
test forms, potentially contributing to instability  
and unreliability of examinee 
classification"(p.184). 

2) Analysis of the test items and delineating skill-
by-item relationships in a Q-matrix. According 
to Lee and Sawaki (2009b) the diagnostic 
power of a CDM depends on the theoretical 
and empirical soundness of a Q-matrix. 

3) Model specification. The relationships (e.g., 
conjunctive, compensatory, or general) among 
the postulated subskills should be specified. 
Selection of an appropriate CDM which is 
suitable for a particular assessment purpose is a 
prerequisite in cognitive diagnostic analysis. 
Rupp and Templin (2008) discuss the 
confirmatory nature of CDMs in a way that is 
rarely noticed. They argue that CDMs are 
confirmatory in that the appropriate CDM 
which reflects how attributes interact in the 
response process (i.e., how mastery of the 
postulated attributes affects response 
probabilities) should be specified a priori. 

4) Estimating the profiles of skill mastery for 
individual examinees based on actual test 
performance data using the CDM. 

The Q-matrix used in the present illustration 
was adopted from a study by Ravand (2015) 
wherein he specified the subskills and 
developed the Q-matrix underlying the reading 
section of the UEE. Since the test employed in 
the study by Ravand had not been developed 

for diagnostic purposes, he took the following 
steps to ensure, as much as possible, that the 
subskills identified were valid:  

(a) The author invited two university 
instructors to brainstorm on the possible 
attributes measured by the test,  

(b) Three other university instructors and three 
Master students were invited to independently 
specify the attributes measured by each item,  

(c) The Q-matrix was empirically validated and 
revised. There are a few methods available 
which have been developed to identify Q-
matrix misspecifications (e.g., methods 
developed by Barnes, 2010; Chiu, 2013; 
DeCarlo, 2012; de la Torre, 2008; Liu, Xu, & 
Ying, 2012; Templin & Henson, 2006). The 
above mentioned methods are limited in that 
they have been applied to specific CDMs, one 
or another. To apply these methods, one has to 
make a priori specification of the model: 
compensatory or noncompensatory. Some of 
these methods such as the ones developed by 
Barnes (2010) and Liu et.al. (2012) are further 
limited in that they derive Q-matrices solely 
based on test takers’ responses without taking 
into account expert opinion. de la Torre and 
Chiu (2010) proposed a discrimination index 
that can be used with all the specific CDMs 
that are subsumed under the G-DINA model. 
Ravand (2015) employed the same method to 
identify misspecifications of (to validate) the Q-
matrix adopted in the present study. 

(d) The final Q-matrix was cross-validated with 
the other half of the sample1. According to the 
Q-matrix construction phase of the study, there 
were five attributes underlying performance on 
the reading comprehension section of the 
UEE: reading for details, reading for inference, reading 
for main idea (henceforth referred to as Detail, 
Inference, and Main Idea, respectively) Syntax, 
and Vocabulary. For a detailed process of Q-

                                                 
1 Ravand (2015) split the sample for his study into two: Half 

of the sample was used to identify and revise Q-matrix 
misspecifications in Stage C and the other half was used to cross-
validate the Q-matrix thus obtained. 
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matrix development and revision refer to 
Ravand (2015). 

As to the third stage (i.e., model specification) in 
CDM analysis, the authors chose the G-DINA to 
demonstrate. 

Benefits of using R to conduct CDM 

Most, if not all, of the software programs available 
to estimate CDMs handle only one of the CDMs 
shown in Table 1. MDLTM (von Davier, 2006), for 
example, conducts GDM, Arpeggio Suite (Bolt et. al., 
2008) conducts the Fusion model (NC-RUM), and 
Mplus (Muthen & Muthen, 2013), which is a general 
purpose software, can conduct LCDM. Arpeggio and 
Mplus are commercial software but a restricted 
research license of GDM is available from the author 
free of charge. Another problem with some of the 
most commonly used software like Arpeggio and 
MPlus is that preparing their syntax is a tedious process 
and especially in the case of Mplus it involves minute 
specifications. For a four-attribute test, for example, 
several pages of syntax must be written for Mplus. To 
ease the pain of heavy syntax building, Templin and 
Hoffman (2013) have prepared a SAS macro that 
automatically generates the required syntax for Mplus 
to conduct LCDM but model estimation is carried out 
through Mplus. Furthermore, software such as 
Arpeggio and Mplus are relatively time inefficient in 
estimating CDM parameters. As the number of the 
attributes involved in a test increases, the time taken to 
estimate the model exponentially increases. Each run 
of the Arpeggio with its default number of Markov 
Chain Monte Carlo chains and four attributes, for 
example, would take about 28 minutes (for 1500 
subjects and 1000 iterations) on a computer with 2GB 
of RAM and a Core i3 CPU. Depending on how many 
times a researcher revises the Q-matrix, she would 
spend hours estimating the model parameters with the 
software. As it was mentioned before, although syntax 
generation is carried out by the SAS macro, LCDM 
parameter estimation is carried out through Mplus, 
which would take several hours with four or five 
attributes. After all, depending on the nature and 
purpose of the study, a researcher may want to run 
more than one CDM. For example, he may want to 
compare a compensatory CDM with a 
noncompensatory one to ensure about the nature of 
the relationship among the attributes underlying a 
given test. To this end, she or he has to buy and learn 

how to work with more than one software programs, 
which would be a burden on the researcher both 
financially and technically.  

The four most appealing features employing the R 

package CDM (Robitzsch, Kiefer, Cathrice George, & 
Uenlue, 2014), intended for cognitive diagnostic 
analysis, are: (a) It is very time efficient: Estimation of 
the parameters of anyone of the above mentioned 
models with, for example, five attributes would take 
less than a minute, (b) It has the capability to run most 
of the major CDMs such as DINA, DINO, NC-RUM, 
GDM, and G-DINA, (c) It is free, and (d) Anyone of 
the CDMs can be conducted with just a few lines of 
syntax.   

Working with R 

As with any other analysis in R, before conducting 
CDM analysis, the relevant package should be loaded. 

The CDM package is loaded by executing the 
following command:  

library(CDM) 

In order to conduct CDM, two data files are 
required: A file that embodies test takers’ responses to 
the items of a given test and a file which includes the 
Q-matrix. A portion of the Q-matrix used for the 
illustration purpose in this study is displayed in Table 2. 
In a Q-matrix 1s indicate that kth attribute is required 
by ith item and 0s indicate that the attribute is not 
required by the item. For example, as Table 2 shows, 
Item 1 requires Inference and Vocabulary attributes 
whereas Item 5 requires only Vocabulary. 

Table 2. Q-matrix 

Item Detail Inference Main 
idea 

Syntax Vocab 

1 0 1 0 0 1 
2 1 0 0 0 1 
3 0 1 0 0 1 
4 0 0 1 1 1 
5 0 0 0 0 1 

 

After the package has been loaded, the data should 
be imported into R. The most convenient way to 
import data into R, is to save the file in the format of 
comma separated values (.csv ) or tab-delimited text 
(.txt  or .dat ). 
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The foreign package can be used to import data 
from different statistical packages (like SPSS or Stata) 
into R. To do so, execute the following command: 

library(foreign)  

Depending on the format of the data read.delim  
or read.csv functions can be used to assign the data 
to an object as follows: 

data <- read.csv(“filename.extension”, 
header=TRUE) 

header=TRUE  tells R to read the variable names form 
the first row of the data file. If the data file does not 
have the variable names, the argument header=FALSE  
should be used. 

Now import the data file and Q-matrix into R. 
The data file and the Q-matrix had been saved under 
the names of “san.csv” and “qmat.csv”, respectively. 
Therefore, they can be imported by executing the 
following commands: 

mydata <- read.csv("san.csv", header=TRUE)  
[,c(2:21)] 

qmat <- read.csv("qmat.csv", header=TRUE) 

Since item data are located in Columns 2 to 21, the 
brackets at the very end of the first command select all 
the rows and Columns 2 to 21 (within the brackets, 
what comes before comma refers to rows and what 
comes after comma refers to columns) 

As it was mentioned before, the CDM package is 
capable of conducting several CDMs such as DINA, 
DINO, NC-RUM, ACDM, GDM, and GDINA. For 
the purpose of the present paper, GDINA is 
illustrated. 

The main function that estimates GDINA is  

gdina(data, q.matrix) 

For example, in our case with the previously 
created objects of 'mydata' and 'qmat' ( we could have 
given other names to the objects created) the function 
becomes 

model1 <- gdina(mydata, qmat)    

Note we have created the object model1  from the 
application of the gdina  function to the two objects of  
mydata  and qmat . 

When the estimation finished, execute the 
following command to get GDINA item parameters: 

model1$probitem 

The dollar sign ($) in R codes means that the 
operation specified after $ should be called within the 
object named before $. This command tells R to 
extract the coefficients from the object model1 . 

To save the output in a file, write.csv  or 
write.delim  functions can be used as follows: 

write.csv(model1$probitem, 
file="gdinparam.csv")  

By executing this command we ask R to write the 
output of the model1$probitem  function in a csv  
format file which we named it gdinparam . The result 
will be saved in an excel file. Part of the output is 
displayed in Table 3. 

Table 3. G-DINA Parameters  

Itemno partype.attr attributecomb prob 

1 V2-V5 A00 .11 
1 V2-V5 A10 .18 
1 V2-V5 A01 .42 
1 V2-V5 A11 .60 
2 V1-V5 A00 .10 
2 V1-V5 A10 .19 
2 V1-V5 A01 .46 
2 V1-V5 A11 .53 

Note. V1 to V5 are Detail, Inference, Main idea, Syntax, and 
Vocabulary, respectively. Itemno: item number; parttype.attr: 
Attributes required; attributecomb: attribute combinations; 
prob: probabilities 

In this table the second column represents the 
attributes required by any item, the third column 
displays the attribute mastery patterns and the fourth 
column represents the probability of success on each 
item due to mastery of attributes required by the item. 
The number of parameters estimated for each item is a 
function of the number of attributes required by that 
item. Since G-DINA is a saturated CDM, all the main 
effects for the attributes and all their possible 
interactions are estimated.  

As Table 3 shows, those who have not mastered 
any of the attributes required by Item 1 (indicated by 
the pattern A00) namely Inference (V2) and 
Vocabulary (V5), have about 11% chance of guessing 
and getting the item right. Chances of success on Item 
1 for those who have mastered only Inference 
(indicated by the pattern A10), were 18% higher 
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compared to those who have not mastered any of the 
attributes. Therefore, masters of Inference had .11 
+.18 = .29 probability of not slipping (success) on the 
item. Mastery of Vocabulary (indicated by the pattern 
A01) increased success on the item more than mastery 
of the Inference, indicating that Attribute 2 
discriminated more between its masters and non-
masters. Therefore, masters of vocabulary had 
.11+.42=.53 chance of getting the item right. 
Interaction of (mastery of both) Attributes 1 and 2 
added 60 % to the probability of success on the item. 
For masters of both attributes (indicated by the pattern 
A11) the probability of getting the item right was 
.11+.60=.71. 

To obtain the attribute class probabilities, the 
following command should be executed: 

model1$attribute.patt 

Table 4. Class Probabilities 

Latent 
class 

Attribute 
profile 

Class 
probability 

Class 
expected 
frequency 

1 00000 .149 3223.2 
2 10000 .001     18.1 
3 01000 .004     81.4 

… … … …. 
31 01111 .018   388.7 
32 11111 .373 8073.9 

 

Table 4 shows a portion of the output generated 
by executing the above command. In the present study 
test takers were classified into 25=32 latent classes. The 
second column of the table shows the possible 
attribute profiles for all the 32 latent classes. As the 
third column of Table 4 shows, the attribute profile of 
α32=[11111] had the highest class probability of about 
.37. Approximately, 37% of the respondents (as shown 
in the last column, about 8073 respondents) in the 
present study were classified as belonging to this last 
latent class hence expected to have mastered all of the 
five attributes. Attribute profile of α1=[00000] had the 
second highest class probability  of about .15 indicating 
that approximately 15% (about 3223 respondents) of 
the test takers were expected to have mastered none of 
the attributes.  

To obtain probabilities for each respondent 
belonging to any of the 32 latent attributes, execute the 
following command 

model1$posterior  

and you will obtain the output shown in Table 5. Table 
5 has been transposed to fit the printed page. 

Table 5. Class Probabilities for 
Respondents 

  Response pattern 

 

0000000 
0000000 
000000 

1110010 
0001000 
100000 

0100000 
0010110 
010000 

Class 1 0.98 0 0 
Class 2 0 0 0 
Class 3 0 0 0 

Class 4 0 0 0 

Class 5 0 0 0 

Class 6 0 0 0 

Class 7 0 0 0 

Class 8 0 0 0 

Class 9 0.01 0 0.02 

Class 10 0 0 0.02 

Class 11 0 0.03 0.02 

Class 12 0 0.01 0.06 
Class 13 0 0 0 
Class 14 0 0 0 
Class 15 0 0.08 0.07 

Class 16 0 0.06 0.47 

Class 17 0 0 0 

Class 18 0 0 0 

Class 19 0 0 0 

Class 20 0 0 0 

Class 21 0 0 0 

Class 22 0 0 0 

Class 23 0 0 0 

Class 24 0 0 0 
Class 25 0 0.08 0.03 
Class 26 0 0 0.02 
Class 27 0 0.07 0 

Class 28 0 0.07 0.04 

Class 29 0 0 0 

Class 30 0 0 0 

Class  31 0 0.16 0 

Class 32 0 0.43 0.23 

 
Table 5 displays the probabilities that each person 

belonged to anyone of the 32 latent classes, for three 
respondents. In the table, values for each respondent 
with the given response pattern represent the posterior 
probability that he belonged to latent class c with the 
given attribute profile. For example, for Respondent 2, 
the chances were 43 % and 16% that she or he 
belonged to latent classes 32 and 31, respectively. Put 
another way, there is 43% chance that he has mastered 
all the five attributes and 16% chance of having 
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mastered Attributes of Inference, Main idea, Syntax, 
and Vocabulary. 

To obtain probabilities that each test taker has 
mastered any of the attributes involved in answering 
the items of the test, execute the following command: 

model1$pattern 

To save space, only a portion of the output is 
presented in Table 6.  It shows the probability that 
each respondent with the given ID, response pattern, 
and attribute profile has mastered Attributes 1 to 5. 
For example, the probabilities that Respondent 6085 

with the attribute profile of 25α = [10010] has 

mastered Attributes1 to 5 were .47, .84, .90, .78 and 
1.00, respectively. 

Difficulty of the attributes can also be calculated. 
Executing the following command will return the 
percentage of subjects who have mastered each 
attribute. 

model1$skill.patt 

 
Table 7. Attribute difficulty 

Atttribute                  Attribute.prob 

Detail .60 
Inference .50 
Main idea .54 
Syntax .72 
Vocabulary .64 

 
As Table 7 shows, Syntax, mastered by about 73 

% of the test takers, was the easiest attribute followed 
by Vocabulary, Detail, Main Idea, and Inference 
mastered by 64 %, 60 %, 54 % and 50 % of the test 
takers, respectively. Therefore, Syntax was the easiest 
and Inference was the most difficult attribute. 

 

Model Fit 

Like in any other statistical model, estimated 
parameters in CDMs are interpretable to the extent 
that the model fits the data.  Fit of a model can be 
ascertained in two ways: checking fit of the model to 
the data (i.e., absolute fit) and comparing the model with 

other rival models (i.e., relative fit). The CDM package 
generates a range of absolute fit indices by comparing 
the observed and model-predicted response 
frequencies of item pairs (Maydeu-Olivares, 2013). 

R generates absolute and relative fit indices by 
executing the following command: 

IRT.modelfit( model1) 

 The model fit indices are presented in Tables 8a 
and b. Table 8a includes relative fit indices of 
information criteria AIC, BIC, AIC3, sample size 
adjusted AIC (AICc) and consistent AIC (CAIC). The 
model with the least information criteria is the most 
preferable. It turns out that the GDINA model fits the 
data best with respect to all criteria. Besides these 
measures of relative model fit, the IRT.modelfit  
function also provides a significance test of absolute 
model fit (maxX2; see Chen, de la Torre & Zhang, 
2013). As Table 8a shows, the least value was obtained 
for the GDINA model (maxX2 = 20.26), however 
there was a significant model misfit (p = .001). The 
DINA model and the ACDM had a worse model fit.  

Like in structural equation modeling, effect sizes 
of absolute model fit have been proposed (Robitzsch 
et al., 2014). The CDM package especially provides 
measures MADcor, SRMSR and 
100*MADRESIDCOV (MADRCOV) which compare 
observed and predicted covariances (or correlations) of 
item pairs. The smaller an effect size, the better a 
model fits. From the results of MADRCOV (Table 
8b), we conclude that the GDINA model 
(MADRCOV=.123) and the ACDM model 
(MADRCOV=.162) were clearly superior to the DINA 
model (MADRCOV=.431). 

Table 6. Attribute Mastery Probabilities 

Column1 pattern attribute 

profile 
Prob-

ability 
attribute1 attribute2 attribute3 Attribute4 Attribute5 

1 00000000000000000000 00000 .98 .00 .00 .00  .01 .00 
14238 11100100001000100000 01011 .43 .58 .91 .74 1.00 .82 
6085 01000000010110010000 10010 .47 .84 .90 .78 1.00 .32 
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The IRT.modelfit  function also performs a 
likelihood ratio test for model comparisons which are 
valid when the models under study are nested. The 
output is displayed in Table 9. It is evident, that the 
GDINA model fitted the data significantly better than 
the DINA model (Chi2(df=26)=5112.10, p<.001) and 
was also superior to the ACDM model 
(Chi2(df=14)=688.03, p<.001). 

 
Table 9. Model Comparison 

$LRtest Model1 Model2 Chi2 df p 

1 dina gdin 5112.10 26 0 

2 acdm gdin  688.03 14 0 

3 dina acdm 4424.07 12 0 

 

Differential item functioning 

Another capability of the CDM package is that it 
can also perform differential item functioning (DIF) in 
the context of CDM. According to Hou, de la Torre, 
and Nandakumar (2014, p.99) “In the context of 
CDMs, DIF is an effect where the probabilities of 
correctly answering an item are different for examinees 
with the same attribute mastery profile but who are 
from different observed groups”. Unlike traditional 
DIF detection procedures which use the total score as 
the matching criterion, the CDM DIF detection 
procedure proposed by Hou et al. uses attribute 
mastery profile score as the matching criterion. The 
procedure has the following advantages: (a) It can 
investigate both uniform and nonuniform DIF, (b) 
Item calibrations are done separately for the reference 
and focal groups through the Wald test thus 

contamination due to DIF items is avoided and the 
need for purifications is obviated. In the CDM DIF, 
uniform DIF exists when probability of answering an 
item is the same for test takers of one group across all 
the attribute profiles. If this probability changes for test 
takers of the same group across the attribute profiles 
(i.e., higher on some attribute profiles but lower on the 
others) there is an indication of nonuniform DIF. To 
conduct DIF in the CDM package, one needs to fit a 
multiple group G-DINA first. To introduce gender as 
the grouping variable, the following command should 
be executed: 

multigdin<-gdina( mydata, qmat , group = 
data$gender ) 

Finally, the following function can be employed to 
conduct CDM DIF: 

difres <- gdina.dif(multigdin) 

The output can be recalled by the following code: 

summary(difres) 

The third column of Table 10 shows that the 
difficulties of Items 55 and 57 were significantly 
different for males and females (p <.05). The last 
column (i.e., UA) shows the effect size for DIF. Jodoin 
and Gierl (2001) suggest as a rule of thumb values of 
.059 to distinguish negligible from moderate DIF and 
.088 to distinguish moderate from large DIF. As Table 
10 shows, the effect size for both items flagged for 
DIF are blow .059. Therefore, it can be concluded that 
the very high sample size of the present study rendered 
the small differences in the difficulty of the respective 
items between males and females statistically 
significant. 

Table 8a. Fit Indices 

Model loglike Deviance Npars Nobs AIC BIC AIC3 AICc CAIC maxX2 

gdin -234905 469811 82 21642 469975 470629 470057 469976 470711 20.26 

dina -237461 474923 56 21642 475035 475482 475091 475035 475538 270.29 

acdm -235249 470499 68 21642 470635 471178 470703 470635 471246 170.97 

 

Table 8b. Fit Indices 

Model 
p_maxX2 MADcor SRMSR 

100* 
MADRESIDCOV 

(MADRCOV) 
MADQ3 MADaQ3 

gdin 0.001 0.006 0.007 0.123 0.025 0.020 

dina 0 0.020 0.028 0.431 0.022 0.021 

acdm 0 0.008 0.010 0.162 0.027 0.022 
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Table 10. DIF estimates 

Item χ2 df P UA 

41 2.08 4 .72 .035 
42 1.16 4 .88 .020 
43 1.44 4 .84 .011 
44 1.07 4 .90 .013 
45 0.07 2 .97 .003 
46 0.20 4 .99 .008 
47 0.39 4 .98 .016 
48 1.52 4 .82 .016 
49 0.65 4 .96 .014 
50 4.48 2 .11 .028 
51 4.37 2 .11 .006 
52 3.22 8 .92 .033 
53 1.15 4 .89 .025 
54 0.16 2 .92 .008 
55 6.64 2 .04 .019 
56 1.51 2 .47 .013 
57 8.12 2 .02 .026 
58 2.04 2 .36 .016 
59 2.49 4 .65 .039 
60 0.04 2 .98 .003 

 

Discussion 

In this paper we first reviewed CDMs and showed 

how CDM package in R can be conveniently used to 
conduct cognitive diagnostic analysis. We also briefly 
introduced the R environment. We guided the reader 
through the steps required to do CDM. We also 
provided an accessible easy-to-understand 
interpretation of the output of G-DINA. 

Applications of CDMs have mainly focused on 
classifying test takers into multidimensional skill 
spaces, thereby providing detailed diagnostic 
information of strengths and weaknesses of test takers 
(e.g., Buck & Tatsuoka, 1998; Jang 2009a; Kasai, 1997; 
Kim, 2011; A. Kim, 2014; Li, 2011; Li & Suen, 2013; 
Ravand, Barati, & Widhiarso, 2012; Sawaki, Kim, & 
Gentile, 2009; von Davier, 2005). The information 
provided by CDMs can have theoretical and practical 
implications as well. Theoretically, as de la Torre and 
Lee (2013) noted, specific CDMs for each item can 
indicate how attributes underlying a test can combine 
(e.g., in a compensatory or conjunctive way) to produce 
correct responses to items of the test. Practically, they 
can be used to explore what features make the items 
conjunctive or compensatory. This function of the 

CDMs is of interest especially when items requiring the 
same attributes have different inter-skill relationships. 

CDMs can also be employed to demonstrate, in 
Chronbach and Meehl’s (1955) word, strong form of 
construct validity. As Rupp and Templin (2008) 
discussed, CDMs are confirmatory in two ways: First, 
according to a substantive theory of a construct, the 
knowledge and processes which test takers require to 
perform successfully on the items of a test are 
described in a Q-matrix. Using an analogy from 
confirmatory factor analysis, we can say that a Q-
matrix is the loading structure of a CDM wherein item-
by-skill relationships are hypothesized. Then the 
theory-driven Q-matrix is validated against real data. 
According to Rupp and Templin, CDMs are also 
confirmatory in that how attributes interact in the 
response process should be specified a priori, that is 
whether attributes combine in a compensatory or 
conjunctive relationship to produce the correct answer 
should be specified in advance. The process of model 
selection is informed by the domain theories or the 
extant literature. Therefore, “as with most procedures 
for validating theories in scientific investigations, 
model selection is conducted by comparing the theory-
based predictions and actual observations” (de la Torre 
and Lee, 2013, p.356). Thus when a compensatory or a 
conjunctive model is selected to explain the 
relationships between the attributes and item response 
probabilities, if characteristics of the data can be 
reproduced by the model, it is said that the model fits 
the data hence the postulated relationships are 
confirmed. From both skill specification and model selection 
perspectives, CDMs involve theory testing, which is 
what Chronbach and Meehl’s (1955) strong program of 
validity entails. 
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